201
|
Farria A, Li W, Dent SYR. KATs in cancer: functions and therapies. Oncogene 2015; 34:4901-13. [PMID: 25659580 PMCID: PMC4530097 DOI: 10.1038/onc.2014.453] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Post-translational acetylation of lysines is most extensively studied in histones, but this modification is also found in many other proteins and is implicated in a wide range of biological processes in both the cell nucleus and the cytoplasm. Like phosphorylation, acetylation patterns and levels are often altered in cancer, therefore small molecule inhibition of enzymes that regulate acetylation and deacetylation offers much potential for inhibiting cancer cell growth, as does disruption of interactions between acetylated residues and ‘reader’ proteins. For more than a decade now, histone deacetylase (HDAC) inhibitors have been investigated for their ability to increase acetylation and promote expression of tumor suppressor genes. However, emerging evidence suggests that acetylation can also promote cancer, in part by enhancing the functions of oncogenic transcription factors. In this review we focus on how acetylation of both histone and non-histone proteins may drive cancer, and we will discuss the implications of such changes on how patients are assigned to therapeutic agents. Finally, we will explore what the future holds in the design of small molecule inhibitors for modulation of levels or functions of acetylation states.
Collapse
Affiliation(s)
- A Farria
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - W Li
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - S Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| |
Collapse
|
202
|
Socolsky C, Plietker B. Total Synthesis and Absolute Configuration Assignment of MRSA Active Garcinol and Isogarcinol. Chemistry 2014; 21:3053-61. [DOI: 10.1002/chem.201406077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/11/2022]
|
203
|
Makam N S, Chidambara Murthy KN, Sultanpur CM, Rao RM. Natural molecules as tumour inhibitors: Promises and prospects. J Herb Med 2014. [DOI: 10.1016/j.hermed.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
204
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
205
|
Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol 2014; 171:4981-5010. [PMID: 25060293 PMCID: PMC4253452 DOI: 10.1111/bph.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy.
Collapse
Affiliation(s)
- David F Tough
- Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Epinova DPU, Stevenage, UK
| | | | | | | | | |
Collapse
|
206
|
Castellano S, Milite C, Feoli A, Viviano M, Mai A, Novellino E, Tosco A, Sbardella G. Identification of structural features of 2-alkylidene-1,3-dicarbonyl derivatives that induce inhibition and/or activation of histone acetyltransferases KAT3B/p300 and KAT2B/PCAF. ChemMedChem 2014; 10:144-57. [PMID: 25333655 DOI: 10.1002/cmdc.201402371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Dysregulation of the activity of lysine acetyltransferases (KATs) is related to a variety of diseases and/or pathological cellular states; however, their role remains unclear. Therefore, the development of selective modulators of these enzymes is of paramount importance, because these molecules could be invaluable tools for assessing the importance of KATs in several pathologies. We recently found that diethyl pentadecylidenemalonate (SPV106) possesses a previously unobserved inhibitor/activator activity profile against protein acetyltransferases. Herein, we report that manipulation of the carbonyl functions of a series of analogues of SPV106 yielded different activity profiles against KAT2B and KAT3B (pure KAT2B activator, pan-inhibitor, or mixed KAT2B activator/KAT3B inhibitor). Among the novel compounds, a few derivatives may be useful chemical tools for studying the mechanism of lysine acetylation and its implications in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA) (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Banerjee A, Sanyal S, Kulkarni KK, Jana K, Roy S, Das C, Dasgupta D. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder. FEBS Open Bio 2014; 4:987-95. [PMID: 25473595 PMCID: PMC4247356 DOI: 10.1016/j.fob.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/23/2014] [Accepted: 10/12/2014] [Indexed: 01/13/2023] Open
Abstract
Mithramycin (MTR) is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin - histone proteins - as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode) or both histones and chromosomal DNA (dual binding mode). The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR-DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg(2+). As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies.
Collapse
Key Words
- BAC, benzalkonium chloride
- BSA, bovine serum albumin
- CBP, CREB-binding protein
- CD, circular dichroism
- Core histones
- Dual binding mode
- EM, electron microscopy
- EWS-FLI1, transcription factor with a DNA binding domain FLI1 and a transcription enhancer domain EWS
- Epigenetic modulator
- FACS, fluorescence activated cell sorting
- H3K18 acetylation
- H3K18Ac, histone H3 lysine 18 acetylation
- HAT, histone acetyltransferase
- HD, Huntington’s disease
- ITC, isothermal titration calorimetry
- M2+, bivalent metal ion such as Mg2+
- MTR, mithramycin
- MTT, 3-(4-5 dimethylthiazol-2-yl) 2-5diphenyl-tetrazolium bromide
- Mithramycin
- NIH, National Institutes of Health
- PBS, phosphate-buffered saline
- PTM, post-translational modification
- SGR, sanguinarine
- TBST, Tris-buffered saline Tween-20
- TCA, trichloroacetic acid
Collapse
Affiliation(s)
- Amrita Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Sulagna Sanyal
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Kirti K Kulkarni
- Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Dipak Dasgupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
208
|
Fortress AM, Frick KM. Epigenetic regulation of estrogen-dependent memory. Front Neuroendocrinol 2014; 35:530-49. [PMID: 24878494 PMCID: PMC4174980 DOI: 10.1016/j.yfrne.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 02/09/2023]
Abstract
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
209
|
Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 2014; 13:727-40. [PMID: 25212602 DOI: 10.1038/nrd4391] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caloric restriction, be it constant or intermittent, is reputed to have health-promoting and lifespan-extending effects. Caloric restriction mimetics (CRMs) are compounds that mimic the biochemical and functional effects of caloric restriction. In this Opinion article, we propose a unifying definition of CRMs as compounds that stimulate autophagy by favouring the deacetylation of cellular proteins. This deacetylation process can be achieved by three classes of compounds that deplete acetyl coenzyme A (AcCoA; the sole donor of acetyl groups), that inhibit acetyl transferases (a group of enzymes that acetylate lysine residues in an array of proteins) or that stimulate the activity of deacetylases and hence reverse the action of acetyl transferases. A unifying definition of CRMs will be important for the continued development of this class of therapeutic agents.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Federico Pietrocola
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, F-75006 Paris, France and the Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, F-75006 Paris, France; the Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France; the Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Labex Immuno-Oncology, F-75015 Paris, France; and the Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
210
|
Simó-Riudalbas L, Esteller M. Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br J Pharmacol 2014; 172:2716-32. [PMID: 25039449 DOI: 10.1111/bph.12844] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022] Open
Abstract
Gene expression is dynamically controlled by epigenetics through post-translational modifications of histones, chromatin-associated proteins and DNA itself. All these elements are required for the maintenance of chromatin structure and cell identity in the context of a normal cellular phenotype. Disruption of epigenetic regulation is a common event in human cancer. Here, we review the key protein families that control epigenetic signalling through writing, erasing or reading specific post-translational modifications. By exploiting the leading role of epigenetics in tumour development and the reversibility of epigenetic modifications, promising novel epigenetic-based therapies are being developed. In this article, we highlight the emerging low MW inhibitors targeting each class of chromatin-associated protein, their current use in preclinical and clinical trials and the likelihood of their being approved in the near future.
Collapse
Affiliation(s)
- Laia Simó-Riudalbas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
211
|
Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol 2014; 73:71-83. [PMID: 25139119 DOI: 10.1016/j.fct.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 01/03/2023]
Abstract
The successful treatment of many human diseases, including cancer, has come to be considered a major challenge, as patient response to therapy is difficult to predict. Recently, considerable efforts are being focused on the development of new tools to meet the growing demand for personalized medicine. With few exceptions, synthetic compounds have been unable to meet initial expectations for their clinical use. The last twenty years have been characterized by the failure of several drugs in advanced clinical development, possibly due to the insufficient understanding of molecular pathways underlying their mechanism of action. Although the biodiversity of compounds found in nature has been poorly explored until now, the field of naturally occurring drugs is rapidly expanding. Here, we review the current knowledge on the use of natural compounds with particular emphasis on those that display a chromatin remodeling effect coupled with anticancer action.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Bontempo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
212
|
Hatakeyama D, Shoji M, Yamayoshi S, Hirota T, Nagae M, Yanagisawa S, Nakano M, Ohmi N, Noda T, Kawaoka Y, Kuzuhara T. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. J Biol Chem 2014; 289:24980-94. [PMID: 25063805 PMCID: PMC4155666 DOI: 10.1074/jbc.m114.559708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m(7)GTP)) and supports the endonuclease activity of PA to "snatch" the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m(7)GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m(7)GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication.
Collapse
Affiliation(s)
- Dai Hatakeyama
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masaki Shoji
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiya Yamayoshi
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and
| | - Takenori Hirota
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Monami Nagae
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shin Yanagisawa
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masahiro Nakano
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| | - Naho Ohmi
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takeshi Noda
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| | - Yoshihiro Kawaoka
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and the Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan, the Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711
| | - Takashi Kuzuhara
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan,
| |
Collapse
|
213
|
Ghare SS, Joshi-Barve S, Moghe A, Patil M, Barker DF, Gobejishvili L, Brock GN, Cave M, McClain CJ, Barve SS. Coordinated histone H3 methylation and acetylation regulate physiologic and pathologic fas ligand gene expression in human CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:412-21. [PMID: 24899502 PMCID: PMC5096587 DOI: 10.4049/jimmunol.1400055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation-induced Fas ligand (FasL) mRNA expression in CD4+ T cells is mainly controlled at transcriptional initiation. To elucidate the epigenetic mechanisms regulating physiologic and pathologic FasL transcription, TCR stimulation-responsive promoter histone modifications in normal and alcohol-exposed primary human CD4+ T cells were examined. TCR stimulation of normal and alcohol-exposed cells led to discernible changes in promoter histone H3 lysine trimethylation, as documented by an increase in the levels of transcriptionally permissive histone 3 lysine 4 trimethylation and a concomitant decrease in the repressive histone 3 lysine 9 trimethylation. Moreover, acetylation of histone 3 lysine 9 (H3K9), a critical feature of the active promoter state that is opposed by histone 3 lysine 9 trimethylation, was significantly increased and was essentially mediated by the p300-histone acetyltransferase. Notably, the degree of these coordinated histone modifications and subsequent recruitment of transcription factors and RNA polymerase II were significantly enhanced in alcohol-exposed CD4+ T cells and were commensurate with the pathologic increase in the levels of FasL mRNA. The clinical relevance of these findings is further supported by CD4+ T cells obtained from individuals with a history of heavy alcohol consumption, which demonstrate significantly greater p300-dependent H3K9 acetylation and FasL expression. Overall, these data show that, in human CD4+ T cells, TCR stimulation induces a distinct promoter histone profile involving a coordinated cross-talk between histone 3 lysine 4 and H3K9 methylation and acetylation that dictates the transcriptional activation of FasL under physiologic, as well as pathologic, conditions of alcohol exposure.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Akshata Moghe
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Madhuvanti Patil
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Leila Gobejishvili
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Guy N Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202
| | - Matthew Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
214
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
215
|
Oike T, Ogiwara H, Amornwichet N, Nakano T, Kohno T. Chromatin-regulating proteins as targets for cancer therapy. JOURNAL OF RADIATION RESEARCH 2014; 55:613-28. [PMID: 24522270 PMCID: PMC4099987 DOI: 10.1093/jrr/rrt227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy.
Collapse
Affiliation(s)
- Takahiro Oike
- Division of Genome Biology, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideaki Ogiwara
- Division of Genome Biology, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Napapat Amornwichet
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan Department of Radiology, Chulalongkorn University, 1873, Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
216
|
Montgomery DC, Sorum AW, Meier JL. Chemoproteomic profiling of lysine acetyltransferases highlights an expanded landscape of catalytic acetylation. J Am Chem Soc 2014; 136:8669-76. [PMID: 24836640 PMCID: PMC4227742 DOI: 10.1021/ja502372j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Lysine acetyltransferases (KATs)
play a critical role in the regulation
of gene expression, metabolism, and other key cellular functions.
One shortcoming of traditional KAT assays is their inability to study
KAT activity in complex settings, a limitation that hinders efforts
at KAT discovery, characterization, and inhibitor development. To
address this challenge, here we describe a suite of cofactor-based
affinity probes capable of profiling KAT activity in biological contexts.
Conversion of KAT bisubstrate inhibitors to clickable photoaffinity
probes enables the selective covalent labeling of three phylogenetically
distinct families of KAT enzymes. Cofactor-based affinity probes report
on KAT activity in cell lysates, where KATs exist as multiprotein
complexes. Chemical affinity purification and unbiased LC–MS/MS
profiling highlights an expanded landscape of orphan lysine acetyltransferases
present in the human genome and provides insight into the global selectivity
and sensitivity of CoA-based proteomic probes that will guide future
applications. Chemoproteomic profiling provides a powerful method
to study the molecular interactions of KATs in native contexts and
will aid investigations into the role of KATs in cell state and disease.
Collapse
Affiliation(s)
- David C Montgomery
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | |
Collapse
|
217
|
Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: an overview. GENETICS & EPIGENETICS 2014; 6:9-19. [PMID: 25512710 PMCID: PMC4251063 DOI: 10.4137/geg.s12270] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022]
Abstract
Epigenetic changes such as DNA methylation and histone methylation and acetylation alter gene expression at the level of transcription by upregulating, downregulating, or silencing genes completely. Dysregulation of epigenetic events can be pathological, leading to cardiovascular disease, neurological disorders, metabolic disorders, and cancer development. Therefore, identifying drugs that inhibit these epigenetic changes are of great clinical interest. In this review, we summarize the epigenetic events associated with different disorders and diseases including cardiovascular, neurological, and metabolic disorders, and cancer. Knowledge of the specific epigenetic changes associated with these types of diseases facilitates the development of specific inhibitors, which can be used as epigenetic drugs. In this review, we discuss the major classes of epigenetic drugs currently in use, such as DNA methylation inhibiting drugs, bromodomain inhibitors, histone acetyl transferase inhibitors, histone deacetylase inhibitors, protein methyltransferase inhibitors, and histone methylation inhibitors and their role in reversing epigenetic changes and treating disease.
Collapse
Affiliation(s)
- Sarah Heerboth
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Snyder
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Rollinson
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
218
|
Maksimoska J, Segura-Peña D, Cole PA, Marmorstein R. Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues. Biochemistry 2014; 53:3415-22. [PMID: 24819397 PMCID: PMC4045318 DOI: 10.1021/bi500380f] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The
p300 and CBP transcriptional coactivator paralogs (p300/CBP)
regulate a variety of different cellular pathways, in part, by acetylating
histones and more than 70 non-histone protein substrates. Mutation,
chromosomal translocation, or other aberrant activities of p300/CBP
are linked to many different diseases, including cancer. Because of
its pleiotropic biological roles and connection to disease, it is
important to understand the mechanism of acetyl transfer by p300/CBP,
in part so that inhibitors can be more rationally developed. Toward
this goal, a structure of p300 bound to a Lys-CoA bisubstrate HAT
inhibitor has been previously elucidated, and the enzyme’s
catalytic mechanism has been investigated. Nonetheless, many questions
underlying p300/CBP structure and mechanism remain. Here, we report
a structural characterization of different reaction states in the
p300 activity cycle. We present the structures of p300 in complex
with an acetyl-CoA substrate, a CoA product, and an acetonyl-CoA inhibitor.
A comparison of these structures with the previously reported p300/Lys-CoA
complex demonstrates that the conformation of the enzyme active site
depends on the interaction of the enzyme with the cofactor, and is
not apparently influenced by protein substrate lysine binding. The
p300/CoA crystals also contain two poly(ethylene glycol) moieties
bound proximal to the cofactor binding site, implicating the path
of protein substrate association. The structure of the p300/acetonyl-CoA
complex explains the inhibitory and tight binding properties of the
acetonyl-CoA toward p300. Together, these studies provide new insights
into the molecular basis of acetylation by p300 and have implications
for the rational development of new small molecule p300 inhibitors.
Collapse
Affiliation(s)
- Jasna Maksimoska
- Program in Gene Expression and Regulation, The Wistar Institute , 3601 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
219
|
Determination of DNA Damage in Experimental Liver Intoxication and Role of N-Acetyl Cysteine. Cell Biochem Biophys 2014; 70:1119-25. [DOI: 10.1007/s12013-014-0031-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
220
|
Kamal A, Reddy CR, Vishnuvardhan M, Mahesh R, Lakshma Nayak V, Prabhakar S, Reddy CS. Synthesis and biological evaluation of cinnamido linked benzophenone hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg Med Chem Lett 2014; 24:2309-14. [DOI: 10.1016/j.bmcl.2014.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022]
|
221
|
C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiother Oncol 2014; 111:222-7. [PMID: 24746574 DOI: 10.1016/j.radonc.2014.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 03/03/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Chromatin remodeling through histone modifications, including acetylation, plays an important role in the appropriate response to DNA damage induced by ionizing radiation (IR). Here we investigated the radiosensitizing effect of C646, a selective small molecule inhibitor of p300 histone acetyltransferase, and explored the underlying mechanisms. MATERIALS AND METHODS A549, H157 and H460 human non-small cell lung carcinoma (NSCLC) cells, and HFL-III human lung fibroblasts were assessed by clonogenic survival assay. Apoptosis and necrosis were assessed by annexin V staining. Senescence was assessed by Senescence-associated β-galactosidase staining. Mitotic catastrophe was assessed by evaluating nuclear morphology with DAPI staining. Cell cycle profiles were analyzed by flow cytometry. Protein expression was analyzed by immunoblotting. RESULTS C646 sensitized A549, H460 and H157 cells to IR with a dose enhancement ratio at 10% surviving fraction of 1.4, 1.2 and 1.2, respectively. C646 did not radiosensitize HFL-III cells. In A549 cells, but not in HFL-III cells, C646 (i) enhanced mitotic catastrophe but not apoptosis, necrosis, or senescence after IR; (ii) increased the hyperploid cell population after IR; and (iii) suppressed the phosphorylation of CHK1 after IR. CONCLUSIONS C646 radiosensitizes NSCLC cells by enhancing mitotic catastrophe through the abrogation of G2 checkpoint maintenance.
Collapse
|
222
|
Pneumocystis jirovecii Rtt109, a novel drug target for Pneumocystis pneumonia in immunosuppressed humans. Antimicrob Agents Chemother 2014; 58:3650-9. [PMID: 24733475 DOI: 10.1128/aac.02637-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pneumocystis pneumonia (PcP) is a significant cause of morbidity and mortality in immunocompromised patients. In humans, PcP is caused by the opportunistic fungal species Pneumocystis jirovecii. Progress in Pneumocystis research has been hampered by a lack of viable in vitro culture methods, which limits laboratory access to human-derived organisms for drug testing. Consequently, most basic drug discovery research for P. jirovecii is performed using related surrogate organisms such as Pneumocystis carinii, which is derived from immunosuppressed rodents. While these studies provide useful insights, important questions arise about interspecies variations and the relative utility of identified anti-Pneumocystis agents against human P. jirovecii. Our recent work has identified the histone acetyltransferase (HAT) Rtt109 in P. carinii (i.e., PcRtt109) as a potential therapeutic target for PcP, since Rtt109 HATs are widely conserved in fungi but are absent in humans. To further address the potential utility of this target in human disease, we now demonstrate the presence of a functional Rtt109 orthologue in the clinically relevant fungal pathogen P. jirovecii (i.e., PjRtt109). In a fashion similar to that of Pcrtt109, Pjrtt109 restores H3K56 acetylation and genotoxic resistance in rtt109-null yeast. Recombinant PjRtt109 is an active HAT in vitro, with activity comparable to that of PcRtt109 and yeast Rtt109. PjRtt109 HAT activity is also enhanced by the histone chaperone Asf1 in vitro. PjRtt109 and PcRtt109 showed similar low micromolar sensitivities to two reported small-molecule HAT inhibitors in vitro. Together, these results demonstrate that PjRtt109 is a functional Rtt109 HAT, and they support the development of anti-Pneumocystis agents directed at Rtt109-catalyzed histone acetylation as a novel therapeutic target for human PcP.
Collapse
|
223
|
PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 2014; 5:3527. [PMID: 24686445 DOI: 10.1038/ncomms4527] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/27/2014] [Indexed: 01/20/2023] Open
Abstract
Axonal regenerative failure is a major cause of neurological impairment following central nervous system (CNS) but not peripheral nervous system (PNS) injury. Notably, PNS injury triggers a coordinated regenerative gene expression programme. However, the molecular link between retrograde signalling and the regulation of this gene expression programme that leads to the differential regenerative capacity remains elusive. Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. Thus, we find a specific epigenetic mechanism that regulates axonal regeneration of CNS axons, suggesting novel targets for clinical application.
Collapse
|
224
|
Masullo M, Menegazzi M, Di Micco S, Beffy P, Bifulco G, Dal Bosco M, Novelli M, Pizza C, Masiello P, Piacente S. Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways. JOURNAL OF NATURAL PRODUCTS 2014; 77:543-549. [PMID: 24417609 DOI: 10.1021/np400804y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Garcinol (1), a polyisoprenylated benzophenone occurring in Garcinia species, has been reported to exert anti-inflammatory activity in LPS-stimulated macrophages, through inhibition of NF-κB and/or JAK/STAT-1 activation. In order to provide deeper insight into its effects on the cytokine signaling pathway and to clarify the underlying molecular mechanisms, 1 was isolated from the fruits of Garcinia cambogia along with two other polyisoprenylated benzophenones, guttiferones K (2) and guttiferone M (3), differing from each other in their isoprenyl moieties and their positions on the benzophenone core. The affinities of 1-3 for the STAT-1 protein have been evaluated by surface plasmon resonance and molecular docking studies and resulted in KD values in the micromolar range. Consistent with the observed high affinity toward the STAT-1 protein, garcinol and guttiferones K and M were able to modulate cytokine signaling in different cultured cell lines, mainly by inhibiting STAT-1 nuclear transfer and DNA binding, as assessed by an electrophorectic mobility shift assay.
Collapse
Affiliation(s)
- Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno , Via Giovanni Paolo II n.132, I-84084 Fisciano (SA), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Sethi G, Chatterjee S, Rajendran P, Li F, Shanmugam MK, Wong KF, Kumar AP, Senapati P, Behera AK, Hui KM, Basha J, Natesh N, Luk JM, Kundu TK. Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. Mol Cancer 2014; 13:66. [PMID: 24655440 PMCID: PMC3998115 DOI: 10.1186/1476-4598-13-66] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Background Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been linked with proliferation, survival, invasion and angiogenesis of a variety of human cancer cells, including hepatocellular carcinoma (HCC). Thus, novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Here we report, garcinol, a polyisoprenylated benzophenone, could suppress STAT3 activation in HCC cell lines and in xenografted tumor of HCC in nude mice model. Experimental design Different HCC cell lines have been treated with garcinol and the inhibition of STAT3 activation, dimerization and acetylation have been checked by immunoblotting, immuno-fluorescence, and DNA binding assays. Xenografted tumor model has been generated in nude mice using HCC cell line and effect of garcinol in the inhibition of tumor growth has been investigated. Results Garcinol could inhibit both constitutive and interleukin (IL-6) inducible STAT3 activation in HCC cells. Computational modeling showed that garcinol could bind to the SH2 domain of STAT3 and suppress its dimerization in vitro. Being an acetyltransferase inhibitor, garcinol also inhibits STAT3 acetylation and thus impairs its DNA binding ability. The inhibition of STAT3 activation by garcinol led to the suppression of expression of various genes involved in proliferation, survival, and angiogenesis. It also suppressed proliferation and induced substantial apoptosis in HCC cells. Remarkably, garcinol inhibited the growth of human HCC xenograft tumors in athymic nu/nu mice, through the inhibition of STAT3 activation. Conclusion Overall, our results suggest that garcinol exerts its anti-proliferative and pro-apoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - John M Luk
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | | |
Collapse
|
226
|
Jing Y, Ai Q, Lin L, Dai J, Jia M, Zhou D, Che Q, Wan J, Jiang R, Zhang L. Protective effects of garcinol in mice with lipopolysaccharide/D-galactosamine-induced apoptotic liver injury. Int Immunopharmacol 2014; 19:373-80. [PMID: 24560905 DOI: 10.1016/j.intimp.2014.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/25/2014] [Accepted: 02/09/2014] [Indexed: 12/19/2022]
Abstract
Garcinol is a polyisoprenylated benzophenone derivative of Garcinia indica. Recent researches have revealed the antioxidant, anticancer and anti-inflammatory properties of garcinol. In the present study, the pharmacological effects of garcinol in lipopolysaccharide (LPS)-induced hepatic injury in D-galactosamine (D-Gal)-sensitized mice were investigated. We found that treatment with garcinol significantly decreased serum ALT and AST levels in LPS/D-Gal-exposed mice. These were accomplished with improved histological alterations in liver sections and reduced malondialdehyde (MDA) content in liver homogenates. Garcinol significantly reduced the acetylation level of NF-κB, but it had no obvious effects on the elevation of TNF-α or IL-6 in plasma or liver tissue. Garcinol significantly attenuated LPS/D-Gal-induced hepatic apoptosis as evidenced by reduced number of TUNEL-positive cells in liver sections. Our experiments also showed that garcinol markedly suppressed the cleavage of caspase-3 and significantly decreased the activities of caspase-3, -8, and -9 in liver tissues. In addition, garcinol obviously reduced the induction of Bax but did not alter the level of Bcl-2. These results indicated that garcinol might provide protective benefits in LPS/D-Gal-induced liver injury through suppressing apoptosis.
Collapse
Affiliation(s)
- Yuping Jing
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Mengying Jia
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Dan Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qian Che
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
227
|
Lenoci A, Tomassi S, Conte M, Benedetti R, Rodriguez V, Carradori S, Secci D, Castellano S, Sbardella G, Filetici P, Novellino E, Altucci L, Rotili D, Mai A. Quinoline-based p300 histone acetyltransferase inhibitors with pro-apoptotic activity in human leukemia U937 cells. ChemMedChem 2014; 9:542-8. [PMID: 24504685 DOI: 10.1002/cmdc.201300536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 01/27/2023]
Abstract
Chemical manipulations performed on 2-methyl-3-carbethoxyquinoline (1), a histone acetyltransferase inhibitor previously identified by our research group and active at the sub-millimolar/millimolar level, led to compounds bearing higher alkyl groups at the C2-quinoline or additional side chains at the C6-quinoline positions. Such compounds displayed at least threefold improved inhibitory potency toward p300 protein lysine acetyltransferase activity; some of them decreased histone H3 and H4 acetylation levels in U937 cells and induced high degrees of apoptosis (three compounds >10-fold higher than compound 1) after treatment of U937 cells.
Collapse
Affiliation(s)
- Alessia Lenoci
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Vasudevarao MD, Mizar P, Kumari S, Mandal S, Siddhanta S, Swamy MMM, Kaypee S, Kodihalli RC, Banerjee A, Naryana C, Dasgupta D, Kundu TK. Naphthoquinone-mediated inhibition of lysine acetyltransferase KAT3B/p300, basis for non-toxic inhibitor synthesis. J Biol Chem 2014; 289:7702-17. [PMID: 24469461 DOI: 10.1074/jbc.m113.486522] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydroxynaphthoquinone-based inhibitors of the lysine acetyltransferase KAT3B (p300), such as plumbagin, are relatively toxic. Here, we report that free thiol reactivity and redox cycling properties greatly contribute to the toxicity of plumbagin. A reactive 3rd position in the naphthoquinone derivatives is essential for thiol reactivity and enhances redox cycling. Using this clue, we synthesized PTK1, harboring a methyl substitution at the 3rd position of plumbagin. This molecule loses its thiol reactivity completely and its redox cycling ability to a lesser extent. Mechanistically, non-competitive, reversible binding of the inhibitor to the lysine acetyltransferase (KAT) domain of p300 is largely responsible for the acetyltransferase inhibition. Remarkably, the modified inhibitor PTK1 was a nearly non-toxic inhibitor of p300. The present report elucidates the mechanism of acetyltransferase activity inhibition by 1,4-naphthoquinones, which involves redox cycling and nucleophilic adduct formation, and it suggests possible routes of synthesis of the non-toxic inhibitor.
Collapse
|
229
|
Mariño G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy 2014; 10:1879-82. [PMID: 25484097 PMCID: PMC4502795 DOI: 10.4161/auto.36413] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 01/12/2023] Open
Abstract
Nutrient depletion, which is one of the physiological triggers of autophagy, results in the depletion of intracellular acetyl coenzyme A (AcCoA) coupled to the deacetylation of cellular proteins. We surmise that there are 3 possibilities to mimic these effects, namely (i) the depletion of cytosolic AcCoA by interfering with its biosynthesis, (ii) the inhibition of acetyltransferases, which are enzymes that transfer acetyl groups from AcCoA to other molecules, mostly leucine residues in cellular proteins, or (iii) the stimulation of deacetylases, which catalyze the removal of acetyl groups from leucine residues. There are several examples of rather nontoxic natural compounds that act as AcCoA depleting agents (e.g., hydroxycitrate), acetyltransferase inhibitors (e.g., anacardic acid, curcumin, epigallocatechin-3-gallate, garcinol, spermidine) or deacetylase activators (e.g., nicotinamide, resveratrol), and that are highly efficient inducers of autophagy in vitro and in vivo, in rodents. Another common characteristic of these agents is their capacity to reduce aging-associated diseases and to confer protective responses against ischemia-induced organ damage. Hence, we classify them as "caloric restriction mimetics" (CRM). Here, we speculate that CRM may mediate their broad health-improving effects by triggering the same molecular pathways that usually are elicited by long-term caloric restriction or short-term starvation and that imply the induction of autophagy as an obligatory event conferring organismal, organ- or cytoprotection.
Collapse
Affiliation(s)
- Guillermo Mariño
- Equipe 11 labellisée par la Ligue Nationale contre le cancer; INSERM U1138; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
| | - Federico Pietrocola
- Equipe 11 labellisée par la Ligue Nationale contre le cancer; INSERM U1138; Center de Recherche des Cordeliers; Paris, France
- Université de Paris Sud; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le cancer; INSERM U1138; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
- Metabolomics and Molecular Cell Biology Platforms; Gustave Roussy; Villejuif, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| |
Collapse
|
230
|
Bharate JB, Vishwakarma RA, Bharate SB, Kushwaha M, Gupta AP. QUANTIFICATION OF ANTICANCER POLYISOPRENYLATED BENZOPHENONES GARCINOL AND ISOGARCINOL USING MULTIPLE REACTION MONITORING LC-ESI-MS-MS IN ULTRA-SOUND ASSISTED EXTRACTS OFGARCINIA INDICAFRUITS. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2013.873872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
231
|
Bharate J, Vishwakarma R, Bharate S, Thite T, Kushwaha M, Gupta A. Quantification and validation of two isomeric anticancer compounds, garcinol and isogarcinol, in ultrasound-assisted extracts ofGarcinia indicafruits using high-performance thin-layer chromatography. JPC-J PLANAR CHROMAT 2013. [DOI: 10.1556/jpc.26.2013.6.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
232
|
Dahlin JL, Sinville R, Solberg J, Zhou H, Han J, Francis S, Strasser JM, John K, Hook DJ, Walters MA, Zhang Z. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation. PLoS One 2013; 8:e78877. [PMID: 24260132 PMCID: PMC3832525 DOI: 10.1371/journal.pone.0078877] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
The lysine acetyltransferase (KAT) Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac) in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS) for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7%) were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could serve as chemical probes or leads for a new class of antifungals targeting an epigenetic enzyme.
Collapse
Affiliation(s)
- Jayme L. Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Rondedrick Sinville
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jonathan Solberg
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Subhashree Francis
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jessica M. Strasser
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristen John
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Derek J. Hook
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael A. Walters
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
233
|
Frick KM. Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 2013; 25:1151-62. [PMID: 24028406 PMCID: PMC3943552 DOI: 10.1111/jne.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 02/02/2023]
Abstract
Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the aetiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that the regulation of these epigenetic processes by modulatory factors, such as environmental enrichment, stress and hormones, substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-oestradiol (E2 ) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and ageing. The present review provides a brief overview of the literature on epigenetics and memory, describes in detail our findings demonstrating that epigenetic alterations regulate E2 -induced memory enhancement in female mice, and discusses future directions for research on the epigenetic regulation of E2 -induced memory enhancement.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
234
|
Lakshmi Ranganatha V, Zameer F, Meghashri S, Rekha ND, Girish V, Gurupadaswamy HD, Khanum SA. Design, Synthesis, and Anticancer Properties of Novel Benzophenone-Conjugated Coumarin Analogs. Arch Pharm (Weinheim) 2013; 346:901-11. [DOI: 10.1002/ardp.201300298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/01/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022]
Affiliation(s)
- V. Lakshmi Ranganatha
- Department of Chemistry; Yuvaraja's College; University of Mysore; Mysore Karnataka India
| | - Farhan Zameer
- Mahajana Life Science Research Laboratory, Department of Biotechnology, Microbiology and Biochemistry; Mahajana Research Foundation, Pooja Bhagavat Memorial Mahajana Post-Graduate Centre; Affiliated to University of Mysore, Metagalli Mysore Karnataka India
| | - S. Meghashri
- Pronet Informatics Pvt. Ltd; Bangalore Karnataka India
| | - N. D. Rekha
- Department of Studies in Biotechnology; JSS College of Arts, Commerce and Science; Mysore Karnataka India
| | - V. Girish
- Department of Chemistry; Yuvaraja's College; University of Mysore; Mysore Karnataka India
| | - H. D. Gurupadaswamy
- Department of Chemistry; Yuvaraja's College; University of Mysore; Mysore Karnataka India
| | - Shaukath Ara Khanum
- Department of Chemistry; Yuvaraja's College; University of Mysore; Mysore Karnataka India
| |
Collapse
|
235
|
Ranganatha VL, Vijay Avin BR, Thirusangu P, Prashanth T, Prabhakar BT, Khanum SA. Synthesis, angiopreventive activity, and in vivo tumor inhibition of novel benzophenone-benzimidazole analogs. Life Sci 2013; 93:904-11. [PMID: 24135459 DOI: 10.1016/j.lfs.2013.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
Abstract
AIM The development of anticancer drugs with specific targets is of prime importance in modern biology. This study investigates the angiopreventive and in vivo tumor inhibition activities of novel synthetic benzophenone-benzimidazole analogs. MAIN METHODS The multistep synthesis of novel benzophenone-benzimidazole analogs (8a-n) allowing substitution with methoxy, methyl and halogen groups at different positions on the identical chemical backbone and the variations in the number of substituents were synthesized and characterized. The newly synthesized compounds were further evaluated for cytotoxic and antiproliferative effects against Ehrlich ascites carcinoma (EAC) cells. The potent lead compounds were further assessed for antiangiogenic effects in a CAM model and a tumor-induced vasculature in vivo model. The effect of angioprevention on tumor growth was verified in a mouse model. KEY FINDINGS The cytotoxicity studies revealed that compounds 8f and 8n are strongly cytotoxic. Analyzing the structure-activity relationship, we found that an increase in the number of methyl groups in addition to methoxy substitution at the para position of the benzoyl ring in compound 8n resulted in higher potency compared to 8f. Furthermore, neovessel formation in in vivo systems, such as the chorioallantoic membrane (CAM) and tumor-induced mice peritoneum models, was significantly suppressed and reflected the tumor inhibition observed in mice. SIGNIFICANCE These results suggest the potential clinical application of compound 8n as an antiangiogenic drug for cancer therapy.
Collapse
Affiliation(s)
- V Lakshmi Ranganatha
- Department of Chemistry, Yuvaraj's College (Autonomous), University of Mysore, Mysore 570 005, Karnataka, India
| | | | | | | | | | | |
Collapse
|
236
|
Hayashi Y, Asuzu DT, Gibbons SJ, Aarsvold KH, Bardsley MR, Lomberk GA, Mathison AJ, Kendrick ML, Shen KR, Taguchi T, Gupta A, Rubin BP, Fletcher JA, Farrugia G, Urrutia RA, Ordog T. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways. PLoS One 2013; 8:e76822. [PMID: 24116170 PMCID: PMC3792098 DOI: 10.1371/journal.pone.0076822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 11/29/2022] Open
Abstract
Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David T. Asuzu
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kirsten H. Aarsvold
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael R. Bardsley
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gwen A. Lomberk
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Angela J. Mathison
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael L. Kendrick
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - K. Robert Shen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Takahiro Taguchi
- Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan
| | - Anu Gupta
- Departments of Anatomic Pathology and Molecular Genetics, Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Departments of Anatomic Pathology and Molecular Genetics, Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Raul A. Urrutia
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tamas Ordog
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
237
|
Kumar S, Sharma S, Chattopadhyay SK. The potential health benefit of polyisoprenylated benzophenones from Garcinia and related genera: Ethnobotanical and therapeutic importance. Fitoterapia 2013; 89:86-125. [DOI: 10.1016/j.fitote.2013.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
|
238
|
Gutierrez SE, Romero-Oliva FA. Epigenetic changes: a common theme in acute myelogenous leukemogenesis. J Hematol Oncol 2013; 6:57. [PMID: 23938080 PMCID: PMC3751780 DOI: 10.1186/1756-8722-6-57] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/05/2013] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a rather common disease, characterized by the presence of a clonal population of hematopoietic progenitor cells with impaired differentiation. Although traditionally AML has been considered the result of genetic alterations, more recently experimental evidence have demonstrated that epigenetic modifications are important in development and maintenance of leukemia cells. In this review we summarize current scientific knowledge of epigenetic alterations involved in leukemogenesis. We also highlight the developing of new technological strategies that are based on epigenetic processes and have been registered as Patents of Inventions in the United Nations dependent World Intellectual Property Office (WIPO) and the main Patent offices worldwide.
Collapse
Affiliation(s)
- Soraya E Gutierrez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Casilla 160 C, 4089100, Concepcion, Chile.
| | | |
Collapse
|
239
|
Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M, Helin K. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res 2013; 73:6323-33. [PMID: 23943798 DOI: 10.1158/0008-5472.can-12-4660] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well as in several cancers, including brain tumors like medulloblastoma and glioblastoma. Inhibition of aberrant Hh-Gli signaling has, thus, emerged as an attractive approach for anticancer therapy; however, the mechanisms that mediate Hh-Gli signaling in vertebrates remain poorly understood. Here, we show that the histone acetyltransferase PCAF/KAT2B is an important factor of the Hh pathway. Specifically, we show that PCAF depletion impairs Hh activity and reduces expression of Hh target genes. Consequently, PCAF downregulation in medulloblastoma and glioblastoma cells leads to decreased proliferation and increased apoptosis. In addition, we found that PCAF interacts with GLI1, the downstream effector in the Hh-Gli pathway, and that PCAF or GLI1 loss reduces the levels of H3K9 acetylation on Hh target gene promoters. Finally, we observed that PCAF silencing reduces the tumor-forming potential of neural stem cells in vivo. In summary, our study identified the acetyltransferase PCAF as a positive cofactor of the Hh-Gli signaling pathway, leading us to propose PCAF as a candidate therapeutic target for the treatment of patients with medulloblastoma and glioblastoma.
Collapse
Affiliation(s)
- Martina Malatesta
- Authors' Affiliations: Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen; The Danish Stem Cell Center (Danstem), Copenhagen, Denmark; and F-BBVA Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
240
|
Du T, Nagai Y, Xiao Y, Greene MI, Zhang H. Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers. Exp Mol Pathol 2013; 95:38-45. [PMID: 23644046 PMCID: PMC3963828 DOI: 10.1016/j.yexmp.2013.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 11/21/2022]
Abstract
p300 is one of several acetyltransferases that regulate FOXP3 acetylation and functions. Our recent studies have defined a complex set of histone acetyltransferase interactions which can lead to enhanced or repressed changes in FOXP3 function. We have explored the use of a natural p300 inhibitor, Garcinol, as a tool to understand mechanisms by which p300 regulates FOXP3 acetylation. In the presence of Garcinol, p300 appears to become disassociated from the FOXP3 complex and undergoes lysosome-dependent degradation. As a consequence of p300's physical absence, FOXP3 becomes less acetylated and eventually degraded, a process that cannot be rescued by the proteasome inhibitor MG132. p300 plays a complex role in FOXP3 acetylation, as it could also acetylate a subset of four Lys residues that repressively regulate total FOXP3 acetylation. Garcinol acts as a degradation device to reduce the suppressive activity of regulatory T cells (Treg) and to enhance the in vivo anti-tumor activity of a targeted therapeutic anti-p185(her2/neu) (ERBB2) antibody in MMTV-neu transgenics implanted with neu transformed breast tumor cells. Our studies provide the rationale for molecules that disrupt p300 stability to limit Treg functions in targeted therapies for cancers.
Collapse
Affiliation(s)
- Taofeng Du
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yasuhiro Nagai
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| | - Yan Xiao
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| | - Mark I. Greene
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| |
Collapse
|
241
|
Bojang P, Ramos KS. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev 2013; 40:153-69. [PMID: 23831234 DOI: 10.1016/j.ctrv.2013.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/26/2023]
Abstract
Genetic mutations and gross structural defects in the DNA sequence permanently alter genetic loci in ways that significantly disrupt gene function. In sharp contrast, genes modified by aberrant epigenetic modifications remain structurally intact and are subject to partial or complete reversal of modifications that restore the original (i.e. non-diseased) state. Such reversibility makes epigenetic modifications ideal targets for therapeutic intervention. The epigenome of cancer cells is extensively modified by specific hypermethylation of the promoters of tumor suppressor genes relative to the extensive hypomethylation of repetitive sequences, overall loss of acetylation, and loss of repressive marks at microsatellite/repeat regions. In this review, we discuss emerging therapies targeting specific epigenetic modifications or epigenetic modifying enzymes either alone or in combination with other treatment regimens. The limitations posed by cancer treatments elicit unintended epigenetic modifications that result in exacerbation of tumor progression are also discussed. Lastly, a brief discussion of the specificity restrictions posed by epigenetic therapies and ways to address such limitations is presented.
Collapse
Affiliation(s)
- Pasano Bojang
- Department of Biochemistry and Molecular Biology, University of Louisville, 580 South Preston Street, Suite 221, Louisville, KY 40202, USA
| | | |
Collapse
|
242
|
Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, Kundu TK, Sethi G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila) 2013; 6:843-54. [PMID: 23803415 DOI: 10.1158/1940-6207.capr-13-0070] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of proinflammatory transcription factors such as STAT3 and NF-κB plays a pivotal role in the proliferation and survival of squamous cell carcinoma of the head and neck (HNSCC). Thus, the agents that can modulate deregulated STAT3 and NF-κB activation have a great potential both for the prevention and treatment of HNSCC. In the present report, we investigated the potential effects of garcinol, an active component of Garcinia indica on various inflammatory mediators involved in HNSCC progression using cell lines and xenograft mouse model. We found that garcinol inhibited constitutively activated STAT3 in HNSCC cells in a time- and dose-dependent manner, which correlated with the suppression of the upstream kinases (c-Src, JAK1, and JAK2) in HNSCC cells. Also, we noticed that the generation of reactive oxygen species is involved in STAT3 inhibitory effect of garcinol. Furthermore, garcinol exhibited an inhibitory effect on the constitutive NF-κB activation, mediated through the suppression of TGF-β-activated kinase 1 (TAK1) and inhibitor of IκB kinase (IKK) activation in HNSCC cells. Garcinol also downregulated the expression of various gene products involved in proliferation, survival, and angiogenesis that led to the reduction of cell viability and induction of apoptosis in HNSCC cells. When administered intraperitoneally, garcinol inhibited the growth of human HNSCC xenograft tumors in male athymic nu/nu mice. Overall, our results suggest for the first time that garcinol mediates its antitumor effects in HNSCC cells and mouse model through the suppression of multiple proinflammatory cascades.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Isom SC, Stevens JR, Li R, Spollen WG, Cox L, Spate LD, Murphy CN, Prather RS. Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies. Physiol Genomics 2013; 45:577-89. [PMID: 23695885 DOI: 10.1152/physiolgenomics.00094.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Substantial mortality of in vitro manipulated porcine embryos is observed during peri-attachment development. Herein we describe our efforts to characterize the transcriptomes of embryonic disc (ED) and trophectoderm (TE) cells from porcine embryos derived from in vivo fertilization, in vitro fertilization (IVF), parthenogenetic oocyte activation (PA), and somatic cell nuclear transfer (SCNT) on days 10, 12, and 14 of gestation. The IVF, PA, and SCNT embryos were generated with in vitro matured oocytes and were cultured overnight in vitro before being transferred to recipient females. Sequencing of cDNA from the resulting embryonic samples was accomplished with the Genome Analyzer IIx platform from Illumina. Reads were aligned to a custom-built swine transcriptome. A generalized linear model was fit for ED and TE samples separately, accounting for embryo type, gestation day, and their interaction. Those genes with significant differences between embryo types were characterized in terms of gene ontologies and KEGG pathways. Transforming growth factor-β signaling was downregulated in the EDs of IVF embryos. In TE cells from IVF embryos, ubiquitin-mediated proteolysis and ErbB signaling were aberrantly regulated. Expression of genes involved in chromatin modification, gene silencing by RNA, and apoptosis was significantly disrupted in ED cells from SCNT embryos. In summary, we have used high-throughput sequencing technologies to compare gene expression profiles of various embryo types during peri-attachment development. We expect that these data will provide important insight into the root causes of (and possible opportunities for mitigation of) suboptimal development of embryos derived from assisted reproductive technologies.
Collapse
Affiliation(s)
- S Clay Isom
- Animal Dairy & Veterinary Sciences Department, Utah State University, Logan, Utah, USA.
| | | | | | | | | | | | | | | |
Collapse
|
244
|
|
245
|
Yang H, Pinello CE, Luo J, Li D, Wang Y, Zhao LY, Jahn SC, Saldanha SA, Chase P, Planck J, Geary KR, Ma H, Law BK, Roush WR, Hodder P, Liao D. Small-molecule inhibitors of acetyltransferase p300 identified by high-throughput screening are potent anticancer agents. Mol Cancer Ther 2013; 12:610-20. [PMID: 23625935 DOI: 10.1158/1535-7163.mct-12-0930] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acetyltransferase p300 (KAT3B) plays key roles in signaling cascades that support cancer cell survival and sustained proliferation. Thus, p300 represents a potential anticancer therapeutic target. To discover novel anticancer agents that target p300, we conducted a high-throughput screening campaign. A library of 622,079 compounds was assayed for cytotoxicity to the triple-negative breast cancer (TNBC) cell line MDA-MB-231 but not to the human mammary epithelial cells. The resulting compounds were tested in a biochemical assay for inhibiting the enzymatic activity of p300. One compound (L002, NSC764414) displayed an IC50 of 1.98 μmol/L against p300 in vitro, inhibited acetylation of histones and p53, and suppressed STAT3 activation in cell-based assays. L002 could be docked to the active site of the p300 catalytic domain. Biochemical tests of a series of related compounds revealed functional groups that may impact inhibitory potency of L002 against p300. Interestingly, these analogs showed inhibitory activities against the cellular paralog of p300 (CBP), p300/CBP-associated factor, and GCN5, but not to other acetyltransferases (KAT5, KAT6B, and KAT7), histone deacetylases, and histone methyltransferases. Among the NCI-60 panel of cancer cell lines, leukemia and lymphoma cell lines were extremely sensitive to L002, whereas it is toxic to only a limited number of cell lines derived from solid tumors. Notably, breast cancer cell lines, especially those derived from TNBC, were highly susceptible to L002. In vivo, it potently suppressed tumor growth and histone acetylation of MDA-MB-468 xenografts. Thus, these new acetyltransferase inhibitors are potential anticancer therapeutics.
Collapse
Affiliation(s)
- Heng Yang
- Department of Anatomy and Cell Biology, Shands Cancer Center and Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 100235, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Lithner CU, Lacor PN, Zhao WQ, Mustafiz T, Klein WL, Sweatt JD, Hernandez CM. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer's disease. Neurobiol Aging 2013; 34:2081-90. [PMID: 23582659 DOI: 10.1016/j.neurobiolaging.2012.12.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/28/2012] [Indexed: 01/08/2023]
Abstract
Amyloid-β peptide (Aβ) fragment misfolding may play a crucial role in the progression of Alzheimer's disease (AD) pathophysiology as well as epigenetic mechanisms at the DNA and histone level. We hypothesized that histone H3 homeostasis is disrupted in association with the appearance of soluble Aβ at an early stage in AD progression. We identified, localized, and compared histone H3 modifications in multiple model systems (neural-like SH-SY5Y, primary neurons, Tg2576 mice, and AD neocortex), and narrowed our focus to investigate 3 key motifs associated with regulating transcriptional activation and inhibition: acetylated lysine 14, phosphorylated serine 10 and dimethylated lysine 9. Our results in vitro and in vivo indicate that multimeric soluble Aβ may be a potent signaling molecule indirectly modulating the transcriptional activity of DNA by modulating histone H3 homeostasis. These findings reveal potential loci of transcriptional disruption relevant to AD. Identifying genes that undergo significant epigenetic alterations in response to Aβ could aid in the understanding of the pathogenesis of AD, as well as suggesting possible new treatment strategies.
Collapse
Affiliation(s)
- Christina Unger Lithner
- Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
247
|
Characterization of the Pneumocystis carinii histone acetyltransferase chaperone proteins PcAsf1 and PcVps75. Infect Immun 2013; 81:2268-75. [PMID: 23569117 DOI: 10.1128/iai.01173-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rtt109 is a lysine acetyltransferase that acetylates histone H3 at lysine 56 (H3K56) in fungi. This acetylation event is important for proper DNA replication and repair to occur. Efficient Rtt109 acetyltransferase activity also requires a histone chaperone, vacuolar protein sorting 75 (Vps75), as well as the major chaperone of the H3-H4 dimer, anti-silencing factor 1 (Asf1). Little is known about the role of these proteins in the opportunistic fungal pathogen Pneumocystis carinii. To investigate the functions of Asf1 and Vps75 in Pneumocystis carinii, we cloned and characterized both of these genes. Here, we demonstrate that both genes, P. carinii asf1 (Pcasf1) and Pcvps75, function in a fashion analogous to their Saccharomyces cerevisiae counterparts. We demonstrate that both P. carinii Asf1 (PcAsf1) and PcVps75 can bind histones. Furthermore, when Pcasf1 is expressed heterologously in S. cerevisiae asf1Δ cells, PcAsf1 can restore full H3 lysine acetylation. We further demonstrated that the Pcasf1 cDNA expressed in asf1Δ S. cerevisiae cells can restore growth to wild-type levels in the presence of genotoxic agents that block DNA replication. Lastly, we observed that purified PcAsf1 and PcVps75 proteins enhance the ability of PcRtt109 to acetylate histone H3-H4 tetramers. Together, our results indicate that the functions of the Rtt109-Asf1-Vps75 complex in the acetylation of histone H3 lysine 56 and in DNA damage response are present in P. carinii DNA and cell cycle progression.
Collapse
|
248
|
Holzhauser S, Freiwald A, Weise C, Multhaup G, Han CT, Sauer S. Screening und Charakterisierung von Protein-modifizierenden Naturstoffen durch MALDI-Massenspektrometrie bringen starke SIRT1- und p300-Inhibitoren hervor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
249
|
Holzhauser S, Freiwald A, Weise C, Multhaup G, Han C, Sauer S. Discovery and Characterization of Protein‐Modifying Natural Products by MALDI Mass Spectrometry Reveal Potent SIRT1 and p300 Inhibitors. Angew Chem Int Ed Engl 2013; 52:5171-4. [DOI: 10.1002/anie.201207325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/12/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Susanne Holzhauser
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73, 14195 Berlin (Germany)
- Fachbereich Biologie, Chemie, Pharmazie/Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3/Thielallee 63, 14195 Berlin (Germany)
| | - Anja Freiwald
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73, 14195 Berlin (Germany)
| | - Christoph Weise
- Fachbereich Biologie, Chemie, Pharmazie/Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3/Thielallee 63, 14195 Berlin (Germany)
| | - Gerd Multhaup
- Fachbereich Biologie, Chemie, Pharmazie/Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3/Thielallee 63, 14195 Berlin (Germany)
| | - Chung‐Ting Han
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73, 14195 Berlin (Germany)
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73, 14195 Berlin (Germany)
| |
Collapse
|
250
|
Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents. Interdiscip Toxicol 2013; 5:207-13. [PMID: 23554565 PMCID: PMC3600525 DOI: 10.2478/v10102-012-0034-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 11/21/2022] Open
Abstract
The protective effects of aqueous extracts of the fruit rind of Garcinia indica (GIE) on ethanol-induced hepatotoxicity and the probable mechanisms involved in this protection were investigated in rats. Liver damage was induced in rats by administering ethanol (5 g/kg, 20% w/v p.o.) once daily for 21 days. GIE at 400 mg/kg and 800 mg/kg and the reference drug silymarin (200 mg/kg) were administered orally for 28 days to ethanol treated rats, this treatment beginning 7 days prior to the commencement of ethanol administration. Levels of marker enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)), triglyceride (sTG), albumin (Alb) and total protein (TP) were evaluated in serum. Antioxidant parameters (reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)), hepatic triglycerides (hTG) and the lipid peroxidation marker malondialdehyde (MDA) were determined in liver. GIE and silymarin elicited significant hepatoprotective activity by attenuating the ethanol–elevated levels of AST, ALT, ALP, sTG, hTG and MDA and restored the ethanol-depleted levels of GSH, SOD, CAT, GPx, GR, Alb and TP. GIE 800 mg/kg demonstrated greater hepatoprotection than GIE 400 mg/kg. The present findings indicate that hepatoprotective effects of GIE in ethanol-induced oxidative damage may be due to an augmentation of the endogenous antioxidants and inhibition of lipid peroxidation in liver.
Collapse
|