201
|
Habraken Y, Piette J. NF-kappaB activation by double-strand breaks. Biochem Pharmacol 2006; 72:1132-41. [PMID: 16965765 DOI: 10.1016/j.bcp.2006.07.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/10/2006] [Accepted: 07/18/2006] [Indexed: 02/08/2023]
Abstract
Cellular response to DNA damage is complex and relies on the simultaneous activation of different networks. It involves DNA damage recognition, repair, and induction of signalling cascades leading to cell cycle checkpoint activation, apoptosis, and stress related responses. The fate of damaged cells depends on the balance between pro- and antiapoptotic signals. In this decisive life or death choice, the transcription factor NF-kappaB has emerged as a prosurvival actor in most cell types. As corollary, it appears to be associated with tumorigenic process and resistance to therapeutic strategies as it protects cancerous cells from death. In this review, we will focus on NF-kappaB activation by double-strand breaks inducing agents, such as ionizing radiation and DNA topoisomerase I and II inhibitors routinely used in cancer therapy. Coinciding with the 20th anniversary of the NF-kappaB discovery, major steps of the DSB-triggered cascade have been recently identified. Two parallel cascades are necessary for NF-kappaB activation. The first one depends on ATM (activated by double-strand breaks) and the second on PIDD (activated by an unknown stress signal). The phosphorylation of NEMO by ATM is the point of convergence of these two cascades. The identification of ATM/NEMO complex as the long searched "nuclear to cytoplasm" signal leading to IKK activation is also a major piece of the puzzle. The knowledge of the precise steps leading to DSB-initiated NF-kappaB activation will allow the development of specific blocking compounds reducing its prosurvival function.
Collapse
Affiliation(s)
- Yvette Habraken
- Unit of Virology and Immunology, Center for Biomedical Integrated Genoproteomics, B23, University of Liège, B-4000 Liège, Belgium.
| | | |
Collapse
|
202
|
Aguilera C, Fernández-Majada V, Inglés-Esteve J, Rodilla V, Bigas A, Espinosa L. Efficient nuclear export of p65-IκBα complexes requires 14-3-3 proteins. J Cell Sci 2006; 119:3695-704. [PMID: 16931600 DOI: 10.1242/jcs.03086] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IκB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFκB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFκB signaling pathway by physically interacting with p65 and IκBα proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IκBα in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IκBα results in a predominantly nuclear distribution of both proteins. TNFα treatment promotes recruitment of 14-3-3 and IκBα to NFκB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IκBα complexes and the constitutive association of p65 with the chromatin. In this situation, NFκB-dependent genes become unresponsive to TNFα stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IκBα-p65 complexes and are required for the appropriate regulation of NFκB signaling.
Collapse
Affiliation(s)
- Cristina Aguilera
- Centre Oncologia Molecular, IDIBELL-Institut de Recerca Oncologica, Gran Via km 2.7, Hospitalet, Barcelona 08907, Spain
| | | | | | | | | | | |
Collapse
|
203
|
Pizzi M, Spano P. Distinct roles of diverse nuclear factor-kappaB complexes in neuropathological mechanisms. Eur J Pharmacol 2006; 545:22-8. [PMID: 16854410 DOI: 10.1016/j.ejphar.2006.06.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/22/2006] [Accepted: 06/13/2006] [Indexed: 12/18/2022]
Abstract
The nuclear transcription factors kappaB (NF-kappaB) function as key regulators of physiological processes in the central nervous system. Aberrant regulation of NF-kappaB can underlie neurological disorders associated with neurodegeneration. A large number of studies have reported a dual role of NF-kappaB in regulating neuron survival in pathological conditions. A recent progress in understanding the mechanisms responsible for opposite effects elicited by NF-kappaB in brain dysfunctions arises from the identification of diverse NF-kappaB complexes specifically involved in the mechanism of neuronal cell death or cell survival. We here discuss the latest findings and consider the therapeutic potential of targeting distinct NF-kappaB complexes for the treatment of neurodegenerative disorders and memory dysfunctions.
Collapse
Affiliation(s)
- Marina Pizzi
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, I 25123, Italy.
| | | |
Collapse
|
204
|
Fuseler JW, Merrill DM, Rogers JA, Grisham MB, Wolf RE. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2006; 12:269-76. [PMID: 17481363 DOI: 10.1017/s1431927606060260] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/16/2005] [Indexed: 05/15/2023]
Abstract
Nuclear factor-kappa B (NF-kappaB) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-kappaBs, which prevent entry into the nucleus. Following cellular stimulation, the I-kappaBs are rapidly degraded, activating NF-kappaB. The active form of NF-kappaB rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-kappaB is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-kappaB (p65 subunit, p65-NF-kappaB) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-kappaB protein in the nucleus determined biochemically. The appearance of p65-NF-kappaB in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-kappaB can be reliably determined from IOD measurements of the immunofluorescent labeled protein.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Cell, Developmental Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garner's Ferry Road, Columbia, SC 29209, USA.
| | | | | | | | | |
Collapse
|
205
|
Kim YK, Lee EK, Kang JK, Kim JA, You JS, Park JH, Seo DW, Hwang JW, Kim SN, Lee HY, Lee HW, Han JW. Activation of NF-κB by HDAC inhibitor apicidin through Sp1-dependent de novo protein synthesis: its implication for resistance to apoptosis. Cell Death Differ 2006; 13:2033-41. [PMID: 16628233 DOI: 10.1038/sj.cdd.4401915] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are promising anti-cancer drugs, but these exert differential responses depending on the cell types. Here, we demonstrate a new mechanism for activation of nuclear factor-kappaB (NF-kappaB) by HDAC inhibitor apicidin and the role of NF-kappaB signaling pathway for mediating differential cellular responses, especially, apoptosis. Treatment of HeLa cells with apicidin increases transcriptional activity of NF-kappaB and its target gene IL-8 and cIAP-1 induction, which involves the activation of IKK-IkappaBalpha signaling pathway through Sp1-dependent de novo protein synthesis. In parallel, apicidin treatment leads to histone hyperacetylation in the IL-8 promoter region independent of NF-kappaB signaling pathway, which is not sufficient for full transcription of IL-8 gene. This NF-kappaB activation contributes to resistance of HeLa cells to apoptotic potential of apicidin. Collectively, our results suggest that activation of NF-kappaB signaling cascade functions as a critical modulator to determine cell fate on apoptosis in response to HDAC inhibitors.
Collapse
Affiliation(s)
- Y K Kim
- 1College of Medicine, Kwandong University, Gangneung 210-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Kang BN, Tirumurugaan KG, Deshpande DA, Amrani Y, Panettieri RA, Walseth TF, Kannan MS. Transcriptional regulation of CD38 expression by tumor necrosis factor-alpha in human airway smooth muscle cells: role of NF-kappaB and sensitivity to glucocorticoids. FASEB J 2006; 20:1000-2. [PMID: 16571778 DOI: 10.1096/fj.05-4585fje] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transmembrane glycoprotein CD38 catalyzes the synthesis of the calcium mobilizing molecule cyclic ADP-ribose from NAD. In human airway smooth muscle (HASM) cells, the expression and function of CD38 are augmented by the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), leading to increased intracellular calcium response to agonists. A glucocorticoid response element in the CD38 gene has been computationally described, providing evidence for transcriptional regulation of its expression. In the present study, we investigated the effects of dexamethasone, a glucocorticoid, on CD38 expression and ADP-ribosyl cyclase activity in HASM cells stimulated with TNF-alpha. In HASM cells, TNF-alpha augmented CD38 expression and ADP-ribosyl cyclase activity, which were attenuated by dexamethasone. TNF-alpha increased NF-kappaB expression and its activation, and dexamethasone partially reversed these effects. TNF-alpha increased the expression of IkappaBalpha, and dexamethasone increased it further. An inhibitor of NF-kappaB activation or transfection of cells with IkappaB mutants decreased TNF-alpha-induced CD38 expression. The results indicate that TNF-alpha-induced CD38 expression involves NF-kappaB expression and its activation and dexamethasone inhibits CD38 expression through NF-kappaB-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Bit-Na Kang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, Minnesota 55108, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Mittal A, Papa S, Franzoso G, Sen R. NF-kappaB-dependent regulation of the timing of activation-induced cell death of T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:2183-9. [PMID: 16455974 DOI: 10.4049/jimmunol.176.4.2183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One of the mechanisms by which activated T cells die is activation-induced cell death (AICD). This pathway requires persistent stimulation via the TCR and engagement of death receptors. We found that TCR stimulation led to transient nuclear accumulation of the NF-kappaB component p65/RelA. In contrast, nuclear c-Rel levels remained high even after extended periods of activation. Loss of nuclear p65/RelA correlated with the onset of AICD, suggesting that p65/RelA target genes may maintain cell viability. Quantitative RNA analyses showed that three of several putative NF-kappaB-dependent antiapoptotic genes were expressed with kinetics that paralleled nuclear expression of p65/RelA. Of these three, ectopic expression only of Gadd45beta protected significantly against AICD, whereas IEX-1 and Bcl-x(L) were much less effective. We propose that the timing of AICD, and thus the length of the effector phase, are regulated by transient expression of a subset of p65/RelA-dependent antiapoptotic genes.
Collapse
Affiliation(s)
- Akanksha Mittal
- Rosensteil Research Center and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
208
|
Wolff H, Hadian K, Ziegler M, Weierich C, Kramer-Hammerle S, Kleinschmidt A, Erfle V, Brack-Werner R. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging. Exp Cell Res 2006; 312:443-56. [PMID: 16368434 DOI: 10.1016/j.yexcr.2005.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/10/2005] [Accepted: 11/09/2005] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Astrocytes/metabolism
- Astrocytes/virology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytophotometry/methods
- Cytoplasm/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation, Viral
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV/genetics
- HIV/metabolism
- HeLa Cells
- Humans
- Image Processing, Computer-Assisted/methods
- Karyopherins/antagonists & inhibitors
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Plasmids/genetics
- Protein Precursors/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Sequence Homology, Amino Acid
- Transcriptional Activation/genetics
- Transfection
- Viral Structural Proteins/metabolism
- rev Gene Products, Human Immunodeficiency Virus
- Red Fluorescent Protein
- Exportin 1 Protein
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstaedterlandstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Affiliation(s)
- Paul N Moynagh
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
210
|
Wang J, Tokoro T, Higa S, Kitajima I. Anti-inflammatory Effect of Pitavastatin on NF-.KAPPA.B Activated by TNF-.ALPHA. in Hepatocellular Carcinoma Cells. Biol Pharm Bull 2006; 29:634-9. [PMID: 16595893 DOI: 10.1248/bpb.29.634] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As nuclear factor-kappa B (NF-kappaB) is essential for promoting inflammation-associated cancer, it is a potential target for cancer prevention in chronic inflammatory diseases. Here we examined the anti-inflammatory effect of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on NF-kappaB activated by TNF-alpha in hepatocellular carcinoma (HCC) cells. Western blot revealed that the treatment of Huh 7 cells with pitavastatin at 0.1 microM inhibited the nuclear expression of NF-kappaB p65 induced by TNF-alpha. Furthermore, electrophoretic mobility shift assay showed that after the cells were incubated with pitavastatin alone or with pitavastatin and TNF-alpha for 24 h, pitavastatin significantly decreased the DNA binding activity of NF-kappaB induced by TNF-alpha. Subsequently, luciferase assay revealed that pitavastatin suppressed the transcriptional activity of the NF-kappaB promoter, which was clearly related to the HMG-CoA reductase activity because the addition of mevalonic acid (MEV) elevated the TNF-alpha activity. Moreover, the Rho kinase inhibitor Y27632 had no major effect on the NF-kappaB inhibitory activity of pitavastatin. The inhibitory effect of pitavastatin is possibly independent of the Rho kinase pathway in inflammation-associated HCC cells is. Finally, the addition of TNF-alpha significantly increased IL-6 protein production, which was suppressed by the addition of pitavastatin. These results suggest that pitavastatin at a low dose (0.1 microM) inhibits NF-kappaB activation and decreases IL-6 production induced by TNF-alpha, and is therefore expected to be a new strategy for treating HCC.
Collapse
Affiliation(s)
- Juyong Wang
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Toyama University, Sugitani, Japan
| | | | | | | |
Collapse
|
211
|
Lamsoul I, Lodewick J, Lebrun S, Brasseur R, Burny A, Gaynor RB, Bex F. Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Mol Cell Biol 2005; 25:10391-406. [PMID: 16287853 PMCID: PMC1291224 DOI: 10.1128/mcb.25.23.10391-10406.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcription factor NF-kappaB is critical for the induction of cancer, including adult T-cell leukemia, which is linked to infection by human T-cell leukemia virus type 1 and the expression of its regulatory protein Tax. Although activation of the NF-kappaB pathway by Tax involves its interaction with the regulatory subunit of the IkappaB kinase (IKK) complex, NEMO/IKKgamma, the mechanism by which Tax activates specific cellular genes in the nucleus remains unknown. Here, we demonstrate that the attachment of SUMO-1 to Tax regulates its localization in nuclear bodies and the recruitment of both the RelA subunit of NF-kappaB and free IKKgamma in these nuclear structures. However, this sumoylation step is not sufficient for the activation of the NF-kappaB pathway by Tax. This activity requires the prior ubiquitination and colocalization of ubiquitinated Tax with IKK complexes in the cytoplasm and the subsequent migration of the RelA subunit of NF-kappaB to the nucleus. Thus, the ubiquitination and sumoylation of Tax function in concert to result in the migration of RelA to the nucleus and its accumulation with IKKgamma in nuclear bodies for activation of gene expression. These modifications may result in targets for the treatment of adult T-cell leukemia.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Institute for Microbiological Research J-M Wiame, 1 Avenue E. Gryson, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
212
|
Shapira S, Harb OS, Margarit J, Matrajt M, Han J, Hoffmann A, Freedman B, May MJ, Roos DS, Hunter CA. Initiation and termination of NF-kappaB signaling by the intracellular protozoan parasite Toxoplasma gondii. J Cell Sci 2005; 118:3501-8. [PMID: 16079291 DOI: 10.1242/jcs.02428] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling via the NF-kappaB cascade is critical for innate recognition of microbial products and immunity to infection. As a consequence, this pathway represents a strong selective pressure on infectious agents and many parasitic, bacterial and viral pathogens have evolved ways to subvert NF-kappaB signaling to promote their survival. Although the mechanisms utilized by microorganisms to modulate NF-kappaB signaling are diverse, a common theme is targeting of the steps that lead to IkappaB degradation, a major regulatory checkpoint of this pathway. The data presented here demonstrate that infection of mammalian cells with Toxoplasma gondii results in the activation of IKK and degradation of IkappaB. However, despite initiation of these hallmarks of NF-kappaB signaling, neither nuclear accumulation of NF-kappaB nor NF-kappaB-driven gene expression is observed in infected cells. However, this defect was not due to a parasite-mediated block in nuclear import, as general nuclear import and constitutive nuclear-cytoplasmic shuttling of NF-kappaB remain intact in infected cells. Rather, in T. gondii-infected cells, the termination of NF-kappaB signaling is associated with reduced phosphorylation of p65/RelA, an event involved in the ability of NF-kappaB to translocate to the nucleus and bind DNA. Thus, these studies demonstrate for the first time that the phosphorylation of p65/RelA represents an event downstream of IkappaB degradation that may be targeted by pathogens to subvert NF-kappaB signaling.
Collapse
Affiliation(s)
- Sagi Shapira
- Department of Pathobiology, University of Pennsylvania, Philadelphia PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G, Wang SC, Hung MC. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 2005; 25:11005-18. [PMID: 16314522 PMCID: PMC1316946 DOI: 10.1128/mcb.25.24.11005-11018.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/03/2005] [Accepted: 09/21/2005] [Indexed: 01/13/2023] Open
Abstract
The cell membrane receptor ErbB-2 migrates to the nucleus. However, the mechanism of its nuclear translocation is unclear. Here, we report a novel mechanism of its nuclear localization that involves interaction with the transport receptor importin beta1, nuclear pore protein Nup358, and a host of players in endocytic internalization. Knocking down importin beta1 using small interfering RNA oligonucleotides or inactivation of small GTPase Ran by RanQ69L, a dominant-negative mutant of Ran, causes a nuclear transport defect of ErbB-2. Mutation of a putative nuclear localization signal in ErbB-2 destroys its interaction with importin beta1 and arrests nuclear translocation, while inactivation of nuclear export receptor piles up ErbB-2 within the nucleus. Additionally, blocking of internalization by a dominant-negative mutant of dynamin halts its nuclear localization. Thus, the cell membrane-embedded ErbB-2, through endocytosis using the endocytic vesicle as a vehicle, importin beta1 as a driver and Nup358 as a traffic light, migrates from the cell surface to the nucleus. This novel mechanism explains how a receptor tyrosine kinase on the cell surface can be translocated into the nucleus. This pathway may serve as a general mechanism to allow direct communication between cell surface receptors and the nucleus, and our findings thus open a new era in understanding direct trafficking between the cell membrane and nucleus.
Collapse
Affiliation(s)
- Dipak K Giri
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Banerjee D, Liou HC, Sen R. c-Rel-dependent priming of naive T cells by inflammatory cytokines. Immunity 2005; 23:445-58. [PMID: 16226509 DOI: 10.1016/j.immuni.2005.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/30/2005] [Accepted: 09/13/2005] [Indexed: 12/14/2022]
Abstract
The intrinsic refractoriness of naive T cells for cytokine production is counteracted by cells of the innate immune system. Upon sensing danger via Toll-like receptors, these cells upregulate T cell costimulatory molecules and secrete cytokines that enhance T cell activation. We show that cytokine-mediated priming of naive T cells requires the NF-kappaB family member c-Rel. In resting naive cells c-Rel is associated primarily with IkappaBbeta, an inhibitory molecule that is not effectively degraded by TCR signals. Exposure of T cells to proinflammatory cytokines, TNF-alpha and IL-1beta, shifts c-Rel to IkappaBalpha-associated complexes that are readily targeted by the TCR. As a consequence, IL-2 and IFN-gamma mRNA are produced more quickly, and at higher levels, in cytokine-primed T cells. This mechanism does not operate in effector T cells where cytokine gene expression is c-Rel-independent. We propose that c-Rel plays a crucial role as a target of innate signals in T cells.
Collapse
Affiliation(s)
- Daliya Banerjee
- Rosenstiel Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
215
|
Kang JS, Yoon YD, Han MH, Han SB, Lee K, Kang MR, Moon EY, Jeon YJ, Park SK, Kim HM. Estrogen receptor-independent inhibition of tumor necrosis factor-alpha gene expression by phytoestrogen equol is mediated by blocking nuclear factor-kappaB activation in mouse macrophages. Biochem Pharmacol 2005; 71:136-43. [PMID: 16288994 DOI: 10.1016/j.bcp.2005.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/23/2022]
Abstract
Equol has been suggested to possess protective effects on bone. However, the underlying mechanism of osteoprotective effect of equol has not been fully understood. In the present study, we examined the effect of equol on tumor necrosis factor-alpha (TNF-alpha) gene expression to elucidate a possible mechanism by which equol exerts osteoprotective effect. In vivo administration of equol inhibited TNF-alpha production by peritoneal macrophages isolated from LPS-treated mice. Equol also dose-dependently inhibited TNF-alpha production and TNF-alpha mRNA expression in LPS-stimulated mouse macrophages. Pretreatment of cells with ICI 182.780, an estrogen receptor antagonist, had no effect on the inhibitory efficacy of equol on LPS-induced TNF-alpha production. Further study demonstrated that equol inhibited NF-kappaB DNA binding and NF-kappaB-dependent reporter gene expression in activated RAW 264.7 cells. Moreover, equol blocked degradation of IkappaBalpha and IkappaBbeta and nuclear translocation of p65 subunit of NF-kappaB in activated RAW 264.7 cells. These results suggest that the inhibitory effect of equol on TNF-alpha expression is mediated, at least in part, by blocking NF-kappaB activation and the inhibition of TNF-alpha expression by equol might be involved in its osteoprotective effect.
Collapse
Affiliation(s)
- Jong Soon Kang
- Biovaluation Center, Korea Research Institute of Bioscience and Biotechnology, Taejon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Ponnappan S, Cullen SJ, Ponnappan U. Constitutive degradation of IkappaBalpha in human T lymphocytes is mediated by calpain. Immun Ageing 2005; 2:15. [PMID: 16271147 PMCID: PMC1298323 DOI: 10.1186/1742-4933-2-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 11/04/2005] [Indexed: 01/13/2023]
Abstract
BACKGROUND Activation-induced induction of transcription factor NFkappaB in T lymphocytes is regulated by its inhibitor IkappaBalpha. NFkappaB activation has been demonstrated to occur either by phosphorylation on serine residues 32 and 36 of the inhibitor, IkappaBalpha, followed by ubiquitination and degradation of the inhibitor by the 26S proteasome, or by a proteasome-independent mechanism involving tyrosine phosphorylation, but not degradation. However, the mechanism underlying constitutive regulation of the levels of the inhibitor, IkappaB, in primary human T lymphocytes, remains to be fully delineated. RESULTS We demonstrate here, the involvement of a proteasome-independent pathway for constitutive regulation of IkappaBalpha levels in primary human T lymphocytes. Pretreatment with a cell permeable calpain inhibitor, E64D, but not with a proteasome specific inhibitor, lactacystin, blocks stimulus-independent IkappaBalpha degradation in primary human T cells. However, E64D pre-treatment fails to impact on IkappaBalpha levels following stimulation with either TNFalpha or pervanadate. Other isoforms of the inhibitor, IkappaBbeta, and IkappaBgamma, appear not to be subject to a similar ligand-independent regulation. Unlike the previously reported decline in ligand-induced degradation of IkappaBalpha in T cells from the elderly, constitutive degradation does not exhibit an age-associated decline, demonstrating proteasome-independent regulation of the activity. CONCLUSION Our studies support a role for an E64D sensitive protease in regulating constitutive levels of IkappaBalpha in T cells, independent of the involvement of the 26S proteasome, and suggests a biological role for constitutive degradation of IkappaBalpha in T cells.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- VA Medical Research, Central Arkansas Veterans Health care system, Little Rock, AR, USA
| | - Sarah J Cullen
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Usha Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- VA Medical Research, Central Arkansas Veterans Health care system, Little Rock, AR, USA
| |
Collapse
|
217
|
Abstract
Preterm birth remains the leading cause of perinatal mortality and morbidity, largely as a result of a poor understanding of the precise mechanisms controlling labour onset in humans. Inflammation has long been recognised as a key feature of both preterm and term labour, with an influx of inflammatory cells into the uterus and elevated levels of pro-inflammatory cytokines observed during parturition. Nuclear factor kappa B (NF-κB) is a transcription factor family classically associated with inflammation. Accumulating evidence points to a role for NF-κB in the physiology and pathophysiology of labour. NF-κB activity increases with labour onset and is central to multiple prolabour pathways. Premature or aberrant activation of NF-κB may thus contribute to preterm labour. The current understanding of NF-κB in the context of human labour is discussed here.
Collapse
Affiliation(s)
- Tamsin M Lindström
- Parturition Research Group, Institute of Reproductive and Developmental Biology, 3rd Floor IRDB, Hammersmith Campus, Imperial College, Du Cane Road, London W12 0NN, United Kingdom.
| | | |
Collapse
|
218
|
Shen G, Jeong WS, Hu R, Kong ANT. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid Redox Signal 2005; 7:1648-63. [PMID: 16356127 DOI: 10.1089/ars.2005.7.1648] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The inhibition of carcinogenesis by chemopreventive agents has been demonstrated in many tumorigenesis animal models. The chemopreventive mechanisms of those phytochemicals have been investigated extensively, though mostly in in vitro cell culture systems. The cellular signaling cascades mediated by transcription factors, including nuclear factor E2-related factor 2 (Nrf2), nuclear factor-kappaB (NF-kappaB), and activator protein-1 (AP-1), have been shown to play pivotal roles in tumor initiation, promotion, and progression processes. Thus, as demonstrated by previous substantive mechanistic studies, they appear to be ideal targets for cancer chemoprevention. In this review, we discuss the current progress and future challenges on our understanding of the molecular mechanisms in cancer chemoprevention by phytochemicals, focusing on the regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways.
Collapse
Affiliation(s)
- Guoxiang Shen
- Department of Pharmaceutics and Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
219
|
Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S. Enhanced G2-M arrest by nuclear factor-{kappa}B-dependent p21waf1/cip1 induction. Mol Cancer Res 2005; 3:345-53. [PMID: 15972853 DOI: 10.1158/1541-7786.mcr-05-0028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) regulates cell survival pathways, but the molecular mechanisms involved are not completely understood. Here, we developed a NF-kappaB reporter cell system derived from CEM T leukemic cells to monitor the consequences of NF-kappaB activation following DNA damage insults. Cells that activated NF-kappaB in response to ionizing radiation or etoposide arrested in the G2-M phase for a prolonged time, which was followed by increased cell cycle reentry and survival. In contrast, those that failed to activate NF-kappaB underwent transient G2-M arrest and extensive cell death. Importantly, p21waf1/cip1 was induced in S-G2-M phases in a NF-kappaB-dependent manner, and RNA interference of this cell cycle regulator reduced the observed NF-kappaB-dependent phenotypes. Thus, cell cycle-coupled induction of p21waf1/cip1 by NF-kappaB represents a resistance mechanism in certain cancer cells.
Collapse
Affiliation(s)
- Shelly M Wuerzberger-Davis
- Department of Pharmacology, University of Wisconsin, 301 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
220
|
Ear T, Cloutier A, McDonald PP. Constitutive Nuclear Expression of the IκB Kinase Complex and Its Activation in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 175:1834-42. [PMID: 16034126 DOI: 10.4049/jimmunol.175.3.1834] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A singular feature of human neutrophils is that they constitutively express substantial amounts of NF-kappaB/Rel proteins and IkappaB-alpha in the nucleus. In this study, we show that in these cells, IkappaB kinase alpha (IKKalpha), IKKbeta, and IKKgamma also partially localize to the nucleus, whereas IKK-related kinases (IKKepsilon, TANK-binding kinase-1) are strictly cytoplasmic, and the NF-kappaB-inducing kinase is strictly nuclear. Following neutrophil activation, IKKbeta and IKKgamma become transiently phosphorylated in both the cytoplasm and nucleus, whereas IKKalpha transiently vanishes from both compartments in what appears to be an IKKbeta-dependent process. These responses are paralleled by the degradation of IkappaB-alpha, and by the phosphorylation of RelA on serine 536, in both compartments. Although both proteins can be IKK substrates, inhibition of IKK prevented IkappaB-alpha phosphorylation, while that of RelA was mostly unaffected. Finally, we provide evidence that the nuclear IKK isoforms (alpha, beta, gamma) associate with chromatin following neutrophil activation, which suggests a potential role in gene regulation. This is the first study to document IKK activation and the phosphorylation of NF-kappaB/Rel proteins in primary neutrophils. More importantly, our findings unveil a hitherto unsuspected mode of activation for the IKK/IkappaB signaling cascade within the cell nucleus.
Collapse
Affiliation(s)
- Thornin Ear
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
221
|
Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 2005; 25:5429-5444. [PMID: 15964800 PMCID: PMC1156999 DOI: 10.1128/mcb.25.13.5429-5444.2005] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/04/2005] [Accepted: 03/29/2005] [Indexed: 02/05/2023] Open
Abstract
NF-kappaB activation is reciprocally regulated by RelA/p65 acetylation and deacetylation, which are mediated by histone acetyltransferases (HATs) and deacetylases (HDACs). Here we demonstrate that in leukemia cells, NF-kappaB activation by the HDAC inhibitors (HDACIs) MS-275 and suberoylanilide hydroxamic acid was associated with hyperacetylation and nuclear translocation of RelA/p65. The latter events, as well as the association of RelA/p65 with IkappaBalpha, were strikingly diminished by either coadministration of the IkappaBalpha phosphorylation inhibitor Bay 11-7082 (Bay) or transfection with an IkappaBalpha superrepressor. Inhibition of NF-kappaB by pharmacological inhibitors or genetic strategies markedly potentiated apoptosis induced by HDACIs, and this was accompanied by enhanced reactive oxygen species (ROS) generation, downregulation of Mn-superoxide dismutase and XIAP, and c-Jun N-terminal kinase 1 (JNK1) activation. Conversely, N-acetyl L-cysteine blocked apoptosis induced by Bay/HDACIs by abrogating ROS generation. Inhibition of JNK1 activation attenuated Bay/HDACI lethality without affecting NF-kappaB inactivation and ROS generation. Finally, XIAP overexpression dramatically protected cells against the Bay/HDACI regimen but failed to prevent ROS production and JNK1 activation. Together, these data suggest that HDACIs promote the accumulation of acetylated RelA/p65 in the nucleus, leading to NF-kappaB activation. Moreover, interference with these events by either pharmacological or genetic means leads to a dramatic increase in HDACI-mediated lethality through enhanced oxidative damage, downregulation of NF-kappaB-dependent antiapoptotic proteins, and stress-related JNK1 activation.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Massey Cancer Center, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
222
|
Park SG, Ryu HM, Lim SO, Kim YI, Hwang SB, Jung G. Interferon-gamma inhibits hepatitis B virus-induced NF-kappaB activation through nuclear localization of NF-kappaB-inducing kinase. Gastroenterology 2005; 128:2042-53. [PMID: 15940636 DOI: 10.1053/j.gastro.2005.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Nuclear factor-kappaB (NF-kappaB) signaling pathway is an important regulating pathway in liver diseases, including hepatocellular carcinoma. In our study, immunohistochemical analysis showed that NF-kappaB-inducing kinase (NIK), an upstream kinase of IkappaB kinases, nuclear localization occurs only in liver tissues obtained from hepatitis B surface antigen (HBsAg)(+) patients but not in tissues from HBsAg(-) patients. The aim of the present study was to identify the inducer of NIK nuclear localization and determine whether the NIK nuclear localization affects the hepatitis B virus (HBV)-mediated NF-kappaB activation. METHODS The experiments were performed on HepG2.2.15 cells and on HepG2 cells transfected with pHBV1.2x, a plasmid encoding all HBV messages, using NF-kappaB-dependent luciferase reporter gene assay, electrophoretic mobility shift assay, immunoblot analysis, and fluorescent microscopy analysis. RESULTS HBV induced NIK-dependent NF-kappaB activation. However, interferon (IFN)-gamma induced NIK nuclear localization and inhibited NF-kappaB activation in HepG2.2.15 cells and in HepG2 cells transfected with pHBV1.2x. When NIK nuclear localization was inhibited by deletion of nuclear localization signal on NIK, IFN-gamma did not induce the NIK nuclear localization and did not inhibit NF-kappaB activation. CONCLUSIONS IFN-gamma selectively inhibits HBV-mediated NF-kappaB activation. This inhibition is accomplished by NIK nuclear localization, which is a novel mechanism of NF-kappaB inhibition.
Collapse
Affiliation(s)
- Sung Gyoo Park
- School of Biological Sciences, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
223
|
Hertlein E, Wang J, Ladner KJ, Bakkar N, Guttridge DC. RelA/p65 regulation of IkappaBbeta. Mol Cell Biol 2005; 25:4956-68. [PMID: 15923614 PMCID: PMC1140602 DOI: 10.1128/mcb.25.12.4956-4968.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/19/2005] [Accepted: 03/17/2005] [Indexed: 01/01/2023] Open
Abstract
IkappaB inhibitor proteins are the primary regulators of NF-kappaB. In contrast to the defined regulatory interplay between NF-kappaB and IkappaBalpha, much less is known regarding the regulation of IkappaBbeta by NF-kappaB. Here, we describe in detail the regulation of IkappaBbeta by RelA/p65. Using p65(-/-) fibroblasts, we show that IkappaBbeta is profoundly reduced in these cells, but not in other NF-kappaB subunit knockouts. This regulation prevails during embryonic and postnatal development in a tissue-specific manner. Significantly, in both p65(-/-) cells and tissues, IkappaBalpha is also reduced, but not nearly to the same extent as IkappaBbeta, thus highlighting the degree to which IkappaBbeta is dependent on p65. This dependence is based on the ability of p65 to stabilize IkappaBbeta protein from the 26S proteasome, a process mediated in large part through the p65 carboxyl terminus. Furthermore, IkappaBbeta was found to exist in both a basally phosphorylated and a hyperphosphorylated form. While the hyperphosphorylated form is less abundant, it is also more stable and less dependent on p65 and its carboxyl domain. Finally, we show that in p65(-/-) fibroblasts, expression of a proteolysis-resistant form of IkappaBbeta, but not IkappaBalpha, causes a severe growth defect associated with apoptosis. Based on these findings, we propose that tight control of IkappaBbeta protein by p65 is necessary for the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Erin Hertlein
- Human Cancer Genetics Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
224
|
Ghisletti S, Meda C, Maggi A, Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 2005; 25:2957-68. [PMID: 15798185 PMCID: PMC1069609 DOI: 10.1128/mcb.25.8.2957-2968.2005] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Estrogen is an immunoregulatory agent, in that hormone deprivation increases while 17beta-estradiol (E2) administration blocks the inflammatory response; however, the underlying mechanism is still unknown. The transcription factor p65/relA, a member of the nuclear factor kappaB (NF-kappaB) family, plays a major role in inflammation and drives the expression of proinflammatory mediators. Here we report a novel mechanism of action of E2 in inflammation. We observe that in macrophages E2 blocks lipopolysaccharide-induced DNA binding and transcriptional activity of p65 by preventing its nuclear translocation. This effect is selectively activated in macrophages to prevent p65 activation by inflammatory agents and extends to other members of the NF-kappaB family, including c-Rel and p50. We observe that E2 activates a rapid and persistent response that involves the activation of phosphatidylinositol 3-kinase, without requiring de novo protein synthesis or modifying Ikappa-Balpha degradation and mitogen-activated protein kinase activation. Using a time course experiment and the microtubule-disrupting agent nocodazole, we observe that the hormone inhibits p65 intracellular transport to the nucleus. This activity is selectively mediated by estrogen receptor alpha (ERalpha) and not ERbeta and is not shared by conventional anti-inflammatory drugs. These results unravel a novel and unique mechanism for E2 anti-inflammatory activity, which may be useful for identifying more selective ligands for the prevention of the inflammatory response.
Collapse
Affiliation(s)
- Serena Ghisletti
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
225
|
Bader AG, Vogt PK. Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation. Mol Cell Biol 2005; 25:2095-106. [PMID: 15743808 PMCID: PMC1061623 DOI: 10.1128/mcb.25.6.2095-2106.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The multifunctional Y box-binding protein 1 (YB-1) is transcriptionally repressed by the oncogenic phosphoinositide 3-kinase (PI3K) pathway (with P3K as an oncogenic homolog of the catalytic subunit) and, when reexpressed with the retroviral vector RCAS, interferes with P3K- and Akt-induced transformation of chicken embryo fibroblasts. Retrovirally expressed YB-1 binds to the cap of mRNAs and inhibits cap-dependent and cap-independent translation. To determine the requirements for the inhibitory role of YB-1 in P3K-induced transformation, we conducted a mutational analysis, measuring YB-1-induced interference with transformation, subcellular localization, cap binding, mRNA binding, homodimerization, and inhibition of translation. The results show that (i) interference with transformation requires RNA binding and a C-terminal domain that is distinct from the cytoplasmic retention domain, (ii) interference with transformation is tightly correlated with inhibition of translation, and (iii) masking of mRNAs by YB-1 is not sufficient to block transformation or to inhibit translation. We identified a noncanonical nuclear localization signal (NLS) in the C-terminal half of YB-1. A mutant lacking the NLS retains its ability to interfere with transformation, indicating that a nuclear function is not required. These results suggest that YB-1 interferes with P3K-induced transformation by a specific inhibition of translation through its RNA-binding domain and a region in the C-terminal domain. Potential functions of the C-terminal region are discussed.
Collapse
Affiliation(s)
- Andreas G Bader
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., BCC239, La Jolla, CA 92037, USA.
| | | |
Collapse
|
226
|
Rahim SS, Khan N, Boddupalli CS, Hasnain SE, Mukhopadhyay S. Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells also involves c-rel transcription factor. Immunology 2005; 114:313-21. [PMID: 15720433 PMCID: PMC1782084 DOI: 10.1111/j.1365-2567.2005.02107.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-10 (IL-10) is known to inhibit IL-12 production in macrophages primarily at the transcriptional level with the involvement of p50 and p65 nuclear factor-kappaB (NF-kappaB). We demonstrate that the c-rel transcription factor also plays a major role in IL-10-mediated IL-12 suppression. Treatment of macrophages with recombinant IL-10 inhibited nuclear c-rel levels, whereas addition of neutralizing anti-IL-10 antibody up-regulated both nuclear c-rel levels and IL-12 production by macrophages. Decreased nuclear c-rel was associated with a reduction in phosphorylation of inhibitory kappa B alpha (IkappaBalpha) in the cytoplasm, indicating that IL-10 prevents degradation of IkappaBalpha and the subsequent translocation of c-rel into the nucleus. Treatment with leptomycin B, a known inhibitor of c-rel at a concentration of 10 nm, when used with anti-IL-10 antibody, resulted in reduced expression of IL-12. In a complementary experiment, in vitro transient expression of p65 NF-kappaB could not rescue the inhibitory effect of IL-10 on IL-12 production, suggesting that NF-kappaB alone was not sufficient to restore IL-12 production during IL-10 treatment. However, over-expression of c-rel resulted in IL-12 restoration upon stimulation with lipopolysaccharide plus interferon-gamma during IL-10 treatment. Our studies highlight the involvement of c-rel in IL-10-mediated IL-12 regulation.
Collapse
Affiliation(s)
- Sheikh Showkat Rahim
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nacharam, Hyderabad, India
| | | | | | | | | |
Collapse
|
227
|
Müerköster S, Arlt A, Sipos B, Witt M, Grossmann M, Klöppel G, Kalthoff H, Fölsch UR, Schäfer H. Increased Expression of the E3-Ubiquitin Ligase Receptor Subunit βTRCP1 Relates to Constitutive Nuclear Factor-κB Activation and Chemoresistance in Pancreatic Carcinoma Cells. Cancer Res 2005; 65:1316-24. [PMID: 15735017 DOI: 10.1158/0008-5472.can-04-1626] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The permanent activation of the transcription factor nuclear factor-κB (NF-κB) in pancreatic cancer cells is associated with a profound resistance towards chemotherapy. In the present study, we show that chemoresistant pancreatic cancer cell lines exhibiting constitutive NF-κB activity (i.e., PancTu-1, BxPc3, and Capan-1) express significantly elevated levels of the E3-ubiquitin ligase receptor subunit βTRCP1, compared with pancreatic carcinoma cell lines lacking constitutive NF-κB activity and chemoresistance (i.e., PT45-P1 and T3M4). If transfected with βTRCP1, PT45-P1 cells exhibit an elevated NF-κB activity and become less sensitive towards anticancer drug treatment (i.e., etoposide). Conversely, blockade of βTRCP1 expression in PancTu-1 cells by transfection with a vector-expressed small interfering RNA reduces NF-κB activation and chemoresistance. In PancTu-1 cells, βTRCP1 expression is inhibited, at least in part, by the interleukin-1 (IL-1) receptor(I) antagonist, whereas stimulation of PT45-P1 cells with IL-1β resulted in an increased expression of βTRCP1, and transfection of this cell line with βTRCP1 induced IL-1β secretion in a NF-κB–dependent fashion. Thus, via its close and mutual link to IL-1β secretion, βTRCP1 expression might substantially contribute to the persistent, IL-1β–dependent activation of NF-κB in pancreatic carcinoma cells. In support of this, βTRCP1 expression is detectable at considerable levels in a great number of pancreatic ductal adenocarcinoma specimens, along with an intense staining for activated NF-κB. Altogether, our findings of the elevated βTRCP1 expression in pancreatic carcinoma cells pinpoint to another important mediator of constitutive NF-κB activation and thereby of chemoresistance.
Collapse
Affiliation(s)
- Susanne Müerköster
- Laboratory of Molecular Gastroenterology and Hepatology, First Department of Medicine, Kiel University, UKSH Campus-Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Conti BJ, Davis BK, Zhang J, O'connor W, Williams KL, Ting JPY. CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J Biol Chem 2005; 280:18375-85. [PMID: 15705585 DOI: 10.1074/jbc.m413169200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The newly discovered mammalian CATERPILLER (NOD, NALP, PAN) family of proteins share similarities with the NBD-LRR superfamily of plant disease resistance (R) proteins and are predicted to mediate important immune regulatory function. This report describes the first cloning and characterization of a novel CATERPILLER gene, CLR16.2 that is located on human chromosome 16. The protein encoded by this gene has a typical NBD-LRR configuration. Analysis of CLR16.2 suggests the highest expression among T lymphocytes. Cellular localization studies of CLR16.2 revealed that it is a cytoplasmic protein. Querying microarray studies in the public data base showed that CLR16.2 was significantly (>90%) down-regulated 6 h after anti-CD3 and anti-CD28 stimulation of primary T lymphocytes. Its reduction upon T cell stimulation is consistent with a potential negative regulatory role. Indeed CLR16.2 decreased NF-kappaB, NFAT, and AP-1 induction of reporter gene constructs in response to T cell activation by anti-CD3 and anti-CD28 antibodies or PMA and ionomycin. Following T cell stimulation, the presence of CLR16.2 reduced the levels of the endogenous transcripts for the IL-2 and CD25 proteins that are central in maintaining T cell activation and preventing T cell anergy. This reduction was accompanied by a delay of IkappaBalpha degradation. We propose that CLR16.2 serves to attenuate T cell activation via TCR and co-stimulatory molecules, and its reduction during T cell stimulation allows the ensuing cellular activation.
Collapse
Affiliation(s)
- Brian J Conti
- Department of Biochemistry and Biophysics and Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
229
|
Fagerlund R, Kinnunen L, Köhler M, Julkunen I, Melén K. NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem 2005; 280:15942-51. [PMID: 15677444 DOI: 10.1074/jbc.m500814200] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB transcription factors are retained in the cytoplasm in an inactive form until they are activated and rapidly imported into the nucleus. We identified importin alpha3 and importin alpha4 as the main importin alpha isoforms mediating TNF-alpha-stimulated NF-kappaB p50/p65 heterodimer translocation into the nucleus. Importin alpha3 and alpha4 are close relatives in the human importin alpha family. We show that importin alpha3 isoform also mediates nuclear import of NF-kappaB p50 homodimer in nonstimulated cells. Importin alpha3 is shown to directly bind to previously characterized nuclear localization signals (NLSs) of NF-kappaB p50 and p65 proteins. Importin alpha molecules are known to have armadillo repeats that constitute the N-terminal and C-terminal NLS binding sites. We demonstrate by site-directed mutagenesis that NF-kappaB p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. In vitro competition experiments and analysis of cellular NF-kappaB suggest that NF-kappaB binds to importin alpha only when it is free of IkappaBalpha. The present study demonstrates that the nuclear import of NF-kappaB is a highly regulated process mediated by a subset of importin alpha molecules.
Collapse
Affiliation(s)
- Riku Fagerlund
- Departments of Viral Diseases and Immunology and Epidemiology and Health Promotion, National Public Health Institute, FIN-00300, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
230
|
Li Y, Sedwick CE, Hu J, Altman A. Role for protein kinase Ctheta (PKCtheta) in TCR/CD28-mediated signaling through the canonical but not the non-canonical pathway for NF-kappaB activation. J Biol Chem 2005; 280:1217-23. [PMID: 15536066 DOI: 10.1074/jbc.m409492200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB is a family of essential transcription factors involved in both embryonic development and inflammatory responses of the immune system. NF-kappaB can be activated by two pathways, i.e. the canonical (NF-kappaB1) pathway, which acts through the catalytic components of the IkappaB kinase complex and leads to IkappaB phosphorylation, degradation, and subsequent NF-kappaB nuclear translocation, or the non-canonical (NF-kappaB2) pathway, which involves NF-kappaB-induced kinase-dependent proteolytic processing of p100/p52 to yield translocation-competent p52-containing NF-kappaB complexes. We examined the relative roles of the NF-kappaB1 and NF-kappaB2 pathways in TCR/CD28 costimulation. We found that TCR/CD28 costimulation activates the canonical but not the non-canonical NF-kappaB pathway and that the serine/threonine kinase protein kinase C (PKC) is essential for TCR/CD28-mediated canonical NF-kappaB activation in T cells. Importantly, TCR/CD28 costimulation induces higher p52 protein levels in T cells, but this effect is secondary to enhanced de novo synthesis of p100, not to enhanced processing of extant p100; PKC deficiency impairs signal-dependent p52 accumulation because of defects in p100 production. Finally, we found that TCR/CD28 costimulation induces IkappaBalpha, IkappaBbeta, and IkappaBepsilon degradation, and PKC is required for IkappaBalpha and IkappaBepsilon but not IkappaBbeta degradation. PKC acts solely within the canonical pathway to activate NF-kappaB, and PKC deficiency impacts upon p100/p52 processing in a manner that is independent of NF-kappaB-induced kinase.
Collapse
Affiliation(s)
- Yingqiu Li
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
231
|
Zhai Q, Luo Y, Zhang Y, Berman MA, Dorf ME. Low nuclear levels of nuclear factor-kappa B are essential for KC self-induction in astrocytes: requirements for shuttling and phosphorylation. Glia 2005; 48:327-36. [PMID: 15390109 DOI: 10.1002/glia.20087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stimulation with the chemokine KC induces an autocrine response in mouse astrocytes. A requirement for NF-kappa B was established for KC self-induction. NF-kappa B inhibitors, p65 antisense oligonucleotides, or dominant-negative Ikappa Balpha inhibited this autocrine response. Mutation of a specific kappa B site in the KC promoter also blocked KC self-induction. Chromatin immunoprecipitation and in vivo footprinting confirmed the direct binding of NF-kappa B to the KC promoter. However, neither NF-kappa B nuclear translocation, increased Ikappa B degradation, nor upregulation of NF-kappa B DNA binding activity was observed after KC stimulation. Reporter gene assays demonstrated KC-upregulated NF-kappa B transcriptional activity, and this effect was inhibited by dominant-negative IkappaBalpha. Accumulation of NF-kappaB was noted within the nucleus in the presence of nuclear export inhibitor leptomycin B, demonstrating constitutive shuttling of NF-kappa B between the cytoplasm and nucleus. Blocking NF-kappa B shuttling inhibited KC transcription. KC induced p65 phosphorylation, which was critical for NF-kappa B activation as determined with the Gal-4-p65 fusion protein and mutation of p65 phosphorylation sites. In conclusion, low-level nuclear NF-kappa B is essential for KC self-induction, and this effect is mediated by shuttling and phosphorylation of NF-kappa B. The results outline a novel mechanism for NF-kappa B participation in transcription regulation.
Collapse
Affiliation(s)
- Qiwei Zhai
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
232
|
O'Connor S, Shumway S, Miyamoto S. Inhibition of IκBα Nuclear Export as an Approach to Abrogate Nuclear Factor-κB–Dependent Cancer Cell Survival. Mol Cancer Res 2005. [DOI: 10.1158/1541-7786.42.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Deregulation of the transcription factor nuclear factor-κB (NF-κB) leading to its constitutive activation is frequently observed in human cancer. Because altered NF-κB activities often promote the survival of malignant cells, its inhibition is regarded as a promising anticancer strategy. Because activation of the latent cytoplasmic NF-κB complex can be induced by a wide variety of different stimuli, its deregulation may occur by an equally large number of distinct mechanisms. This diversity raises a conundrum in conceptualizing general approaches to attenuate NF-κB activity in cancer. Here, we provide evidence that inhibition of IκBα nuclear export is a viable target to generally abrogate constitutive NF-κB activity in different cancer cell types. We show that inhibition of IκBα nuclear export has an important course of events in cancer cells harboring constitutive NF-κB activity—an initial increase in the pool of stable nuclear NF-κB/IκBα complexes that leads to a reduction of constitutive NF-κB activity and subsequent induction of apoptosis. Importantly, similar effects on multiple different cancer cell types indicate that inhibition of nuclear export of IκBα leads to broad inhibition of constitutive NF-κB activation regardless of various deregulated, upstream events involved.
Collapse
Affiliation(s)
- Shelby O'Connor
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stuart Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
233
|
Sugimori K, Matsui K, Motomura H, Tokoro T, Wang J, Higa S, Kimura T, Kitajima I. BMP-2 prevents apoptosis of the N1511 chondrocytic cell line through PI3K/Akt-mediated NF-kappaB activation. J Bone Miner Metab 2005; 23:411-9. [PMID: 16261446 DOI: 10.1007/s00774-005-0622-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/25/2005] [Indexed: 01/24/2023]
Abstract
The signal transduction pathway by which bone morphogenetic protein-2 (BMP-2) regulates apoptosis in chondrocytes remains largely unknown. We investigated the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt-mediated NF-kappaB activation by BMP-2 stimulation in the modulation of this antiapoptotic process in a chondrocytic cell line, N1511. BMP-2 prevented apoptosis through the inhibition of caspase-3 and -9 and an increase in Bcl-xL expression, and this antiapoptotic effect was inhibited by Noggin. Not only was NF-kappaB p65 activated transiently in the early phase (5-15 min) after treatment with BMP-2 but p65 at serine 536 was phosphorylated from 5 min as well. Akt was rapidly phosphorylated in response to BMP-2 treatment; however, the inhibition of PI3K by Wortmannin markedly reduced the phosphorylation of Akt by BMP-2. Wortmannin also decreased the NF-kappaB transcriptional activity that was up-regulated by BMP-2. Thus, BMP-2-induced NF-kappaB activation is mediated by PI3K/Akt signaling. Wortmannin treatment inhibited the antiapoptotic effect of BMP-2. These data indicate that BMP-2 can utilize a new signal transduction pathway in the NF-kappaB activation system, which plays a crucial role in the survival of the N1511 chondrocytic cell line.
Collapse
Affiliation(s)
- Kazuhito Sugimori
- Department of Orthopaedic Surgery, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. J Biol Chem 2004; 280:7444-51. [PMID: 15618216 DOI: 10.1074/jbc.m412738200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IkappaB-zeta is an inducible nuclear protein that interacts with nuclear factor-kappaB (NF-kappaB) via its carboxyl-terminal ankyrin-repeats. Previous studies using an NF-kappaB reporter have shown that IkappaB-zeta inhibits the activity of NF-kappaB. In the present study, we dissected the amino-terminal region of IkappaB-zeta, which shows no homology to any other proteins. Indirect immunofluorescence studies demonstrated the presence of a bipartite nuclear localization signal spanning amino acids 163-178. Using GAL4 fusion proteins, we found that internal fragments containing amino acids 329-402 possessed intrinsic transcriptional activation activity. Interestingly, the activity was not detected in GAL4 fusion proteins of the full-length IkappaB-zeta. On the other hand, the GAL4-dependent transcriptional activity was generated by co-expression of the GAL4-NF-kappaB p50 subunit fusion protein and the full-length IkappaB-zeta, neither of which exhibited the activity on their own. A new splicing variant, IkappaB-zeta(D), with a deletion of amino acids 236-429, was found to lack transactivation activity. Forced expression of IkappaB-zeta, but not IkappaB-zeta(D), augmented interleukin-6 production, indicating the functional significance of the transactivation activity. In contrast, tumor necrosis factor-alpha production was inhibited by expression of IkappaB-zeta, highlighting the dual functions of this molecule. These results indicate that IkappaB-zeta harbors latent transcriptional activation activity, and that the activity is expressed upon interaction with the NF-kappaB p50 subunit. In addition to the inhibitory activity on NF-kappaB-mediated transcription, the transcriptional activation activity of IkappaB-zeta should be crucial for the regulation of inflammation.
Collapse
Affiliation(s)
- Masaiwa Motoyama
- Department of Molecular and Cellular Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
235
|
Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A. Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci U S A 2004; 101:16537-42. [PMID: 15536134 PMCID: PMC534509 DOI: 10.1073/pnas.0404429101] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NF-kappaB pathway plays a pivotal role in proliferation, differentiation, apoptosis, and immune responses in mammals. The NF-kappaB inhibitor, IkappaB, has classically been characterized for its ability to sequester NF-kappaB transcription factors in the cytoplasm. Nevertheless, a nuclear fraction of IkappaBalpha has consistently been detected and associated with repression of nuclear NF-kappaB. Now we show that IkappaBalpha physically associates with different repression elements such as nuclear corepressors and histone acetyltransferases and deacetylases (HDACs). More remarkably, chromatin immunoprecipitation experiments demonstrate that IkappaBalpha is recruited to the promoter regions of the Notch-target gene, hes1, together with HDAC1 and -5, whereas we did not detect IkappaBalpha associated with classical NF-kappaB target genes such as IL6 and RANTES. TNF-alpha treatment results in a temporary release of IkappaBalpha from the hes1 promoter that correlates with increased histone acetylation and transcriptional activation. In addition, we demonstrate that both IkappaB kinase-alpha and -beta are simultaneously recruited to the hes1 promoter in response to TNF-alpha, coinciding with a maximum of IkappaBalpha release and gene activation. Moreover, TNF-alpha-dependent histone H3 acetylation, release of IkappaBalpha from the hes1 promoter, and hes1 mRNA synthesis are affected in IKK-alpha(-/-) mouse embryonic fibroblasts. We propose that IkappaBalpha plays a previously undescribed role in regulating the recruitment of repression elements to specific promoters. Recruitment of IKKs to the nucleus in response to TNF-alpha may induce chromatin-associated IkappaBalpha release and gene activation. These findings provide additional insight in the cross-talk between NF-kappaB and other signaling pathways.
Collapse
Affiliation(s)
- Cristina Aguilera
- Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge-Institut de Recerca Oncologica, Barcelona 08907, Spain
| | | | | | | | | |
Collapse
|
236
|
Abstract
The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Matthew S Hayden
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
237
|
Affiliation(s)
- I M Verma
- The Salk Institute, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
238
|
Shumway SD, Miyamoto S. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells. Biochem J 2004; 380:173-80. [PMID: 14763901 PMCID: PMC1224141 DOI: 10.1042/bj20031796] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2003] [Revised: 02/03/2004] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway.
Collapse
Affiliation(s)
- Stuart D Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin, 3795 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
239
|
Abstract
I kappa B (IkappaB) was initially identified as a factor that inhibits DNA binding and nuclear translocation of the transcription factor nuclear factor kappa B (NF-kappaB). Recently, however, IkappaB family members have demonstrated direct nuclear roles in regulating NF-kappaB-dependent transcription. Some IkappaB proteins, including IkappaBalpha and IkappaBbeta, can regulate transcription by modulating the concentration of active NF-kappaB complexes within the nucleus. Others, such as IkappaBzeta and Bcl-3, can directly activate transcription by forming transcriptional complexes at gene promoters. Thus, IkappaB proteins play important nuclear roles in regulating NF-kappaB-dependent transcription after stimulation with various extracellular signals.
Collapse
Affiliation(s)
- Paul W Bates
- Department of Pharmacology, University of Wisconsin-Madison Medical School, 301 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
240
|
Wu WT, Chi KH, Ho FM, Tsao WC, Lin WW. Proteasome inhibitors up-regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) inhibition. Biochem J 2004; 379:587-93. [PMID: 14731112 PMCID: PMC1224107 DOI: 10.1042/bj20031579] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 01/09/2004] [Accepted: 01/19/2004] [Indexed: 12/15/2022]
Abstract
Regulation of intracellular protein stability by the ubiquitin-dependent proteasome system plays a crucial role in cell function. HO-1 (haem oxygenase) is a stress response protein, which confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homoeostasis. In the present study, we found a novel action of proteasome inhibitors MG132 and MG262 on HO-1 induction, and characterized the underlying mechanisms. MG132 (> or =0.1 microM) treatment resulted in a marked time- and concentration-dependent induction of the steady-state level of HO-1 mRNA in RAW264.7 macrophages, followed by a corresponding increase in HO-1 protein. Actinomycin D and cycloheximide inhibited MG132-responsive HO-1 protein expression, indicating a requirement for transcription and de novo protein synthesis. The involvement of signal pathways in MG132-induced HO-1 gene expression was examined using chemical inhibitors. Antioxidant N -acetylcysteine and SB203580, an antioxidant and inhibitor of p38 MAPK (mitogen-activated protein kinase), abolished MG132-inducible HO-1 expression. Furthermore, MG132 activated the p38 MAPK pathway. The half-life of HO-1 protein was prolonged by MG132, indicating that the upregulation of HO-1 by proteasome inhibitor is partially attributable to the inhibition of protein degradation. MG132 can ablate IkappaBalpha degradation and NF-kappaB (nuclear factor kappaB) activation induced by lipopolysaccharide, similar to the effect of another NF-kappaB inhibitor pyrrolidine dithiocarbamate. We found HO-1 upregulation by MG132 and pyrrolidine dithiocarbamate is unrelated to their inhibition of NF-kappaB, since leptomycin B, another NF-kappaB inhibitor, did not elicit similar induction of HO-1. Taken together, we found a novel effect of proteasome inhibitor on induction of HO-1 expression. This action is ascribed to the activation of the p38 MAPK pathway, but is not dependent on NF-kappaB inhibition.
Collapse
Affiliation(s)
- Wen-Tung Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
241
|
Vischioni B, Giaccone G, Span SW, Kruyt FAE, Rodriguez JA. Nuclear shuttling and TRAF2-mediated retention in the cytoplasm regulate the subcellular localization of cIAP1 and cIAP2. Exp Cell Res 2004; 298:535-48. [PMID: 15265700 DOI: 10.1016/j.yexcr.2004.04.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 03/10/2004] [Indexed: 11/29/2022]
Abstract
Dynamic subcellular localization is an important regulatory mechanism for many proteins. cIAP1 and cIAP2 are two closely related members of inhibitor of apoptosis (IAP) family that play a role both as caspase inhibitors and as mediators of tumor necrosis factor (TNF) receptor signaling. Here, we report that cIAP1 and cIAP2 are nuclear shuttling proteins, whose subcellular localization is mediated by the CRM1-dependent nuclear export pathway. Blocking export with leptomycin B induces accumulation of both endogenous cIAP1 and epitope-tagged cIAP1 and cIAP2 in the nucleus of human cancer cells. We have identified a new CRM1-dependent leucine-rich nuclear export signal (NES) in the linker region between cIAP1 BIR2 and BIR3 repeats. Mutational inactivation of the NES, which is not conserved in cIAP2, reduces cIAP1 nuclear export. Forced relocation of cIAP1 to the nucleus did not significantly alter its ability to prevent apoptosis. Interestingly, co-expression experiments showed that the cIAP1 and cIAP2-interacting protein TNF receptor-associated factor 2 (TRAF2) plays an important role as regulator of IAP nucleocytoplasmic localization, by preventing nuclear translocation of cIAP1 and cIAP2. TRAF2-mediated cytoplasmic retention of cIAP1 was reduced upon TNFalpha treatment. Our results identify molecular mechanisms that contribute to regulate the subcellular localization of cIAP1 and cIAP2. Translocation between different cell compartments may add a further level of control for cIAP1 and cIAP2 activity.
Collapse
Affiliation(s)
- Barbara Vischioni
- Department of Medical Oncology, VU University Medical Center, HV1081 Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
242
|
Birbach A, Bailey ST, Ghosh S, Schmid JA. Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF-kappaB inducing kinase NIK. J Cell Sci 2004; 117:3615-24. [PMID: 15252129 DOI: 10.1242/jcs.01224] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that the transcription factor NF-kappaB and its inhibitor IkappaBalpha shuttle constitutively between cytosol and nucleus. Moreover, we have recently demonstrated nucleocytoplasmic shuttling of the NF-kappaB-inducing kinase NIK, a component of the NF-kappaB pathway, which is essential for lymph node development and B-cell function. Here we show that nuclear NIK also occurs in nucleoli and that this localization is mediated by a stretch of basic amino acids in the N-terminal part of the protein (R(143)-K-K-R-K-K-K(149)). This motif is necessary and sufficient for nucleolar localization of NIK, as judged by nuclear localization of mutant versions of the full-length protein and the fact that coupling of these seven amino acids to GFP also leads to accumulation in nucleoli. Using fluorescence loss in photobleaching (FLIP) and fluorescence recovery after photobleaching (FRAP) approaches, we demonstrate a dynamic distribution between nucleoli and nucleoplasm and a high mobility of NIK in both compartments. Together with the nuclear export signal in the C-terminal portion of NIK that we have also characterized in detail, the nuclear/nucleolar targeting signals of NIK mediate dynamic circulation of the protein between the cytoplasmic, nucleoplasmic and nucleolar compartments. We demonstrate that nuclear NIK is capable of activating NF-kappaB and that this effect is diminished by nucleolar localization. Thus, subcellular distribution of NIK to different compartments might be a means of regulating the function of this kinase.
Collapse
Affiliation(s)
- Andreas Birbach
- Department of Vascular Biology and Thrombosis Research, University of Vienna Medical School and Competence Center Bio-Molecular Therapeutics, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
243
|
Surpili MJ, Delben TM, Kobarg J. Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1. Biochemistry 2004; 42:15369-76. [PMID: 14690447 DOI: 10.1021/bi034575v] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NEK protein kinases are evolutionarily conserved kinases structurally related to the Aspergillus nidulans mitotic regulator NIMA. At least nine members of the NEK family in vertebrates have been described to date, but for most of them the interacting protein partners are unknown. The pleiotropic deleterious effects and the formation of kidney cysts caused by NEK1 mutation in mice emphasize its involvement in the regulation of diverse cellular processes and in the etiology of polycystic kidney disease (PKD), respectively. Here we report the identification of proteins that interacted with the human NEK1 protein kinase in a yeast two-hybrid screen of a human fetal brain cDNA library, using the catalytic and regulatory domains of NEK1 separately as baits. These proteins are known to take part either in the development of PKD, in the double-strand DNA break repair at the G2/M transition phase of the cell cycle, or in neural cell development. The proteins involved in PKD include the motor protein KIF3A and the proteins tuberin and alpha-catulin. Mapping studies of the human NEK1 regulatory domain (NRD) indicated a strong interaction of most of the proteins retrieved from the library with putative coiled coils located in the central region of NRD. Our results give further support to the previous observation that NEK1 is of functional importance for the etiology of PKD.
Collapse
Affiliation(s)
- Marcelo J Surpili
- Centro de Biologia Molecular Estrutural (CEBIME), Laboratório Nacional de Luz Síncrotron (LNLS), Rua Giuseppe Máximo Scolfaro 10.000, CP 6192, 13084-971 Campinas, SP, Brazil
| | | | | |
Collapse
|
244
|
Abstract
Renal tubular epithelial cells (TEC) are thought to play an active role in tubulointerstitial inflammation. Various immune and non-immune factors activate TEC to produce a variety of cytokines and chemokines, contributing to attraction of inflammatory cells to the kidney. The proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) appears to be a key player in these responses and tubular expression of NF-kappaB has been demonstrated in vitro and in vivo. Although glucocorticoids are known to inhibit NF-kappaB activation at different levels, the proinflammatory capacity of TEC was not inhibited. In contrast, glucocorticoids seemed to enhance the profibrotic response of TEC, emphasizing the cell-type specific characteristics of glucocorticoid action. We propose that specific inhibition of NF-kappaB activation in TEC might be an attractive strategy for therapeutic intervention in renal inflammation.
Collapse
Affiliation(s)
- Simone de Haij
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
245
|
Morceau F, Duvoix A, Delhalle S, Schnekenburger M, Dicato M, Diederich M. Regulation of glutathione S-transferase P1-1 gene expression by NF-kappaB in tumor necrosis factor alpha-treated K562 leukemia cells. Biochem Pharmacol 2004; 67:1227-38. [PMID: 15013838 DOI: 10.1016/j.bcp.2003.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 10/20/2003] [Indexed: 01/13/2023]
Abstract
Glutathione S-transferases (GSTs) play an important role in the protection of cells against xenobiotics and lipid hydroperoxides generated by oxidative stress. In human, the GSTP1-1 expression is commonly increased in many tumors and involved in the development of antineoplastic drug resistance. Reactive oxygen species are released at inflammation sites and oxidative stress conditions enhance the expression of genes encoding antioxidant enzymes such as GSTs. Here we investigated the regulation of the GSTP1-1 gene expression in the K562 cell line by nuclear factor kappaB (NF-kappaB) and the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). By studying GSTP1-1 mRNA expression and NF-kappaB/GSTP1-1 promoter interactions, we showed the implication of NF-kappaB in the GSTP1-1 gene expression and we described a new specific TNFalpha-inducible NF-kappaB binding site upstream of the minimal promoter. Moreover, TNFalpha treatment as well as cotransfection of NF-kappaB signaling pathway intermediates induced an activation of the GSTP1-1 gene promoter in K562 cells. Site-directed mutagenesis of the NF-kappaB site strongly inhibited TNFalpha- and NF-kappaBp65-induced promoter activation. Altogether, we showed that a sequence located at -323/-314 within the GSTP1-1 promoter bound NF-kappaB p50/65 and p65/p65 dimers and that this kappaB site was involved in the regulation of the gene by TNFalpha.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Recherche sur le Cancer et les Maladies du Sang, Centre Universitaire de Luxembourg, 162A Avenue de la Faïencerie, Luxembourg L-1511, Luxembourg
| | | | | | | | | | | |
Collapse
|
246
|
Wahle KWJ, Rotondo D, Heys SD. Polyunsaturated fatty acids and gene expression in mammalian systems. Proc Nutr Soc 2004; 62:349-60. [PMID: 14506882 DOI: 10.1079/pns2003249] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Over the last 30 years it has become apparent that specific dietary fatty acids are capable of regulating, either directly or indirectly through various signal pathways, the expression of numerous genes, either positively or negatively. Such nutrient-gene interactions have important effects on cell metabolism, differentiation and growth, and ultimately on disease processes. The present review describes some of the more important fatty acid-gene interactions in relation to health and disease in mammalian species, and focuses on the underlying cell signal mechanisms, including various transcription factors, affected by fatty acids and some of their oxygenated derivatives, e.g. the eicosanoids. The review also attempts to clarify some of the complexities of the effects of fatty acids by suggesting a possible overriding regulation by the redox status of the cell. The latter will at least stimulate controversy in this exciting area of lipid research.
Collapse
Affiliation(s)
- Klaus W J Wahle
- Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, UK.
| | | | | |
Collapse
|
247
|
Jin G, Klika A, Callahan M, Faga B, Danzig J, Jiang Z, Li X, Stark GR, Harrington J, Sherf B. Identification of a human NF-kappaB-activating protein, TAB3. Proc Natl Acad Sci U S A 2004; 101:2028-33. [PMID: 14766965 PMCID: PMC357046 DOI: 10.1073/pnas.0307314101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The NF-kappaB pathway plays a critical role in regulating cellular processes such as immune responses, stress responses, apoptosis, proliferation and differentiation, whereas dysfunction of this pathway has been associated with numerous cancer and immune disorders. We have applied our Random Activation of Gene Expression technology to an NF-kappaB reporter cell line to facilitate the discovery of positive regulators of NF-kappaB activation. A small protein expression library, corresponding to approximately 0.1x genome coverage, was generated and screened for clones exhibiting constitutive activation of NF-kappaB. After isolation of cellular clones displaying the relevant phenotypes, we identified two known components of the NF-kappaB pathway and a hypothetical gene that we have designated the human ortholog of Xenopus TAK1-binding protein 3 (TAB3). Overexpression of human TAB3 was found to activate both NF-kappaB and AP-1 transcription factors. Furthermore, the activation of NF-kappaB by TAB3 was blocked by the NF-kappaB inhibitor, SN50, and by expression of dominant-negative forms of tumor necrosis factor alpha-associated factor 6 and transforming growth factor beta-activated kinase. Taken together, these data demonstrate that TAB3 transforming growth factor is a constituent of the NF-kappaB pathway functioning upstream of tumor necrosis factor alpha-associated factor 6/transforming growth factor beta-activated kinase. Interestingly, increased expression of TAB3 was found in some cancer tissues, and its overexpression in NIH 3T3 cells resulted in cellular transformation, thus establishing a causative link between elevated TAB3 expression, constitutive NF-kappaB activation, and oncogenesis.
Collapse
Affiliation(s)
- Ge Jin
- Athersys, Inc., 3201 Carnegie Avenue, Cleveland, OH 44115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2004; 115:565-76. [PMID: 14651848 DOI: 10.1016/s0092-8674(03)00895-x] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The transcription factor NF-kappaB is critical for setting the cellular sensitivities to apoptotic stimuli, including DNA damaging anticancer agents. Central to NF-kappaB signaling pathways is NEMO/IKKgamma, the regulatory subunit of the cytoplasmic IkappaB kinase (IKK) complex. While NF-kappaB activation by genotoxic stress provides an attractive paradigm for nuclear-to-cytoplasmic signaling pathways, the mechanism by which nuclear DNA damage modulates NEMO to activate cytoplasmic IKK remains unknown. Here, we show that genotoxic stress causes nuclear localization of IKK-unbound NEMO via site-specific SUMO-1 attachment. Surprisingly, this sumoylation step is ATM-independent, but nuclear localization allows subsequent ATM-dependent ubiquitylation of NEMO to ultimately activate IKK in the cytoplasm. Thus, genotoxic stress induces two independent signaling pathways, SUMO-1 modification and ATM activation, which work in concert to sequentially cause nuclear targeting and ubiquitylation of free NEMO to permit the NF-kappaB survival pathway. These SUMO and ubiquitin modification pathways may serve as anticancer drug targets.
Collapse
Affiliation(s)
- Tony T Huang
- Department of Pharmacology, University of Wisconsin-Madison, 301 SMI, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
249
|
Verma UN, Yamamoto Y, Prajapati S, Gaynor RB. Nuclear Role of IκB Kinase-γ/NF-κB Essential Modulator (IKKγ/NEMO) in NF-κB-dependent Gene Expression. J Biol Chem 2004; 279:3509-15. [PMID: 14597638 DOI: 10.1074/jbc.m309300200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The I kappa B kinase (IKK) complex, which is composed of the two kinases IKK alpha and IKK beta and the regulatory subunit IKK gamma/nuclear factor-kappa B (NF-kappa B) essential modulator (NEMO), is important in the cytokine-induced activation of the NF-kappa B pathway. In addition to modulation of IKK activity, the NF-kappa B pathway is also regulated by other processes, including the nucleocytoplasmic shuttling of various components of this pathway and the post-translational modification of factors bound to NF-kappa B-dependent promoters. In this study, we explored the role of the nucleocytoplasmic shuttling of components of the IKK complex in the regulation of the NF-kappa B pathway. IKK gamma/NEMO was demonstrated to shuttle between the cytoplasm and the nucleus and to interact with the nuclear coactivator cAMP-responsive element-binding protein-binding protein (CBP). Using both in vitro and in vivo analysis, we demonstrated that IKK gamma/NEMO competed with p65 and IKK alpha for binding to the N terminus of CBP, inhibiting CBP-dependent transcriptional activation. These results indicate that, in addition to the key role of IKK gamma/NEMO in regulating cytokine-induced IKK activity, its ability to shuttle between the cytoplasm and the nucleus and to bind to CBP can lead to transcriptional repression of the NF-kappa B pathway.
Collapse
Affiliation(s)
- Udit N Verma
- Division of Hematology-Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8594, USA
| | | | | | | |
Collapse
|
250
|
Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AGP, Pettersson S, Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 2003; 5:104-12. [PMID: 14691478 DOI: 10.1038/ni1018] [Citation(s) in RCA: 746] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 10/29/2003] [Indexed: 12/11/2022]
Abstract
The human gut microflora is important in regulating host inflammatory responses and in maintaining immune homeostasis. The cellular and molecular bases of these actions are unknown. Here we describe a unique anti-inflammatory mechanism, activated by nonpathogenic bacteria, that selectively antagonizes transcription factor NF-kappaB. Bacteroides thetaiotaomicron targets transcriptionally active NF-kappaB subunit RelA, enhancing its nuclear export through a mechanism independent of nuclear export receptor Crm-1. Peroxisome proliferator activated receptor-gamma (PPAR-gamma), in complex with nuclear RelA, also undergoes nucleocytoplasmic redistribution in response to B. thetaiotaomicron. A decrease in PPAR-gamma abolishes both the nuclear export of RelA and the anti-inflammatory activity of B. thetaiotaomicron. This PPAR-gamma-dependent anti-inflammatory mechanism defines new cellular targets for therapeutic drug design and interventions for the treatment of chronic inflammation.
Collapse
Affiliation(s)
- Denise Kelly
- Gut Immunology Group, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|