201
|
Nicholson JK, Browning SW, Hengel RL, Lew E, Gallagher LE, Rimland D, McDougal JS. CCR5 and CXCR4 expression on memory and naive T cells in HIV-1 infection and response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2001; 27:105-15. [PMID: 11404531 DOI: 10.1097/00126334-200106010-00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To measure CCR5 and CXCR4 chemokine receptor expression on CD4 and CD8 T cells in HIV-1 infection and to relate levels to the distribution of CD45RO memory and CD45RA-naive subsets, measures of disease activity, and response to highly active antiretroviral therapy (HAART). DESIGN Fourteen untreated HIV-1-infected patients, 18 patients at 3-to 4-weeks after beginning HAART, and 35 uninfected control subjects were studied. METHODS Four-color cytofluorometry with appropriate conjugated monoclonal antibodies (mAbs) was performed to define CD45RA and CD45RO subsets of CD4 and CD8 T cells and measure their expression of CCR5, CXCR4, and CD38. RESULTS HIV-1-infected patients had higher CCR5 levels and lower CXCR4 levels on CD4 and CD8 T cells and their CD45RO/CD45RA subsets than control subjects did. However, CCR5 elevation was statistically significant only for CD4 T cells and their subsets, and CXCR4 depression was significant for CD8 T cells and their subsets (and for CD4:CD45RO cells). The elevation of CCR5 and depression of CXCR4 were not due to shifts in CD45RO/CD45RA subset proportions but to upregulation or downregulation within the subsets. CCR5 elevation on CD4 T cells was significantly restored toward normal by HAART, but the CXCR4 depression was not. CCR5 expression but not CXCR4 expression correlated with other measures of immunodeficiency (CD4 T-cell levels), active infection (viral load), and cellular activation (CD38). CONCLUSIONS CCR5 elevation is a concomitant of immune activation and viral replication that occurs in HIV-1 infection, but the relation of CXCR4 depression to severity of infection, disease progression, and response to therapy remains undefined.
Collapse
Affiliation(s)
- J K Nicholson
- HIV Immunology and Diagnostics Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, U.S.A
| | | | | | | | | | | | | |
Collapse
|
202
|
Philpott S, Weiser B, Anastos K, Kitchen CM, Robison E, Meyer WA, Sacks HS, Mathur-Wagh U, Brunner C, Burger H. Preferential suppression of CXCR4-specific strains of HIV-1 by antiviral therapy. J Clin Invest 2001; 107:431-8. [PMID: 11181642 PMCID: PMC199259 DOI: 10.1172/jci11526] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To initiate infection, HIV-1 requires a primary receptor, CD4, and a secondary receptor, principally the chemokine receptor CCR5 or CXCR4. Coreceptor usage plays a critical role in HIV-1 disease progression. HIV-1 transmitted in vivo generally uses CCR5 (R5), but later CXCR4 (X4) strains may emerge; this shift heralds CD4+ cell depletion and clinical deterioration. We asked whether antiretroviral therapy can shift HIV-1 populations back to R5 viruses after X4 strains have emerged, in part because treatment has been successful in slowing disease progression without uniformly suppressing plasma viremia. We analyzed the coreceptor usage of serial primary isolates from 15 women with advanced disease who demonstrated X4 viruses. Coreceptor usage was determined by using a HOS-CD4+ cell system, biological and molecular cloning, and sequencing the envelope gene V3 region. By constructing a mathematical model to measure the proportion of virus in a specimen using each coreceptor, we demonstrated that the predominant viral population shifted from X4 at baseline to R5 strains after treatment. Multivariate analyses showed that the shift was independent of changes in plasma HIV-1 RNA level and CD4+ cell count. Hence, combination therapy may lead to a change in phenotypic character as well as in the quantity of HIV-1. Shifts in coreceptor usage may thereby contribute to the clinical efficacy of anti-HIV drugs.
Collapse
Affiliation(s)
- S Philpott
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Horikoshi H, Kinomoto M, Sasao F, Mukai T, Luftig RB, Ikuta K. Differential susceptibility of resting CD4(+) T lymphocytes to a T-tropic and a macrophage (M)-tropic human immunodeficiency virus type 1 is associated with their surface expression of CD38 molecules. Virus Res 2001; 73:1-16. [PMID: 11163640 DOI: 10.1016/s0168-1702(00)00220-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent evidence has accumulated which definitively shows that chemokine receptors CCR5 and CXCR4 play an essential role as coreceptors for human immunodeficiency virus type 1 (HIV-1) infection. Flow cytometric analysis permitted us to detect CD38, a surface marker of early differentiation, as well as activation of T cells, on about half of healthy donor-derived CD4(+) T cells. In this study, we focused on the susceptibility of CD38(+) and CD38(-) subsets of CD4(+) T cells to HIV-1 infection with different coreceptor tropisms. About 20% of peripheral blood mononuclear cell-derived resting CD4(+) T cells were recovered into the CD38(+) subset fraction by panning with a monoclonal antibody to CD38. Most of the cells in this CD38(high) fraction also expressed CD45RA and CD62L at higher intensities compared with those of CD38(low) fraction. CCR5(+) T cells predominated in the CD38(-) subset, although cell surface expression of CD4 and CXCR4 was almost similar between both subsets. This difference was consistent with a significantly higher susceptibility of the CD38(-) subset to a macrophage (M)-tropic HIV-1 strain. In contrast, it was shown that a T-tropic strain of HIV-1 could replicate more efficiently in the CD38(+) subset, although viral adsorption rates were similar between both subsets. Thus, the differential susceptibility of CD4(+) T cells to M(-) and T-tropic HIV-1 was associated with their surface expression of CD38.
Collapse
Affiliation(s)
- H Horikoshi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
204
|
Ferri KF, Jacotot E, Leduc P, Geuskens M, Ingber DE, Kroemer G. Apoptosis of syncytia induced by the HIV-1-envelope glycoprotein complex: influence of cell shape and size. Exp Cell Res 2000; 261:119-26. [PMID: 11082282 DOI: 10.1006/excr.2000.5062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells stably transfected with a lymphotropic HIV-1 Env gene form syncytia when cocultured with CD4(+)CXCR4(+) cells. Heterokaryons then spontaneously undergo apoptosis, while manifesting signs of mitochondrial membrane pemeabilization as well as nuclear chromatin condensation. Modulation of cellular geometry was achieved by growing syncytia on self-assembled monolayers of terminally substituted alkanethiolates designed to control the adhesive properties of the substrates. Spreading of syncytia, induced by culturing them on small circular adhesive islets (diameter 5 microm), placed at a distance that cells can bridge (10 microm), inhibited spontaneous and staurosporin-induced signs of apoptosis, both at the mitochondrial and at the nuclear levels, and allowed for the generation of larger syncytia. Transient cell spreading conferred a memory of apoptosis inhibition which was conserved upon adoption of a conventional cell shape. Limiting syncytium size by culturing them on square-shaped planar adhesive islands of defined size (400 to 2500 microm(2)), separated by nonadhesive regions, enhanced the rate of apoptotic cell death, as indicated by an accelerated permeabilization of the outer mitochondrial membrane, loss of the mitochondrial inner transmembrane potential, and an increased frequency of nuclear apoptosis. In conclusion, external constraints on syncytial size and shape strongly modulate their propensity to undergo apoptosis.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, Villejuif, F-94805, France
| | | | | | | | | | | |
Collapse
|
205
|
Ferri KF, Jacotot E, Blanco J, Esté JA, Zamzami N, Susin SA, Xie Z, Brothers G, Reed JC, Penninger JM, Kroemer G. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med 2000; 192:1081-92. [PMID: 11034598 PMCID: PMC2195869 DOI: 10.1084/jem.192.8.1081] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Accepted: 08/28/2000] [Indexed: 11/04/2022] Open
Abstract
Syncytia arising from the fusion of cells expressing a lymphotropic HIV type 1-encoded envelope glycoprotein complex (Env) with cells expressing the CD4/CXC chemokine receptor 4 complex spontaneously undergo cell death. Here we show that this process is accompanied by caspase activation and signs of mitochondrial membrane permeabilization (MMP), including the release of intermembrane proteins such as cytochrome c (Cyt-c) and apoptosis-inducing factor (AIF) from mitochondria. In Env-induced syncytia, caspase inhibition did not suppress AIF- and Cyt-c translocation, yet it prevented all signs of nuclear apoptosis. Translocation of Bax to mitochondria led to MMP, which was inhibited by microinjected Bcl-2 protein or bcl-2 transfection. Bcl-2 also prevented the subsequent nuclear chromatin condensation and DNA fragmentation. The release of AIF occurred before that of Cyt-c and before caspase activation. Microinjection of AIF into syncytia sufficed to trigger rapid, caspase-independent Cyt-c release. Neutralization of endogenous AIF by injection of an antibody prevented all signs of spontaneous apoptosis occurring in syncytia, including the Cyt-c release and nuclear apoptosis. In contrast, Cyt-c neutralization only prevented nuclear apoptosis, and did not affect AIF release. Our results establish that the following molecular sequence governs apoptosis of Env-induced syncytia: Bax-mediated/Bcl-2-inhibited MMP --> AIF release --> Cyt-c release --> caspase activation --> nuclear apoptosis.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
van Rij RP, Blaak H, Visser JA, Brouwer M, Rientsma R, Broersen S, de Roda Husman AM, Schuitemaker H. Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV-1. J Clin Invest 2000; 106:1039-52. [PMID: 11032864 PMCID: PMC314337 DOI: 10.1172/jci7953] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We demonstrated previously that CD45RA(+) CD4(+) T cells are infected primarily by syncytium-inducing (SI) HIV-1 variants, whereas CD45RO(+) CD4(+) T cells harbor both non-SI (NSI) and SI HIV-1 variants. Here, we studied evolution of tropism for CD45RA(+) and CD45RO(+) CD4(+) cells, coreceptor usage, and molecular phylogeny of coexisting NSI and SI HIV-1 clones that were isolated from four patients in the period spanning SI conversion. NSI variants were CCR5-restricted and could be isolated throughout infection from CD45RO(+) CD4(+) cells. SI variants seemed to evolve in CD45RO(+) CD4(+) cells, but, in time, SI HIV-1 infection of CD45RA(+) CD4(+) cells equaled infection of CD45RO(+) CD4(+) cells. In parallel with this shift, SI HIV-1 variants first used both coreceptors CCR5 and CXCR4, but eventually lost the ability to use CCR5. Phylogenetically, NSI and SI HIV-1 populations diverged over time. We observed a differential expression of HIV-1 coreceptors within CD45RA(+) and CD45RO(+) cells, which allowed us to isolate virus from purified CCR5(+) CXCR4(-) and CCR5(-) CXCR4(+) CD4(+) cells. The CCR5(+) subset was exclusively infected by CCR5-dependent HIV-1 clones, whereas SI clones were preferentially isolated from the CXCR4(+) subset. The differential expression of HIV-1 coreceptors provides distinct cellular niches for NSI and SI HIV-1, contributing to their coexistence and independent evolutionary pathways.
Collapse
Affiliation(s)
- R P van Rij
- Department of Clinical Viro-Immunology, CLB Sanquin and Laboratory of Experimental and Clinical Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Hazenberg MD, Hamann D, Schuitemaker H, Miedema F. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 2000; 1:285-9. [PMID: 11017098 DOI: 10.1038/79724] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 infection is characterized by a gradual loss of CD4+ T cells and progressive immune deficiency that leads to opportunistic infections, otherwise rare malignancies and ultimately death. Extensive research over the past two decades has increased our insight into the pathogenic mechanisms underlying these features of HIV-1 infection. Here, we will give a brief overview of the most recent findings and present a model that fits most of the relevant aspects of HIV-1 infection as known. We hypothesize that HIV-1 infection depletes T cell supplies (which are not replaced because of low and static thymic function) by direct infection and killing of cells and through hyperactivation of the immune system.
Collapse
Affiliation(s)
- M D Hazenberg
- Department of Clinical Viro-Immunology, CLB, and the Laboratory for Experimental and Clinical Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
208
|
Abstract
Despite the success of protease and reverse transcriptase inhibitors, new drugs to suppress HIV-1 replication are still needed. Several other early events in the viral life cycle (stages before the viral genome is inserted into host cell DNA) are susceptible to drugs, including virus attachment to target cells, membrane fusion and post-entry events such as integration, accessory-gene function and assembly of viral particles. Among these, inhibitors of virus-cell fusion and integration are the most promising candidates.
Collapse
Affiliation(s)
- J P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
209
|
Pierson T, Hoffman TL, Blankson J, Finzi D, Chadwick K, Margolick JB, Buck C, Siliciano JD, Doms RW, Siliciano RF. Characterization of chemokine receptor utilization of viruses in the latent reservoir for human immunodeficiency virus type 1. J Virol 2000; 74:7824-33. [PMID: 10933689 PMCID: PMC112312 DOI: 10.1128/jvi.74.17.7824-7833.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latently infected resting CD4(+) T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4(+) T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4(+) T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established.
Collapse
Affiliation(s)
- T Pierson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Maas JJ, Gange SJ, Schuitemaker H, Coutinho RA, van Leeuwen R, Margolick JB. Strong association between failure of T cell homeostasis and the syncytium-inducing phenotype among HIV-1-infected men in the Amsterdam Cohort Study. AIDS 2000; 14:1155-61. [PMID: 10894279 DOI: 10.1097/00002030-200006160-00012] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To assess the association between T cell homeostasis and its failure and 1.) the occurrence of AIDS and 2.) the switch from the non-syncytium-inducing (NSI) to the syncytium-inducing (SI) HIV virus phenotype. METHODS For each of 325 homosexual men in the Amsterdam Cohort Study, the slope of the CD3 T cell count versus time was determined. The timing (T cell inflection point (IP)) and magnitude of the change in slope were correlated with the time of the NSI/SI switch. RESULTS Median T cell slopes before the IP (pre-IP) were nearly zero regardless of whether AIDS occurred; the slopes after the IP (post-IP) were associated with clinical outcomes, with a median annual decline of 17.6% among those who developed AIDS and increase of 4.6% in those remaining AIDS free. Among subjects considered to have a true IP (decline > 8.2%/year post-IP), the times of the SI switch and the IP slope were highly correlated (r = 0.65); among those with AIDS, the SI switch preceded the IP by a median of 0.63 years. CONCLUSION These results support the concept of blind T cell homeostasis and also suggest that HIV-1 SI variants play an important role in the failure of T cell homeostasis.
Collapse
Affiliation(s)
- J J Maas
- The Amsterdam Cohort Study, Municipal Health Service, Department of Public Health and Environment, The Netherlands
| | | | | | | | | | | |
Collapse
|