201
|
Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, Nicholson DW, Bredesen DE, Hayden MR. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 2000; 275:19831-8. [PMID: 10770929 DOI: 10.1074/jbc.m001475200] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by CAG expansion that results in expansion of a polyglutamine tract at the extreme N terminus of huntingtin (htt). htt with polyglutamine expansion is proapoptotic in different cell types. Here, we show that caspase inhibitors diminish the toxicity of htt. Additionally, we define htt itself as an important caspase substrate by generating a site-directed htt mutant that is resistant to caspase-3 cleavage at positions 513 and 530 and to caspase-6 cleavage at position 586. In contrast to cleavable htt, caspase-resistant htt with an expanded polyglutamine tract has reduced toxicity in apoptotically stressed neuronal and nonneuronal cells and forms aggregates at a much reduced frequency. These results suggest that inhibiting caspase cleavage of htt may therefore be of potential therapeutic benefit in Huntington's disease.
Collapse
Affiliation(s)
- C L Wellington
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Wang Y, Saigoh K, Osaka H, Yamanishi T, Suh J, Kiyosawa H, Sakai Y, Wakana S, Wada K. YAC/BAC-based physical and transcript mapping around the gracile axonal dystrophy (gad) locus identifies Uchl1, Pmx2b, Atp3a2, and Hip2 genes. Genomics 2000; 66:333-6. [PMID: 10873389 DOI: 10.1006/geno.2000.6221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We generated a yeast artificial chromosome (YAC)/bacterial artificial chromosome (BAC)-based physical and transcript map of a region containing the gracile axonal dystrophy (gad) locus on mouse chromosome 5. The YAC/BAC contig consists of 13 YAC and 49 BAC clones onto which 4 genes, 40 expressed sequence tags, and 7 new DNA polymorphisms were ordered. Using this physical map, we mapped Uchl1 encoding ubiquitin carboxyl-terminal hydrolase I, whose deletion has been determined to cause the gad mutation. We also mapped three other recently identified genes: Hip2, encoding Huntingtin interacting protein 2; Atp3a2, encoding a P-type ATPase; and Pmx2b, encoding PHOX2b.
Collapse
Affiliation(s)
- Y Wang
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Kodaira, 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD, Litchfield DW. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem 2000; 275:14295-306. [PMID: 10799509 DOI: 10.1074/jbc.275.19.14295] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunits of protein kinase CK2, CK2alpha and CK2alpha', are closely related to each other but exhibit functional specialization. To test the hypothesis that specific functions of CK2alpha and CK2alpha' are mediated by specific interaction partners, we used the yeast two-hybrid system to identify CK2alpha- or CK2alpha'-binding proteins. We report the identification and characterization of a novel CK2-interacting protein, designated CKIP-1, that interacts with CK2alpha, but not CK2alpha', in the yeast two-hybrid system. CKIP-1 also interacts with CK2alpha in vitro and is co-immunoprecipitated from cell extracts with epitope-tagged CK2alpha and an enhanced green fluorescent protein fusion protein encoding CKIP-1 (i.e. EGFP-CKIP-1) when they are co-expressed. CK2 activity is detected in anti-CKIP-1 immunoprecipitates performed with extracts from non-transfected cells indicating that CKIP-1 and CK2 interact under physiological conditions. The CKIP-1 cDNA is broadly expressed and encodes a protein with a predicted molecular weight of 46,000. EGFP-CKIP-1 is localized within the nucleus and at the plasma membrane. The plasma membrane localization is dependent on the presence of an amino-terminal pleckstrin homology domain. We postulate that CKIP-1 is a non-enzymatic regulator of one isoform of CK2 (i.e. CK2alpha) with a potential role in targeting CK2alpha to a particular cellular location.
Collapse
Affiliation(s)
- D G Bosc
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Recent advances in the manipulation of mouse embryos provide opportunities for the disciplines of neuroscience and molecular genetics to join forces and tackle some previously intractable questions in this area of research. Even Huntington's disease has started to yield clues to its complex pathophysiology as a result of the recent application of transgenic technologies. This short review, while necessarily providing some background clinical information on Huntington's disease, will focus on how modifications of the mouse genome have contributed, and are continuing to contribute, to our understanding of the complex disease process. Such new insights may well turn the hope of developing the first effective treatment for this devastating disease into reality.
Collapse
Affiliation(s)
- P F Shelbourne
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK.
| |
Collapse
|
205
|
Nemeth E, Millar LK, Bryant-Greenwood G. Fetal membrane distention: II. Differentially expressed genes regulated by acute distention in vitro. Am J Obstet Gynecol 2000; 182:60-7. [PMID: 10649157 DOI: 10.1016/s0002-9378(00)70491-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study was undertaken to identify genes with expression up-regulated by acute distention in the human fetal membranes. STUDY DESIGN Fetal membrane explants were distended reproducibly in a novel device in vitro for 4 hours, and suppression subtractive hybridization was used to identify the candidate genes for up-regulation of expression in response to this stimulus. The up-regulation in response to distention was confirmed by quantitative Northern blot analysis both after a 4-hour in vitro distention and after labor in vivo. RESULTS Suppression subtractive hybridization identified 3 genes with expression up-regulated by acute distention: an interferon-stimulated gene encoding a 54-kd protein, the gene for huntingtin-interacting protein 2 (a ubiquitin-conjugating enzyme), and a novel transcript. Expression of each of the distention-responsive genes found to be up-regulated in vitro was also up-regulated in fetal membranes in association with labor. CONCLUSIONS Suppression subtractive hybridization was successfully applied to a complex tissue, the human fetal membranes, and 3 novel distention-responsive genes were identified. Both acute in vitro distention and labor in vivo up-regulate expression of at least 3 genes in the human fetal membranes.
Collapse
Affiliation(s)
- E Nemeth
- Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822, USA
| | | | | |
Collapse
|
206
|
Furukawa Y, Kubo N, Kikuchi J, Tokura A, Fujita N, Sakurabayashi I. Regulation of macrophage-specific gene expression by degenerated lipoproteins. Electrophoresis 2000; 21:338-46. [PMID: 10675012 DOI: 10.1002/(sici)1522-2683(20000101)21:2<338::aid-elps338>3.0.co;2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effect of aggregated low-density lipoprotein (agLDL) on cell viability and macrophage-specific gene expression using human peripheral blood monocytes in culture was investigated. AgLDL suppressed activation-induced cell death of phorbol ester-treated macrophages. The inhibition of apoptosis was accompanied by downregulation of apoptosis-promoting proteases, including interleukin-1beta-converting enzyme (ICE) and CPP32 and upregulation of anti-apoptotic cytokine (interleukin-1beta (IL-1beta)). In contrast, macrophage-colony stimulating factor (M-CSF) enhanced cell death of lipid-bearing macrophages, suggesting that the anti-atherogenic action of M-CSF is at least in part mediated through apoptotic elimination of macrophages. Then, we attempted to isolate the genes specifically induced by agLDL in macrophages using a subtraction-based cloning strategy. One of the genes isolated, termed LIG (LDL-inducible gene), encodes a human homolog of E2 ubiquitin-conjugating enzyme. Ubiquitination of multiple intracellular proteins was observed in agLDL-treated macrophages, which coincided with upregulation of LIG. These results suggest that LIG acts as a direct mediator of foam cell formation through polyubiquitination and subsequent degradation of cellular proteins with apoptosis-inducing properties. The regulation of apoptosis by macrophage-specific gene expression may contribute to foam cell formation and atherosclerosis.
Collapse
Affiliation(s)
- Y Furukawa
- Division of Molecular Hemopoiesis, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
207
|
Kikuchi J, Furukawa Y, Kubo N, Tokura A, Hayashi N, Nakamura M, Matsuda M, Sakurabayashi I. Induction of ubiquitin-conjugating enzyme by aggregated low density lipoprotein in human macrophages and its implications for atherosclerosis. Arterioscler Thromb Vasc Biol 2000; 20:128-34. [PMID: 10634809 DOI: 10.1161/01.atv.20.1.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, we have found that aggregated low density lipoprotein (agLDL) inhibits apoptosis of lipid-bearing macrophages, thereby facilitating foam cell formation and atherosclerosis. To clarify the mechanisms by which agLDL inhibits apoptosis of macrophages, we isolated the genes specifically induced by agLDL by using a subtraction-based cloning strategy. One of the cloned genes, termed low density lipoprotein (LDL)-inducible gene (LIG), encodes a human homologue of bovine ubiquitin-conjugating enzyme E2-25K. Although LIG mRNA was ubiquitously expressed among human tissues, including hematopoietic cells, the abundance of transcripts was markedly increased by agLDL treatment in activated monocytes. LIG mRNA expression was not enhanced by nonatherogenic lipoproteins such as native LDL and high density lipoprotein, suggesting a role in atherosclerosis. Polyubiquitination of intracellular proteins was observed in monocytes cultured with agLDL, which coincided with upregulation of LIG. Furthermore, ubiquitin-dependent degradation of p53, an inducer of apoptosis, was accompanied by LIG induction in agLDL-treated monocytes. The antiapoptotic effect of agLDL was abrogated by a specific proteasome inhibitor, which also increased the half-life of p53 in monocytes. These results suggest that LIG contributes to foam cell formation by the suppression of apoptosis of lipid-bearing macrophages through ubiquitination and subsequent degradation of p53.
Collapse
Affiliation(s)
- J Kikuchi
- Division of Molecular Hemopoiesis, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 1999; 24:879-92. [PMID: 10624951 DOI: 10.1016/s0896-6273(00)81035-1] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mutant ataxin-1, the expanded polyglutamine protein causing spinocerebellar ataxia type 1 (SCA1), aggregates in ubiquitin-positive nuclear inclusions (NI) that alter proteasome distribution in affected SCA1 patient neurons. Here, we observed that ataxin-1 is degraded by the ubiquitin-proteasome pathway. While ataxin-1 [2Q] and mutant ataxin-1 [92Q] are polyubiquitinated equally well in vitro, the mutant form is three times more resistant to degradation. Inhibiting proteasomal degradation promotes ataxin-1 aggregation in transfected cells. And in mice, Purkinje cells that express mutant ataxin-1 but not a ubiquitin-protein ligase have significantly fewer NIs. Nonetheless, the Purkinje cell pathology is markedly worse than that of SCA1 mice. Taken together, NIs are not necessary to induce neurodegeneration, but impaired proteasomal degradation of mutant ataxin-1 may contribute to SCA1 pathogenesis.
Collapse
Affiliation(s)
- C J Cummings
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Tanno Y, Mori T, Yokoya S, Kanazawa K, Honma Y, Nikaido T, Takeda J, Tojo M, Yamamoto T, Wanaka A. Localization of huntingtin-interacting protein-2 (Hip-2) mRNA in the developing mouse brain. J Chem Neuroanat 1999; 17:99-107. [PMID: 10585161 DOI: 10.1016/s0891-0618(99)00030-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Huntingtin-interacting protein-2 (Hip-2) was identified as a human protein specifically associated with huntingtin in vitro, a gene product affected in patients with Huntington disease (HD). It is a ubiquitin-conjugating enzyme identical to the previously characterized bovine E2-25k. We identified the mouse Hip-2 homologue (mHip-2) and examined its distribution patterns in the developing mouse brain in order to gain an insight into the functional significance of the Hip-2 protein in the normal brain as well as in the pathogenesis of HD. As reported with huntingtin, the mHip-2 mRNA expression developed in parallel with neuronal maturation and became distributed widely in the postnatal mouse brain. This spatiotemporal pattern of mHip-2 mRNA expression resembled that of huntingtin. We further demonstrated that mHip-2 mRNA was colocalized with huntingtin-like immunoreactivity in a single neuron. These findings suggested that the Hip-2 interacted with huntingtin in vivo and played an important role in HD pathogenesis.
Collapse
Affiliation(s)
- Y Tanno
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Boutell JM, Thomas P, Neal JW, Weston VJ, Duce J, Harper PS, Jones AL. Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum Mol Genet 1999; 8:1647-55. [PMID: 10441327 DOI: 10.1093/hmg/8.9.1647] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We detected an interaction of the N-terminus of huntingtin (htt171) with the C-terminal region of the nuclear receptor co-repressor (N-CoR) using the yeast two-hybrid system. This interaction was repeat length dependent and specific to htt171; the co-repressor did not interact with the repeat carrying a section of atrophin 1 nor with the androgen receptor or polyglutamine alone. The interaction was confirmed using His-tagged Escherichia coli -expressed C-terminal human and rat co-repressor protein which pulled full-length huntingtin out of homogenized rat brain and in pull-down assays. The N-CoR represses transcription from sequence-specific ligand-activated receptors such as the retinoid X-thyroid hormone receptor dimers and other nuclear receptors including Mad-Max receptor dimers. The mechanism of this repression appears to be through the formation of a complex of repressor proteins including the N-CoR, mSin3 and histone deacetylases. We have used N-CoR and mSin3A antibodies in immunohistochemical studies and find that in Huntington's disease (HD) cortex and caudate, the cellular localization of these proteins is exclusively cytoplasmic whilst in control brain they are localized in the nucleus as well as the cytoplasm; mSin3A immunoreactivity also occurred in a subset of huntingtin positive intranuclear inclusions. The relocalization of repressor proteins in HD brain may alter transcription and be involved in the pathology of the disease.
Collapse
Affiliation(s)
- J M Boutell
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | | | | | |
Collapse
|
211
|
Reddy PH, Charles V, Williams M, Miller G, Whetsell WO, Tagle DA. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease. Philos Trans R Soc Lond B Biol Sci 1999; 354:1035-45. [PMID: 10434303 PMCID: PMC1692609 DOI: 10.1098/rstb.1999.0456] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized clinically by motor and psychiatric disturbances and pathologically by neuronal loss and gliosis (reactive astrocytosis) particularly in the striatum and cerebral cortex. We have recently created HD full-length cDNA transgenic mouse models that may serve as a paradigm for HD. A more detailed characterization of these models is presented here. The transgene encoding normal huntingtin consists of 9417 bp of the huntingtin coding sequences including 16 tandem CAGs coding for polyglutamines as part of exon 1. The transgene is driven by a heterologous cytomegalovirus promoter. Five independent transgenic mouse lines were obtained using this construct. An additional six transgenic lines were obtained using full-length HD constructs that have been modified to include either 48 or 89 CAG repeat expansions. Southern blot and densitometric analyses indicated unique integration sites for the transgene in each of the lines with a copy number ranging from two to 22 copies. Widespread expression of the transgene in brain, heart, spleen, kidney, lung, liver and gonads from each line was determined by Western blot analyses. In the brain, transgene expression was found in cerebral cortex, striatum, hippocampus and cerebellum. Expression of the transgene was as much as five times the endogenous mouse huntingtin level. Phenotypically, only mice expressing 48 or 89 CAG repeats manifested progressive behavioural and motor dysfunction. Early behavioural abnormalities were characterized by trunk curling and clasping of both fore- and hindlimbs when the animals were suspended by their tails. Subsequently, these mice exhibited hyperkinetic movements, including heightened exploratory activities, unidirectional rotational behaviour, backflipping and excessive grooming that lasted for several weeks. Eventually, the animals progressed to a hypokinetic phase consisting of slowed movements and lack of response to sensory stimuli. Urine retention or incontinence was also a prominent feature of the hypokinetic phase. At the end stage of the disease process, HD48(B,D) and HD89(A-C) mice became akinetic just prior to death. Neuropathological examination of mice at various stages indicated that it was only during the hypokinetic phase and thereafter when selective neuronal loss was most apparent. Regions of neurodegeneration and loss included the striatum, cerebral cortex, thalamus and hippocampus. TUNEL staining indicated an apoptotic mode of cell death in these brain regions. Comparative neuronal counts after Nissl staining showed as much as 20% loss of small and medium neurons in the striatum in mice at the hypokinetic and akinetic stages. Reactive astrocytosis accompanied the areas of neurodegeneration and loss. Polyglutamine aggregates in the form of neuronal intranuclear inclusions and diffuse nuclear and perinuclear aggregations were found in a small percentage of neurons, including those in brain regions that are typically spared in HD. This observation suggests that polyglutamine aggregates may not be sufficient to cause neuronal loss in HD. In both behavioural and neuropathological analyses, wild-type and transgenic animals with 16 CAG repeats were indistinguishable from each other and do not exhibit the changes observed for mice carrying the 48 and 89 CAG repeat mutations. Thus, animals expressing the CAG repeat expansions appear to represent clinically analogous models for HD pathogenesis, and may also provide insights into the underlying pathophysiological mechanisms of other triplet repeat disorders.
Collapse
Affiliation(s)
- P H Reddy
- Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
212
|
Ross CA, Wood JD, Schilling G, Peters MF, Nucifora FC, Cooper JK, Sharp AH, Margolis RL, Borchelt DR. Polyglutamine pathogenesis. Philos Trans R Soc Lond B Biol Sci 1999; 354:1005-11. [PMID: 10434299 PMCID: PMC1692617 DOI: 10.1098/rstb.1999.0452] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increasing number of neurodegenerative disorders have been found to be caused by expanding CAG triplet repeats that code for polyglutamine. Huntington's disease (HD) is the most common of these disorders and dentatorubral-pallidoluysian atrophy (DRPLA) is very similar to HD, but is caused by mutation in a different gene, making them good models to study. In this review, we will concentrate on the roles of protein aggregation, nuclear localization and proteolytic processing in disease pathogenesis. In cell model studies of HD, we have found that truncated N-terminal portions of huntingtin (the HD gene product) with expanded repeats form more aggregates than longer or full length huntingtin polypeptides. These shorter fragments are also more prone to aggregate in the nucleus and cause more cell toxicity. Further experiments with huntingtin constructs harbouring exogenous nuclear import and nuclear export signals have implicated the nucleus in direct cell toxicity. We have made mouse models of HD and DRPLA using an N-terminal truncation of huntingtin (N171) and full-length atrophin-1 (the DRPLA gene product), respectively. In both models, diffuse neuronal nuclear staining and nuclear inclusion bodies are observed in animals expressing the expanded glutamine repeat protein, further implicating the nucleus as a primary site of neuronal dysfunction. Neuritic pathology is also observed in the HD mice. In the DRPLA mouse model, we have found that truncated fragments of atrophin-1 containing the glutamine repeat accumulate in the nucleus, suggesting that proteolysis may be critical for disease progression. Taken together, these data lead towards a model whereby proteolytic processing, nuclear localization and protein aggregation all contribute to pathogenesis.
Collapse
Affiliation(s)
- C A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Aronin N, Kim M, Laforet G, DiFiglia M. Are there multiple pathways in the pathogenesis of Huntington's disease? Philos Trans R Soc Lond B Biol Sci 1999; 354:995-1003. [PMID: 10434298 PMCID: PMC1692615 DOI: 10.1098/rstb.1999.0451] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies of huntingtin localization in human post-mortem brain offer insights and a framework for basic experiments in the pathogenesis of Huntington's disease. In neurons of cortex and striatum, we identified changes in the cytoplasmic localization of huntingtin including a marked perinuclear accumulation of huntingtin and formation of multivesicular bodies, changes conceivably pointing to an altered handling of huntingtin in neurons. In Huntington's disease, huntingtin also accumulates in aberrant subcellular compartments such as nuclear and neuritic aggregates co-localized with ubiquitin. The site of protein aggregation is polyglutamine-dependent, both in juvenile-onset patients having more aggregates in the nucleus and in adult-onset patients presenting more neuritic aggregates. Studies in vitro reveal that the genesis of these aggregates and cell death are tied to cleavage of mutant huntingtin. However, we found that the aggregation of mutant huntingtin can be dissociated from the extent of cell death. Thus properties of mutant huntingtin more subtle than its aggregation, such as its proteolysis and protein interactions that affect vesicle trafficking and nuclear transport, might suffice to cause neurodegeneration in the striatum and cortex. We propose that mutant huntingtin engages multiple pathogenic pathways leading to neuronal death.
Collapse
Affiliation(s)
- N Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester 01655, USA.
| | | | | | | |
Collapse
|
214
|
Abstract
Huntingtin was localized by using a series of antibodies that detected different areas of the protein from the immediate N-terminus to the C-terminal region of the protein. The more C-terminal antibodies gave a cytoplasmic localization in neurons of the brain in controls and cases of Huntington's disease (HD). The N-terminal antibody, however, gave a distinctive pattern of immunoreactivity in the HD brain, with marked staining of axon tracts and white matter and the detection of densely staining intranuclear inclusions. This implies some processing differences between mutated and normal huntingtin. We have also localized two interacting proteins, cystathionine beta-synthase and the nuclear receptor co-repressor (N-CoR), in brain. Cystathionine beta-synthase was not relocalized in HD brain, but the N-CoR was excluded from neuronal nuclei in HD brain, and a further protein that exists in the same repression complex, mSin3, was similarly excluded. We conclude that the co-repressor might have a part in HD pathology.
Collapse
Affiliation(s)
- A L Jones
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK.
| |
Collapse
|
215
|
Yazawa I, Nakase H, Kurisaki H. Abnormal dentatorubral-pallidoluysian atrophy (DRPLA) protein complex is pathologically ubiquitinated in DRPLA brains. Biochem Biophys Res Commun 1999; 260:133-8. [PMID: 10381356 DOI: 10.1006/bbrc.1999.0839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is caused by expansion of a glutamine repeat in DRPLA protein. DRPLA protein undergoes greater complex formation in DRPLA brain tissue, and expanded glutamine repeat enhances complex formation of DRPLA protein. Immunoblots with and without reduction show that the DRPLA protein complex is ubiquitinated only in DRPLA brain tissue. Moreover, immunoblots of regional DRPLA brain tissues reveal that pathological ubiquitination of DRPLA protein complex is found selectively in affected lesions. Double-labeling immunohistochemical studies with antibodies against DRPLA protein and ubiquitin demonstrate that the DRPLA protein is co-localized with ubiquitin in DRPLA neurons and show characteristic neuronal cytoplasmic inclusions with ubiquitinated DRPLA protein complex in the center. Our findings suggest that DRPLA protein undergoes abnormal complex formation with expanded glutamine repeat, and then the complex is pathologically ubiquitinated in DRPLA brain tissue. Pathological ubiquitination of abnormal DRPLA protein complex plays a role in DRPLA pathology.
Collapse
Affiliation(s)
- I Yazawa
- Department of Neurology, Toranomon Hospital, 2-2-2 Toranomon, Tokyo, Minato-ku, 105-8470, Japan.
| | | | | |
Collapse
|
216
|
de Cristofaro T, Affaitati A, Cariello L, Avvedimento EV, Varrone S. The length of polyglutamine tract, its level of expression, the rate of degradation, and the transglutaminase activity influence the formation of intracellular aggregates. Biochem Biophys Res Commun 1999; 260:150-8. [PMID: 10381359 DOI: 10.1006/bbrc.1999.0851] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A common feature of CAG-expansion neurodegenerative diseases is the presence of intranuclear aggregates in neuronal cells. We have used a synthetic fusion protein containing at the NH2 terminus the influenza hemoagglutinin epitope (HA), a polyglutamine stretch (polyQ) of various size (17, 36, 43 CAG) and a COOH tail encoding the green fluorescent protein (GFP). The fusion proteins were expressed in COS-7 and neuroblastoma SK-N-BE cells. We found that the formation of aggregates largely depends on the length of polyglutamine tracts and on the levels of expression of the fusion protein. Moreover, transglutaminase overexpression caused an increase of insoluble aggregates only in cells expressing the mutant expanded protein. Conversely, treatment of cells with cystamine, a transglutaminase inhibitor, reduced the percentage of aggregates. We found also that the inhibition of the proteasome ubiquitin-dependent degradation increased the formation of intranuclear aggregates. These data suggest that length of polyglutamine tract, its expression, unbalance between cellular transglutaminase activity, and the ubiquitin-degradation pathway are key factors in the formation of intranuclear aggregates.
Collapse
Affiliation(s)
- T de Cristofaro
- Centro di Endocrinologia ed Oncologia Sperimentale (C.E.O.S.) del C. N.R c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita' di Napoli "Federico II", Napoli, Italy
| | | | | | | | | |
Collapse
|
217
|
Reddy PH, Williams M, Tagle DA. Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci 1999; 22:248-55. [PMID: 10354600 DOI: 10.1016/s0166-2236(99)01415-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is an autosomal, dominantly inherited neurodegenerative disorder that is characterized by abnormal involuntary movements (chorea), intellectual impairment and selective neuronal loss. The expansion of a polymorphic trinucleotide repeat (the sequence CAG that codes for glutamine) to a length that exceeds 40 repeat units in exon 1 of the gene, HD, correlates with the onset and progression of the disease. The protein encoded by HD, huntingtin, is normally localized in the cytoplasm, whereas the mutant protein is also found in the nucleus, suggesting that its translocation to this site is important for the pathogenesis of HD. Although several proteins that interact with huntingtin have been identified in vitro, the significance of these interactions with the mutant protein in the pathogenesis of HD has yet to be determined. Recent progress in the development of cellular and animal models for the disease have provided invaluable insights and resources for studying the disease mechanisms underlying HD, and will be useful for screening and evaluating possible therapeutic strategies.
Collapse
Affiliation(s)
- P H Reddy
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
218
|
Wilkinson FL, Nguyen TM, Manilal SB, Thomas P, Neal JW, Harper PS, Jones AL, Morris GE. Localization of rabbit huntingtin using a new panel of monoclonal antibodies. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:10-20. [PMID: 10350633 DOI: 10.1016/s0169-328x(99)00097-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG repeat which is expressed as a polyglutamine tract near the N-terminus of the gene product, huntingtin. N-terminal huntingtin fragments form intranuclear aggregates in HD patients and these may be involved in the pathogenesis. Monoclonal antibodies (mAbs) against three different regions of huntingtin (amino acids 997-1276, 1844-2131 and 2703-2911) have been produced and two of the epitopes have been identified using phage displayed peptide libraries. All mAbs reacted with 350 kDa huntingtin on Western blots and one mAb from each region was selected for further study by strong immunoreactivity with neurons in different regions of rabbit brain and by ability to immunoprecipitate native huntingtin. Subcellular fractionation and sucrose density centrifugation of rabbit brain extract showed that most of the huntingtin exists as a high molecular weight complex in the cytoplasm. Two outstanding problems have been addressed; the location of huntingtin in tissues outside the central nervous system and whether huntingtin is present in the nucleus of normal cells. We conclude that huntingtin is present at low levels in most non-neuronal cells though we have identified an interstitial cell type in skin with very high immunoreactivity. Using both immunolocalization and nuclear purification methods, we were unable to exclude the possibility that a small proportion of full-length huntingtin is present in the nucleus.
Collapse
Affiliation(s)
- F L Wilkinson
- MRIC Biochemistry Group, NE Wales Institute, Plas Coch, Wrexham, LL11 2AW, UK
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem 1999; 274:14823-30. [PMID: 10329681 DOI: 10.1074/jbc.274.21.14823] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The last step in the activation of the transcription factor NF-kappaB is signal-induced, ubiquitin- and proteasome-mediated degradation of the inhibitor IkappaBalpha. Although most of the components involved in the activation and degradation pathways have been identified, the ubiquitin carrier proteins (E2) have remained elusive. Here we show that the two highly homologous members of the UBCH5 family, UBCH5b and UBCH5c, and CDC34/UBC3, the mammalian homolog of yeast Cdc34/Ubc3, are the E2 enzymes involved in the process. The conjugation reaction they catalyze in vitro is specific, as they do not recognize the S32A,S36A mutant species of IkappaBalpha that cannot be phosphorylated and conjugated following an extracellular signal. Furthermore, the reaction is specifically inhibited by a doubly phosphorylated peptide that spans the ubiquitin ligase recognition domain of the inhibitor. Cys-to-Ala mutant species of the enzymes that cannot bind ubiquitin inhibit tumor necrosis factor alpha-induced degradation of the inhibitor in vivo. Not surprisingly, they have a similar effect in a cell-free system as well. Although it is clear that the E2 enzymes are not entirely specific to IkappaBalpha, they are also not involved in the conjugation and degradation of the bulk of cellular proteins, thus exhibiting some degree of specificity that is mediated probably via their association with a defined subset of ubiquitin-protein ligases. The mechanisms that underlie the involvement of two different E2 species in IkappaBalpha conjugation are not clear at present. It is possible that different conjugating machineries operate under different physiological conditions or in different cells.
Collapse
Affiliation(s)
- H Gonen
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
We review recent advances regarding the pathogenesis of Huntington's disease (HD). This genetic neurodegenerative disorder is caused by an expanded CAG repeat in a gene coding for a protein, with unknown function, called huntingtin. There is selective death of striatal and cortical neurons. Both in patients and a transgenic mouse model of the disease, neuronal intranuclear inclusions, immunoreactive for huntingtin and ubiquitin, develop. Huntingtin interacts with the proteins GAPDH, HAP-1, HIP1, HIP2, and calmodulin, and a mutant huntingtin is specifically cleaved by the proapoptotic enzyme caspase 3. The pathogenetic mechanism is not known, but it is presumed that there is a toxic gain of function of the mutant huntingtin. Circumstantial evidence suggests that excitotoxicity, oxidative stress, impaired energy metabolism, and apoptosis play a role.
Collapse
Affiliation(s)
- A Petersén
- Department of Physiological Sciences, Wallenberg Neuroscience Center, Sölvegatan 17, Lund, 222 52, Sweden
| | | | | |
Collapse
|
221
|
Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease. J Neurosci 1999. [PMID: 9952397 DOI: 10.1523/jneurosci.19-04-01189.1999] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunohistochemistry and single-cell RT-PCR were used to characterize the localization of huntingtin and/or its mRNA in the major types of striatal neurons and in corticostriatal projection neurons in rats. Single-label immunohistochemical studies revealed that striatum contains scattered large neurons rich in huntingtin and more numerous medium-sized neurons moderate in huntingtin. Double-label immunohistochemical studies showed that the large huntingtin-rich striatal neurons include nearly all cholinergic interneurons and some parvalbuminergic interneurons. Somatostatinergic striatal interneurons, which are medium in size, rarely contained huntingtin. Calbindin immunolabeling showed that the vast majority of the medium-sized striatal neurons that contain huntingtin are projection neurons, but only approximately 65% of calbindin-labeled projection neurons (localized to the matrix compartment of striatum) were labeled for huntingtin. Calbindin-containing projection neurons of the matrix compartment and calbindin-negative projection neurons of the striatal patch compartment contained huntingtin with comparable frequency. Single-cell RT-PCR confirmed that striatal cholinergic interneurons contain huntingtin, but only approximately 65% of projection neurons contained detectable huntingtin message. The finding that huntingtin is not consistently found in striatal projection neurons [which die in Huntington's disease (HD)] but is abundant in striatal cholinergic interneurons (which survive in Huntington's disease) suggests that the mutation in huntingtin that causes HD may not directly kill neurons. In contrast to the heterogeneous expression of huntingtin in the different striatal neuron types, we found all corticostriatal neurons to be rich in huntingtin protein and mRNA. One possibility raised by our findings is that the HD mutation may render corticostriatal neurons destructive rather than render striatal neurons vulnerable.
Collapse
|
222
|
Ross CA, Margolis RL, Becher MW, Wood JD, Engelender S, Cooper JK, Sharp AH. Pathogenesis of neurodegenerative diseases associated with expanded glutamine repeats: new answers, new questions. PROGRESS IN BRAIN RESEARCH 1999; 117:397-419. [PMID: 9932422 DOI: 10.1016/s0079-6123(08)64029-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Eight diseases are now known to be caused by an expansion mutation of the trinucleotide repeat CAG encoding glutamine. Each disease is caused by a CAG expansion in a different gene, and the genes bear no similarity to each other except for the presence of the repeat. Nonetheless, the essential feature of all of these disorders is neurodegeneration in a set of overlapping cortical and subcortical regions. Disease age of onset, and in some cases severity, is correlated with repeat length. These and other observations have led to the hypothesis that CAG expansion causes disease by a toxic gain-of-function of the encoded stretch of polyglutamine residues. Expansion-induced abnormalities of cytoskeletal function or neuronal signalling processes may contribute to the pathogenic process. In addition, theoretical and experimental analysis of the chemistry of uninterrupted stretches of glutamine residues suggest that polyglutamine-containing proteins or protein fragments may aggregate, via a "polar zipper", into beta pleated sheets. Recent findings have now established the presence of such aggregates in selected regions of brain from affected individuals, in transgenic mice expressing expanded repeats, and in isolated cells transfected with expanded repeats. The aggregates are most prominently manifest as neuronal intranuclear inclusion bodies. As the investigation of the link between these inclusions and cell dysfunction and death continues, it is possible that new avenues for therapeutic intervention will emerge.
Collapse
Affiliation(s)
- C A Ross
- Johns Hopkins University, School of Medicine, Department of Psychiatry, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
Eight severe inherited neurodegenerative diseases are caused by expansion of glutamine repeats in the affected proteins. In every case, proteins with repeats of fewer than 38 glutamine residues are harmless, but those with repeats of more than 41 glutamine residues form toxic neuronal nuclear aggregates in the affected neurons. Similarly, proteins that have repeats of fewer than 37 glutamine residues are soluble in vitro, whereas proteins with repeats of more than 40 glutamine residues precipitate as insoluble fibres, apparently because of a structural transition associated with the increased length.
Collapse
Affiliation(s)
- M F Perutz
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
224
|
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease striking principally medium spiny GABAergic neurons of the caudate nucleus of the basal ganglia. It affects about one in 10,000 individuals and is transmitted in an autosomal dominant fashion. The molecular basis of the disease is expansion of the trinucleotide CAG in the first exon of a gene on chromosome four. The CAG repeats are translated to polyglutamine repeats in the expressed protein, huntingtin. The normal function of huntingtin remains incompletely characterized, but based upon recently defined protein-protein interactions, it appears to be associated with the cytoskeleton and required for neurogenesis. Huntingtin has been demonstrated to interact with such proteins as HAP1, HIP1, microtubules, GADPH, calmodulin, and an ubiquitin-conjugating enzyme. Polyglutamine expansion alters many of these interactions and leads to huntingtin aggregation and the formation of neuronal nuclear inclusions, ultimately culminating in cell death. In this review, we discuss the molecular aspects of HD, including the present understanding of huntingtin-protein interactions, studies with transgenic mice, and postulated mechanisms of huntingtin aggregation.
Collapse
Affiliation(s)
- H W Walling
- Department of Pharmacological and Physiological Science, Saint Louis University Health Sciences Center, Missouri 63104, USA.
| | | | | |
Collapse
|
225
|
The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci 1998. [PMID: 9742138 DOI: 10.1523/jneurosci.18-19-07674.1998] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular and subcellular distribution of HAP1 was examined in rat brain by light and electron microscopic immunocytochemistry and subcellular fractionation. HAP1 localization was also determined in human postmortem tissue from control and Huntington's disease (HD) cases by light microscopic immunocytochemistry. At the cellular level, the heterogeneity of HAP1 expression was similar to that of huntingtin; however, HAP1 immunoreactivity was more widespread. The subcellular distribution of HAP1 was examined using immunogold electron microscopy. Like huntingtin, HAP1 is a cytoplasmic protein that associates with microtubules and many types of membranous organelles, including mitochondria, endoplasmic reticulum, tubulovesicles, endosomal and lysosomal organelles, and synaptic vesicles. A quantitative comparison of the organelle associations of HAP1 and huntingtin showed them to be almost identical. Within HAP1-immunoreactive neurons in rat and human brain, populations of large and small immunoreactive puncta were visible by light microscopy. The large puncta, which were especially evident in the ventral forebrain, were intensely HAP1 immunoreactive. Electron microscopic analysis revealed them to be a type of nucleolus-like body, which has been named a stigmoid body, that may play a role in protein synthesis. The small puncta, less intensely labeled, were primarily mitochondria. These results indicate that the localization of HAP1 and huntingtin is more similar than previously appreciated and provide further evidence that HAP1 and huntingtin have localizations consistent with roles in intracellular transport. Our data also suggest, however, that HAP1 is not present in the abnormal intranuclear and neuritic aggregates containing the N-terminal fragment of mutant huntingtin that are found in HD brains.
Collapse
|
226
|
Abstract
The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
227
|
Kim TW, Tanzi RE. Neuronal intranuclear inclusions in polyglutamine diseases: nuclear weapons or nuclear fallout? Neuron 1998; 21:657-9. [PMID: 9808451 DOI: 10.1016/s0896-6273(00)80581-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T W Kim
- Genetics and Aging Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
228
|
Schapira AH. Mitochondrial dysfunction in neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1366:225-33. [PMID: 9714816 DOI: 10.1016/s0005-2728(98)00115-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutations of mitochondrial DNA (mtDNA) are associated with a wide spectrum of disorders encompassing the myopathies, encephalopathies and cardiomyopathies, in addition to organ specific presentations such as diabetes mellitus and deafness. The pathogenesis of mtDNA mutations is not fully understood although it is assumed that their final common pathway involves impaired oxidative phosphorylation. The identification of a specific respiratory chain defect (complex I deficiency) in Parkinson's disease (PD) 10 years ago focused attention on the aetiological and pathogenetic roles that mitochondria may play in neurodegenerative diseases. There is evidence now emerging that mtDNA abnormalities may determine the complex I defect in a proportion of PD patients and it may prove possible to use biochemical analysis of platelet and cybrid complex I function to identify those that lie within this group. Respiratory chain defects of a different pattern have been identified in Huntington's disease (HD) (complex II/III deficiency) and Friedreich's ataxia (FA) complex I-III deficiency). In both these disorders, the mitochondrial abnormality is secondary to the primary nuclear mutation:CAG repeat in the huntingtin gene in HD, and GAA repeat in the frataxin gene in FA. Nevertheless, it appears that the mitochondrion may be the target of the biochemical defects that are the consequence of these mutations. There is a close and reciprocal relationship between respiratory chain dysfunction and free radical generation, and there is evidence for oxidative stress and damage in PD, HD and FA, which together with the mitochondrial defect may result in cell damage. Impaired oxidative phosphorylation and free radical generation may independently adversely affect the maintenance of mitochondrial transmembrane potential (Deltapsim). A fall in Deltapsim is an early event (preceding nuclear fragmentation) in the apoptotic pathway. It is possible therefore that mitochondrial dysfunction in the neurodegenerative disorders may result in a fall in the apoptotic threshold of neurones which, in some, may be sufficient to induce cell death whilst, in others, additional factors may be required. In any event, mitochondria present an important target for future strategies for 'neuroprotection' to prevent or retard neurodegeneration.
Collapse
Affiliation(s)
- A H Schapira
- University Department of Clinical Neurosciences, Royal Free Hospital School of Medicine and University Department of Clinical Neurology, Institute of Neurology, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
229
|
Abstract
The gene mutation causing Huntington's disease was identified in 1993 as an expanded trinucleotide repeat within the coding region for a 348-kd protein called huntingtin. The mechanism by which this cytosine-adenosine-guanosine repeat produces the progressive signs and symptoms of Huntington's disease remains uncertain, but recent advances have begun to provide insights into this process. Promising developments include transgenic mouse models of Huntington's disease with neuronal intranuclear inclusions, the identification of differential neuronal features which might account for the selective vulnerability of neurons seen in Huntington's disease and further evidence for the role of excitotoxicity and impaired mitochondrial energy production. These observations have suggested new therapeutic strategies, and have lent further support for experimental therapeutics aimed at improving mitochondrial function and reducing excitotoxic injury.
Collapse
Affiliation(s)
- A Feigin
- Movement Disorders Center, Manhassel, NY 11030, USA.
| |
Collapse
|
230
|
Mastrandrea LD, Kasperek EM, Niles EG, Pickart CM. Core domain mutation (S86Y) selectively inactivates polyubiquitin chain synthesis catalyzed by E2-25K. Biochemistry 1998; 37:9784-92. [PMID: 9657692 DOI: 10.1021/bi9800911] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian ubiquitin conjugating enzyme known as E2-25K catalyzes the synthesis of polyubiquitin chains linked exclusively through K48-G76 isopeptide bonds. The properties of truncated and chimeric forms of E2-25K suggest that the polyubiquitin chain synthesis activity of this E2 depends on specific interactions between its conserved 150-residue core domain and its unique 50-residue tail domain [Haldeman, M. T., Xia, G., Kasperek, E. M., and Pickart, C. M. (1997) Biochemistry 36, 10526-10537]. In the present study, we provide strong support for this model by showing that a point mutation in the core domain (S86Y) mimics the effect of deleting the entire tail domain: the ability to form an E2 approximately ubiquitin thiol ester is intact, while conjugation activity is severely inhibited (>/=100-fold reduction in kcat/Km). The properties of E2-25K enzymes carrying the S86Y mutation indicate that this mutation strengthens the interaction between the core and tail domains: both free and ubiquitin-bound forms of S86Y-25K are completely resistant to tryptic cleavage at K164 in the tail domain, whereas wild-type enzyme is rapidly cleaved at this site. Other properties of S86Y-26K suggest that the active site of this mutant enzyme is more occluded than the active site of the wild-type enzyme. (1) Free S86Y-25K is alkylated by iodoacetamide 2-fold more slowly than the wild-type enzyme. (2) In assays of E2 approximately ubiquitin thiol ester formation, S86Y-25K shows a 4-fold reduced affinity for E1. (3) The ubiquitin thiol ester adduct of S86Y-25K undergoes (uncatalyzed) reaction with dithiothreitol 3-fold more slowly than the wild-type thiol ester adduct. One model to accommodate these findings postulates that an enhanced interaction between the core and tail domains, induced by the S86Y mutation, causes a steric blockade at the active site which prevents access of the incoming ubiquitin acceptor to the thiol ester bond. Consistent with this model, the S86Y mutation inhibits ubiquitin transfer to macromolecular acceptors (ubiquitin and polylysine) more strongly than transfer to small-molecule acceptors (free lysine and short peptides). These results suggest that unique residues proximal to E2 active sites may influence specific function by mediating intramolecular interactions.
Collapse
Affiliation(s)
- L D Mastrandrea
- Department of Biochemistry, State University of New York, Buffalo 14214, USA
| | | | | | | |
Collapse
|
231
|
Storey E. Dominantly inherited ataxias. Part I. J Clin Neurosci 1998; 5:257-64. [DOI: 10.1016/s0967-5868(98)90059-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 02/08/1998] [Indexed: 11/25/2022]
|
232
|
Abstract
Cloning of the Huntington's disease gene uncovered huntingtin, which is remarkable for its lack of similarity with known proteins despite its large size, approximately 350 kDa. Subsequent experiments established that huntingtin has an as yet unknown function, crucial for embryonic development and neurogenesis. Recent protein trapping to identify huntingtin interactors now reveals that many different prey fall victim to huntingtin bait.
Collapse
Affiliation(s)
- J F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown 02129, USA.
| | | |
Collapse
|
233
|
Wood JD, Yuan J, Margolis RL, Colomer V, Duan K, Kushi J, Kaminsky Z, Kleiderlein JJ, Sharp AH, Ross CA. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 1998; 11:149-60. [PMID: 9647693 DOI: 10.1006/mcne.1998.0677] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrophin-1 contains a polyglutamine repeat, expansion of which is responsible for dentatorubral and pallidoluysian atrophy (DRPLA). The normal function of atrophin-1 is unknown. We have identified five atrophin-1 interacting proteins (AIPs) which bind to atrophin-1 in the vicinity of the polyglutamine tract using the yeast two-hybrid system. Four of the interactions were confirmed using in vitro binding assays. All five interactors contained multiple WW domains. Two are novel. The AIPs can be divided into two distinct classes. AIP1 and AIP3/WWP3 are MAGUK-like multidomain proteins containing a number of protein-protein interaction modules, namely a guanylate kinase-like region, two WW domains, and multiple PDZ domains. AIP2/WWP2, AIP4, and AIP5/WWP1 are highly homologous, each having four WW domains and a HECT domain characteristic of ubiquitin ligases. These interactors are similar to recently isolated huntingtin-interacting proteins, suggesting possible commonality of function between two proteins responsible for very similar diseases.
Collapse
Affiliation(s)
- J D Wood
- Division of Neurobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205-2196, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Page KJ, Potter L, Aronni S, Everitt BJ, Dunnett SB. The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. Eur J Neurosci 1998; 10:1835-45. [PMID: 9751154 DOI: 10.1046/j.1460-9568.1998.00185.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using radioactive in situ hybridization, we have mapped the expression of Huntingtin-associated protein (HAP1) mRNA in rat brain at developmental stages (E12-E19, PO-P21), in adult rats (3 months) and in 'aged' (19-21 months) rats. Using two pairs of 45mer oligonucleotide probes specific for HAP1A and a probe which recognizes regions of both the HAP1A and HAP1B mRNA sequences (panHAP1), we find that the expression of HAP1 mRNA is specific to the CNS and restricted predominantly to anatomically connected limbic structures, particularly the amygdala (medial and corticomedial nuclei), the hypothalamus (arcuate, preoptic, paraventricular and lateral hypothalamic area), bed nucleus of the stria terminalis (BNST) and the lateral septal nuclei. HAP1 mRNA was detected in embryos at E12 and displayed a prevalent distribution in the developing limbic structures by E15. In aged, 19-21-months-old, rats there is a downregulation of HAP1 mRNA expression across all CNS loci where HAP1 was previously abundant. The lowest levels of HAP1 mRNA expression corresponded with the areas of greatest pathological cell loss in Huntington's disease (HD); the caudate putamen, globus pallidus and neocortex. These observations support the suggestion that HAP1 plays an important role in the neuropathology of HD.
Collapse
Affiliation(s)
- K J Page
- The MRC Cambridge Centre for Brain Repair and Department of Experimental Psychology, University of Cambridge, UK.
| | | | | | | | | |
Collapse
|
235
|
Bertaux F, Sharp AH, Ross CA, Lehrach H, Bates GP, Wanker E. HAP1-huntingtin interactions do not contribute to the molecular pathology in Huntington's disease transgenic mice. FEBS Lett 1998; 426:229-32. [PMID: 9599014 DOI: 10.1016/s0014-5793(98)00352-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HAP1 (huntingtin associated protein) has previously been found to interact with huntingtin (htt) in a glutamine length dependent manner and has been proposed to play a role in the cell specific neurodegeneration observed in Huntington's disease (HD). We have isolated mouse HAP1 (hap1) and have shown that expression is not enriched in areas specifically affected in HD. We have used the yeast two hybrid system to demonstrate that htt amino acids 171-230 are necessary for the hap1-htt binding and that hapl does not interact with the transgene exon 1 protein in a transgenic model of HD.
Collapse
Affiliation(s)
- F Bertaux
- Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
236
|
Coux O, Goldberg AL. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor kappaB1. J Biol Chem 1998; 273:8820-8. [PMID: 9535861 DOI: 10.1074/jbc.273.15.8820] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor kappaB1 (NF-kappaB) is a heterodimeric complex that regulates transcription of many genes involved in immune and inflammatory responses. Its 50-kDa subunit (p50) is generated by the ubiquitin-proteasome pathway from a 105-kDa precursor (p105). We have reconstituted this proteolytic process in HeLa cell extracts and purified the responsible enzymes. Ubiquitination of p105 requires E1, and either of two types of E2s, E2-25K (for which p105 is the first proven substrate) or a member of the UBCH5 (UBC4) family. It also requires a new E3 of 50 kDa, which we call E3kappaB. This set of enzymes differs from the E2s and E3 reported by others to catalyze p105 ubiquitination in reticulocytes. The ubiquitinating enzymes purified here, together with 26S proteasomes, allowed formation of p50. Thus, the 26S proteasome provides all the proteolytic activities necessary for p105 processing. Interestingly, in the reconstituted system, as observed in cells, the C-terminally truncated form of p105, p97, was processed into p50 more efficiently than normal p105, even when both species were ubiquitinated to a similar extent. Therefore, some additional mechanism involving the C-terminal region of p105 influences the proteolytic processing of the ubiquitinated precursor.
Collapse
Affiliation(s)
- O Coux
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
237
|
Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singaraja R, McCutcheon K, Salvesen GS, Propp SS, Bromm M, Rowland KJ, Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross CA, Nicholson DW, Bredesen DE, Hayden MR. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 1998; 273:9158-67. [PMID: 9535906 DOI: 10.1074/jbc.273.15.9158] [Citation(s) in RCA: 425] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurodegenerative diseases Huntington disease, dentatorubropallidoluysian atrophy, spinocerebellar atrophy type 3, and spinal bulbar muscular atrophy are caused by expansion of a polyglutamine tract within their respective gene products. There is increasing evidence that generation of truncated proteins containing an expanded polyglutamine tract may be a key step in the pathogenesis of these disorders. We now report that, similar to huntingtin, atrophin-1, ataxin-3, and the androgen receptor are cleaved in apoptotic extracts. Furthermore, each of these proteins is cleaved by one or more purified caspases, cysteine proteases involved in apoptotic death. The CAG length does not modulate susceptibility to cleavage of any of the full-length proteins. Our results suggest that by generation of truncated polyglutamine-containing proteins, caspase cleavage may represent a common step in the pathogenesis of each of these neurodegenerative diseases.
Collapse
Affiliation(s)
- C L Wellington
- Centre for Molecular Medicine and Therapeutics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL. Huntingtin protein colocalizes with lesions of neurodegenerative diseases: An investigation in Huntington's, Alzheimer's, and Pick's diseases. Exp Neurol 1998; 150:213-22. [PMID: 9527890 DOI: 10.1006/exnr.1998.6778] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease associated with a CAG trinucleotide repeat expansion in a large gene on chromosome 4. The gene encodes the protein huntingtin with a polyglutamine tract encoded by the CAG repeat at the N-terminus. The number of CAG repeats in HD are significantly increased (36 to 120+) compared with the normal population (8-39). The pathological mechanism associated with the expanded CAG repeat in HD is not clear but there is evidence that polyglutamine is directly neurotoxic. We have immunolocalized huntingtin with an in-house, well-characterised, polyclonal antibody in HD, Alzheimer's disease (AD), and Picks disease (PiD) brains. Control brain tissue sections were from head injured and cerebral ischaemia cases. In HD, huntingtin was immunopositive in the surviving but damaged neurons and reactive astrocytes of the caudate and putamen. However, in AD and PiD the immunostaining was largely restricted to the characteristic intracellular inclusion bodies associated with the disease process in each case. In AD, huntingtin was localized only in the intracellular neurofibrillary tangles and dystrophic neurites within the neuritic amyloid plaques but not with the amyloid. In PiD, strongly positive huntingtin immunostaining was present within cytoplasmic Pick bodies. Our findings suggest huntingtin selectively accumulates in association with abnormal intracytoplasmic and cytoskeletal filaments of neurons and glia in neurodegenerative diseases such as HD, AD, and PiD. Cells in the CNS appear sensitive to damage by the aggregated, toxic levels of huntingtin and evidence of its interaction with neurofilaments could provide information about its potential role in the aetiology of HD.
Collapse
Affiliation(s)
- S K Singhrao
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, CF4 4XN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
239
|
Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 1998; 4:387-97. [PMID: 9666478 DOI: 10.1006/nbdi.1998.0168] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is caused by CAG triplet repeat expansion in IT15 which leads to polyglutamine stretches in the HD protein product, huntingtin. The pathological hallmark of HD is the degeneration of subsets of neurons, primarily those in the striatum and neocortex. Specific morphological markers of affected cells have not been identified in patients with HD, although a unique itranuclear inclusion was recently reported in neurons of transgenic animals expressing a construct encoding the N-terminal part (including the glutamine repeat) of huntingtin (Davies et al., 1997). In order to understand the importance of this finding, we sought for comparable nuclear abnormalities in autopsy material from patients with HD. In all 20 HD cases examined, anti-ubiquitin and N-terminal huntingtin antibodies identified itranuclear inclusions in neurons and the frequency of these lesions correlated with the length of the CAG repeat in IT15. In addition, examination of material from the related HD-like triplet repeat disorder, dentatorubral and pallidoluysian atrophy, also revealed intranuclear neuronal inclusions. These findings suggest that intranuclear inclusions containing protein aggregates may be common feature of the pathogenesis of glutamine repeat neurodegenerative disorders.
Collapse
Affiliation(s)
- M W Becher
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | | | |
Collapse
|
240
|
Affiliation(s)
- A S Hackam
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
241
|
Abstract
Huntingtin is the protein product of the gene for Huntington's disease (HD) and carries a polyglutamine repeat that is expanded in HD (>36 units). Huntingtin-associated protein (HAP1) is a neuronal protein and binds to huntingtin in association with the polyglutamine repeat. Like huntingtin, HAP1 has been found to be a cytoplasmic protein associated with membranous organelles, suggesting the existence of a protein complex including HAP1, huntingtin, and other proteins. Using the yeast two-hybrid system, we found that HAP1 also binds to dynactin P150(Glued) (P150), an accessory protein for cytoplasmic dynein that participates in microtubule-dependent retrograde transport of membranous organelles. An in vitro binding assay showed that both huntingtin and P150 selectively bound to a glutathione transferase (GST)-HAP1 fusion protein. An immunoprecipitation assay demonstrated that P150 and huntingtin coprecipitated with HAP1 from rat brain cytosol. Western blot analysis revealed that HAP1 was enriched in rat brain microtubules and comigrated with P150 and huntingtin in sucrose gradients. Immunofluorescence showed that transfected HAP1 colocalized with P150 and huntingtin in human embryonic kidney (HEK) 293 cells. We propose that HAP1, P150, and huntingtin are present in a protein complex that may participate in dynein-dynactin-associated intracellular transport.
Collapse
|
242
|
Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, Hayden MR. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 1998; 18:150-4. [PMID: 9462744 DOI: 10.1038/ng0298-150] [Citation(s) in RCA: 363] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is unclear how polyglutamine expansion is associated with the pathogenesis of Huntington disease (HD). Here, we provide evidence that polyglutamine expansion leads to the formation of large intracellular aggregates in vitro and in vivo. In vitro these huntingtin-containing aggregates disrupt normal cellular architecture and increase in frequency with polyglutamine length. Huntingtin truncated at nucleotide 1955, close to the caspase-3 cleavage site, forms perinuclear aggregates more readily than full-length huntingtin and increases the susceptibility of cells to death following apoptotic stimuli. Further truncation of huntingtin to nucleotide 436 results in both intranuclear and perinuclear aggregates. For a given protein size, increasing polyglutamine length is associated with increased cellular toxicity. Asymptomatic transgenic mice expressing full-length huntingtin with 138 polyglutamines form exclusively perinuclear aggregates in neurons. These data support the hypothesis that proteolytic cleavage of mutant huntingtin leads to the development of aggregates which compromise cell viability, and that their localization is influenced by protein length.
Collapse
Affiliation(s)
- D Martindale
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Cooper AJ, Sheu KR, Burke JR, Onodera O, Strittmatter WJ, Roses AD, Blass JP. Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and alpha-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length. Proc Natl Acad Sci U S A 1997; 94:12604-9. [PMID: 9356496 PMCID: PMC25053 DOI: 10.1073/pnas.94.23.12604] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several adult-onset neurodegenerative diseases are caused by genes with expanded CAG triplet repeats within their coding regions and extended polyglutamine (Qn) domains within the expressed proteins. Generally, in clinically affected individuals n >/= 40. Glyceraldehyde 3-phosphate dehydrogenase binds tightly to four Qn disease proteins, but the significance of this interaction is unknown. We now report that purified glyceraldehyde 3-phosphate dehydrogenase is inactivated by tissue transglutaminase in the presence of glutathione S-transferase constructs containing a Qn domain of pathological length (n = 62 or 81). The dehydrogenase is less strongly inhibited by tissue transglutaminase in the presence of constructs containing shorter Qn domains (n = 0 or 10). Purified alpha-ketoglutarate dehydrogenase complex also is inactivated by tissue transglutaminase plus glutathione S-transferase constructs containing pathological-length Qn domains (n = 62 or 81). The results suggest that tissue transglutaminase-catalyzed covalent linkages involving the larger poly-Q domains may disrupt cerebral energy metabolism in CAG/Qn expansion diseases.
Collapse
Affiliation(s)
- A J Cooper
- Department of Biochemistry, Cornell University Medical College, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
244
|
Bates GP, Davies SW. Transgenic mouse models of neurodegenerative disease caused by CAG/polyglutamine expansions. MOLECULAR MEDICINE TODAY 1997; 3:508-15. [PMID: 9430787 DOI: 10.1016/s1357-4310(97)01142-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CAG/polyglutamine expansion is the mutational mechanism that causes a number of late-onset neurodegenerative diseases. Expanded CAG repeats are unstable: they vary in size between tissues and change in size upon transmission from parent to offspring. These mutations are thought to impart a dominant gain of function to the proteins in which they are located. Recent reports describing the first mouse models of these diseases promise to shed light on the molecular mechanisms underlying CAG-repeat instability, the pathways by which polyglutamine expansion causes cell death and the factors that determine the specificity of the neurodegeneration.
Collapse
|
245
|
Clark A, Nomura A, Mohanty S, Firtel RA. A ubiquitin-conjugating enzyme is essential for developmental transitions in Dictyostelium. Mol Biol Cell 1997; 8:1989-2002. [PMID: 9348538 PMCID: PMC25659 DOI: 10.1091/mbc.8.10.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for approximately 10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.
Collapse
Affiliation(s)
- A Clark
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
246
|
DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277:1990-3. [PMID: 9302293 DOI: 10.1126/science.277.5334.1990] [Citation(s) in RCA: 2036] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cause of neurodegeneration in Huntington's disease (HD) is unknown. Patients with HD have an expanded NH2-terminal polyglutamine region in huntingtin. An NH2-terminal fragment of mutant huntingtin was localized to neuronal intranuclear inclusions (NIIs) and dystrophic neurites (DNs) in the HD cortex and striatum, which are affected in HD, and polyglutamine length influenced the extent of huntingtin accumulation in these structures. Ubiquitin was also found in NIIs and DNs, which suggests that abnormal huntingtin is targeted for proteolysis but is resistant to removal. The aggregation of mutant huntingtin may be part of the pathogenic mechanism in HD.
Collapse
Affiliation(s)
- M DiFiglia
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Ross CA, Margolis RL, Rosenblatt A, Ranen NG, Becher MW, Aylward E. Huntington disease and the related disorder, dentatorubral-pallidoluysian atrophy (DRPLA). Medicine (Baltimore) 1997; 76:305-38. [PMID: 9352736 DOI: 10.1097/00005792-199709000-00001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- C A Ross
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | | | |
Collapse
|
248
|
Haldeman MT, Xia G, Kasperek EM, Pickart CM. Structure and function of ubiquitin conjugating enzyme E2-25K: the tail is a core-dependent activity element. Biochemistry 1997; 36:10526-37. [PMID: 9265633 DOI: 10.1021/bi970750u] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Individual members of the conserved family of ubiquitin conjugating enzymes (E2s) mediate the ubiquitination and turnover of specific substrates of the ubiquitin-dependent degradation pathway. E2 proteins have a highly conserved core domain of approximately 150 amino acids which contains the active-site Cys. Certain E2s have unique terminal extensions, which are thought to contribute to selective E2 function by interacting either with substrates or with trans-acting factors such as ubiquitin-protein ligases (E3s). We used the mammalian ubiquitin conjugating enzyme E2-25K in a biochemical test of this hypothesis. The properties of two truncated derivatives show that the 47-residue tail of E2-25K is necessary for three of the enzyme's characteristic properties: high activity in the synthesis of unanchored K48-linked polyubiquitin chains; resistance of the active-site Cys residue to alkylation; and an unusual discrimination against noncognate (nonmammalian) ubiquitin activating (E1) enzymes. However, the tail is not sufficient to generate these properties, as shown by the characteristics of a chimeric enzyme in which the tail of E2-25K was fused to the core domain of yeast UBC4. These and other results indicate that the specific biochemical function of the tail is strongly dependent upon unique features of the E2-25K core domain. Thus, divergent regions within the conserved core domains of E2 proteins may be highly significant for function. Expression of truncated E2-25K as a glutathione S-transferase (GST) fusion protein resulted in the apparent recovery of E2-25K-specific properties, including activity in chain synthesis. However, the catalytic mechanism utilized by the truncated fusion protein proved to be distinct from the mechanism utilized by the wild-type enzyme. The unexpected properties of the fusion protein were due to GST-induced dimerization. These results indicate the potential for self-association to modulate the polyubiquitin chain synthesis activities of E2 proteins, and indicate that caution should be applied in interpreting the activities of GST fusion proteins.
Collapse
Affiliation(s)
- M T Haldeman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
249
|
Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90:537-48. [PMID: 9267033 DOI: 10.1016/s0092-8674(00)80513-9] [Citation(s) in RCA: 1612] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Huntington's disease (HD) is one of an increasing number of human neurodegenerative disorders caused by a CAG/polyglutamine-repeat expansion. The mutation occurs in a gene of unknown function that is expressed in a wide range of tissues. The molecular mechanism responsible for the delayed onset, selective pattern of neuropathology, and cell death observed in HD has not been described. We have observed that mice transgenic for exon 1 of the human HD gene carrying (CAG)115 to (CAG)156 repeat expansions develop pronounced neuronal intranuclear inclusions, containing the proteins huntingtin and ubiquitin, prior to developing a neurological phenotype. The appearance in transgenic mice of these inclusions, followed by characteristic morphological change within neuronal nuclei, is strikingly similar to nuclear abnormalities observed in biopsy material from HD patients.
Collapse
Affiliation(s)
- S W Davies
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 1997; 90:549-58. [PMID: 9267034 DOI: 10.1016/s0092-8674(00)80514-0] [Citation(s) in RCA: 944] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism by which an elongated polyglutamine sequence causes neurodegeneration in Huntington's disease (HD) is unknown. In this study, we show that the proteolytic cleavage of a GST-huntingtin fusion protein leads to the formation of insoluble high molecular weight protein aggregates only when the polyglutamine expansion is in the pathogenic range. Electron micrographs of these aggregates revealed a fibrillar or ribbon-like morphology, reminiscent of scrapie prions and beta-amyloid fibrils in Alzheimer's disease. Subcellular fractionation and ultrastructural techniques showed the in vivo presence of these structures in the brains of mice transgenic for the HD mutation. Our in vitro model will aid in an eventual understanding of the molecular pathology of HD and the development of preventative strategies.
Collapse
Affiliation(s)
- E Scherzinger
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|