201
|
Govindarajan A, Rao BSS, Nair D, Trinh M, Mawjee N, Tonegawa S, Chattarji S. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc Natl Acad Sci U S A 2006; 103:13208-13. [PMID: 16924103 PMCID: PMC1559778 DOI: 10.1073/pnas.0605180103] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although neurotrophins have been postulated to have antidepressant properties, their effect on anxiety is not clear. We find that transgenic overexpression of the neurotrophin BDNF has an unexpected facilitatory effect on anxiety-like behavior, concomitant with increased spinogenesis in the basolateral amygdala. Moreover, anxiogenesis and amygdalar spinogenesis are also triggered by chronic stress in control mice but are occluded by BDNF overexpression, thereby suggesting a role for BDNF signaling in stress-induced plasticity in the amygdala. BDNF overexpression also causes antidepressant effects, because transgenic mice exhibit improved performance on the Porsolt forced-swim test and an absence of chronic stress-induced hippocampal atrophy. Thus, structural changes in the amygdala and hippocampus, caused by genetic manipulation of the same molecule BDNF, give rise to contrasting effects on anxiety and depressive symptoms, both of which are major behavioral correlates of stress disorders.
Collapse
Affiliation(s)
- Arvind Govindarajan
- *The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN–MIT Neuroscience Research Center, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - B. S. Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Heath and Neurosciences, Bangalore 560029, India; and
| | - Deepti Nair
- Department of Neurophysiology, National Institute of Mental Heath and Neurosciences, Bangalore 560029, India; and
| | - Mimi Trinh
- *The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN–MIT Neuroscience Research Center, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nadya Mawjee
- *The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN–MIT Neuroscience Research Center, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Susumu Tonegawa
- *The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN–MIT Neuroscience Research Center, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence may be addressed. E-mail:
or
| | - Sumantra Chattarji
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
202
|
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59:1116-27. [PMID: 16631126 DOI: 10.1016/j.biopsych.2006.02.013] [Citation(s) in RCA: 2412] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/14/2006] [Accepted: 02/17/2006] [Indexed: 02/06/2023]
Abstract
There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
Collapse
Affiliation(s)
- Ronald S Duman
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA.
| | | |
Collapse
|
203
|
Dagnino-Subiabre A, Orellana JA, Carmona-Fontaine C, Montiel J, Díaz-Velíz G, Serón-Ferré M, Wyneken U, Concha ML, Aboitiz F. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. J Neurochem 2006; 97:1279-87. [PMID: 16539651 DOI: 10.1111/j.1471-4159.2006.03787.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.
Collapse
Affiliation(s)
- Alexies Dagnino-Subiabre
- Department of Psychiatry and Center for Medical Research, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Crowe M, Andel R, Pedersen NL, Fratiglioni L, Gatz M. Personality and risk of cognitive impairment 25 years later. Psychol Aging 2006; 21:573-80. [PMID: 16953718 DOI: 10.1037/0882-7974.21.3.573] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors examined the relationship between personality and cognitive impairment in 4,039 members of the Swedish Twin Registry. Neuroticism and extraversion scores were collected in 1973 at midlife, and cognitive impairment was assessed in the same group 25 years later. Data were analyzed with case-control and co-twin control designs. Greater neuroticism was associated with higher risk of cognitive impairment in the results from case-control, but not from co-twin, analyses. Compared with both extraversion and introversion, moderate extraversion was associated with lower risk of cognitive impairment in both case-control and co-twin designs, as was the combination of high neuroticism and low extraversion. Findings are discussed in the context of theories related to personality, psychological distress, arousal, and cognitive function.
Collapse
Affiliation(s)
- Michael Crowe
- Department of Psychology, University of Alabama, 35294-2100, USA.
| | | | | | | | | |
Collapse
|
205
|
Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: Opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16:239-49. [PMID: 16425236 DOI: 10.1002/hipo.20156] [Citation(s) in RCA: 567] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hippocampus is one of several limbic brain structures implicated in the pathophysiology and treatment of mood disorders. Preclinical and clinical studies demonstrate that stress and depression lead to reductions of the total volume of this structure and atrophy and loss of neurons in the adult hippocampus. One of the cellular mechanisms that could account for alterations of hippocampal structure as well as function is the regulation of adult neurogenesis. Stress exerts a profound effect on neurogenesis, leading to a rapid and prolonged decrease in the rate of cell proliferation in the adult hippocampus. In contrast, chronic antidepressant treatment up-regulates hippocampal neurogenesis, and could thereby block or reverse the atrophy and damage caused by stress. Recent studies also demonstrate that neurogenesis is required for the actions of antidepressants in behavioral models of depression. This review discusses the literature that has lead to a neurogenic hypothesis of depression and antidepressant action, as well as the molecular and cellular mechanisms that underlie the regulation of adult neurogenesis by stress and antidepressant treatment.
Collapse
Affiliation(s)
- Jennifer L Warner-Schmidt
- Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | | |
Collapse
|
206
|
Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR. Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience 2005; 137:37-49. [PMID: 16289586 DOI: 10.1016/j.neuroscience.2005.08.076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/01/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Gene expression profiles in the cortex of adult Long-Evans rats as a function of a stressful social loss and victory in inter-male fighting encounters were examined. This social dominance and subordination model has been postulated to simulate early changes in the onset of depression in the losers. Microarrays were fabricated containing 45mer oligonucleotides spotted in quadruplicate and representing 1178 brain-associated genes. Dynamic range, discrimination power, accuracy and reproducibility were determined with standard mRNA "spiking" studies. Gene expression profiles in dominant and subordinate animals were compared using a "universal" reference design [Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 (Suppl):490-495]. Data were analyzed by significance analysis of microarrays using rank scores [Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116-5121; van de Wiel MA (2004) Significance analysis of microarrays using rank scores. Kwantitatieve Methoden 71:25-37]. Ontological analyses were then performed using the GOMiner algorithm [Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4(4):R28]. And finally, genes of special interest were further studied using quantitative reverse transcriptase polymerase chain reaction. Twenty-two transcripts were statistically significantly differentially expressed in the neocortex between dominant and subordinate animals. Ontological analyses revealed that significant gene changes were clustered primarily into functional neurochemical pathways associated with protein biosynthesis and cytoskeletal dynamics. The most robust of these were the increased expression of interleukin-18, heat shock protein 27, beta3-tubulin, ribosome-associated membrane protein 4 in subordinate animals. Interleukin-18 has been found to be over-expressed in human depression and panic disorder as well as other physiological stress paradigms [Takeuchi M, Okura T, Mori T, Akita K, Ohta T, Ikeda M, Ikegami H, Kurimoto M (1999) Intracellular production of interleukin-18 in human epithelial-like cell lines is enhanced by hyperosmotic stress in vitro. Cell Tissue Res 297(3):467-473] and heat shock proteins have been shown to be involved in the pathogenesis of many neurodegenerative and psychiatric disorders [Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 9(4):406-416; Pongrac JL, Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K (2004) Heat shock protein 12A shows reduced expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 56(12):943-950]. Thus, the gene expression changes that we have observed here are consistent with and extend the observations found in the clinical literature and link them to the animal model used here thereby reinforcing its use to better understand the genesis of depression and identify novel therapeutic targets for its treatment.
Collapse
Affiliation(s)
- R A Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 1801 Maple Avenue, Suite 4300, Evanston, IL 60201, USA
| | | | | | | | | |
Collapse
|
207
|
Dagnino-Subiabre A, Terreros G, Carmona-Fontaine C, Zepeda R, Orellana JA, Díaz-Véliz G, Mora S, Aboitiz F. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence. Neuroscience 2005; 135:1067-74. [PMID: 16165300 DOI: 10.1016/j.neuroscience.2005.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/15/2005] [Accepted: 07/19/2005] [Indexed: 11/30/2022]
Abstract
Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.
Collapse
Affiliation(s)
- A Dagnino-Subiabre
- Department of Psychiatry and Center for Medical Research, Faculty of Medicine, Pontificia Universidad Católica de Chile, Ave. Marcoleta N 387, piso 2, Casilla 114-D, Santiago 1, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Andel R, Hughes TF, Crowe M. Strategies to reduce the risk of cognitive decline and dementia. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/1745509x.1.1.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this review is to present factors that are relevant to cognitive decline and risk of dementia in later life. With longer life expectancy, the likelihood of experiencing age-related cognitive difficulties has increased. Maintaining normal cognitive function is necessary for successful performance of activities of daily living and independence in later life. Although cognitive decline and dementia are sometimes unavoidable, there are ways in which people can modify their risk of these outcomes. Furthermore, the authors suggest that factors contributing to deviations from homeostasis may have adverse effects on brain health and possibly increase the risk of cognitive decline and dementia.
Collapse
Affiliation(s)
- Ross Andel
- University of South Florida, School of Aging Studies, Tampa, FL 33620, USA
| | - Tiffany F Hughes
- University of South Florida, School of Aging Studies, Tampa, FL 33620, USA
| | - Michael Crowe
- University of Alabama at Birmingham, Department of Psychology, Birmingham, AL 35294-2100, USA
| |
Collapse
|
209
|
Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4:141-94. [PMID: 15996533 DOI: 10.1016/j.arr.2005.03.003] [Citation(s) in RCA: 634] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/14/2005] [Indexed: 01/10/2023]
Abstract
Corticotropin-releasing hormone (CRH) plays a central role in the regulation of the hypothalamic-pituitary-adrenal (HPA)-axis, i.e., the final common pathway in the stress response. The action of CRH on ACTH release is strongly potentiated by vasopressin, that is co-produced in increasing amounts when the hypothalamic paraventricular neurons are chronically activated. Whereas vasopressin stimulates ACTH release in humans, oxytocin inhibits it. ACTH release results in the release of corticosteroids from the adrenal that, subsequently, through mineralocorticoid and glucocorticoid receptors, exert negative feedback on, among other things, the hippocampus, the pituitary and the hypothalamus. The most important glucocorticoid in humans is cortisol, present in higher levels in women than in men. During aging, the activation of the CRH neurons is modest compared to the extra activation observed in Alzheimer's disease (AD) and the even stronger increase in major depression. The HPA-axis is hyperactive in depression, due to genetic factors or due to aversive stimuli that may occur during early development or adult life. At least five interacting hypothalamic peptidergic systems are involved in the symptoms of major depression. Increased production of vasopressin in depression does not only occur in neurons that colocalize CRH, but also in neurons of the supraoptic nucleus (SON), which may lead to increased plasma levels of vasopressin, that have been related to an enhanced suicide risk. The increased activity of oxytocin neurons in the paraventricular nucleus (PVN) may be related to the eating disorders in depression. The suprachiasmatic nucleus (SCN), i.e., the biological clock of the brain, shows lower vasopressin production and a smaller circadian amplitude in depression, which may explain the sleeping problems in this disorder and may contribute to the strong CRH activation. The hypothalamo-pituitary thyroid (HPT)-axis is inhibited in depression. These hypothalamic peptidergic systems, i.e., the HPA-axis, the SCN, the SON and the HPT-axis, have many interactions with aminergic systems that are also implicated in depression. CRH neurons are strongly activated in depressed patients, and so is their HPA-axis, at all levels, but the individual variability is large. It is hypothesized that particularly a subgroup of CRH neurons that projects into the brain is activated in depression and induces the symptoms of this disorder. On the other hand, there is also a lot of evidence for a direct involvement of glucocorticoids in the etiology and symptoms of depression. Although there is a close association between cerebrospinal fluid (CSF) levels of CRH and alterations in the HPA-axis in depression, much of the CRH in CSF is likely to be derived from sources other than the PVN. Furthermore, a close interaction between the HPA-axis and the hypothalamic-pituitary-gonadal (HPG)-axis exists. Organizing effects during fetal life as well as activating effects of sex hormones on the HPA-axis have been reported. Such mechanisms may be a basis for the higher prevalence of mood disorders in women as compared to men. In addition, the stress system is affected by changing levels of sex hormones, as found, e.g., in the premenstrual period, ante- and postpartum, during the transition phase to the menopause and during the use of oral contraceptives. In depressed women, plasma levels of estrogen are usually lower and plasma levels of androgens are increased, while testosterone levels are decreased in depressed men. This is explained by the fact that both in depressed males and females the HPA-axis is increased in activity, parallel to a diminished HPG-axis, while the major source of androgens in women is the adrenal, whereas in men it is the testes. It is speculated, however, that in the etiology of depression the relative levels of sex hormones play a more important role than their absolute levels. Sex hormone replacement therapy indeed seems to improve mood in elderly people and AD patients. Studies of rats have shown that high levels of cumulative corticosteroid exposure and rather extreme chronic stress induce neuronal damage that selectively affects hippocampal structure. Studies performed under less extreme circumstances have so far provided conflicting data. The corticosteroid neurotoxicity hypothesis that evolved as a result of these initial observations is, however, not supported by clinical and experimental observations. In a few recent postmortem studies in patients treated with corticosteroids and patients who had been seriously and chronically depressed no indications for AD neuropathology, massive cell loss, or loss of plasticity could be found, while the incidence of apoptosis was extremely rare and only seen outside regions expected to be at risk for steroid overexposure. In addition, various recent experimental studies using good stereological methods failed to find massive cell loss in the hippocampus following exposure to stress or steroids, but rather showed adaptive and reversible changes in structural parameters after stress. Thus, the HPA-axis in AD is only moderately activated, possibly due to the initial (primary) hippocampal degeneration in this condition. There are no convincing arguments to presume a causal, primary role for cortisol in the pathogenesis of AD. Although cortisol and CRH may well be causally involved in the signs and symptoms of depression, there is so far no evidence for any major irreversible damage in the human hippocampus in this disorder.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
210
|
Makris N, Gasic GP, Seidman LJ, Goldstein JM, Gastfriend DR, Elman I, Albaugh MD, Hodge SM, Ziegler DA, Sheahan FS, Caviness VS, Tsuang MT, Kennedy DN, Hyman SE, Rosen BR, Breiter HC. Decreased absolute amygdala volume in cocaine addicts. Neuron 2005; 44:729-40. [PMID: 15541319 DOI: 10.1016/j.neuron.2004.10.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/26/2004] [Accepted: 09/28/2004] [Indexed: 11/19/2022]
Abstract
The amygdala is instrumental to a set of brain processes that lead to cocaine consumption, including those that mediate reward and drug craving. This study examined the volumes of the amygdala and hippocampus in cocaine-addicted subjects and matched healthy controls and determined that the amygdala but not the hippocampus was significantly reduced in volume. The right-left amygdala asymmetry in control subjects was absent in the cocaine addicts. Topological analysis of amygdala isosurfaces (population averages) revealed that the isosurface of the cocaine-dependent group undercut the anterior and superior surfaces of the control group, implicating a difference in the corticomedial and basolateral nuclei. In cocaine addicts, amygdala volume did not correlate with any measure of cocaine use. The amygdala symmetry coefficient did correlate with baseline but not cocaine-primed craving. These findings argue for a condition that predisposes the individual to cocaine dependence by affecting the amygdala, or a primary event early in the course of cocaine use.
Collapse
Affiliation(s)
- Nikos Makris
- Motivation and Emotion Neuroscience Collaboration, Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Rosso IM, Cintron CM, Steingard RJ, Renshaw PF, Young AD, Yurgelun-Todd DA. Amygdala and hippocampus volumes in pediatric major depression. Biol Psychiatry 2005; 57:21-6. [PMID: 15607296 DOI: 10.1016/j.biopsych.2004.10.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 10/25/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND The purpose of this study was to measure amygdala and hippocampus volumes in pediatric major depressive disorder (MDD) and to address the question of neuroanatomical continuity with adult-onset depression. METHODS We studied 20 children and adolescents with MDD (17 female subjects) and 24 healthy comparison subjects (16 female subjects) using 1.5 Tesla magnetic resonance imaging. Group differences in left and right amygdala and hippocampus volumes were examined using repeated measures analyses of covariance, adjusting for age, gender, and whole brain volume. RESULTS Depressed children had significant reductions of left and right amygdala volumes compared with healthy subjects. Hippocampus volumes did not differ between the groups. No significant correlations were found between amygdala volumes and depressive symptom severity, age at onset, or illness duration. CONCLUSIONS Smaller amygdalas are present early in the course of pediatric depression and may predispose to the development of this disorder or perhaps more generally of childhood mood disorders. Future research should examine the longitudinal course and functional correlates of amygdala volume abnormalities in childhood-onset depression, including their possible moderation by gender.
Collapse
Affiliation(s)
- Isabelle M Rosso
- Brain Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
212
|
Abstract
Preclinical and clinical studies have demonstrated that stress or depression can lead to atrophy and cell loss in limbic brain structures that are critically involved in depression, including the hippocampus. Studies in experimental animals demonstrate that decreased birth of new neurons in adult hippocampus could contribute to this atrophy. In contrast, antidepressant treatment increases neurogenesis in the hippocampus of adult animals and blocks the effects of stress. Moreover, blockade of hippocampal neurogenesis blocks the actions of antidepressants in behavioral models of depression, demonstrating a direct link between behavior and new cell birth. This perspective reviews the literature in support of the hypothesis that altered birth of new neurons in the adult brain contributes to the etiology and treatment of depression and considers research strategies to test this hypothesis.
Collapse
Affiliation(s)
- Ronald S Duman
- Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
213
|
Rasgon N, Jarvik L. Insulin resistance, affective disorders, and Alzheimer's disease: review and hypothesis. J Gerontol A Biol Sci Med Sci 2004; 59:178-83; discussion 184-92. [PMID: 14999034 DOI: 10.1093/gerona/59.2.m178] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Affective disorders (ad) and Alzheimer's disease (AD) have been associated for almost a century, and various neurophysiologic factors have been implicated as common biologic markers. Yet, links between ad and AD still await elucidation. We propose that insulin resistance (IR) is one of the missing links between ad and AD. IR with hyperinsulinemia and subsequent impairment of glucose metabolism especially in ad patients may promote neurodegeneration and facilitate the onset of AD. According to our hypothesis, IR may persist even into ad remission in some patients. Persistent regional hypometabolism and vascular changes resulting from long-standing IR may lead to currently irreversible structural changes. Evidence in support of the hypothesis is reviewed and clinical implications suggested.
Collapse
Affiliation(s)
- Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA.
| | | |
Collapse
|
214
|
Wilson RS, Mendes De Leon CF, Bennett DA, Bienias JL, Evans DA. Depressive symptoms and cognitive decline in a community population of older persons. J Neurol Neurosurg Psychiatry 2004; 75:126-9. [PMID: 14707321 PMCID: PMC1757443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND An association between depressive symptoms and cognitive decline has been observed in selected cohorts of older people, but studies of defined populations have had conflicting results. OBJECTIVE To test whether the level of depressive symptoms predicted the rate of cognitive decline in a biracial community of older persons. METHODS 4392 older people (88% of those eligible) from a defined community in Chicago completed two or three structured interviews at approximately three year intervals for an average of 5.3 years. At the baseline interview, the number of depressive symptoms was assessed with a 10 item version of the Center for Epidemiologic Studies Depression scale. Cognitive function was assessed at each interview with four performance tests, from which a previously established measure of global cognition was derived. Random effects models were used to assess change in cognition and its relation to depressive symptoms, controlling for age, sex, race, education, and baseline cognitive function. RESULTS Participants reported a median of one depressive symptom at baseline (interquartile range, 0 to 2). For each depressive symptom, the rate of cognitive decline increased by a mean of about 5%. Results were not substantially changed when persons with cognitive impairment at baseline were excluded, or when chronic illness or participation in cognitively stimulating activities was controlled, and the association was not modified by age, sex, race, or education. CONCLUSIONS The results suggest that depressive symptoms predict cognitive decline in old age.
Collapse
Affiliation(s)
- R S Wilson
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
215
|
Horowitz JM, Pastor DM, Kar S, Arinsburg SA, Hallas BH, Torres G. Regulation of hippocampal parkin protein by corticosteroids. Neuroreport 2003; 14:2327-30. [PMID: 14663185 DOI: 10.1097/00001756-200312190-00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkin is a protein that when mutated leads to an inherited form of Parkinson's disease. Under normal conditions, this molecule has multiple functions in different cell types, including protein degradation and tumor suppression. To understand the relationship between parkin and circulating corticosteroid hormones, we studied the long-term depletion of corticosterone due to bilateral adrenalectomy in rats. We show that adrenalectomy deletes the expected expression of nuclear parkin in hippocampal neurons. Notably, the effect of adrenalectomy on parkin was prevented by corticosterone hormone replacement therapy. This finding suggests that adrenal hormones may be critical in sustaining parkin ubiquitinating activity in the rat hippocampus.
Collapse
Affiliation(s)
- Judith M Horowitz
- Department of Psychology, Clinical Neuroscience Laboratory, Medaille College, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
216
|
Yoshitake T, Reenilä I, Ogren SO, Hökfelt T, Kehr J. Galanin attenuates basal and antidepressant drug-induced increase of extracellular serotonin and noradrenaline levels in the rat hippocampus. Neurosci Lett 2003; 339:239-42. [PMID: 12633897 DOI: 10.1016/s0304-3940(03)00020-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Galanin is co-localized with classical neurotransmitters, such as acetylcholine, serotonin (5-HT) and noradrenaline (NA) in neurons or in brain regions implicated in cognitive and affective behaviour. In the present study, the effects of galanin on extracellular 5-HT and NA levels in the rat hippocampus were measured by in vivo microdialysis under basal conditions and following systemic administration of antidepressant drugs. Galanin (1.5 nmol i.c.v.) reduced basal 5-HT and NA levels to 65% and 86% of controls, respectively. Galanin (0.5 and 1.5 nmol i.c.v.) dose-dependently attenuated the elevation of 5-HT concentrations induced by imipramine and citalopram (10 mg/kg i.p., each) from 350% to 312% and from 230% to 160%, respectively. Galanin at 1.5 nmol transiently attenuated the effect of desipramine-induced (10 mg/kg i.p.) increase in extracellular NA levels from a maximal increase of 389-296% of the predrug levels. It is concluded that intraventricularly administered galanin attenuated both basal 5-HT and NA release and antidepressant drug-induced accumulation of extracellular 5-HT and NA levels most likely via a predominant inhibitory action on serotonergic and noradrenergic neurons in the raphe and locus coeruleus, respectively. These results further emphasize a possible role of galanin in regulation of 5-HT and NA neurotransmission in depressive states and during the course of antidepressant therapy.
Collapse
Affiliation(s)
- Takashi Yoshitake
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
217
|
Schmitz C, Rhodes ME, Bludau M, Kaplan S, Ong P, Ueffing I, Vehoff J, Korr H, Frye CA. Depression: reduced number of granule cells in the hippocampus of female, but not male, rats due to prenatal restraint stress. Mol Psychiatry 2003; 7:810-3. [PMID: 12192629 DOI: 10.1038/sj.mp.4001118] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 02/21/2002] [Accepted: 02/26/2002] [Indexed: 11/09/2022]
Abstract
It has been hypothesized that decreased neurogenesis in the dentate gyrus may be involved in mediating depressive disorders, which are 1.5-3 times more frequent in women than in men. Additionally, prenatal stress may increase the risk of developing depression in adulthood. However, the interrelations between prenatal stress and the development of depression in adulthood, preferentially in females, are not understood. Here, we subjected pregnant rats to a single 20-min period of restraint stress on day 18 after mating. When the offspring were 75 days of age, the numbers of granule cells and pyramidal cells (area CA1-3) in the hippocampus were analyzed with the optical fractionator. The Cavalieri's principle was applied to analyze the volumes of both granule cell layer and pyramidal cell layer in the hippocampus. Prenatally stressed females, but not males, had reduced numbers of hippocampal granule cells compared to their non-prenatally stressed counterparts. This is the first report of a sex-specific difference concerning the reduction of the number of hippocampal granule cells due to prenatal stress. In humans, prenatal stress may induce cell loss in the granule cells of the hippocampus preferentially in females compared to males, and this may be a sex-specific predisposing factor for the development of depression in adulthood.
Collapse
Affiliation(s)
- C Schmitz
- Department of Anatomy and Cell Biology, RWTH University of Aachen, D-52057 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Rauch SL, Phillips KA, Segal E, Makris N, Shin LM, Whalen PJ, Jenike MA, Caviness VS, Kennedy DN. A preliminary morphometric magnetic resonance imaging study of regional brain volumes in body dysmorphic disorder. Psychiatry Res 2003; 122:13-9. [PMID: 12589879 DOI: 10.1016/s0925-4927(02)00117-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphometric magnetic resonance imaging (MRI) was used to compare regional brain volumes in eight women with body dysmorphic disorder (BDD) and eight healthy comparison subjects. The BDD group exhibited a relative leftward shift in caudate asymmetry and greater total white matter vs. the comparison group. Findings with respect to the caudate nucleus are consistent with both the conceptualization of BDD as an obsessive-compulsive spectrum disorder, and the 'striatal topography model' of obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Scott L Rauch
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Building 149, 139th Street, 9th Floor, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Feldker DEM, Datson NA, Veenema AH, Meulmeester E, de Kloet ER, Vreugdenhil E. Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur J Neurosci 2003; 17:379-87. [PMID: 12542675 DOI: 10.1046/j.1460-9568.2003.02440.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genetically selected long attack latency (LAL) and short attack latency (SAL) mice differ in a wide variety of behavioural traits and display differences in the serotonergic system and the hypothalamus-pituitary-adrenocortical (HPA)-axis. Serial analysis of gene expression (SAGE) was used to generate a hippocampal expression profile of almost 30 000 genes in LAL and SAL mice. Using SAGE, we found differential expression of 191 genes. Among these were genes involved in growth, signal transduction, and cell metabolism. The SAGE study was supported by GeneChip analysis (Affymetrix). Strikingly, both SAGE and GeneChips showed a higher expression of numerous cytoskeleton genes, such as cofilin and several tubulin isotypes in LAL mice. LAL mice also showed a higher expression of several calmodulin-related genes and genes encoding components of a MAPK cascade, namely raf-related oncogene and ERK2. The findings were confirmed by in situ hybridization. Our results of differential expression of cytoskeleton and signal transduction genes therefore suggest differential regulation of the raf/ERK pathway that may be related to structural differences in the hippocampus of LAL and SAL mice. As stress-related disorders, such as depression, are also linked to differential regulation of the HPA-axis and the serotonergic system and are associated with altered hippocampal morphology, differential regulation of these genes may be involved in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Dorine E M Feldker
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Centre, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
220
|
Krakow B, Melendrez D, Warner TD, Dorin R, Harper R, Hollifield M. To breathe, perchance to sleep: sleep-disordered breathing and chronic insomnia among trauma survivors. Sleep Breath 2002; 6:189-202. [PMID: 12524572 DOI: 10.1007/s11325-002-0189-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Standard psychiatric classification (DSM-IV-TR) traditionally attributes post-traumatic sleep disturbance to a secondary or symptomatic feature of a primary psychiatric disorder. The DSM-IV-TR paradigm, however, has not been validated with objective sleep assessment technology, incorporated nosological constructs from the field of sleep disorders medicine, or adequately addressed the potential for post-traumatic stress disorder (PTSD) sleep problems to manifest as primary, physical disorders, requiring independent medical assessments and therapies. This paradigm may limit understanding of sleep problems in PTSD by promulgating such terms as "insomnia related to another mental disorder," a.k.a. "psychiatric insomnia." Emerging evidence invites a broader comorbidity perspective, based on recent findings that post-traumatic sleep disturbance frequently manifests with the combination of insomnia and a higher-than-expected prevalence of sleep-disordered breathing (SDB). In this model of complex sleep disturbance, the underlying sleep pathophysiology interacts with PTSD and related psychiatric distress; and this relationship appears very important as demonstrated by improvement in insomnia, nightmares, and post-traumatic stress with successful SDB treatment, independent of psychiatric interventions. Continuous positive airway pressure treatment in PTSD patients with SDB reduced electroencephalographic arousals and sleep fragmentation, which are usually attributed to central nervous system or psychophysiological processes. Related findings and clinical experience suggest that other types of chronic insomnia may also be related to SDB. We hypothesize that an arousal-based mechanism, perhaps initiated by post-traumatic stress and/or chronic insomnia, may promote the development of SDB in a trauma survivor and perhaps other patients with chronic insomnia. We discuss potential neurohormonal pathways and neuroanatomatical sites that may be involved in this proposed interaction between insomnia and SDB.
Collapse
Affiliation(s)
- Barry Krakow
- Sleep and Human Health Institute, Albuquerque, New Mexico 87109, USA.
| | | | | | | | | | | |
Collapse
|
221
|
Dafotakis M, Vehoff J, Korr H, Schmitz C. Prenatal Programming of Depression and Schizophrenia? Neuroembryology Aging 2002. [DOI: 10.1159/000063531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
222
|
Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 2002. [PMID: 11978839 DOI: 10.1523/jneurosci.22-09-03638.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute inescapable stress dramatically affects the inducibility of plasticity at glutamatergic synapses in the intact hippocampus. The present study examined the involvement of serotonergic mechanisms in mediating and modulating the block of long-term potentiation (LTP) in the CA1 area of anesthetized rats after exposure to an elevated platform stress. Fluoxetine and fenfluramine, agents that raise hippocampal extracellular 5-HT concentration, blocked the induction of LTP in nonstressed animals, thus mimicking the effect of stress. In contrast, (+/-)-tianeptine, a drug that decreases 5-HT levels, had no effect on LTP induction in nonstressed animals. Remarkably, (+/-) administration of tianeptine after the stress rapidly overcame the block of LTP induction without affecting baseline excitatory transmission. Consistent with a reduction of 5-HT levels being responsible for this effect of tianeptine, the (-) enantiomer, which is associated with the 5-HT uptake enhancing action of (+/-)-tianeptine, also caused a recovery of the induction of LTP in previously stressed animals, whereas the relatively inactive (+) enantiomer had no effect. Furthermore, fluoxetine prevented the effect of tianeptine in stressed animals. These findings show that antidepressants have rapid and powerful interactions with the mechanisms controlling the persistence of the block of LTP by inescapable stress.
Collapse
|