201
|
Liu H, Tang JR, Choi YH, Napolitano M, Hockman S, Taira M, Degerman E, Manganiello VC. Importance of cAMP-response element-binding protein in regulation of expression of the murine cyclic nucleotide phosphodiesterase 3B (Pde3b) gene in differentiating 3T3-L1 preadipocytes. J Biol Chem 2006; 281:21096-21113. [PMID: 16702214 DOI: 10.1074/jbc.m601307200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incubation of 3T3-L1 preadipocytes with isobutylmethylxanthine (IBMX), dexamethasone, and insulin, alone or in combination, demonstrated that IBMX, which increased cAMP-response element-binding protein (CREB) phosphorylation, was the predominant regulator of Pde3b expression. Real time PCR and immunoblotting indicated that in 3T3-L1 preadipocytes, IBMX-stimulated induction of Pde3b mRNA and protein was markedly inhibited by dominant-negative CREB proteins. By transfecting preadipocytes, differentiating preadipocytes, and HEK293A cells with luciferase reporter vectors containing different fragments of the 5'-flanking region of the Pde3b gene, we identified a distal promoter that contained canonical cis-acting cAMP-response elements (CRE) and a proximal, GC-rich promoter region, which contained atypical CRE. Mutation of the CRE sequences dramatically reduced distal promoter activity; H89 inhibited IBMX-stimulated CREB phosphorylation and proximal and distal promoter activities. Distal promoter activity was stimulated by IBMX and phorbol ester (PMA) in Raw264.7 monocytes, but only by IBMX in 3T3-L1 preadipocytes. Chromatin immunoprecipitation analyses with specific antibodies against CREB, phospho-CREB, and CBP/p300 (CREB-binding protein) showed that these proteins associated with both distal and proximal promoters and that interaction of phospho-CREB, the active form of CREB, with both Pde3b promoter regions was increased in IBMX-treated preadipocytes. These results indicate that CRE in distal and proximal promoter regions and activation of CREB proteins play a crucial role in transcriptional regulation of Pde3b expression during preadipocyte differentiation.
Collapse
Affiliation(s)
- Hanguan Liu
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jing Rong Tang
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Young Hun Choi
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria Napolitano
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven Hockman
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Masato Taira
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Eva Degerman
- Section for Molecular Signaling, Department of Cell and Molecular Biology, University of Lund, S-22100 Lund, Sweden
| | - Vincent C Manganiello
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
202
|
Vankoningsloo S, De Pauw A, Houbion A, Tejerina S, Demazy C, de Longueville F, Bertholet V, Renard P, Remacle J, Holvoet P, Raes M, Arnould T. CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes. J Cell Sci 2006; 119:1266-82. [PMID: 16537646 DOI: 10.1242/jcs.02848] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several mitochondrial pathologies are characterized by lipid redistribution and microvesicular cell phenotypes resulting from triglyceride accumulation in lipid-metabolizing tissues. However, the molecular mechanisms underlying abnormal fat distribution induced by mitochondrial dysfunction remain poorly understood. In this study, we show that inhibition of respiratory complex III by antimycin A as well as inhibition of mitochondrial protein synthesis trigger the accumulation of triglyceride vesicles in 3T3-L1 fibroblasts. We also show that treatment with antimycin A triggers CREB activation in these cells. To better delineate how mitochondrial dysfunction induces triglyceride accumulation in preadipocytes, we developed a low-density DNA microarray containing 89 probes, which allows gene expression analysis for major effectors and/or markers of adipogenesis. We thus determined gene expression profiles in 3T3-L1 cells incubated with antimycin A and compared the patterns obtained with differentially expressed genes during the course of in vitro adipogenesis induced by a standard pro-adipogenic cocktail. After an 8-day treatment, a set of 39 genes was found to be differentially expressed in cells treated with antimycin A, among them CCAAT/enhancer-binding protein alpha (C/EBPalpha), C/EBP homologous protein-10 (CHOP-10), mitochondrial glycerol-3-phosphate dehydrogenase (GPDmit), and stearoyl-CoA desaturase 1 (SCD1). We also demonstrate that overexpression of two dominant negative mutants of the cAMP-response element-binding protein CREB (K-CREB and M1-CREB) and siRNA transfection, which disrupt the factor activity and expression, respectively, inhibit antimycin-A-induced triglyceride accumulation. Furthermore, CREB knockdown with siRNA also downregulates the expression of several genes that contain cAMP-response element (CRE) sites in their promoter, among them one that is potentially involved in synthesis of triglycerides such as SCD1. These results highlight a new role for CREB in the control of triglyceride metabolism during the adaptative response of preadipocytes to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sébastien Vankoningsloo
- Laboratory of Biochemistry and Cellular Biology, University of Namur (F.U.N.D.P.), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Sharma G, Goalstone ML. Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Mol Cell Endocrinol 2005; 245:93-104. [PMID: 16356629 DOI: 10.1016/j.mce.2005.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/19/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
We recently demonstrated that dominant negative FTase/GGTase I alpha-subunit-inhibited (DNFTalpha-inhibited) insulin-stimulated adipocytes differentiation. DNFTalpha interferes with Ras prenylation whereby ERK1/2, CREB and the differentiation cascade are downregulated. To further investigate prenylation in adipogenesis, we examined DNFTalpha's ability to inhibit activation of ERK5, MEF2C and CREB. DNFTalpha-inhibited insulin-stimulated expression, activation and nuclear translocation of ERK5. Inhibition was associated with decreased activation of MEF2C and CREB by 80 and 78%, respectively. PD98059 did not block activation of ERK5 and MEF2C, but inhibited CREB phosphorylation by 90%. ERK5 siRNA-inhibited MEF2C activation, whereas it reduced CREB phosphorylation only 50%. Pre-adipocytes expressing DNFTalpha or treated with PD98059 were unable to differentiate to mature adipocytes, whereas pre-adipocytes transfected with ERK5 siRNA showed moderate inhibition of insulin-induced adipogenesis. Taken together, these data suggest that prenylation plays a critical role in insulin-stimulated adipogenesis, and that the ERK5 plays an important, but less crucial role in adipogenesis as compared to ERK1/2.
Collapse
Affiliation(s)
- Girish Sharma
- The Department of Medicine, University of Colorado, Denver Health Sciences Center, Denver, 80220, USA
| | | |
Collapse
|
204
|
Wei E, Lehner R, Vance D. C/EBPalpha activates the transcription of triacylglycerol hydrolase in 3T3-L1 adipocytes. Biochem J 2005; 388:959-66. [PMID: 15752068 PMCID: PMC1183477 DOI: 10.1042/bj20041442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TGH (triacylglycerol hydrolase) catalyses the lipolysis of intracellular stored triacylglycerol. To explore the mechanisms that regulate TGH expression in adipose tissue, we studied the expression of TGH during the differentiation of 3T3-L1 adipocytes. TGH mRNA and protein levels increased dramatically in 3T3-L1 adipocytes compared with pre-adipocytes. Electrophoretic mobility shift assays demonstrated enhanced binding of nuclear proteins of adipocytes to the distal murine TGH promoter region (-542/-371 bp), yielding one adipocyte-specific migrating complex. Competitive and supershift assays demonstrated that the distal TGH promoter fragment bound C/EBPalpha (CCAAT/enhancer-binding protein alpha). Transient transfections of different mutant TGH promoter-luciferase constructs into 3T3-L1 adipocytes and competitive electromobility shift assays showed that the C/EBP-binding elements at positions -470/-459 bp and -404/-390 bp are important for transcriptional activation. Co-transfection with C/EBPalpha cDNA and TGH promoter constructs in 3T3-L1 pre-adipocytes demonstrated that C/EBPalpha increased TGH promoter activity. Ectopic expression of C/EBPalpha in NIH 3T3 cells activated TGH mRNA expression without causing differentiation into adipocytes. These experiments directly link increased TGH expression in adipocytes to transcriptional regulation by C/EBPalpha. This is the first evidence that C/EBPalpha participates directly in the regulation of an enzyme associated with lipolysis.
Collapse
Affiliation(s)
- Enhui Wei
- *Department of Biochemistry and CIHR Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- †Department of Pediatrics and CIHR Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Richard Lehner
- †Department of Pediatrics and CIHR Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- ‡Department of Cell Biology and CIHR Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Dennis E. Vance
- *Department of Biochemistry and CIHR Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|
205
|
Abstract
Cell culture models have been developed to study commitment and subsequent differentiation of preadipocytes into adipocytes. Bone morphogenetic protein 4 commits mesenchymal stem cells to the adipose lineage. Other factors, including Wnt signaling, cell density, and cell shape, play a role in lineage commitment. Following commitment to the adipose lineage, growth-arrested preadipocytes can differentiate to adipocytes by treatment with insulin-like growth factor 1, glucocorticoid and an agent that increases cAMP level. This process is characterized by a rapid and transient increase in CCAAT/enhancer binding protein (C/EBP) beta and synchronous re-entry into the cell cycle. Acquisition of DNA-binding by C/EBPbeta occurs after the transcription factor becomes phosphorylated. The cells enter a growth-arrested state and begin terminal differentiation. C/EBPalpha, peroxisome proliferator-activated receptor gamma, and adipocyte determination, and differentiation-dependent factor 1 coordinate the expression of genes that create and maintain the adipocyte phenotype.
Collapse
Affiliation(s)
- Tamara C Otto
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
206
|
Kortum RL, Costanzo DL, Haferbier J, Schreiner SJ, Razidlo GL, Wu MH, Volle DJ, Mori T, Sakaue H, Chaika NV, Chaika OV, Lewis RE. The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates adipogenesis. Mol Cell Biol 2005; 25:7592-604. [PMID: 16107706 PMCID: PMC1190290 DOI: 10.1128/mcb.25.17.7592-7604.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinase pathways are implicated in the regulation of cell differentiation, although their precise roles in many differentiation programs remain elusive. The Raf/MEK/extracellular signal-regulated kinase (ERK) kinase cascade has been proposed to both promote and inhibit adipogenesis. Here, we titrate expression of the molecular scaffold kinase suppressor of Ras 1 (KSR1) to regulate signaling through the Raf/MEK/ERK/p90 ribosomal S6 kinase (RSK) kinase cascade and show how it determines adipogenic potential. Deletion of KSR1 prevents adipogenesis in vitro, which can be rescued by introduction of low levels of KSR1. Appropriate levels of KSR1 coordinate ERK and RSK activation with C/EBPbeta synthesis leading to the phosphorylation and stabilization of C/EBPbeta at the precise moment it is required within the adipogenic program. Elevated levels of KSR1 expression, previously shown to enhance cell proliferation, promote high, sustained ERK activation that phosphorylates and inhibits peroxisome proliferator-activated receptor gamma, inhibiting adipogenesis. Titration of KSR1 expression reveals how a molecular scaffold can modulate the intensity and duration of signaling emanating from a single pathway to dictate cell fate.
Collapse
Affiliation(s)
- Robert L Kortum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-7696, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Cho YC, Zheng W, Yamamoto M, Liu X, Hanlon PR, Jefcoate CR. Differentiation of pluripotent C3H10T1/2 cells rapidly elevates CYP1B1 through a novel process that overcomes a loss of Ah Receptor. Arch Biochem Biophys 2005; 439:139-53. [PMID: 15967407 DOI: 10.1016/j.abb.2005.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/19/2005] [Accepted: 04/26/2005] [Indexed: 11/23/2022]
Abstract
Stimulation of C3H10T1/2 cells by an adipogenic hormonal mixture (IDM) consisting of insulin (I), dexamethasone (D), and methylisobutylxanthine (M) substantially induces cytochrome P450 (CYP) 1B1 expression. This stimulation represents up to 40% of the level produced by maximum activation of the arylhydrocarbon receptor (AhR) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Dexamethasone and methylisobutylxanthine in combination produced near maximum elevation of CYP1B1 along with a subsequent decline in AhR that paralleled the rise in peroxisome proliferator-activated receptorgamma1 (PPARgamma1). Inhibitors of AhR activity, which block TCDD induction, did not affect this increase of CYP1B1 expression, which was, therefore, independent of AhR activity. These responses were unaffected by inhibition of DNA synthesis, which was required for PPARgamma1 induction and terminal differentiation. Induction of CYP1B1 mRNA was paralleled by increased CYP1B1 promoter-luciferase reporter activity. The initial 0.8kb of promoter region, which was sufficient for 24h near maximum stimulation, did not contain either the key AhR-responsive elements that mediate the TCDD response or CREB and SF1 elements that mediate cAMP stimulation of rat CYP1B1 in steroidogenic cells. This reporter response to IDM stimulation, but not to TCDD, was maintained in AhR-null fibroblasts. CYP1B1 expression, unlike TCDD induction, was stimulated by IDM in only about half the cells. CYP1B1 expression partially overlapped with PPARgamma expression, which was also inversely related in clonal sub-lines. CYP1B1 expression may, therefore, represent an early stage of differentiation that requires factors associated with DNA synthesis to subsequently generate PPARgamma1.
Collapse
Affiliation(s)
- Young C Cho
- Department of Pharmacology and Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|
208
|
Galindo CL, Fadl AA, Sha J, Pillai L, Gutierrez C, Chopra AK. Microarray and proteomics analyses of human intestinal epithelial cells treated with the Aeromonas hydrophila cytotoxic enterotoxin. Infect Immun 2005; 73:2628-43. [PMID: 15845465 PMCID: PMC1087361 DOI: 10.1128/iai.73.5.2628-2643.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We performed microarray analyses on RNA from human intestinal epithelial (HT-29) cells treated with the cytotoxic enterotoxin (Act) of Aeromonas hydrophila to examine global cellular transcriptional responses. Based on three independent experiments, Act upregulated the expression of 34 genes involved in cell growth, adhesion, signaling, immune responses (including interleukin-8 [IL-8] production), and apoptosis. We verified the upregulation of 14 genes by real-time reverse transcriptase-PCR and confirmed Act-induced production of IL-8 by enzyme-linked immunosorbent assay on supernatants from nonpolarized and polarized HT-29 cells. Maximal production of IL-8 in response to Act required the presence of intracellular calcium, since chelation of calcium with BAPTA-AM significantly reduced Act-induced IL-8 production in HT-29 cells. We also examined activation of mitogen-activated protein kinases and, as demonstrated by Western blot analysis of apical side-treated polarized HT-29 cells, Act induced phosphorylation of p38, c-Jun NH(2)-terminal kinase, and extracellular signal-regulated kinase 1/2. In addition, KinetWorks proteomics screening of whole-cell lysates revealed Act-induced phosphorylation of cyclic AMP-response element binding protein (CREB), c-Jun, adducin, protein kinase C, and signal transducer and activator of transcription 3 (STAT3) and decreased phosphorylation of protein kinase Balpha, v-raf-1 murine leukemia viral oncogene homolog 1 (i.e., Raf1), and STAT1. We verified activation of CREB and activator protein 1 in polarized cells by gel shift assay. This is the first description of human intestinal epithelial cell transcriptional alterations, phosphorylation or activation of signaling molecules, cytokine production, and calcium mobilization in response to this toxin.
Collapse
Affiliation(s)
- C L Galindo
- Department of Microbiology and Immunology, Medical Research Building, 301 University Blvd., University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
209
|
Hirashiki K, Kishimoto T, Ishiguro H, Nagai Y, Furuya M, Sekiya S, Ishikura H. Regulatory role of CCAAT/enhancer binding protein-beta in the production of plasma proteins in yolk sac tumor. Exp Mol Pathol 2005; 78:247-56. [PMID: 15924879 DOI: 10.1016/j.yexmp.2005.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Yolk sac tumor (endodermal sinus tumor) is a malignant germ cell tumor characterized by AFP production, in which histologic foci similar to hepatocellular carcinoma occasionally coexist. We assumed a possible contribution of CCAAT/enhancer binding protein (C/EBP)-beta, a transcription factor implicated in the regulation of plasma proteins in the liver, to the regulation of AFP production and to the expression of other plasma proteins in yolk sac tumor cells because our immunohistochemical analysis revealed nuclear expression of C/EBP-beta in human yolk sac tumors. Overexpression of C/EBP-beta in a rat yolk sac tumor cell line, AT-2-TC, increased production of AFP and other plasma proteins, including albumin, alpha-1-antitrypsin, hepatoglobin, and transferrin. Liver-enriched transcription factors, including hepatocyte nuclear factors (HNF)-1alpha, -1 beta, and -4, were also induced. The induction of this protein expression was only evident in xenografts, where C/EBP-beta was phosphorylated and the activating isoform of C/EBP-beta was relatively predominant. These results indicate that C/EBP-beta plays a role in the production of plasma proteins of yolk sac tumors.
Collapse
Affiliation(s)
- Koichiro Hirashiki
- Department of Molecular Pathology (E3), Chiba University Graduate School of Medicine, Inohana 1-8-1, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
210
|
Brancho D, Ventura JJ, Jaeschke A, Doran B, Flavell RA, Davis RJ. Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol Cell Biol 2005; 25:3670-81. [PMID: 15831472 PMCID: PMC1084312 DOI: 10.1128/mcb.25.9.3670-3681.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/07/2005] [Accepted: 02/03/2005] [Indexed: 11/20/2022] Open
Abstract
Mixed-lineage protein kinase 3 (MLK3) is a member of the mitogen-activated protein (MAP) kinase kinase kinase group that has been implicated in multiple signaling cascades, including the NF-kappaB pathway and the extracellular signal-regulated kinase, c-Jun NH(2)-terminal kinase (JNK), and p38 MAP kinase pathways. Here, we examined the effect of targeted disruption of the murine Mlk3 gene. Mlk3(-/-) mice were found to be viable and healthy. Primary embryonic fibroblasts prepared from these mice exhibited no major signaling defects. However, we did find that MLK3 deficiency caused a selective reduction in tumor necrosis factor (TNF)-stimulated JNK activation. Together, these data demonstrate that MLK3 contributes to the TNF signaling pathway that activates JNK.
Collapse
Affiliation(s)
- Deborah Brancho
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St., Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
211
|
Gantt K, Cherry J, Tenney R, Karschner V, Pekala PH. An early event in adipogenesis, the nuclear selection of the CCAAT enhancer-binding protein {beta} (C/EBP{beta}) mRNA by HuR and its translocation to the cytosol. J Biol Chem 2005; 280:24768-74. [PMID: 15863502 DOI: 10.1074/jbc.m502011200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HuR is a ligand for nuclear mRNAs containing adenylate-uridylate-rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins that then facilitate nuclear export of the complex. In the cytosol, HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However, within 30 min of exposure to the differentiation stimulus the HuR content in the cytosol increases, consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the CCAAT enhancer-binding protein beta (C/EBPbeta) message is a ligand for HuR. Within 2 h of initiation of the differentiation process, HuR complexes containing C/EBPbeta mRNA could be isolated from the cytosolic compartment. Importantly, the process appears to be highly selective, as cyclin D1, which contains a putative HuR binding site and is expressed on the same time frame as C/EBPbeta, was not found in the immunoprecipitated messenger ribonucleoprotein complexes. The proximity of this event to adipogenic stimuli and the importance of C/EBPbeta to the differentiation process have led us to hypothesize a role for HuR in the regulation of the onset of adipogenesis. In support of this hypothesis, small interfering RNA suppression of HuR protein content resulted in an inhibition of C/EBPbeta protein expression and an attenuation of the differentiation process.
Collapse
Affiliation(s)
- Kira Gantt
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858-4354, USA
| | | | | | | | | |
Collapse
|
212
|
Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab 2005; 1:93-106. [PMID: 16054051 DOI: 10.1016/j.cmet.2004.12.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 11/22/2004] [Accepted: 12/21/2004] [Indexed: 11/21/2022]
Abstract
Krox20 is a zinc finger-containing transcription factor that is abundantly expressed in adipose tissue. However, its role in fat cell differentiation has not been established. In cultured 3T3-L1 cells, Krox20 is rapidly induced by serum stimulation. Overexpression of Krox20 in both 3T3-L1 preadipocytes and multipotent NIH3T3 cells promotes adipogenesis in a hormone-dependent manner. Conversely, RNAi-mediated loss of Krox20 function reduced adipogenesis in 3T3-L1 cells. Ectopic expression of Krox20 can transactivate the C/EBPbeta promoter and increase C/EBPbeta gene expression in 3T3-L1 preadipocytes. RNAi-mediated knockdown of C/EPBbeta diminished Krox20's proadipogenic effect. Finally, coexpression of Krox20 and C/EBPbeta in naive NIH3T3 cells resulted in the pronounced induction of a fully differentiated adipocyte phenotype, an effect previously observed only with PPARgamma. These data indicate that Krox20 is necessary for adipogenesis and that, when overexpressed, Krox20 potently stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Zhu Chen
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
213
|
Yang RY, Hsu DK, Yu L, Chen HY, Liu FT. Galectin-12 Is Required for Adipogenic Signaling and Adipocyte Differentiation. J Biol Chem 2004; 279:29761-6. [PMID: 15131127 DOI: 10.1074/jbc.m401303200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectin-12 is a member of the galectin family consisting of beta-galactoside-binding proteins with conserved carbohydrate recognition domains. This protein is preferentially expressed in peripheral blood leukocytes and adipocytes. We previously showed that galectin-12 is induced by cell cycle block at the G(1) phase and causes G(1) arrest when overexpressed (Yang, R.-Y., Hsu, D. K., Yu, L., Ni, J., and Liu, F.-T. (2001) J. Biol. Chem. 276, 20252-20260). Here, we show that the galectin-12 gene is expressed in mouse preadipocytes and is up-regulated when preadipocytes undergo cell cycle arrest, concomitant with acquisition of the competence to undergo differentiation in response to adipogenic hormone stimulation. Following a brief down-regulation 1 day after adipogenic treatment, its expression was once again markedly elevated when cells underwent terminal differentiation. Down-regulation of endogenous galectin-12 expression by RNA interference greatly reduced the expression of the adipogenic transcription factors CCAAT/enhancer-binding protein-beta and -alpha and peroxisome proliferator-activated receptor-gamma and severely suppressed adipocyte differentiation as a result of defective adipogenic signaling. We conclude that galectin-12 is required for signal transduction that conveys hormone stimulation to the induction of adipogenic factors essential for adipocyte differentiation. The findings suggest that galectin-12 is a major regulator of adipose tissue development.
Collapse
Affiliation(s)
- Ri-Yao Yang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|