201
|
Watson EC, Adams RH. Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031559. [PMID: 28893838 DOI: 10.1101/cshperspect.a031559] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood vessels are essential for the distribution of oxygen, nutrients, and immune cells, as well as the removal of waste products. In addition to this conventional role as a versatile conduit system, the endothelial cells forming the innermost layer of the vessel wall also possess important signaling capabilities and can control growth, patterning, homeostasis, and regeneration of the surrounding organ. In the skeletal system, blood vessels regulate developmental and regenerative bone formation as well as hematopoiesis by providing vascular niches for hematopoietic stem cells. Here we provide an overview of blood vessel architecture, growth and properties in the healthy, aging, and diseased skeletal system.
Collapse
Affiliation(s)
- Emma C Watson
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| |
Collapse
|
202
|
Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018; 132:235-251. [PMID: 29935988 PMCID: PMC6226327 DOI: 10.1016/j.addr.2018.06.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
3D bioprinting is emerging as a promising technology for fabricating complex tissue constructs with tailored biological components and mechanical properties. Recent advances have enabled scientists to precisely position materials and cells to build functional tissue models for in vitro drug screening and disease modeling. This review presents state-of-the-art 3D bioprinting techniques and discusses the choice of cell source and biomaterials for building functional tissue models that can be used for personalized drug screening and disease modeling. In particular, we focus on 3D-bioprinted liver models, cardiac tissues, vascularized constructs, and cancer models for their promising applications in medical research, drug discovery, toxicology, and other pre-clinical studies.
Collapse
Affiliation(s)
- Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Liu
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Natalie Lawrence
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China.
| |
Collapse
|
203
|
Seynhaeve ALB, Oostinga D, van Haperen R, Eilken HM, Adams S, Adams RH, Ten Hagen TLM. Spatiotemporal endothelial cell - pericyte association in tumors as shown by high resolution 4D intravital imaging. Sci Rep 2018; 8:9596. [PMID: 29941944 PMCID: PMC6018425 DOI: 10.1038/s41598-018-27943-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell – pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.
Collapse
Affiliation(s)
- Ann L B Seynhaeve
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands.
| | - Douwe Oostinga
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| | - Hanna M Eilken
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| |
Collapse
|
204
|
|
205
|
Burtch SR, Sameti M, Olmstead RT, Bashur CA. Rapid generation of three-dimensional microchannels for vascularization using a subtractive printing technique. JOURNAL OF BIOPHOTONICS 2018; 11:e201700226. [PMID: 29356372 DOI: 10.1002/jbio.201700226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
The development of tissue-engineered products has been limited by lack of a perfused microvasculature that delivers nutrients and maintains cell viability. Current strategies to promote vascularization such as additive three-dimensional printing techniques have limitations. This study validates the use of an ultra-fast laser subtractive printing technique to generate capillary-sized channels in hydrogels prepopulated with cells by demonstrating cell viability relative to the photodisrupted channels in the gel. The system can move the focal spot laterally in the gel at a rate of 2500 mm/s by using a galvanometric scanner to raster the in plane focal spot. A Galilean telescope allows z-axis movement. Blended hydrogels of polyethylene glycol and collagen with a range of optical clarities, mechanical properties and swelling behavior were tested to demonstrate that the subtractive printing process for writing vascular channels is compatible with all of the blended hydrogels tested. Channel width and patterns were controlled by adjusting the laser energy and focal spot positioning, respectively. After treatment, high cell viability was observed at distances greater than or equal to 18 μm from the fabricated channels. Overall, this study demonstrates a flexible technique that has the potential to rapidly generate channels in tissue-engineered constructs.
Collapse
Affiliation(s)
- Stephanie R Burtch
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida
| | - Mahyar Sameti
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida
| | - Richard T Olmstead
- Department of Electrical Engineering, Florida Institute of Technology, Melbourne, Florida
- Medical Optics and Photonics Incorporated (MEDOPHO), Oviedo, Florida
| | - Chris A Bashur
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida
| |
Collapse
|
206
|
A multi-step transcriptional cascade underlies vascular regeneration in vivo. Sci Rep 2018; 8:5430. [PMID: 29615716 PMCID: PMC5882937 DOI: 10.1038/s41598-018-23653-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
The molecular mechanisms underlying vascular regeneration and repair are largely unknown. To gain insight into this process, we developed a method of intima denudation, characterized the progression of endothelial healing, and performed transcriptome analysis over time. Next-generation RNA sequencing (RNAseq) provided a quantitative and unbiased gene expression profile during in vivo regeneration following denudation injury. Our data indicate that shortly after injury, cells immediately adjacent to the wound mount a robust and rapid response with upregulation of genes like Jun, Fos, Myc, as well as cell adhesion genes. This was quickly followed by a wave of proliferative genes. After completion of endothelial healing a vigorous array of extracellular matrix transcripts were upregulated. Gene ontology enrichment and protein network analysis were used to identify transcriptional profiles over time. Further data mining revealed four distinct stages of regeneration: shock, proliferation, acclimation, and maturation. The transcriptional signature of those stages provides insight into the regenerative machinery responsible for arterial repair under normal physiologic conditions.
Collapse
|
207
|
Chawla S, Midha S, Sharma A, Ghosh S. Silk-Based Bioinks for 3D Bioprinting. Adv Healthc Mater 2018; 7:e1701204. [PMID: 29359861 DOI: 10.1002/adhm.201701204] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Indexed: 11/07/2022]
Abstract
3D bioprinting field is making remarkable progress; however, the development of critical sized engineered tissue construct is still a farfetched goal. Silk fibroin offers a promising choice for bioink material. Nature has imparted several unique structural features in silk protein to ensure spinnability by silkworms or spider. Researchers have modified the structure-property relationship by reverse engineering to further improve shear thinning behavior, high printability, cytocompatible gelation, and high structural fidelity. In this review, it is attempted to summarize the recent advancements made in the field of 3D bioprinting in context of two major sources of silk fibroin: silkworm silk and spider silk (native and recombinant). The challenges faced by current approaches in processing silk bioinks, cellular signaling pathways modulated by silk chemistry and secondary conformations, gaps in knowledge, and future directions acquired for pushing the field further toward clinic are further elaborated.
Collapse
Affiliation(s)
- Shikha Chawla
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| | - Swati Midha
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| | - Aarushi Sharma
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| | - Sourabh Ghosh
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
208
|
Akbari E, Spychalski GB, Rangharajan KK, Prakash S, Song JW. Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. LAB ON A CHIP 2018; 18:1084-1093. [PMID: 29488533 PMCID: PMC7337251 DOI: 10.1039/c8lc00130h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endothelial barrier function is known to be regulated by a number of molecular mechanisms; however, the role of biomechanical signals associated with blood flow is comparatively less explored. Biomimetic microfluidic models comprised of vessel analogues that are lined with endothelial cells (ECs) have been developed to help answer several fundamental questions in endothelial mechanobiology. However, previously described microfluidic models have been primarily restricted to single straight or two parallel vessel analogues, which do not model the bifurcating vessel networks typically present in physiology. Therefore, the effects of hemodynamic stresses that arise due to bifurcating vessel geometries on ECs are not well understood. Here, we introduce and characterize a microfluidic model that mimics both the flow conditions and the endothelial/extracellular matrix (ECM) architecture of bifurcating blood vessels to systematically monitor changes in endothelial permeability mediated by the local flow dynamics at specific locations along the bifurcating vessel structure. We show that bifurcated fluid flow (BFF) that arises only at the base of a vessel bifurcation and is characterized by stagnation pressure of ∼38 dyn cm-2 and approximately zero shear stress induces significant decrease in EC permeability compared to the static control condition in a nitric oxide (NO)-dependent manner. Similarly, intravascular laminar shear stress (LSS) (3 dyn cm-2) oriented tangential to ECs located downstream of the vessel bifurcation also causes a significant decrease in permeability compared to the static control condition via the NO pathway. In contrast, co-application of transvascular flow (TVF) (∼1 μm s-1) with BFF and LSS rescues vessel permeability to the level of the static control condition, which suggests that TVF has a competing role against the stabilization effects of BFF and LSS. These findings introduce BFF at the base of vessel bifurcations as an important regulator of vessel permeability and suggest a mechanism by which local flow dynamics control vascular function in vivo.
Collapse
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Scott Laboratory, 201 W. 19th Ave, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
209
|
Tsai HF, Trubelja A, Shen AQ, Bao G. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 2018. [PMID: 28637915 DOI: 10.1098/rsif.2017.0137] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer remains one of the leading causes of death, albeit enormous efforts to cure the disease. To overcome the major challenges in cancer therapy, we need to have a better understanding of the tumour microenvironment (TME), as well as a more effective means to screen anti-cancer drug leads; both can be achieved using advanced technologies, including the emerging tumour-on-a-chip technology. Here, we review the recent development of the tumour-on-a-chip technology, which integrates microfluidics, microfabrication, tissue engineering and biomaterials research, and offers new opportunities for building and applying functional three-dimensional in vitro human tumour models for oncology research, immunotherapy studies and drug screening. In particular, tumour-on-a-chip microdevices allow well-controlled microscopic studies of the interaction among tumour cells, immune cells and cells in the TME, of which simple tissue cultures and animal models are not amenable to do. The challenges in developing the next-generation tumour-on-a-chip technology are also discussed.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Alen Trubelja
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
210
|
Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018; 22:340-354. [PMID: 29499152 PMCID: PMC5849079 DOI: 10.1016/j.stem.2018.02.009] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the clinical demand for bioengineered blood vessels continues to rise, current options for vascular conduits remain limited. The synergistic combination of emerging advances in tissue fabrication and stem cell engineering promises new strategies for engineering autologous blood vessels that recapitulate not only the mechanical properties of native vessels but also their biological function. Here we explore recent bioengineering advances in creating functional blood macro and microvessels, particularly featuring stem cells as a seed source. We also highlight progress in integrating engineered vascular tissues with the host after implantation as well as the exciting pre-clinical and clinical applications of this technology.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rowza T Rumma
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
211
|
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018; 217:1571-1587. [PMID: 29467174 PMCID: PMC5940296 DOI: 10.1083/jcb.201701039] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Broders-Bondon et al. review the pathological mechanical properties of tumor tissues and how abnormal mechanical signals result in oncogenic biochemical signals during tumor progression. Cancer has been characterized as a genetic disease, associated with mutations that cause pathological alterations of the cell cycle, adhesion, or invasive motility. Recently, the importance of the anomalous mechanical properties of tumor tissues, which activate tumorigenic biochemical pathways, has become apparent. This mechanical induction in tumors appears to consist of the destabilization of adult tissue homeostasis as a result of the reactivation of embryonic developmental mechanosensitive pathways in response to pathological mechanical strains. These strains occur in many forms, for example, hypervascularization in late tumors leads to high static hydrodynamic pressure that can promote malignant progression through hypoxia or anomalous interstitial liquid and blood flow. The high stiffness of tumors directly induces the mechanical activation of biochemical pathways enhancing the cell cycle, epithelial–mesenchymal transition, and cell motility. Furthermore, increases in solid-stress pressure associated with cell hyperproliferation activate tumorigenic pathways in the healthy epithelial cells compressed by the neighboring tumor. The underlying molecular mechanisms of the translation of a mechanical signal into a tumor inducing biochemical signal are based on mechanically induced protein conformational changes that activate classical tumorigenic signaling pathways. Understanding these mechanisms will be important for the development of innovative treatments to target such mechanical anomalies in cancer.
Collapse
Affiliation(s)
- Florence Broders-Bondon
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Thanh Huong Nguyen Ho-Bouldoires
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| |
Collapse
|
212
|
Belcher DA, Ju JA, Baek JH, Yalamanoglu A, Buehler PW, Gilkes DM, Palmer AF. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study. PLoS One 2018; 13:e0191275. [PMID: 29414985 PMCID: PMC5802857 DOI: 10.1371/journal.pone.0191275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022] Open
Abstract
A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (<20 mm Hg) may be increased, while O2 offloading at high O2 tensions (>20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (<10 μm). Therefore, transfusion of PolyhHb may lead to elevated O2 delivery at low pO2. In addition, transfusion of R-state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Julia A. Ju
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Ayla Yalamanoglu
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Paul W. Buehler
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
213
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
214
|
Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci U S A 2018; 115:1256-1261. [PMID: 29363599 DOI: 10.1073/pnas.1714282115] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eight out of 10 breast cancer patients die within 5 years after the primary tumor has spread to the bones. Tumor cells disseminated from the breast roam the vasculature, colonizing perivascular niches around blood capillaries. Slow flows support the niche maintenance by driving the oxygen, nutrients, and signaling factors from the blood into the interstitial tissue, while extracellular matrix, endothelial cells, and mesenchymal stem cells regulate metastatic homing. Here, we show the feasibility of developing a perfused bone perivascular niche-on-a-chip to investigate the progression and drug resistance of breast cancer cells colonizing the bone. The model is a functional human triculture with stable vascular networks within a 3D native bone matrix cultured on a microfluidic chip. Providing the niche-on-a-chip with controlled flow velocities, shear stresses, and oxygen gradients, we established a long-lasting, self-assembled vascular network without supplementation of angiogenic factors. We further show that human bone marrow-derived mesenchymal stem cells, which have undergone phenotypical transition toward perivascular cell lineages, support the formation of capillary-like structures lining the vascular lumen. Finally, breast cancer cells exposed to interstitial flow within the bone perivascular niche-on-a-chip persist in a slow-proliferative state associated with increased drug resistance. We propose that the bone perivascular niche-on-a-chip with interstitial flow promotes the formation of stable vasculature and mediates cancer cell colonization.
Collapse
|
215
|
Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD. In Vitro Microfluidic Models for Neurodegenerative Disorders. Adv Healthc Mater 2018; 7. [PMID: 28881425 DOI: 10.1002/adhm.201700489] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Microfluidic devices enable novel means of emulating neurodegenerative disease pathophysiology in vitro. These organ-on-a-chip systems can potentially reduce animal testing and substitute (or augment) simple 2D culture systems. Reconstituting critical features of neurodegenerative diseases in a biomimetic system using microfluidics can thereby accelerate drug discovery and improve our understanding of the mechanisms of several currently incurable diseases. This review describes latest advances in modeling neurodegenerative diseases in the central nervous system and the peripheral nervous system. First, this study summarizes fundamental advantages of microfluidic devices in the creation of compartmentalized cell culture microenvironments for the co-culture of neurons, glial cells, endothelial cells, and skeletal muscle cells and in their recapitulation of spatiotemporal chemical gradients and mechanical microenvironments. Then, this reviews neurodegenerative-disease-on-a-chip models focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Finally, this study discusses about current drawbacks of these models and strategies that may overcome them. These organ-on-chip technologies can be useful to be the first line of testing line in drug development and toxicology studies, which can contribute significantly to minimize the phase of animal testing steps.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| | - Yoojin Shin
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| | - Vivek Sivathanu
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| | - Marco Campisi
- Department of Mechanical and Aerospace EngineeringPolitecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
- Department of Biological EngineeringMassachusetts Institutes of Technology 500 Technology Square, MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| |
Collapse
|
216
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
217
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
218
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
219
|
Traore MA, George SC. Tissue Engineering the Vascular Tree. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:505-514. [PMID: 28799844 PMCID: PMC5729878 DOI: 10.1089/ten.teb.2017.0010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
A major hurdle in the field of tissue engineering and regenerative medicine remains the design and construction of larger (> 1 cm3) in vitro tissues for biological studies and transplantation. While there has been success in creating three-dimensional (3D) capillary networks, relatively large arteries (diameter >3-5 mm), and more recently small arteries (diameter 500 μm-1 mm), there has been no success in the creation of a living dynamic blood vessel network comprising of arterioles (diameter 40-300 μm), capillaries, and venules. Such a network would provide the foundation to supply nutrients and oxygen to all surrounding cells for larger tissues and organs that require a hierarchical vascular supply. In this study, we describe the different technologies and methods that have been employed in an effort to create individual vessels and networks of vessels to support engineered tissues for in vivo and in vitro applications. A special focus is placed on the generation of blood vessels with average dimensions that span from microns (capillaries) to a millimeter (large arterioles). We also identify major challenges while exploring new opportunities to create model systems of the entire vascular tree, including arterioles and venules.
Collapse
Affiliation(s)
- Mahama A. Traore
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Washington University, Saint Louis, Missouri
| | | |
Collapse
|
220
|
Osaki T, Sivathanu V, Kamm RD. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis. Biomaterials 2017; 156:65-76. [PMID: 29190499 DOI: 10.1016/j.biomaterials.2017.11.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/16/2022]
Abstract
Capillary networks surrounding skeletal muscle play an important role in not only supplying oxygen and nutrients but also in regulating the myogenesis and repair of skeletal muscle tissues. Herein, we model the early stages of 3D vascularized muscle fiber formation in vitro using a sequential molding technique to investigate interactions between angiogenesis of endothelial cells and myogenesis of skeletal muscle cells. Channelrhodopsin-2 C2C12 muscle fiber bundles and 3D vascular structures (600 μm diameter) were formed at 500 μm intervals in a collagen gel. Endothelial cells exhibited an emergent angiogenic sprouting behavior over several days, which was modulated by the muscle fiber bundle through the secretion of angiopoietin-1. Through a reciprocal response, myogenesis was also upregulated by interactions with the vascular cells, improving muscle contraction via angiopoetin-1/neuregulin-1 signaling. Moreover, continuous training of muscle tissue by optical stimulation induced significantly more angiogenic sprouting. This in vitro model could be used to better understand the formation of vascularized muscle tissues and to test the interactions between muscle growth, repair or training and angiogenesis for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institutes of Technology, Cambridge, MA, 02139, USA
| | - Vivek Sivathanu
- Department of Mechanical Engineering, Massachusetts Institutes of Technology, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institutes of Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institutes of Technology, Cambridge, MA, 02139, USA; BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
221
|
Abstract
Biomaterials engineered with specific bioactive ligands, tunable mechanical properties, and complex architectural features have emerged as powerful tools to probe how cells sense and respond to the physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.
Collapse
Affiliation(s)
- Linqing Li
- Biological Design Center and the Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
- the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, 02115, USA
| | - Jeroen Eyckmans
- Biological Design Center and the Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
- the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, 02115, USA
| | - Christopher S. Chen
- Biological Design Center and the Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
- the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, 02115, USA
| |
Collapse
|
222
|
Giatsidis G, Cheng L, Haddad A, Ji K, Succar J, Lancerotto L, Lujan-Hernandez J, Fiorina P, Matsumine H, Orgill DP. Noninvasive induction of angiogenesis in tissues by external suction: sequential optimization for use in reconstructive surgery. Angiogenesis 2017; 21:61-78. [DOI: 10.1007/s10456-017-9586-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
|
223
|
Shirure VS, Lezia A, Tao A, Alonzo LF, George SC. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 2017; 20:493-504. [PMID: 28608153 PMCID: PMC10597324 DOI: 10.1007/s10456-017-9559-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
Convective transport can significantly distort spatial concentration gradients. Interstitial flow is ubiquitous throughout living tissue, but our understanding of how interstitial flow affects concentration gradients in biological processes is limited. Interstitial flow is of particular interest for angiogenesis because pathological and physiological angiogenesis is associated with altered interstitial flow, and both interstitial flow and morphogen gradients (e.g., vascular endothelial growth factor, VEGF) can potentially stimulate and guide new blood vessel growth. We designed an in vitro microfluidic platform to simulate 3D angiogenesis in a tissue microenvironment that precisely controls interstitial flow and spatial morphogen gradients. The microvascular tissue was developed from endothelial colony forming cell-derived endothelial cells extracted from cord blood and stromal fibroblasts in a fibrin extracellular matrix. Pressure in the microfluidic lines was manipulated to control the interstitial flow. A mathematical model of mass and momentum transport, and experimental studies with fluorescently labeled dextran were performed to validate the platform. Our data demonstrate that at physiological interstitial flow (0.1-10 μm/s), morphogen gradients were eliminated within hours, and angiogenesis demonstrated a striking bias in the opposite direction of interstitial flow. The interstitial flow-directed angiogenesis was dependent on the presence of VEGF, and the effect was mediated by αvβ3 integrin. We conclude that under physiological conditions, growth factors such as VEGF and fluid forces work together to initiate and spatially guide angiogenesis.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Andrew Lezia
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Arnold Tao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Luis F Alonzo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
224
|
Kagan HJ, Belekdanian VD, Chen J, Backeris P, Hammoudi N, Turnbull IC, Costa KD, Hajjar RJ. Coronary capillary blood flow in a rat model of congestive heart failure. J Appl Physiol (1985) 2017; 124:632-640. [PMID: 29051335 DOI: 10.1152/japplphysiol.00741.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to explore the role of abnormal coronary microvasculature morphology and hemodynamics in the development of congestive heart failure (CHF). CHF was induced in rats by aortic banding, followed by ischemia-reperfusion and later aortic debanding. Polymerized casts of coronary vasculature were imaged under a scanning electron microscope (SEM). Matrix Laboratory (MATLAB) software was used to calculate capillary structure index (CSI), a measure of structural alignment also called mean vector length (MVL), for 93 SEM images of coronary capillaries (CSI→1 perfect linearity; CSI→0 circular disarray). CSI was incorporated as a constant to represent tortuosity and nonlaminar flow in Poiseuille's equation to estimate the differences in capillary blood flow rate, velocity, and resistance for CHF vs. CONTROL The morphology of CHF capillaries is significantly disordered and tortuous compared with control (CSI: 0.35 ± 0.02 for 61 images from 7 CHF rats; 0.58 ± 0.02 for 32 images from 7 control rats; P < 0.01). Estimated capillary resistance in CHF is elevated by 173% relative to control, while blood flow rate and blood velocity are 56 and 43% slower than control. Capillary resistance increased 67% due to the significantly narrower capillary diameter in CHF, while it increased an additional 105% due to tortuosity. The significant structural abnormalities of CHF coronary capillaries may drastically stagnate hemodynamics in myocardium and increase resistance to blood flow. This could play a role in the development of CHF. NEW & NOTEWORTHY In the present study, coronary capillary tortuosity was measured by applying Matrix Laboratory software to scanning electron microscope images of capillaries in a rat model of congestive heart failure. Stagnant blood flow in coronary capillaries may play a role in the development of congestive heart failure. The application of computer modeling to histological and physiological data to characterize the hemodynamics of coronary microcirculation is a new area of study.
Collapse
Affiliation(s)
- Heather J Kagan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Varujan D Belekdanian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Jiqiu Chen
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Peter Backeris
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Nadjib Hammoudi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
225
|
Park YG, Choi J, Jung HK, Song IK, Shin Y, Park SY, Seol JW. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy. Int J Mol Med 2017; 40:1210-1216. [PMID: 28849193 PMCID: PMC5593466 DOI: 10.3892/ijmm.2017.3108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow-induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR-3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Jawun Choi
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Hye-Kang Jung
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - In Kyu Song
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Yongwhan Shin
- Auckland International College, Auckland 0600, New Zealand
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| |
Collapse
|
226
|
Boldock L, Wittkowske C, Perrault CM. Microfluidic traction force microscopy to study mechanotransduction in angiogenesis. Microcirculation 2017; 24. [DOI: 10.1111/micc.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Luke Boldock
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine; University of Sheffield; Sheffield UK
| | - Claudia Wittkowske
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine; University of Sheffield; Sheffield UK
| | - Cecile M. Perrault
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine; University of Sheffield; Sheffield UK
| |
Collapse
|
227
|
Akbari E, Spychalski GB, Song JW. Microfluidic approaches to the study of angiogenesis and the microcirculation. Microcirculation 2017; 24. [DOI: 10.1111/micc.12363] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus OH USA
| | | | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus OH USA
- The Comprehensive Cancer Center The Ohio State University Columbus OH USA
| |
Collapse
|
228
|
Abstract
In vivo, cells of the vascular system are subjected to various mechanical stimuli and have demonstrated the ability to adapt their behavior via mechanotransduction. Recent advances in microfluidic and "on-chip" techniques have provided the technology to study these alterations in cell behavior. Contrary to traditional in vitro assays such as transwell plates and parallel plate flow chambers, these microfluidic devices (MFDs) provide the opportunity to integrate multiple mechanical cues (e.g. shear stress, confinement, substrate stiffness, vessel geometry and topography) with in situ quantification capabilities. As such, MFDs can be used to recapitulate the in vivo mechanical setting and systematically vary microenvironmental conditions for improved mechanobiological studies of the endothelium. Additionally, adequate modelling provides for enhanced understanding of disease progression, design of cell separation and drug delivery systems, and the development of biomaterials for tissue engineering applications. Here, we will discuss the advances in knowledge about endothelial cell mechanosensing resulting from the design and application of biomimetic on-chip and microfluidic platforms.
Collapse
|
229
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
230
|
Kroon J, Heemskerk N, Kalsbeek MJT, de Waard V, van Rijssel J, van Buul JD. Flow-induced endothelial cell alignment requires the RhoGEF Trio as a scaffold protein to polarize active Rac1 distribution. Mol Biol Cell 2017; 28:1745-1753. [PMID: 28515142 PMCID: PMC5491183 DOI: 10.1091/mbc.e16-06-0389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022] Open
Abstract
Long-term flow conditions promote endothelial cells to align in the direction of flow. The endothelial RhoGEF Trio keeps active Rac1 at the downstream side rather than exchanging GTP. Thus Trio acts as a scaffold protein to regulate endothelial cell polarization under long-term flow conditions. Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order for endothelial cells to align, they undergo rapid remodeling of the actin cytoskeleton by local activation of the small GTPase Rac1. However, it is not clear whether sustained and local activation of Rac1 is required for long-term flow-induced cell alignment. Using a FRET-based DORA Rac1 biosensor, we show that local Rac1 activity remains for 12 h upon long-term flow. Silencing studies show that the RhoGEF Trio is crucial for keeping active Rac1 at the downstream side of the cell and, as a result, for long-term flow-induced cell alignment. Surprisingly, Trio appears to be not involved in flow-induced activation of Rac1. Our data show that flow induces Rac1 activity at the downstream side of the cell in a Trio-dependent manner and that Trio functions as a scaffold protein rather than a functional GEF under long-term flow conditions.
Collapse
Affiliation(s)
- Jeffrey Kroon
- Department of Plasma Proteins and Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, Netherlands
| | - Niels Heemskerk
- Department of Plasma Proteins and Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, Netherlands
| | - Martin J T Kalsbeek
- Department of Plasma Proteins and Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, Netherlands
| | - Jos van Rijssel
- Department of Plasma Proteins and Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, Netherlands
| | - Jaap D van Buul
- Department of Plasma Proteins and Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, Netherlands
| |
Collapse
|
231
|
Zohar B, Blinder Y, Mooney DJ, Levenberg S. Flow-Induced Vascular Network Formation and Maturation in Three-Dimensional Engineered Tissue. ACS Biomater Sci Eng 2017; 4:1265-1271. [DOI: 10.1021/acsbiomaterials.7b00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yaron Blinder
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
232
|
Ghaffari S, Leask RL, Jones EAV. Blood flow can signal during angiogenesis not only through mechanotransduction, but also by affecting growth factor distribution. Angiogenesis 2017; 20:373-384. [DOI: 10.1007/s10456-017-9553-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
|
233
|
Goodwin K, Nelson CM. Generating tissue topology through remodeling of cell-cell adhesions. Exp Cell Res 2017; 358:45-51. [PMID: 28322823 DOI: 10.1016/j.yexcr.2017.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022]
Abstract
During tissue morphogenesis, cellular rearrangements give rise to a large variety of three-dimensional structures. Final tissue architecture varies greatly across organs, and many develop to include combinations of folds, tubes, and branched networks. To achieve these different tissue geometries, constituent cells must follow different programs that dictate changes in shape and/or migratory behavior. One essential component of these changes is the remodeling of cell-cell adhesions. Invasive migratory behavior and separation between tissues require localized breakdown of cadherin-mediated adhesions. Conversely, tissue folding and fusion require the formation and reinforcement of cell-cell adhesions. Cell-cell adhesion plays a critical role in tissue morphogenesis; its manipulation may therefore prove to be invaluable in generating complex topologies ex vivo. Recapitulating these shapes in engineered tissues would enable a better understanding of how these processes occur in vivo, and may lead to improved design of organs for clinical applications. In this review, we discuss work investigating the formation of folds, tubes, and branched networks with an emphasis on known or possible roles for cell-cell adhesion. We then examine recently developed tools that could be adapted to manipulate cell-cell adhesion in engineered tissues.
Collapse
Affiliation(s)
- Katharine Goodwin
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
234
|
Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, Hong M, Lee S, Ishida H, Burford J, Peti-Peterdi J, Adams RH, Srikanth S, Gwack Y, Chen CS, Vogel HJ, Koh CJ, Wong AK, Hong YK. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Invest 2017; 127:1225-1240. [PMID: 28263185 DOI: 10.1172/jci87442] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow-induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow-induced lymphatic sprouting.
Collapse
|
235
|
Kang T, Tran TTT, Park C, Lee BJ. Biomimetic shear stress and nanoparticulate drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0313-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
236
|
Vasculature-On-A-Chip for In Vitro Disease Models. Bioengineering (Basel) 2017; 4:bioengineering4010008. [PMID: 28952486 PMCID: PMC5590435 DOI: 10.3390/bioengineering4010008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Vascularization, the formation of new blood vessels, is an essential biological process. As the vasculature is involved in various fundamental physiological phenomena and closely related to several human diseases, it is imperative that substantial research is conducted on characterizing the vasculature and its related diseases. A significant evolution has been made to describe the vascularization process so that in vitro recapitulation of vascularization is possible. The current microfluidic systems allow elaborative research on the effects of various cues for vascularization, and furthermore, in vitro technologies have a great potential for being applied to the vascular disease models for studying pathological events and developing drug screening platforms. Here, we review methods of fabrication for microfluidic assays and inducing factors for vascularization. We also discuss applications using engineered vasculature such as in vitro vascular disease models, vasculature in organ-on-chips and drug screening platforms.
Collapse
|
237
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
238
|
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D Bioprinting for Organ Regeneration. Adv Healthc Mater 2017; 6:10.1002/adhm.201601118. [PMID: 27995751 PMCID: PMC5313259 DOI: 10.1002/adhm.201601118] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Margaret Nowicki
- Department of Biomedical Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - John P. Fisher
- Department of Bioengineering University of Maryland 3238 Jeong H. Kim Engineering Building College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Medicine, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
239
|
Kraemer R, Sorg H, Forstmeier V, Knobloch K, Liodaki E, Stang FH, Mailaender P, Kisch T. Immediate Dose-Response Effect of High-Energy Versus Low-Energy Extracorporeal Shock Wave Therapy on Cutaneous Microcirculation. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2975-2982. [PMID: 27662701 DOI: 10.1016/j.ultrasmedbio.2016.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Elucidation of the precise mechanisms and therapeutic options of extracorporeal shock wave therapy (ESWT) is only at the beginning. Although immediate real-time effects of ESWT on cutaneous hemodynamics have recently been described, the dose response to different ESWT energies in cutaneous microcirculation has never been examined. Thirty-nine Sprague-Dawley rats were randomly assigned to three groups that received either focused high-energy shock waves (group A: total of 1000 impulses, 10 J) to the lower leg of the hind limb, focused low-energy shock waves (group B: total of 300 impulses, 1 J) or placebo shock wave treatment (group C: 0 impulses, 0 J) using a multimodality shock wave delivery system (Duolith SD-1 T-Top, Storz Medical, Tägerwilen, Switzerland). Immediate microcirculatory effects were assessed with the O2C (oxygen to see) system (LEA Medizintechnik, Giessen, Germany) before and for 20 min after application of ESWT. Cutaneous tissue oxygen saturation increased significantly higher after high-energy ESWT than after low-energy and placebo ESWT (A: 29.4% vs. B: 17.3% vs. C: 3.3%; p = 0.003). Capillary blood velocity was significantly higher after high-energy ESWT and lower after low-energy ESWT versus placebo ESWT (group A: 17.8% vs. group B: -22.1% vs. group C: -5.0%, p = 0.045). Post-capillary venous filling pressure was significantly enhanced in the high-energy ESWT group in contrast to the low-energy ESWT and placebo groups (group A: 25% vs. group B: 2% vs. group C: -4%, p = 0.001). Both high-energy and low-energy ESWT affect cutaneous hemodynamics in a standard rat model. High-energy ESWT significantly increases parameters of cutaneous microcirculation immediately after application, resulting in higher tissue oxygen saturation, venous filling pressure and blood velocity, which suggests higher tissue perfusion with enhanced oxygen saturation, in contrast to low-energy as well as placebo ESWT. Low-energy ESWT also increased tissue oxygen saturation, albeit to a lower extent, and decreases both blood velocity and venous filling pressure. Low-energy ESWT reduced tissue perfusion, but improved oxygen saturation immediately after the application.
Collapse
Affiliation(s)
- Robert Kraemer
- Plastic and Hand Surgery, Burn Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Heiko Sorg
- Department for Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Essen, Germany
| | - Vinzent Forstmeier
- Department of Visceral and Thoracic Surgery, German Armed Forces Hospital Ulm, Ulm, Germany
| | | | - Eirini Liodaki
- Plastic and Hand Surgery, Burn Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felix Hagen Stang
- Plastic and Hand Surgery, Burn Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Peter Mailaender
- Plastic and Hand Surgery, Burn Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Tobias Kisch
- Plastic and Hand Surgery, Burn Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
240
|
Tekin E, Hunt D, Newberry MG, Savage VM. Do Vascular Networks Branch Optimally or Randomly across Spatial Scales? PLoS Comput Biol 2016; 12:e1005223. [PMID: 27902691 PMCID: PMC5130167 DOI: 10.1371/journal.pcbi.1005223] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/29/2016] [Indexed: 01/24/2023] Open
Abstract
Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. The architecture of vascular networks must balance complex demands to efficiently deliver oxygen and resources throughout the entire body. These demands constrain the possible forms of vasculature. Because of these constraints and the indispensable role of vasculature for much of life, scientists have sought to identify systematic patterns in the structural properties of vascular networks and whether these patterns can be predicted from models based on biological and physical principles. These studies have been limited by the lack of extensive, detailed data. Using high-quality vascular network data obtained via our software, Angicart, we identify novel, systematic patterns of asymmetry in sizes and branching angles among sibling vessels from mouse lung and human head and torso. To examine what constraints might underlie these patterns, we investigate several explanations, including various types of optimal branching as well as random branching. The optimal branchings were derived locally with respect to constraints on material costs or power loss. For random branching we allowed the degree of randomness to vary from local to global spatial scales. By comparing predictions with real data, our study suggests that a key component in determining vascular branching is material cost with some randomness at local to intermediate spatial scales.
Collapse
Affiliation(s)
- Elif Tekin
- Department of Biomathematics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - David Hunt
- Department of Biomathematics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Mitchell G. Newberry
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Van M. Savage
- Department of Biomathematics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
241
|
Partyka PP, Godsey GA, Galie JR, Kosciuk MC, Acharya NK, Nagele RG, Galie PA. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier. Biomaterials 2016; 115:30-39. [PMID: 27886553 DOI: 10.1016/j.biomaterials.2016.11.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/19/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
Abstract
Transport of fluid and solutes is tightly controlled within the brain, where vasculature exhibits a blood-brain barrier and there is no organized lymphatic network facilitating waste transport from the interstitial space. Here, using a compliant, three-dimensional co-culture model of the blood-brain barrier, we show that mechanical stimuli exerted by blood flow mediate both the permeability of the endothelial barrier and waste transport along the basement membrane. Application of both shear stress and cyclic strain facilitates tight junction formation in the endothelial monolayer, with and without the presence of astrocyte endfeet in the surrounding matrix. We use both dextran perfusion and TEER measurements to assess the initiation and maintenance of the endothelial barrier, and microparticle image velocimetry to characterize the fluid dynamics within the in vitro vessels. Application of pulsatile flow to the in vitro vessels induces pulsatile strain to the vascular wall, providing an opportunity to investigate stretch-induced transport along the basement membrane. We find that a pulsatile wave speed of approximately 1 mm/s with Womersley number of 0.004 facilitates retrograde transport of high molecular weight dextran along the basement membrane between the basal endothelium and surrounding astrocytes. Together, these findings indicate that the mechanical stress exerted by blood flow is an important regulator of transport both across and along the walls of cerebral microvasculature.
Collapse
Affiliation(s)
- Paul P Partyka
- Department of Biomedical Engineering, Rowan University, United States
| | - George A Godsey
- School of Biomedical Sciences, Rowan University, United States
| | - John R Galie
- Department of Physics, Camden County College, United States
| | - Mary C Kosciuk
- School of Osteopathic Medicine, Rowan University, United States
| | | | - Robert G Nagele
- School of Biomedical Sciences, Rowan University, United States; School of Osteopathic Medicine, Rowan University, United States
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, United States.
| |
Collapse
|
242
|
Mak M, Spill F, Kamm RD, Zaman MH. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. J Biomech Eng 2016; 138:021004. [PMID: 26639083 DOI: 10.1115/1.4032188] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Cells are highly dynamic and mechanical automata powered by molecular motors that respond to external cues. Intracellular signaling pathways, either chemical or mechanical, can be activated and spatially coordinated to induce polarized cell states and directional migration. Physiologically, cells navigate through complex microenvironments, typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic cancer, they invade across physiological barriers and remodel their local environments through force, matrix degradation, synthesis, and reorganization. Important external factors such as dimensionality, confinement, topographical cues, stiffness, and flow impact the behavior of migrating cells and can each regulate motility. Here, we review recent progress in our understanding of single-cell migration in complex microenvironments.
Collapse
|
243
|
Kim S, Chung M, Ahn J, Lee S, Jeon NL. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. LAB ON A CHIP 2016; 16:4189-4199. [PMID: 27722679 DOI: 10.1039/c6lc00910g] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A crucial yet ill-defined phenomenon involved in the remodeling of vascular networks, including angiogenic sprouting, is flow-mediated endothelial dynamics and phenotype changes. Despite interstitial flow (IF) being ubiquitously present in living tissues surrounding blood capillaries, it is rarely investigated and poorly understood how endothelial cells respond to this flow during morphogenesis. Here we develop a microfluidic 3D in vitro model to investigate the role of IF during vasculogenic formation and angiogenic remodeling of microvascular networks. In the presented model, human blood endothelial cells co-cultured with stromal fibroblasts spontaneously organize into an interconnected microvascular network and then further expand to adjacent avascular regions in a manner of neovessel sprouting. We found that in the presence of IF, vasculogenic organization of the microvascular network was significantly facilitated regardless of the flow direction, whereas angiogenic sprouting was promoted only when the directions of flow and sprouting were opposite while angiogenic activity was suppressed into the direction of flow. We also observed that the vasculatures switch between active angiogenic remodeling and quiescent/non-sprouting state in the contexts provided by IF. This regulatory effect can be utilized to examine the role of anti-angiogenic compounds, clearly distinguishing the differential influences of the compounds depending on their mechanisms of action. Collectively, these results suggest that IF may serve as a critical regulator in tissue vascularization and pathological angiogenesis.
Collapse
Affiliation(s)
- Sudong Kim
- Mechanical Engineering, Seoul National University, Gwanak-gu, Seoul 08826, Korea.
| | - Minhwan Chung
- Mechanical Engineering, Seoul National University, Gwanak-gu, Seoul 08826, Korea.
| | - Jungho Ahn
- Mechanical Engineering, Seoul National University, Gwanak-gu, Seoul 08826, Korea.
| | - Somin Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Noo Li Jeon
- Mechanical Engineering, Seoul National University, Gwanak-gu, Seoul 08826, Korea. and Interdisciplinary Program for Bioengineering, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
244
|
Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, Till JE, Sturgeon K, Zaslavsky A, Chen CS, Ryeom S. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 2016; 7:65429-65440. [PMID: 27589843 PMCID: PMC5323166 DOI: 10.18632/oncotarget.11748] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.
Collapse
Affiliation(s)
- Keri L. Schadler
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Nicholas J. Thomas
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Peter A. Galie
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dong Ha Bhang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Kerry C. Roby
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Prince Addai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Jacob E. Till
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Kathleen Sturgeon
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Alexander Zaslavsky
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
245
|
Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol Heart Circ Physiol 2016; 311:H1297-H1310. [PMID: 27638881 DOI: 10.1152/ajpheart.00516.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Abstract
The effect of endurance exercise on circulating microvesicle dynamics and their impact on surrounding endothelial cells is unclear. Here we tested the hypothesis that exercise intensity modulates the time course of platelet (PMV) and endothelial-derived (EMV) microvesicle appearance in the circulation through hemodynamic and biochemical-related mechanisms, and that microvesicles formed during exercise would stimulate endothelial angiogenesis in vitro. Nine healthy young men had venous blood samples taken before, during, and throughout the recovery period after 1 h of moderate [46 ± 2% maximal oxygen uptake (V̇o2max)] or heavy (67 ± 2% V̇o2max) intensity semirecumbent cycling and a time-matched resting control trial. In vitro experiments were performed by incubating endothelial cells with rest and exercise-derived microvesicles to examine their effects on cell angiogenic capacities. PMVs (CD41+) increased from baseline only during heavy exercise (from 21 ± 1 × 103 to 55 ± 8 × 103 and 48 ± 6 × 103 PMV/μl at 30 and 60 min, respectively; P < 0.05), returning to baseline early in postexercise recovery (P > 0.05), whereas EMVs (CD62E+) were unchanged (P > 0.05). PMVs were related to brachial artery shear rate (r2 = 0.43) and plasma norepinephrine concentrations (r2 = 0.21) during exercise (P < 0.05). Exercise-derived microvesicles enhanced endothelial proliferation, migration, and tubule formation compared with rest microvesicles (P < 0.05). These results demonstrate substantial increases in circulating PMVs during heavy exercise and that exercise-derived microvesicles stimulate human endothelial cells by enhancing angiogenesis and proliferation. This involvement of microvesicles may be considered a novel mechanism through which exercise mediates vascular healing and adaptation.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Christopher Parris
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom; and
| | - Mark Rakobowchuk
- Faculty of Science, Department of Biological Sciences, Thompson Rivers University Kamloops, British Columbia, Canada
| |
Collapse
|
246
|
Cui H, Zhu W, Nowicki M, Zhou X, Khademhosseini A, Zhang LG. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design. Adv Healthc Mater 2016; 5:2174-81. [PMID: 27383032 PMCID: PMC5014673 DOI: 10.1002/adhm.201600505] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/14/2016] [Indexed: 12/20/2022]
Abstract
A biphasic artificial vascularized bone construct with regional bioactive factors is presented using dual 3D bioprinting platform technique, thereby forming a large functional bone grafts with organized vascular networks. Biocompatible mussel-inspired chemistry and "thiol-ene" click reaction are used to regionally immobilize bioactive factors during construct fabrication for modulating or improving cellular events.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall 800 22nd Street NW, Washington, DC, 20052, USA
| | - Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall 800 22nd Street NW, Washington, DC, 20052, USA
| | - Margaret Nowicki
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall 800 22nd Street NW, Washington, DC, 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall 800 22nd Street NW, Washington, DC, 20052, USA
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Wyss Institute for Biologically Inspired Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall 800 22nd Street NW, Washington, DC, 20052, USA.
- Department of Biomedical Engineering, The George Washington University, Washington DC, 20052, USA.
- Department of Medicine, The George Washington University, Washington DC, 20052, USA.
| |
Collapse
|
247
|
Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 2016; 74:279-292. [PMID: 27506620 PMCID: PMC5219012 DOI: 10.1007/s00018-016-2325-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell-cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell-cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell-cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell-cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.
Collapse
|
248
|
Sinha R, Le Gac S, Verdonschot N, van den Berg A, Koopman B, Rouwkema J. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Sci Rep 2016; 6:29510. [PMID: 27404382 PMCID: PMC4941569 DOI: 10.1038/srep29510] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells (ECs) are continuously exposed in vivo to cyclic strain and shear stress from pulsatile blood flow. When these stimuli are applied in vitro, ECs adopt an appearance resembling their in vivo state, most apparent in their alignment (perpendicular to uniaxial strain and along the flow). Uniaxial strain and flow perpendicular to the strain, used in most in vitro studies, only represent the in vivo conditions in straight parts of vessels. The conditions present over large fractions of the vasculature can be better represented by anisotropic biaxial strains at various orientations to flow. To emulate these biological complexities in vitro, we have developed a medium-throughput device to screen for the effects on cells of variously oriented anisotropic biaxial strains and flow combinations. Upon the application of only strains for 24 h, ECs (HUVECs) aligned perpendicular to the maximum principal strain and the alignment was stronger for a higher maximum:minimum principal strain ratio. A 0.55 Pa shear stress, when applied alone or with strain for 24 h, caused cells to align along the flow. Studying EC response to such combined physiological mechanical stimuli was not possible with existing platforms and to our best knowledge, has not been reported before.
Collapse
Affiliation(s)
- Ravi Sinha
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Nico Verdonschot
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Albert van den Berg
- BIOS, Lab on a chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
249
|
Bersini S, Yazdi IK, Talò G, Shin SR, Moretti M, Khademhosseini A. Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 2016; 34:1113-1130. [PMID: 27417066 DOI: 10.1016/j.biotechadv.2016.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Iman K Yazdi
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Cardiocentro Ticino, Lugano, Switzerland.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
250
|
Koutsiaris AG. Wall shear stress in the human eye microcirculation in vivo, segmental heterogeneity and performance of in vitro cerebrovascular models. Clin Hemorheol Microcirc 2016; 63:15-33. [DOI: 10.3233/ch-151976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|