201
|
Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol 2013; 3:49. [PMID: 24032108 PMCID: PMC3764926 DOI: 10.3389/fcimb.2013.00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
There is a rapidly growing body of evidence that production of microvesicles (MVs) is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA, mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune surveillance, and transfer cargo between cells. These properties make MVs an essential player in intercellular communication. Increasing evidence supports the notion that MVs can also act as long-distance vehicles for RNA molecules and participate in metabolic synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV ability to carry on DNA and their general distribution makes them attractive candidates for horizontal gene transfer, particularly between multi-cellular organisms and their parasites; this suggests important implications for the co-evolution of parasites and their hosts. In this review, we provide current understanding of the roles played by MVs in intracellular pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection and host shifting.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Natasha.Barteneva@ childrens.harvard.edu
| | | | | |
Collapse
|
202
|
Dynamic nature of noncoding RNA regulation of adaptive immune response. Int J Mol Sci 2013; 14:17347-77. [PMID: 23975170 PMCID: PMC3794731 DOI: 10.3390/ijms140917347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/30/2013] [Accepted: 08/12/2013] [Indexed: 02/06/2023] Open
Abstract
Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.
Collapse
|
203
|
Ariza ME, Rivailler P, Glaser R, Chen M, Williams MV. Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One 2013; 8:e69827. [PMID: 23894549 PMCID: PMC3718799 DOI: 10.1371/journal.pone.0069827] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/15/2013] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target of the EBV-encoded dUTPase. However, the role of EBV-encoded dUTPase in DC activation/function and its potential contribution to the inflammatory cellular milieu characteristic of EBV-associated diseases remains poorly understood. In the present study, we demonstrate that EBV-encoded dUTPase significantly altered the expression of genes involved in oncogenesis, inflammation and viral defense mechanisms in human primary DCs by microarray analysis. Proteome array studies revealed that EBV-encoded dUTPase modulates DC immune responses by inducing the secretion of pro-inflammatory TH1/TH17 cytokines. More importantly, we demonstrate that EBV-encoded dUTPase is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce NF-κB activation and cytokine secretion in primary DCs and peripheral blood mononuclear cells (PBMCs). Interestingly, the production of pro-inflammatory cytokines in DCs and PBMCs was TLR2-dependent. Together these findings suggest that the EBV-encoded dUTPase may act as an intercellular signaling molecule capable of modulating the cellular microenvironment and thus, it may be important in the pathophysiology of EBV related diseases.
Collapse
Affiliation(s)
- Maria Eugenia Ariza
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | | | | | | | | |
Collapse
|
204
|
Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013; 251:125-42. [PMID: 23278745 DOI: 10.1111/imr.12013] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and antigen-presenting cells (APCs) has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological synapse (IS). EVs, a term that encompasses exosomes and microvesicles, has been implicated in cell-cell communication during immune responses associated with tumors, pathogens, allergies, and autoimmune diseases. This review focuses on EV transfer as a mechanism for the exchange of molecules during immune cell-cell interactions.
Collapse
|
205
|
Host defense and recruitment of Foxp3⁺ T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. PLoS Pathog 2013; 9:e1003397. [PMID: 23785280 PMCID: PMC3681744 DOI: 10.1371/journal.ppat.1003397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/18/2013] [Indexed: 01/06/2023] Open
Abstract
Acute resistance to low dose M. tuberculosis (Mtb) infection is not dependent on Toll-like receptor (TLR) 2. However, whether TLR2 contributes to resistance in chronic Mtb infection has remained uncertain. Here we report that, following low dose aerosol infection with Mtb, mice lacking TLR2 (TLR2KO), in comparison with wild type (WT) mice, exhibit enhanced cellular infiltration and inflammation in the lungs, and fail to stably control bacterial burden during chronic infection. IFNγ and IL-17 was expressed at equivalent levels in the two groups; however, the characteristic accumulation of Foxp3⁺ T regulatory cells (Tregs) in pulmonary granulomas was significantly reduced in TLR2KO mice. Nonetheless, this reduction in Tregs was independent of whether Tregs expressed TLR2 or not. To directly link the reduced number of Tregs to the increased inflammation present in the TLR2KO mice, we used a macrophage adoptive transfer model. At seven weeks post-Mtb infection, TLR2KO mice, which were adoptively transferred with WT macrophages, displayed enhanced accumulation of Tregs in the lungs and a concomitant reduction in inflammation in contrast with control mice that received TLR2KO macrophages. However, the pulmonary bacterial burden between the two groups remained similar indicating that TLR2's role in modulating immunopathology is functionally distinct from its role in restricting Mtb growth in chronic infection. Together, these findings unequivocally demonstrate that TLR2 contributes to host resistance against chronic Mtb infection and reveal a novel role for TLR2 in mediating the recruitment of Foxp3⁺ Tregs to the lungs to control inflammation.
Collapse
|
206
|
Hassani K, Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Negl Trop Dis 2013; 7:e2185. [PMID: 23658846 PMCID: PMC3642089 DOI: 10.1371/journal.pntd.0002185] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Released by many eukaryotic cells, the exosomes are 40-100 nm vesicles shown to operate over the complex processes of cell-cell communication. Among the metazoan cell lineages known to generate exosomes is the mononuclear phagocyte lineage, a lineage that parasites such as Leishmania are known to subvert as host cells. We previously reported that mouse macrophage signaling and functions are modified once co-incubated with exoproteome of Leishmania promastigotes. Using mass spectrometry analysis, we were curious to further compare the content of purified exosomes released by the J774 mouse macrophage cell line exposed or not to either LPS or to stationary phase Leishmania mexicana promastigotes. Collectively, our analyses resulted in detection of 248 proteins, ∼50-80% of which were shared among the three sources studied. Using exponentially modified protein abundance index (emPAI) and network analyses, we found that the macrophage exosomes display unique signatures with respect to composition and abundance of many functional groups of proteins, such as plasma membrane-associated proteins, chaperones and metabolic enzymes. Moreover, for the first time, L. mexicana surface protease GP63 is shown to be present in exosomes released from J774 macrophages exposed to stationary phase promastigotes. We observed that macrophage exosomes are able to induce signaling molecules and transcription factors in naive macrophages. Finally, using qRT-PCR, we monitored modulation of expression of multiple immune-related genes within macrophages exposed to exosomes. We found all three groups of exosomes to induce expression of immune-related genes, the ones collected from macrophages exposed to L. mexicana sharing properties with exosomes collected from macrophage left unexposed to any agonist. Overall, our results allowed depicting that protein sorting into macrophage-derived exosomes depends upon the cell status and how such distinct protein sorting can in turn impact the functions of naive J774 cells.
Collapse
Affiliation(s)
- Kasra Hassani
- Departments of Microbiology & Immunology and Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - Martin Olivier
- Departments of Microbiology & Immunology and Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
207
|
Abstract
Exosomes are extracellular membrane vesicles whose biogenesis by exocytosis of multivesicular endosomes was discovered in 1983. Since their discovery 30 years ago, it has become clear that exosomes contribute to many aspects of physiology and disease, including intercellular communication. We discuss the initial experiments that led to the discovery of exosomes and highlight some of the exciting current directions in the field.
Collapse
Affiliation(s)
- Clifford V Harding
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
208
|
Abstract
Within the past decade, extracellular vesicles have emerged as important mediators of intercellular communication, being involved in the transmission of biological signals between cells in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. In addition, pathophysiological roles for extracellular vesicles are beginning to be recognized in diseases including cancer, infectious diseases and neurodegenerative disorders, highlighting potential novel targets for therapeutic intervention. Moreover, both unmodified and engineered extracellular vesicles are likely to have applications in macromolecular drug delivery. Here, we review recent progress in understanding extracellular vesicle biology and the role of extracellular vesicles in disease, discuss emerging therapeutic opportunities and consider the associated challenges.
Collapse
|
209
|
Inal JM, Kosgodage U, Azam S, Stratton D, Antwi-Baffour S, Lange S. Blood/plasma secretome and microvesicles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2317-25. [PMID: 23590876 DOI: 10.1016/j.bbapap.2013.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/26/2022]
Abstract
A major but hitherto overseen component of the blood/plasma secretome is that of extracellular vesicles (EVs) which are shed from all blood cell types. These EVs are made up of microvesicles (MVs) and exosomes. MVs, 100nm-1μm in diameter, are released from the cell surface, and are a rich source of non-conventionally secreted proteins lacking a conventional signal peptide, and thus not secreted by the classical secretory pathways. Exosomes are smaller vesicles (≤100nm) having an endocytic origin and released upon multivesicular body fusion with the plasma membrane. Both vesicle types play major roles in intercellular cross talk and constitute an important component of the secretome especially in the area of biomarkers for cancer. The release of EVs, which are found in all the bodily fluids, is enhanced in cancer and a major focus of cancer proteomics is therefore targeted at EVs. The blood/plasma secretome is also a source of EVs, potentially diagnostic of infectious disease, whether from EVs released from infected cells or from the pathogens themselves. Despite the great excitement in this field, as is stated here and in other parts of this Special issue entitled: An Updated Secretome, much of the EV research, whether proteomic or functional in nature, urgently needs standardisation both in terms of nomenclature and isolation protocols. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, UK.
| | | | | | | | | | | |
Collapse
|
210
|
Hu G, Gong AY, Roth AL, Huang BQ, Ward HD, Zhu G, LaRusso NF, Hanson ND, Chen XM. Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog 2013; 9:e1003261. [PMID: 23592986 PMCID: PMC3617097 DOI: 10.1371/journal.ppat.1003261] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022] Open
Abstract
Exosomes are membranous nanovesicles released by most cell types from multi-vesicular endosomes. They are speculated to transfer molecules to neighboring or distant cells and modulate many physiological and pathological procedures. Exosomes released from the gastrointestinal epithelium to the basolateral side have been implicated in antigen presentation. Here, we report that luminal release of exosomes from the biliary and intestinal epithelium is increased following infection by the protozoan parasite Cryptosporidium parvum. Release of exosomes involves activation of TLR4/IKK2 signaling through promoting the SNAP23-associated vesicular exocytotic process. Downregulation of let-7 family miRNAs by activation of TLR4 signaling increases SNAP23 expression, coordinating exosome release in response to C. parvum infection. Intriguingly, exosomes carry antimicrobial peptides of epithelial cell origin, including cathelicidin-37 and beta-defensin 2. Activation of TLR4 signaling enhances exosomal shuttle of epithelial antimicrobial peptides. Exposure of C. parvum sporozoites to released exosomes decreases their viability and infectivity both in vitro and ex vivo. Direct binding to the C. parvum sporozoite surface is required for the anti-C. parvum activity of released exosomes. Biliary epithelial cells also increase exosomal release and display exosome-associated anti-C. parvum activity following LPS stimulation. Our data indicate that TLR4 signaling regulates luminal exosome release and shuttling of antimicrobial peptides from the gastrointestinal epithelium, revealing a new arm of mucosal immunity relevant to antimicrobial defense. Exosomes are secreted membranous nanovesicles produced by a variety of cells. Exosomes shuttle various molecules to transfer them to neighboring or distant cells, and have been implicated as mediators in cell-cell communications to modulate physiological and pathological procedures. Here, we report that luminal release of exosomal vesicles is an important component of Toll-like receptor 4 (TLR4)-associated gastrointestinal epithelial defense against infection by Cryptosporidium parvum, an obligate intracellular protozoan that infects gastrointestinal epithelial cells. Activation of TLR4 signaling in host epithelial cells following C. parvum infection promotes luminal release of epithelial exosomes and exosomal shuttling of antimicrobial peptides from the epithelium. By direct binding to the C. parvum surface, exosomal vesicles reveal anti-C. parvum activity. Activation of TLR4 signaling in epithelial cells after LPS stimulation also increases exosomal release and exosome-associated anti-C. parvum activity. Therefore, we speculate that TLR4-mediated exosome release may be relevant to innate mucosal immunity in general, representing a new target for therapeutic intervention for infectious diseases at the mucosal surface.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Amanda L. Roth
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Bing Q. Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Honorine D. Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Guan Zhu
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Nancy D. Hanson
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
211
|
Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel) 2013; 4:152-70. [PMID: 24705158 PMCID: PMC3899971 DOI: 10.3390/genes4020152] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small extracellular vesicles (30–100 nm) derived from the endosomal system, which have raised considerable interest in the last decade. Several studies have shown that they mediate cell-to-cell communication in a variety of biological processes. Thus, in addition to cell-to-cell direct interaction or secretion of active molecules, they are now considered another class of signal mediators. Exosomes can be secreted by several cell types and retrieved in many body fluids, such as blood, urine, saliva and cerebrospinal fluid. In addition to proteins and lipids, they also contain nucleic acids, namely mRNA and miRNA. These features have prompted extensive research to exploit them as a source of biomarkers for several pathologies, such as cancer and neurodegenerative disorders. In this context, exosomes also appear attractive as gene delivery vehicles. Furthermore, exosome immunomodulatory and regenerative properties are also encouraging their application for further therapeutic purposes. Nevertheless, several issues remain to be addressed: exosome biogenesis and secretion mechanisms have not been clearly understood, and physiological functions, as well as pathological roles, are far from being satisfactorily elucidated.
Collapse
|
212
|
Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 2013; 65:336-41. [PMID: 22780955 DOI: 10.1016/j.addr.2012.07.001] [Citation(s) in RCA: 589] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/25/2012] [Accepted: 07/01/2012] [Indexed: 12/15/2022]
Abstract
Advances in biomedical research have generated an unprecedented number of potential targets for therapeutic intervention to treat disease or delay disease progression. Unfortunately, many of these targets are not druggable as they are intracellular, present in many cell types, poorly soluble or rapidly inactivated. Although synthetic drug vehicles have successfully circumvented many of these problems, natural particulates such as exosomes that intrinsically possess many attributes of a drug delivery vehicle are highly attractive as potentially better alternatives. Of the cell types known to produce exosomes, the readily available proliferative, immunosuppressive and clinically tested human mesenchymal stem cell (MSC) is the most prolific producer. Its exosomes are therapeutic in animal model of disease and exhibit immunosuppressive activity. The quality and quantity of exosome production is not compromised by immortalization to create a permanent MSC cell line. Therefore, MSC is well suited for mass production of exosomes that are ideal for drug delivery.
Collapse
|
213
|
Walters SB, Kieckbusch J, Nagalingam G, Swain A, Latham SL, Grau GER, Britton WJ, Combes V, Saunders BM. Microparticles from mycobacteria-infected macrophages promote inflammation and cellular migration. THE JOURNAL OF IMMUNOLOGY 2012; 190:669-77. [PMID: 23241892 DOI: 10.4049/jimmunol.1201856] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mycobacterium tuberculosis infection is characterized by a strong inflammatory response whereby a few infected macrophages within the granuloma induce sustained cellular accumulation. The mechanisms coordinating this response are poorly characterized. We hypothesized that microparticles (MPs), which are submicron, plasma membrane-derived vesicles released by cells under both physiological and pathological conditions, are involved in this process. Aerosol infection of mice with M. tuberculosis increased CD45(+) MPs in the blood after 4 wk of infection, and in vitro infection of human and murine macrophages with mycobacteria enhanced MP release. MPs derived from mycobacteria-infected macrophages were proinflammatory, and when injected into uninfected mice they induced significant neutrophil, macrophage, and dendritic cell recruitment to the injection site. When incubated with naive macrophages, these MPs enhanced proinflammatory cytokine and chemokine release, and they aided in the disruption of the integrity of a respiratory epithelial cell monolayer, providing a mechanism for the egress of cells to the site of M. tuberculosis infection in the lung. In addition, MPs colocalized with the endocytic recycling marker Rab11a within macrophages, and this association increased when the MPs were isolated from mycobacteria-infected cells. M. tuberculosis-derived MPs also carried mycobacterial Ag and were able to activate M. tuberculosis-specific CD4(+) T cells in vivo and in vitro in a dendritic cell-dependent manner. Collectively, these data identify an unrecognized role for MPs in host response against M. tuberculosis by promoting inflammation, intercellular communication, and cell migration.
Collapse
Affiliation(s)
- Shaun B Walters
- Centenary Institute, Newtown, New South Wales 2042, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Kshirsagar S, Alam S, Jasti S, Hodes H, Nauser T, Gilliam M, Billstrand C, Hunt J, Petroff M. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta 2012; 33:982-90. [PMID: 23107341 PMCID: PMC3534832 DOI: 10.1016/j.placenta.2012.10.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/04/2012] [Accepted: 10/08/2012] [Indexed: 12/22/2022]
Abstract
The semiallogenic fetus is tolerated by the maternal immune system through control of innate and adaptive immune responses. Trophoblast cells secrete nanometer scale membranous particles called exosomes, which have been implicated in modulation of the local and systemic maternal immune system. Here we investigate the possibility that exosomes secreted from the first trimester and term placenta carry HLA-G and B7 family immunomodulators. Confocal microscopy of placental sections revealed intracellular co-localization of B7-H1 with CD63, suggesting that B7-H1 associates with subcellular vesicles that give rise to exosomes. First trimester and term placental explants were then cultured for 24 h. B7H-1 (CD274), B7-H3 (CD276) and HLA-G5 were abundant in pelleted supernatants of these cultures that contained microparticles and exosomes; the latter, however, was observed only in first trimester pellets and was nearly undetectable in term explant-derived pellets. Further purification of exosomes by sucrose density fractionation confirmed the association of these proteins specifically with exosomes. Finally, culture of purified trophoblast cells in the presence or absence of EGF suggested that despite the absence of HLA-G5 association with term explant-derived exosomes, it is present in exosomes secreted from mononuclear cytotrophoblast cells. Further, differentiation of cytotrophoblast cells reduced the presence of HLA-G5 in secreted exosomes. Together, the results suggest that the immunomodulatory proteins HLA-G5, B7-H1 and B7-H3, are secreted from early and term placenta, and have important implications in the mechanisms by which trophoblast immunomodulators modify the maternal immunological environment.
Collapse
Affiliation(s)
- S.K. Kshirsagar
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - S.M. Alam
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - S. Jasti
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - H. Hodes
- The Center for Women’s Health, Overland Park, KS, USA
| | - T. Nauser
- The Center for Women’s Health, Overland Park, KS, USA
| | - M. Gilliam
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - C. Billstrand
- Department of Human Genetics, University of Chicago, Chicago, IL
| | - J.S. Hunt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - M.G. Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
215
|
Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One 2012; 7:e48570. [PMID: 23144903 PMCID: PMC3492498 DOI: 10.1371/journal.pone.0048570] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022] Open
Abstract
Cryptococcal meningoencephalitis is the most common fungal disease in the central nervous system. The mechanisms by which Cryptococcus neoformans invades the brain are largely unknown. In this study, we found that C. neoformans-derived microvesicles (CnMVs) can enhance the traversal of the blood-brain barrier (BBB) by C. neoformans invitro. The immunofluorescence imaging demonstrates that CnMVs can fuse with human brain microvascular endothelial cells (HBMECs), the constituents of the BBB. This activity is presumably due to the ability of the CnMVs to activate HBMEC membrane rafts and induce cell fusogenic activity. CnMVs also enhanced C. neoformans infection of the brain, found in both infected brains and cerebrospinal fluid. In infected mouse brains, CnMVs are distributed inside and around C. neoformans-induced cystic lesions. GFAP (glial fibrillary acidic protein)-positive astrocytes were found surrounding the cystic lesions, overlapping with the 14-3-3-GFP (14-3-3-green fluorescence protein fusion) signals. Substantial changes could be observed in areas that have a high density of CnMV staining. This is the first demonstration that C. neoformans-derived microvesicles can facilitate cryptococcal traversal across the BBB and accumulate at lesion sites of C. neoformans-infected brains. Results of this study suggested that CnMVs play an important role in the pathogenesis of cryptococcal meningoencephalitis.
Collapse
|
216
|
Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells. PLoS One 2012; 7:e45322. [PMID: 23024816 PMCID: PMC3443220 DOI: 10.1371/journal.pone.0045322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 08/20/2012] [Indexed: 11/19/2022] Open
Abstract
Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.
Collapse
|
217
|
Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 2012; 10:134. [PMID: 22738135 PMCID: PMC3441244 DOI: 10.1186/1479-5876-10-134] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022] Open
Abstract
Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30-100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signaling is exemplified by human epidermal growth factor receptor type 2 (HER2) over-expressing breast cancer, where exosomes with the HER2 oncoprotein stimulate tumor growth and interfere with the activity of the therapeutic antibody Herceptin®. Since numerous observations from experimental model systems point toward an important clinical impact of exosomes in cancer, several pharmacological strategies have been proposed for targeting their malignant activities. We also propose a novel device strategy involving extracorporeal hemofiltration of exosomes from the entire circulatory system using an affinity plasmapheresis platform known as the Aethlon ADAPT™ (adaptive dialysis-like affinity platform technology) system, which would overcome the risks of toxicity and drug interactions posed by pharmacological approaches. This technology allows affinity agents, including exosome-binding lectins and antibodies, to be immobilized in the outer-capillary space of plasma filtration membranes that integrate into existing kidney dialysis systems. Device therapies that evolve from this platform allow rapid extracorporeal capture and selective retention of target particles < 200 nm from the entire circulatory system. This strategy is supported by clinical experience in hepatitis C virus-infected patients using an ADAPT™ device, the Hemopurifier®, to reduce the systemic load of virions having similar sizes and glycosylated surfaces as cancer exosomes. This review discusses the possible therapeutic approaches for targeting immune suppressive exosomes in cancer patients, and the anticipated significance of these strategies for reversing immune dysfunction and improving responses to standard of care treatments.
Collapse
Affiliation(s)
- Annette M Marleau
- Aethlon Medical Inc, 8910 University Center Lane, Suite 660, San Diego, CA 92122, USA.
| | | | | | | |
Collapse
|
218
|
Singh PP, Smith VL, Karakousis PC, Schorey JS. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:777-85. [PMID: 22723519 DOI: 10.4049/jimmunol.1103638] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 2 billion people are infected with Mycobacterium. tuberculosis; however, only 5-10% of those infected will develop active disease. Recent data suggest that containment is controlled locally at the level of the granuloma and that granuloma architecture may differ even within a single infected individual. Formation of a granuloma likely requires exposure to mycobacterial components released from infected macrophages, but the mechanism of their release is still unclear. We hypothesize that exosomes, which are small membrane vesicles containing mycobacterial components released from infected macrophages, could promote cellular recruitment during granuloma formation. In support of this hypothesis, we found that C57BL/6 mouse-derived bone marrow macrophages treated with exosomes released from M. tuberculosis-infected RAW264.7 cells secrete significant levels of chemokines and can induce migration of CFSE-labeled macrophages and splenocytes. Exosomes isolated from the serum of M. bovis bacillus Calmette-Guérin-infected mice could also stimulate macrophage production of chemokines and cytokines ex vivo, but the level and type differed during the course of a 60-d infection. Of interest, the exosome concentration in serum correlated strongly with mouse bacterial load, suggesting some role in immune regulation. Finally, hollow fiber-based experiments indicated that macrophages treated with exosomes released from M. tuberculosis-infected cells could promote macrophage recruitment in vivo. Exosomes injected intranasally could also recruit CD11b(+) cells into the lung. Overall, our study suggests that exosomes may play an important role in recruiting and regulating host cells during an M. tuberculosis infection.
Collapse
Affiliation(s)
- Prachi P Singh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
219
|
Federico M. From virus-like particles to engineered exosomes for a new generation of vaccines. Future Virol 2012. [DOI: 10.2217/fvl.12.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last two decades, virus-like particles (VLPs) have been the focus of countless investigations on innovative vaccines. The number of monotypic, multipartite and chimeric VLP-based vaccines proposed have increased even further in the last few years as part of the continuous effort to improve the safety, efficacy and cost–effectiveness of immunogens. As compared with monomer- or subunit-based vaccines, VLPs show several advantages in terms of potency of the elicited immune responses. Chimeric VLPs are quite flexible tools to accommodate foreign peptides, cell proteins and nonself-assembling viral products. However, their use often meets with still unresolved hurdles such as induction of undesired immune responses, neutralization by pre-existing immunity and complex methods of production. Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles constitutively released by eukaryotic cells that originate from intraluminal vesicles accumulating in multivesicular bodies. Exosomes have immunogenic properties, the strength of which correlates with the amounts of associated antigens. Engineering antigens of interest to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines.
Collapse
Affiliation(s)
- Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
220
|
Yang C, Chalasani G, Ng YH, Robbins PD. Exosomes released from Mycoplasma infected tumor cells activate inhibitory B cells. PLoS One 2012; 7:e36138. [PMID: 22558358 PMCID: PMC3338602 DOI: 10.1371/journal.pone.0036138] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 03/31/2012] [Indexed: 01/28/2023] Open
Abstract
Mycoplasmas cause numerous human diseases and are common opportunistic pathogens in cancer patients and immunocompromised individuals. Mycoplasma infection elicits various host immune responses. Here we demonstrate that mycoplasma-infected tumor cells release exosomes (myco+ exosomes) that specifically activate splenic B cells and induce splenocytes cytokine production. Induction of cytokines, including the proinflammatory IFN-γ and the anti-inflammatory IL-10, was largely dependent on the presence of B cells. B cells were the major IL-10 producers. In splenocytes from B cell deficient μMT mice, induction of IFN-γ+ T cells by myco+ exosomes was greatly increased compared with wild type splenocytes. In addition, anti-CD3-stimulated T cell proliferation was greatly inhibited in the presence of myco+ exosome-treated B cells. Also, anti-CD3-stimulated T cell signaling was impaired by myco+ exosome treatment. Proteomic analysis identified mycoplasma proteins in exosomes that potentially contribute to the effects. Our results demonstrate that mycoplasma-infected tumor cells release exosomes carrying mycoplasma components that preferentially activate B cells, which in turn, are able to inhibit T cell activity. These results suggest that mycoplasmas infecting tumor cells can exploit the exosome pathway to disseminate their own components and modulate the activity of immune cells, in particular, activate B cells with inhibitory activity.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Geetha Chalasani
- Renal-Electrolyte Division, Departments of Medicine and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yue-Harn Ng
- Renal-Electrolyte Division, Departments of Medicine and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Paul D. Robbins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
221
|
Hu G, Drescher KM, Chen XM. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front Genet 2012; 3:56. [PMID: 22529849 PMCID: PMC3330238 DOI: 10.3389/fgene.2012.00056] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/27/2012] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding regulatory RNAs that regulate gene expression at the post-transcriptional level, are master regulators of a wide array of cellular processes. Altered miRNA expression could be a determinant of disease development and/or progression and manipulation of miRNA expression represents a potential avenue of therapy. Exosomes are cell-derived extracellular vesicles that promote cell–cell communication and immunoregulatory functions. These “bioactive vesicles” shuttle various molecules, including miRNAs, to recipient cells. Inappropriate release of miRNAs from exosomes may cause significant alterations in biological pathways that affect disease development, supporting the concept that miRNA-containing exosomes could serve as targeted therapies for particular diseases. This review briefly summarizes recent advances in the biology, function, and therapeutic potential of exosomal miRNAs.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University Medical Center Omaha, NE, USA
| | | | | |
Collapse
|
222
|
Mukherjee R, Chatterji D. Glycopeptidolipids: immuno-modulators in greasy mycobacterial cell envelope. IUBMB Life 2012; 64:215-25. [PMID: 22252955 DOI: 10.1002/iub.602] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/10/2011] [Indexed: 11/12/2022]
Abstract
Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure.
Collapse
Affiliation(s)
- Raju Mukherjee
- Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | |
Collapse
|
223
|
Batagov AO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics 2011; 12 Suppl 3:S18. [PMID: 22369587 PMCID: PMC3333177 DOI: 10.1186/1471-2164-12-s3-s18] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Exosomes are nanoscale membrane vesicles released by most cells. They are postulated to be involved in cell–cell communication and genetic reprogramming of their target cells. In addition to proteins and lipids, they release RNA molecules many of which are not present in the donor cells implying a highly selective mode of their packaging into these vesicles. Sequence motifs targeting RNA to the vesicles are currently unknown. Results Ab initio approach was applied for computational identification of potential RNA secretory motifs in the primary sequences of exosome-enriched RNAs (eRNAs). Exhaustive motif analysis for the first time revealed unique sequence features of eRNAs. We discovered multiple linear motifs specifically enriched in secreted RNAs. Their potential function as cis-acting elements targeting RNAs to exosomes is proposed. The motifs co-localized in the same transcripts suggesting combinatorial organization of these secretory signals. We investigated associations of the discovered motifs with other RNA parameters. Secreted RNAs were found to have almost twice shorter half-life times on average, in comparison with cytoplasmic RNAs, and the occurrence of some eRNA-specific motifs significantly correlated with this eRNA feature. Also, we found that eRNAs are highly enriched in long noncoding RNAs. Conclusions Secreted RNAs share specific sequence motifs that may potentially function as cis-acting elements targeting RNAs to exosomes. Discovery of these motifs will be useful for our understanding the roles of eRNAs in cell-cell communication and genetic reprogramming of the target cells. It will also facilitate nano-scale vesicle engineering and selective targeting of RNAs of interest to these vesicles for gene therapy purposes.
Collapse
Affiliation(s)
- Arsen O Batagov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, 30 Biopolis str #07-01, Singapore, 138671.
| | | | | |
Collapse
|
224
|
Koppen T, Weckmann A, Müller S, Staubach S, Bloch W, Dohmen RJ, Schwientek T. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics 2011; 11:4397-410. [PMID: 21901833 DOI: 10.1002/pmic.201000774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/30/2023]
Abstract
Distinct types of vesicles are formed in eukaryotic cells that conduct a variable set of functions depending on their origin. One subtype designated circulating microvesicles (MVs) provides a novel form of intercellular communication and recent work suggested the release and uptake of morphogens in vesicles by Drosophila cells. In this study, we have examined cells of the hemocyte-like cell lines Kc167 and S2 and identified secreted vesicles in the culture supernatant. The vesicles were isolated and found to have characteristics comparable to exosomes and plasma membrane MVs released by mammalian cells. In wingless-transfected cells, the full-length protein was detected in the vesicle isolates. Proteomics analyses of the vesicles identified 269 proteins that include various orthologs of marker proteins and proteins with putative functions in vesicle formation and release. Analogous to their mammalian counterparts, the subcellular origin of the vesicular constituents of both cell lines is dominated by membrane-associated and cytosolic proteins with functions that are consistent with their localization in MVs. The analyses revealed a significant overlap of the Kc167 and S2 vesicle proteomes and confirmed a close correlation with non-mammalian and mammalian exosomes.
Collapse
Affiliation(s)
- Tim Koppen
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
225
|
Structure and host recognition of serotype 13 glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol 2011; 193:5766-74. [PMID: 21856857 DOI: 10.1128/jb.05412-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Mycobacterium avium-M. intracellulare complex (MAIC) is divided into 28 serotypes by a species-specific glycopeptidolipid (GPL). Previously, we clarified the structures of serotype 7 GPL and two methyltransferase genes (orfA and orfB) in serotype 12 GPL. This study elucidated the chemical structure, biosynthesis gene, and host innate immune response of serotype 13 GPL. The oligosaccharide (OSE) structure of serotype 13 GPL was determined to be 4-2'-hydroxypropanoyl-amido-4,6-dideoxy-β-hexose-(1 → 3)-4-O-methyl-α-L-rhamnose-(1 → 3)-α-L-rhamnose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-6-deoxy-talose by using chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) analyses. The structure of the serotype 13 GPL was different from those of serotype 7 and 12 GPLs only in O-methylations. We found a relationship between the structure and biosynthesis gene cluster. M. intracellulare serotypes 12 and 13 have a 1.95-kb orfA-orfB gene responsible for 3-O-methylation at the terminal hexose, orfB, and 4-O-methylation at the rhamnose next to the terminal hexose, orfA. The serotype 13 orfB had a nonfunctional one-base missense mutation that modifies serotype 12 GPL to serotype 13 GPL. Moreover, the native serotype 13 GPL was multiacetylated and recognized via Toll-like receptor 2. The findings presented here imply that serotypes 7, 12, and 13 are phylogenetically related and confirm that acetylation of the GPL is necessary for host recognition. This study will promote better understanding of the structure-function relationships of GPLs and may open a new avenue for the prevention of MAIC infections.
Collapse
|
226
|
Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK, Simons M. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 2011; 124:447-58. [PMID: 21242314 DOI: 10.1242/jcs.074088] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transfer of antigens from oligodendrocytes to immune cells has been implicated in the pathogenesis of autoimmune diseases. Here, we show that oligodendrocytes secrete small membrane vesicles called exosomes, which are specifically and efficiently taken up by microglia both in vitro and in vivo. Internalisation of exosomes occurs by a macropinocytotic mechanism without inducing a concomitant inflammatory response. After stimulation of microglia with interferon-γ, we observe an upregulation of MHC class II in a subpopulation of microglia. However, exosomes are preferentially internalised in microglia that do not seem to have antigen-presenting capacity. We propose that the constitutive macropinocytotic clearance of exosomes by a subset of microglia represents an important mechanism through which microglia participate in the degradation of oligodendroglial membrane in an immunologically 'silent' manner. By designating the capacity for macropinocytosis and antigen presentation to distinct cells, degradation and immune function might be assigned to different subtypes of microglia.
Collapse
Affiliation(s)
- Dirk Fitzner
- Max-Planck Institute for Experimental Medicine, Hermann-Rein-Str., D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg L, Gabrielsson S, Scheynius A. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 2011; 6:e21480. [PMID: 21799736 PMCID: PMC3142114 DOI: 10.1371/journal.pone.0021480] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/02/2011] [Indexed: 12/22/2022] Open
Abstract
Background Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. Objective To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. Methods Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. Results We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. Conclusions Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE.
Collapse
Affiliation(s)
- Ulf Gehrmann
- Clinical Allergy Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Anand PK. Exosomal membrane molecules are potent immune response modulators. Commun Integr Biol 2011; 3:405-8. [PMID: 21057626 DOI: 10.4161/cib.3.5.12474] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Exosomes are endosome-derived vesicles (40-100 nm) formed during the formation of multi-vesicular bodies (MVBs). Occasionally, the MVBs fuse with the plasma membrane releasing their intra-luminal vesicles into the extracellular media, which are then known as exosomes. Different cell types such as B-cells, dendritic cells, platelets, reticulocytes and macrophages can release exosomes and current research in this area is more focused towards exosomes released by antigen-presenting cells. Exosomes have recently been shown to be immunomodulatory and the mechanism of immune response initiation by them is beginning to emerge. Besides molecules present inside the lumen of exosomes, it has been suggested that certain exosomal membrane molecules can interact with their surface receptors on the target cells thereby inducing an immunomodulatory response. In this review, Hsp70 and galectin-5, two immunogenic molecules present on exosomal membrane, are discussed in detail for initiating this response.
Collapse
Affiliation(s)
- Paras K Anand
- Cell Biology and Biophysics Unit; European Molecular Biology Laboratory; Heidelberg, Germany
| |
Collapse
|
229
|
Bobrie A, Colombo M, Raposo G, Théry C. Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses. Traffic 2011; 12:1659-68. [DOI: 10.1111/j.1600-0854.2011.01225.x] [Citation(s) in RCA: 747] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
230
|
Hsp70 binds to PrPCin the process of PrPCrelease via exosomes from THP-1 monocytes. Cell Biol Int 2011; 35:553-8. [DOI: 10.1042/cbi20090391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
231
|
Singh PP, LeMaire C, Tan JC, Zeng E, Schorey JS. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One 2011; 6:e18564. [PMID: 21533172 PMCID: PMC3077381 DOI: 10.1371/journal.pone.0018564] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/12/2011] [Indexed: 01/18/2023] Open
Abstract
Background Macrophages infected with Mycobacterium tuberculosis (M.tb) are known to be refractory to IFN-γ stimulation. Previous studies have shown that M.tb express components such as the 19-kDa lipoprotein and peptidoglycan that can bind to macrophage receptors including the Toll-like receptor 2 resulting in the loss in IFN-γresponsiveness. However, it is unclear whether this effect is limited to infected macrophages. We have previously shown that M.tb-infected macrophages release exosomes which are 30–100 nm membrane bound vesicles of endosomal origin that function in intercellular communication. These exosomes contain mycobacterial components including the 19-kDa lipoprotein and therefore we hypothesized that macrophages exposed to exosomes may show limited response to IFN-γ stimulation. Methodology/Principal Findings Exosomes were isolated from resting as well as M.tb-infected RAW264.7 macrophages. Mouse bone marrow-derived macrophages (BMMØ) were treated with exosomes +/− IFN-γ. Cells were harvested and analyzed for suppression of IFN-γ responsive genes by flow cytometry and real time PCR. We found that exosomes derived from M.tb H37Rv-infected but not from uninfected macrophages inhibited IFN-γ induced MHC class II and CD64 expression on BMMØ. This inhibition was only partially dependent on the presence of lipoproteins but completely dependent on TLR2 and MyD88. The exosomes isolated from infected cells did not inhibit STAT1 Tyrosine phosphorylation but down-regulated IFN-γ induced expression of the class II major histocompatibity complex transactivator; a key regulator of class II MHC expression. Microarray studies showed that subsets of genes induced by IFN-γ were inhibited by exosomes from H37Rv-infeced cells including genes involved in antigen presentation. Moreover, this set of genes partially overlapped with the IFN-γ-induced genes inhibited by H37Rv infection. Conclusions Our study suggests that exosomes, as carriers of M.tb pathogen associated molecular patterns (PAMPs), may provide a mechanism by which M.tb may exert its suppression of a host immune response beyond the infected cell.
Collapse
Affiliation(s)
- Prachi P. Singh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Christopher LeMaire
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John C. Tan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Erliang Zeng
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeffery S. Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
232
|
Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011; 81:1171-82. [PMID: 21371441 DOI: 10.1016/j.bcp.2011.02.011] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/12/2022]
Abstract
Cell secretion is a general process involved in various biological responses. Exosomes are part of this process and have gained considerable scientific interest in the past five years. Several steps through investigations across the last 20 years can explain this interest. First characterized during reticulocyte maturation, they were next evidenced as a key player in the immune response and cancer immunotherapy. More recently they were reported as vectors of mRNAs, miRNAs and also lipid mediators able to act on target cells. They are the only type of vesicles released from an intracellular compartment from cells in viable conditions. They appear as a vectorized signaling system operating from inside a donor cell towards either the periphery, the cytosol, or possibly to the nucleus of target cells. Exosomes from normal cells trigger positive effects, whereas those from pathological ones, such as tumor cells or infected ones may trigger non-positive health effects. Therefore regulating the biogenesis and secretion of exosomes appear as a pharmacological challenge to intervene in various pathophysiologies. Exosome biogenesis and molecular content, interaction with target cells, utilisation as biomarkers, and functional effects in various pathophysiologies are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France.
| | | | | | | |
Collapse
|
233
|
Chaput N, Théry C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 2010; 33:419-40. [PMID: 21174094 DOI: 10.1007/s00281-010-0233-9] [Citation(s) in RCA: 394] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/28/2010] [Indexed: 12/20/2022]
Abstract
To communicate, cells are known to release in their environment proteins which bind to receptors on surrounding cells. But cells also secrete more complex structures, called membrane vesicles, composed of a lipid bilayer with inserted transmembrane proteins, enclosing an internal content of hydrophilic components. Exosomes represent a specific subclass of such secreted membrane vesicles, which, despite having been described more than 20 years ago by two groups studying reticulocyte maturation, have only recently received attention from the scientific community. This renewed interest originated first from the description of exosome secretion by antigen-presenting cells, suggesting a potential role in immune responses, and very recently by the identification of the presence of RNA (both messenger and microRNA) in exosomes, suggesting a potential transfer of genetic information between cells. In this review, we will describe the conclusions of 20 years of studies on the immune properties of exosomes and the most recent advances on their roles and potential uses as markers or as therapeutic tools during pathologies, especially in cancer.
Collapse
Affiliation(s)
- Nathalie Chaput
- Institut National de la Santé et de la Recherche Médicale U1015, Villejuif, 94805, France
| | | |
Collapse
|
234
|
Lässer C, O'Neil SE, Ekerljung L, Ekström K, Sjöstrand M, Lötvall J. RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy 2010; 25:89-93. [PMID: 21172122 DOI: 10.2500/ajra.2011.25.3573] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Exosomes are nanovesicles of endocytic origin released by cells and present in human body fluids such as plasma, breast milk, and bronchoalveolar lavage fluid. These vesicles take part in communication between cells. Recently, it was shown that exosomes contain both mRNA and microRNA. This RNA can be shuttled between cells (exosomal shuttle RNA), which is a new route of communication between cells. The aim of this study was to determine whether nasal secretions harbor exosomes and furthermore, whether these exosomes contain RNA. METHODS Human nasal lavage fluid (NLF) underwent centrifugation and filtration to discard cells and debris, followed by a final ultracentrifugation at 120,000 × g to pellet the exosomes. Exosomes were detected using electron microscopy (EM), flow cytometry, and Western blot. RNA was extracted and analyzed using a Bioanalyzer. RESULTS Exosomes were visualized as 40-80 nm, CD63(+) vesicles using EM. Flow cytometry of exosomes using anti-major histocompatibility complex class II beads revealed exosomes positive for the tetraspanins CD9, CD63, and CD81. Western blot confirmed the presence of exosomal protein and absence of proteins from the endoplasmic reticulum (ER), because the exosomes were positive for Tsg101, but negative for the ER marker, calnexin. Bioanalyzer analysis revealed that, these exosomes contain RNA. CONCLUSION This study shows for the first time that NLF contains exosomes and that these exosomes contain RNA. Further characterization of the exosomal RNA and proteins may provide important information about communication in the nose and potentially provide a source of biomarkers for upper airway diseases.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
235
|
Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 2010; 5:e13938. [PMID: 21085642 PMCID: PMC2978697 DOI: 10.1371/journal.pone.0013938] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/07/2010] [Indexed: 12/23/2022] Open
Abstract
Background Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a facultative intracellular pathogen that can persist within the host. The bacteria are thought to be in a state of reduced replication and metabolism as part of the chronic lung infection. Many in vitro studies have dissected the hypothesized environment within the infected lung, defining the bacterial response to pH, starvation and hypoxia. While these experiments have afforded great insight, the picture remains incomplete. The only way to study the combined effects of these environmental factors and the mycobacterial response is to study the bacterial response in vivo. Methodology/Principal Findings We used the guinea pig model of tuberculosis to examine the bacterial proteome during the early and chronic stages of disease. Lungs were harvested thirty and ninety days after aerosol challenge with Mtb, and analyzed by liquid chromatography-mass spectrometry. To date, in vivo proteomics of the tubercle bacillus has not been described and this work has generated the first large-scale shotgun proteomic data set, comprising over 500 unique protein identifications. Cell wall and cell wall processes, and intermediary metabolism and respiration were the two major functional classes of proteins represented in the infected lung. These classes of proteins displayed the greatest heterogeneity indicating important biological processes for establishment of a productive bacterial infection and its persistence. Proteins necessary for adaptation throughout infection, such as nitrate/nitrite reduction were found at both time points. The PE-PPE protein class, while not well characterized, represented the third most abundant category and showed the most consistent expression during the infection. Conclusions/Significance Cumulatively, the results of this work may provide the basis for rational drug design – identifying numerous Mtb proteins, from essential kinases to products involved in metal regulation and cell wall remodeling, all present throughout the course of infection.
Collapse
Affiliation(s)
- Nicole A. Kruh
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jolynn Troudt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Angelo Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
236
|
Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2010; 185:6608-16. [PMID: 21048109 DOI: 10.4049/jimmunol.1001768] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying MHC class I-restricted cross-presentation, the transfer of Ag from an infected cell to a professional APC, have been studied in great detail. Much less is known about the equivalent process for MHC class II-restricted presentation. After infection or transfection of class II-negative donor cells, we observed minimal transfer of a proteasome-dependent "class I-like" epitope within the influenza neuraminidase glycoprotein but potent transfer of a classical, H-2M-dependent epitope within the hemagglutinin (HA) glycoprotein. Additional experiments determined transfer to be exosome-mediated and substantially enhanced by the receptor binding activity of incorporated HA. Furthermore, a carrier effect was observed in that incorporated HA improved exosome-mediated transfer of a second membrane protein. This route of Ag presentation should be relevant to other enveloped viruses, may skew CD4(+) responses toward exosome-incorporated glycoproteins, and points toward novel vaccine strategies.
Collapse
Affiliation(s)
- James S Testa
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
237
|
Silverman JM, Reiner NE. Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 2010; 13:1-9. [DOI: 10.1111/j.1462-5822.2010.01537.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
238
|
Mycobacterium tuberculosis synergizes with ATP to induce release of microvesicles and exosomes containing major histocompatibility complex class II molecules capable of antigen presentation. Infect Immun 2010; 78:5116-25. [PMID: 20837713 DOI: 10.1128/iai.01089-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major histocompatibility complex class II (MHC-II) molecules are released by murine macrophages upon lipopolysaccharide (LPS) stimulation and ATP signaling through the P2X7 receptor. These studies show that infection of macrophages with Mycobacterium tuberculosis or M. bovis strain BCG enhances MHC-II release in synergy with ATP. Shed MHC-II was contained in two distinct organelles, exosomes and plasma membrane-derived microvesicles, which were both able to present exogenous antigenic peptide to T hybridoma cells. Furthermore, microvesicles from mycobacterium-infected macrophages were able to directly present M. tuberculosis antigen (Ag) 85B(241-256)-I-A(b) complexes that were generated by the processing of M. tuberculosis Ag 85B in infected cells to both M. tuberculosis-specific T hybridoma cells and naïve P25 M. tuberculosis T-cell receptor (TCR)-transgenic T cells. In the presence of prefixed macrophages, exosomes from mycobacterium-infected macrophages provided weak stimulation to M. tuberculosis-specific T hybridoma cells but not naïve P25 T cells. Thus, infection with M. tuberculosis primes macrophages for the increased release of exosomes and microvesicles bearing M. tuberculosis peptide-MHC-II complexes that may generate antimicrobial T-cell responses.
Collapse
|
239
|
Giri PK, Kruh NA, Dobos KM, Schorey JS. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics 2010; 10:3190-202. [PMID: 20662102 PMCID: PMC3664454 DOI: 10.1002/pmic.200900840] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/04/2010] [Accepted: 06/15/2010] [Indexed: 12/17/2022]
Abstract
Exosomes are small 30-100 nm membrane vesicles released from hematopoietic and nonhematopoietic cells and function to promote intercellular communication. They are generated through fusion of multivesicular bodies with the plasma membrane and release of interluminal vesicles. Previous studies from our laboratory demonstrated that macrophages infected with Mycobacterium release exosomes that promote activation of both innate and acquired immune responses; however, the components present in exosomes inducing these host responses were not defined. This study used LC-MS/MS to identify 41 mycobacterial proteins present in exosomes released from M. tuberculosis-infected J774 cells. Many of these proteins have been characterized as highly immunogenic. Further, since most of the mycobacterial proteins identified are actively secreted, we hypothesized that macrophages treated with M. tuberculosis culture filtrate proteins (CFPs) would release exosomes containing mycobacterial proteins. We found 29 M. tuberculosis proteins in exosomes released from CFP-treated J774 cells, the majority of which were also present in exosomes isolated from M. tuberculosis-infected cells. The exosomes from CFP-treated J774 cells could promote macrophage and dendritic cell activation as well as activation of naïve T cells in vivo. These results suggest that exosomes containing M. tuberculosis antigens may be alternative approach to developing a tuberculosis vaccine.
Collapse
Affiliation(s)
- Pramod K. Giri
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Present address:
Department of Microbiology & Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Nicole A. Kruh
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeff S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
240
|
Xiang X, Liu Y, Zhuang X, Zhang S, Michalek S, Taylor DD, Grizzle W, Zhang HG. TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1606-10. [PMID: 20802178 DOI: 10.2353/ajpath.2010.100245] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes released from tumor cells having been shown to induce interleukin-6 release from myeloid-derived suppressor cells in a Toll-like receptor 2/Stat3-dependent manner. In this study, we show that exosomes released from tumor cells re-isolated from syngeneic mice are capable of inducing interleukin-6 in a Toll-like receptor 2-independent manner, whereas the data generated from exosomes of tumor cells having undergone numerous in vitro passages induce interleukin-6 in a Toll-like receptor 2-dependent manner. This discrepancy may be due to the source of tumor cells used to generate the exosomes for this study. These results suggest that exosomes released from tumor cells that are not within a tumor microenvironment may not realistically represent the role of tumor exosomes in vivo. This is an important consideration since frequently passing tumor cells in vivo is an accepted practice for studying tumor exosome-mediated inflammatory responses.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- Department of Microbiology & Immunology, JamesBrown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Anand PK, Anand E, Bleck CKE, Anes E, Griffiths G. Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria. PLoS One 2010; 5:e10136. [PMID: 20405033 PMCID: PMC2853569 DOI: 10.1371/journal.pone.0010136] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/20/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Exosomes are endosome-derived vesicles that are released when multi-vesicular bodies (MVBs) fuse with the plasma membrane. Exosomes released from mycobacteria-infected cells have recently been shown to be pro-inflammatory. A prominent host molecule that is found within these exosomes is Hsp70, a member of the heat-shock family of proteins. METHODOLOGY/PRINCIPAL FINDINGS We first characterized the exosomes purified from control and mycobacteria-infected cells. We found that relative to uninfected cells, macrophages infected with M. smegmatis and M. avium release more exosomes and the exosomes they released had more Hsp70 on their surface. Both exosomes and exogenous Hsp70 treatment of macrophages led to NF-kappaB activation and TNFalpha release in uninfected macrophages; Hsp70 levels were elevated in mycobacteria-infected cells. Macrophage treatment with Hsp70 also led to increase in the phagocytosis and maturation of latex-bead phagosomes. Finally, Hsp70 pre-incubation of M. smegmatis- and M. avium-infected cells led to increased phago-lysosome fusion, as well as more killing of mycobacteria within macrophages. CONCLUSIONS/SIGNIFICANCE Our results fit into an emerging concept whereby exosomes-containing Hsp70 are effective inducers of inflammation, also in response to mycobacterial infection.
Collapse
Affiliation(s)
- Paras K Anand
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
242
|
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9:581-93. [PMID: 19498381 DOI: 10.1038/nri2567] [Citation(s) in RCA: 3007] [Impact Index Per Article: 200.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular organisms, communication between cells mainly involves the secretion of proteins that then bind to receptors on neighbouring cells. But another mode of intercellular communication - the release of membrane vesicles - has recently become the subject of increasing interest. Membrane vesicles are complex structures composed of a lipid bilayer that contains transmembrane proteins and encloses soluble hydrophilic components derived from the cytosol of the donor cell. These vesicles have been shown to affect the physiology of neighbouring recipient cells in various ways, from inducing intracellular signalling following binding to receptors to conferring new properties after the acquisition of new receptors, enzymes or even genetic material from the vesicles. This Review focuses on the role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells.
Collapse
Affiliation(s)
- Clotilde Théry
- Institut National de la Santé et de la Recherche Médicale U932, Institut Curie, 26 Rue d'Ulm, Paris, 75005, France.
| | | | | |
Collapse
|
243
|
Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 2009; 7:5157-66. [PMID: 19367702 DOI: 10.1021/pr8004887] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study, we described and characterized for the first time exosome secretion in nontumoral hepatocytes, and with the use of a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express nonexosomal proteins into exosomes with therapeutic purposes.
Collapse
Affiliation(s)
- Javier Conde-Vancells
- Metabolomics Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160, Bizkaia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Coppieters K, Barral AM, Juedes A, Wolfe T, Rodrigo E, Théry C, Amigorena S, von Herrath MG. No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:2213-20. [PMID: 19201875 DOI: 10.4049/jimmunol.0802578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells in culture, but are also present in serum. They contain a wide array of protein ligands on their surface, which has led to the hypothesis that they might mediate intercellular communication. Indeed, data support that exosomes can transfer Ags to dendritic cells (DC), and, interestingly, that these DC can subsequently induce T cell priming or tolerance. We have investigated whether this concept can be expanded to antiviral immunity. We isolated exosomes from supernatant of cultured bone marrow-derived DC (BMDC) that were infected with lymphocytic choriomeningitis virus (LCMV) or loaded with an immunodominant LCMV peptide, and characterized them by flow cytometry upon binding to beads. We then incubated the exosome preparations with BMDC and looked at their potential to activate LCMV gp33-specific naive and memory CD8 T cells. We found that exosomes do not significantly contribute to CD8 T cell cross-priming in vitro. Additionally, exosomes derived from in vitro-infected BMDC did not exhibit significant in vivo priming activity, as evidenced by the lack of protection following exosome vaccination. Thus, DC-derived exosomes do not appear to contribute significantly to CTL priming during acute LCMV infection.
Collapse
Affiliation(s)
- Ken Coppieters
- Immune Regulation Laboratory DI-3, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Wu CW, Schmoller SK, Bannantine JP, Eckstein TM, Inamine JM, Livesey M, Albrecht R, Talaat AM. A novel cell wall lipopeptide is important for biofilm formation and pathogenicity of Mycobacterium avium subspecies paratuberculosis. Microb Pathog 2009; 46:222-30. [PMID: 19490829 DOI: 10.1016/j.micpath.2009.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/02/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the DeltapstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the DeltapstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings.
Collapse
Affiliation(s)
- Chia-wei Wu
- The Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
The Mycobacterium avium complex gtfTB gene encodes a glucosyltransferase required for the biosynthesis of serovar 8-specific glycopeptidolipid. J Bacteriol 2008; 190:7918-24. [PMID: 18849433 DOI: 10.1128/jb.00911-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium complex (MAC) is one of the most common opportunistic pathogens widely distributed in the natural environment. The 28 serovars of MAC are defined by variable oligosaccharide portions of glycopeptidolipids (GPLs) that are abundant on the surface of the cell envelope. These GPLs are also known to contribute to the virulence of MAC. Serovar 8 is one of the dominant serovars isolated from AIDS patients, but the biosynthesis of serovar 8-specific GPL remains unknown. To clarify this, we compared gene clusters involved in the biosynthesis of several serovar-specific GPLs and identified the genomic region predicted to be responsible for GPL biosynthesis in a serovar 8 strain. Sequencing of this region revealed the presence of four open reading frames, three unnamed genes and gtfTB, the function of which has not been elucidated. The simultaneous expression of gtfTB and two downstream genes in a recombinant Mycobacterium smegmatis strain genetically modified to produce serovar 1-specific GPL resulted in the appearance of 4,6-O-(1-carboxyethylidene)-3-O-methyl-glucose, which is unique to serovar 8-specific GPL, suggesting that these three genes participate in its biosynthesis. Furthermore, functional analyses of gtfTB indicated that it encodes a glucosyltransferase that transfers a glucose residue via 1-->3 linkage to a rhamnose residue of serovar 1-specific GPL, which is critical to the formation of the oligosaccharide portion of serovar 8-specific GPL. Our findings might provide a clue to understanding the biosynthetic regulation that modulates the biological functions of GPLs in MAC.
Collapse
|
247
|
Fujiwara N, Nakata N, Naka T, Yano I, Doe M, Chatterjee D, McNeil M, Brennan PJ, Kobayashi K, Makino M, Matsumoto S, Ogura H, Maeda S. Structural analysis and biosynthesis gene cluster of an antigenic glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol 2008; 190:3613-21. [PMID: 18326570 PMCID: PMC2395021 DOI: 10.1128/jb.01850-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 03/01/2008] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium-Mycobacterium intracellulare complex (MAC) is the most common isolate of nontuberculous mycobacteria and causes pulmonary and extrapulmonary diseases. MAC species can be grouped into 31 serotypes by the epitopic oligosaccharide structure of the species-specific glycopeptidolipid (GPL) antigen. The GPL consists of a serotype-common fatty acyl peptide core with 3,4-di-O-methyl-rhamnose at the terminal alaninol and a 6-deoxy-talose at the allo-threonine and serotype-specific oligosaccharides extending from the 6-deoxy-talose. Although the complete structures of 15 serotype-specific GPLs have been defined, the serotype 16-specific GPL structure has not yet been elucidated. In this study, the chemical structure of the serotype 16 GPL derived from M. intracellulare was determined by using chromatography, mass spectrometry, and nuclear magnetic resonance analyses. The result indicates that the terminal carbohydrate epitope of the oligosaccharide is a novel N-acyl-dideoxy-hexose. By the combined linkage analysis, the oligosaccharide structure of serotype 16 GPL was determined to be 3-2'-methyl-3'-hydroxy-4'-methoxy-pentanoyl-amido-3,6-dideoxy-beta-hexose-(1-->3)-4-O-methyl-alpha-L-rhamnose-(1-->3)-alpha-L-rhamnose-(1-->3)-alpha-L-rhamnose-(1-->2)-6-deoxy-alpha-L-talose. Next, the 22.9-kb serotype 16-specific gene cluster involved in the glycosylation of oligosaccharide was isolated and sequenced. The cluster contained 17 open reading frames (ORFs). Based on the similarity of the deduced amino acid sequences, it was assumed that the ORF functions include encoding three glycosyltransferases, an acyltransferase, an aminotransferase, and a methyltransferase. An M. avium serotype 1 strain was transformed with cosmid clone no. 253 containing gtfB-drrC of M. intracellulare serotype 16, and the transformant produced serotype 16 GPL. Together, the ORFs of this serotype 16-specific gene cluster are responsible for the biosynthesis of serotype 16 GPL.
Collapse
Affiliation(s)
- Nagatoshi Fujiwara
- Department of Host Defense, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Exosomes are the newest family member of ‘bioactive vesicles’ that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non‐hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell‐to‐cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
249
|
O'Neill HC, Quah BJC. Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal 2008; 1:pe8. [PMID: 18272468 DOI: 10.1126/stke.16pe8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exosomes are small vesicles that are secreted from cells. They are derived from multivesicular endosomes that fuse with the plasma membrane, thereby releasing their internal vesicles into the extracellular environment. Exosomes from antigen-presenting cells contain a range of immunostimulatory molecules that activate T cells, which suggests that they may have an important role in the propagation of immune responses. Of considerable interest is the finding that exosomes derived from bacterially infected macrophages carry bacterial coat components and use these to stimulate bystander macrophages and neutrophils to secrete proinflammatory mediators, including tumor necrosis factor-alpha, the chemokine regulated upon activation, normal T cell-expressed and -secreted (RANTES, also known as CCL5), and inducible nitric oxide synthase. Here, we address these studies in relation to other findings on dendritic cell-derived exosomes that are also powerful immunoregulators.
Collapse
Affiliation(s)
- Helen C O'Neill
- School of Biochemistry and Molecular Biology, College of Science, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
250
|
Affiliation(s)
- James D Perkins
- Liver Transplantation Worldwide, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|