201
|
Abstract
microRNAs (miRNAs) are master regulators of gene expression. By degrading or blocking translation of messenger RNA targets, these noncoding RNAs can regulate the expression of more than half of all protein-coding genes in mammalian genomes. Aberrant miRNA expression is well characterized in cancer progression and has prognostic implications for cancer in general. Over the past several years, accumulating evidence has demonstrated that genomic alterations in miRNA genes are correlated with all aspects of cancer biology. In this review, we describe the effects of miRNA deregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells as well as in cancer diagnosis and therapy in humans.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
202
|
Manne U, Shanmugam C, Bovell L, Katkoori VR, Bumpers HL. miRNAs as biomarkers for management of patients with colorectal cancer. Biomark Med 2011; 4:761-70. [PMID: 20945991 DOI: 10.2217/bmm.10.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miRNAs serve as micromanagers, negatively regulating gene expression. Since altered miRNA expression is implicated in the pathobiology of various cancers, including colorectal cancers (CRCs), these molecules serve as potential therapeutic targets. Manipulation of miRNAs may offer an alternative therapy for chemo- and radio-resistant CRCs. For CRC patients, miRNA expression patterns can be used for diagnosis, and to predict prognosis and efficacy of therapy. This article describes the methodological approaches for miRNA measurement, their function in the pathobiology of CRCs and their potential clinical utility.
Collapse
Affiliation(s)
- Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-7331, USA.
| | | | | | | | | |
Collapse
|
203
|
La Rocca G, Shi B, Sepp-Lorenzino L, Baserga R. Expression of micro-RNA-145 is regulated by a highly conserved genomic sequence 3' to the pre-miR. J Cell Physiol 2011; 226:602-7. [PMID: 20717966 DOI: 10.1002/jcp.22368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Micro-RNA-145 (miR145), a tumor suppressor miR, dramatically inhibits growth of cancer cells in culture and plays a significant role in human stem cells differentiation. We have isolated a human genomic sequence of 864 bp comprising the pre-miR and its flanking sequences. The cloned miR145 genomic sequence expresses a mature miR145 in transfected cells. We show here that flanking sequences on either side of the pre-miR sequence can modulate its expression levels. Surprisingly, a highly conserved sequence 3' to the pre-miR plays a crucial role in miR145 expression.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Department of Cancer Biology, Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
204
|
van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 2011; 29:1382-91. [PMID: 21220596 DOI: 10.1200/jco.2010.28.2319] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) has predominantly been considered a genetic disease, characterized by sequential accumulation of genetic alterations. Growing evidence indicates that epigenetic alterations add an additional layer of complexity to the pathogenesis of CRC, and characterize a subgroup of colorectal cancers with a distinct etiology and prognosis. Epigenetic dysregulation in colorectal cancer is organized at multiple levels, involving DNA methylation, histone modifications, nucleosomal occupancy and remodeling, chromatin looping, and noncoding RNAs. Interactions between these processes and complex associations with genetic alterations have recently been unraveled. It appears that CRC epigenetics will be the paradigm for multistep carcinogenesis, as CRC genetics has been for the past three decades. This review integrates recent data on epigenetic regulation of gene expression in CRC and describes how the understanding of these processes will alter the management of CRC.
Collapse
Affiliation(s)
- Manon van Engeland
- GROW-School for Oncology and Developmental Biology, PO Box 616, 6200 Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
205
|
Zhai H, Ju J. Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet 2011; 2. [PMID: 22114584 PMCID: PMC3221387 DOI: 10.3389/fgene.2011.00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs with critical regulatory functions as post-transcriptional regulators. Due to the fundamental importance and broad impact of miRNAs on multiple genes and pathways, dysregulated miRNAs have been associated with human diseases, including cancer. Colorectal cancer (CRC) is among the most deadly diseases, and miRNAs offer a new frontier for target discovery and novel biomarkers for both diagnosis and prognosis. In this review, we summarize the recent advancement of miRNA research in CRC, in particular, the roles of miRNAs in CRC stem cells, epithelial-to-mesenchymal transition, chemoresistance, therapeutics, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Haiyan Zhai
- Translational Research Laboratory, Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | | |
Collapse
|
206
|
Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, Liu S, Leach SD, Maitra A, Mendell JT. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 2010; 24:2754-9. [PMID: 21159816 PMCID: PMC3003192 DOI: 10.1101/gad.1950610] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/29/2010] [Indexed: 12/25/2022]
Abstract
Although activating mutations in RAS oncogenes are known to result in aberrant signaling through multiple pathways, the role of microRNAs (miRNAs) in the Ras oncogenic program remains poorly characterized. Here we demonstrate that Ras activation leads to repression of the miR-143/145 cluster in cells of human, murine, and zebrafish origin. Loss of miR-143/145 expression is observed frequently in KRAS mutant pancreatic cancers, and restoration of these miRNAs abrogates tumorigenesis. miR-143/145 down-regulation requires the Ras-responsive element-binding protein (RREB1), which represses the miR-143/145 promoter. Additionally, KRAS and RREB1 are targets of miR-143/miR-145, revealing a feed-forward mechanism that potentiates Ras signaling.
Collapse
Affiliation(s)
- Oliver A. Kent
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Raghu R. Chivukula
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Michael Mullendore
- The Sol Goldman Pancreatic Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Erik A. Wentzel
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Georg Feldmann
- The Sol Goldman Pancreatic Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kwang H. Lee
- The Sol Goldman Pancreatic Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Shu Liu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Steven D. Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Anirban Maitra
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The Sol Goldman Pancreatic Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Joshua T. Mendell
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
207
|
Mao ZG, He DS, Zhou J, Yao B, Xiao WW, Chen CH, Zhu YH, Wang HJ. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 2010; 5:79. [PMID: 21138567 PMCID: PMC3017030 DOI: 10.1186/1746-1596-5-79] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/07/2010] [Indexed: 01/31/2023] Open
Abstract
Background The purpose of this study was to (1) identify specific miRNAs in growth hormones (GH)-secreting pituitary adenomas; (2) determine the relationship between the expression of these miRNAs and tumor size, somatostatin analogs treatment, and responsiveness to somatostatin analogs (SSA). Methods Fifteen GH-secreting adenomas patients were treated with lanreotide for 4 months before surgery. Patients with 50% reduction of GH secretion by lanreotide were considered as SSA responders, while patients with less than 50% of GH reduction were considered as SSA nonresponders. We analyzed the miRNAs in 21 GH-secreting pituitary adenomas and 6 normal pituitaries by miRCURY™ LNA array and some differentially expressed miRNAs were validated by quantitative real-time PCR. Results Fifty-two miRNAs were differentially expressed between GH-secreting pituitary adenomas and normal pituitaries. Differential expression of 9 miRNAs was observed between micro- and macro-adenomas. Thirteen miRNAs were differentially expressed between tumor samples from lanreotide-treated patients and those from lanreotide-untreated patients. Seven miRNAs were differentially expressed between SSA responders or GH nonresponders. Several identified miRNAs may be involved in cell proliferation, apoptosis, cancer development and progression. Conclusions Our results indicate that altered miRNAs expression is involved in GH-secreting pituitary adenomas transformation, which will shed light on the mechanisms for the treatment of acromegaly by SSA. Identification and characterization of the targets of altered miRNAs genes may elucidate molecular mechanisms involved in the pathogenesis of pituitary adenoma.
Collapse
Affiliation(s)
- Zhi-Gang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, Hu J. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:151. [PMID: 21092188 PMCID: PMC2999592 DOI: 10.1186/1756-9966-29-151] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/22/2010] [Indexed: 01/13/2023]
Abstract
MicroRNAs are important gene regulators that potentially play a profound role in tumorigenesis. Increasing evidence indicates that miR-145 is a tumor suppressor capable of inhibiting breast and colon cancer cell growth both in vitro and in vivo. However, the biological function of miR-145 in non-small cell lung cancer (NSCLC) is largely unknown. In colon cancer cells, c-Myc is a confirmed direct target for miR-145. The aim of this work was to investigate the effect of miR-145 and c-Myc on proliferation of NSCLC cells, using the NSCLC cell lines A549 and H23 as models. We determined the expression level of miR-145 in tumor tissues relative to adjacent non-tumor tissues, and in NSCLC cell lines relative to non-malignant lung cells. Downregulation of miR-145 was seen in tumor tissues and the two NSCLC cell lines by real-time quantitative reverse transcription polymerase chain reaction. MTT and focus formation assays were conducted to measure cell proliferation rates. Cell growth was inhibited and the G1/S transition was blocked by miR-145 in transfection assays of A549 and H23 cells. We further showed that c-Myc was a direct target for miR-145. Introduction of miR-145 dramatically suppressed the c-Myc/eIF4E pathway, which was demonstrated to be crucial for cell proliferation in NSCLC cells. Furthermore, we found that CDK4 was regulated by miR-145 in cell cycle control. Taken together, our study results demonstrate that miR-145 inhibits proliferation of NSCLC cells through c-Myc. Increasing miR-145 expression may provide a novel approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhe Chen
- National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | | | | | | | | | | | | |
Collapse
|
209
|
Wu WKK, Law PTY, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJY. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 2010; 32:247-53. [PMID: 21081475 DOI: 10.1093/carcin/bgq243] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Colon carcinogenesis represents a stepwise progression from benign polyps to invasive adenocarcinomas and distant metastasis. It is believed that these pathologic changes are contributed by aberrant activation or inactivation of protein-coding proto-oncogenes and tumor suppressor genes. However, recent discoveries in microRNA (miRNA) research have reshaped our understanding of the role of non-protein-coding genes in carcinogenesis. In this regard, a remarkable number of miRNAs exhibit differential expression in colon cancer tissues. These miRNAs alter cell proliferation, apoptosis and metastasis through their interactions with intracellular signaling networks. From a clinical perspective, polymorphisms within miRNA-binding sites are associated with the risk for colon cancer, whereas miRNAs isolated from feces or blood may serve as biomarkers for early diagnosis. Altered expression of miRNA or polymorphisms in miRNA-related genes have also been shown to correlate with patient survival or treatment outcome. With further insights into miRNA dysregulation in colon cancer and the advancement of RNA delivery technology, it is anticipated that novel miRNA-based therapeutics will emerge.
Collapse
Affiliation(s)
- William K K Wu
- Institute of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Koga Y, Yasunaga M, Takahashi A, Kuroda J, Moriya Y, Akasu T, Fujita S, Yamamoto S, Baba H, Matsumura Y. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila) 2010; 3:1435-42. [PMID: 20959518 DOI: 10.1158/1940-6207.capr-10-0036] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To reduce the colorectal cancer (CRC) mortality rate, we have reported several CRC screening methods using colonocytes isolated from feces. Expression analysis of oncogenic microRNA (miRNA) in peripheral blood was recently reported for CRC detection. In the present study, we conducted miRNA expression analysis of exfoliated colonocytes isolated from feces for CRC screening. Two hundred six CRC patients and 134 healthy volunteers were enrolled in the study. miRNA expression of the miR-17-92 cluster, miR-21, and miR-135 in colonocytes isolated from feces as well as frozen tissues was analyzed by quantitative real-time PCR. The expression of the miR-17-92 cluster, miR-21, and miR-135 was significantly higher in CRC tissues compared with normal tissues. The exfoliated colonocytes of 197 CRC patients and 119 healthy volunteers were analyzed because of the presence of sufficient miRNA concentration. miR-21 expression did not differ significantly between CRC patients and healthy volunteers (P = 0.6). The expression of miR-17-92 cluster and miR-135 was significantly higher in CRC patients than in healthy volunteers (P < 0.0001). The overall sensitivity and specificity by using miRNA expression was 74.1% (146/197; 95% confidence interval, 67.4-80.1) and 79.0% (94/119; 95% confidence interval, 70.6-85.9), respectively. Sensitivity was dependent only on tumor location (P = 0.0001). miRNA was relatively well conserved in exfoliated colonocytes from feces both of CRC patients and healthy volunteers. miRNA expression analysis of the isolated colonocytes may be a useful method for CRC screening. Furthermore, oncogenic miRNA highly expressed in CRC should be investigated for CRC screening tests in the future.
Collapse
Affiliation(s)
- Yoshikatsu Koga
- Investigative Treatment Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
Since the discovery of noncoding small RNAs such as microRNAs (miRNAs), and their roles as potential tumour suppressors or oncogenes, post-transcriptional and translational control of gene expression have become increasingly important in cancer research. Given that over a third of coding genes, as estimated by computational prediction, are regulated by miRNAs, various types of cancer will show direct association with changes in miRNA expression. The link of certain miRNAs with specific developmental stages, tissues and cancer contributes to their strong potential as biomarkers and novel therapeutic targets. In this review, we cover recent advances in miRNA research in human gastrointestinal cancer (colorectal, gastric, pancreatic and liver) and the potential of miRNAs as diagnostic and prognostic biomarkers.
Collapse
|
212
|
Shi M, Liu D, Duan H, Shen B, Guo N. Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis. Cancer Metastasis Rev 2010; 29:785-99. [DOI: 10.1007/s10555-010-9265-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
213
|
Schee K, Fodstad Ø, Flatmark K. MicroRNAs as biomarkers in colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1592-9. [PMID: 20829435 PMCID: PMC2947254 DOI: 10.2353/ajpath.2010.100024] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a leading cause of cancer-related morbidity and mortality in the Western world. While improved diagnostic surveillance and treatment strategies involving surgery, chemo-, and radiotherapy have all contributed to earlier detection and improved survival, treatment decisions are still made almost exclusively based on the cancer's clinicopathological stage at diagnosis. Therefore, the search for new biomarkers to facilitate early diagnosis and individualized treatment is particularly warranted. MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression through posttranscriptional interactions with mRNA, thereby potentially leading to a vast range of downstream effects that depend on the target proteins affected. The discovery that miRNAs may act as either oncogenes or tumor suppressors has initiated extensive research in the cancer field, leading to the identification of numerous miRNAs implicated in carcinogenesis and tumor progression. MiRNAs are chemically stable and can thus be detected in a broad range of clinical samples, making these molecules particularly attractive as potential biomarkers in cancer. While the knowledge of miRNA involvement in colorectal cancer biology is less extensive than for other cancer types and several targets with potential biological and clinical relevance have been identified, a significant amount of research is still needed. In this review, we explore the literature regarding the relevance of miRNAs in colorectal cancer, focusing in particular on miRNAs as potential diagnostic, prognostic, and predictive biomarkers.
Collapse
Affiliation(s)
- Kristina Schee
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Medical Faculty, Faculty Division, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Address reprint requests to Kjersti Flatmark, M.D., Ph.D., Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| |
Collapse
|
214
|
Liu Y, Salvador LA, Byeon S, Ying Y, Kwan JC, Law BK, Hong J, Luesch H. Anticolon cancer activity of largazole, a marine-derived tunable histone deacetylase inhibitor. J Pharmacol Exp Ther 2010; 335:351-61. [PMID: 20739454 DOI: 10.1124/jpet.110.172387] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylases (HDACs) are validated targets for anticancer therapy as attested by the approval of suberoylanilide hydroxamic acid (SAHA) and romidepsin (FK228) for treating cutaneous T cell lymphoma. We recently described the bioassay-guided isolation, structure determination, synthesis, and target identification of largazole, a marine-derived antiproliferative natural product that is a prodrug that releases a potent HDAC inhibitor, largazole thiol. Here, we characterize the anticancer activity of largazole by using in vitro and in vivo cancer models. Screening against the National Cancer Institute's 60 cell lines revealed that largazole is particularly active against several colon cancer cell types. Consequently, we tested largazole, along with several synthetic analogs, for HDAC inhibition in human HCT116 colon cancer cells. Enzyme inhibition strongly correlated with the growth inhibitory effects, and differential activity of largazole analogs was rationalized by molecular docking to an HDAC1 homology model. Comparative genomewide transcript profiling revealed a close overlap of genes that are regulated by largazole, FK228, and SAHA. Several of these genes can be related to largazole's ability to induce cell cycle arrest and apoptosis. Stability studies suggested reasonable bioavailability of the active species, largazole thiol. We established that largazole inhibits HDACs in tumor tissue in vivo by using a human HCT116 xenograft mouse model. Largazole strongly stimulated histone hyperacetylation in the tumor, showed efficacy in inhibiting tumor growth, and induced apoptosis in the tumor. This effect probably is mediated by the modulation of levels of cell cycle regulators, antagonism of the AKT pathway through insulin receptor substrate 1 down-regulation, and reduction of epidermal growth factor receptor levels.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, P.O. Box 100485, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Zhang J, Guo H, Zhang H, Wang H, Qian G, Fan X, Hoffman AR, Hu JF, Ge S. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer 2010; 117:86-95. [PMID: 20737575 DOI: 10.1002/cncr.25522] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/11/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tumor suppressor microRNA miR-145 is commonly down-regulated in colon carcinoma tissues, but its specific role in tumors remains unknown. METHODS In this study, the authors identified the Friend leukemia virus integration 1 gene (FLI1) as a novel target of miR-145. FLI1 is involved in t(11;22)(q24:q12) reciprocal chromosomal translocation in Ewing sarcoma, and its expression appears to be associated with biologically more aggressive tumors. RESULTS The authors demonstrated that miR-145 targets a putative microRNA regulatory element in the 3'-untranslated region (UTR) of FLI1, and its abundance is reversely associated with FLI1 expression in colon cancer tissues and cell lines. By using a luciferase/FLI1 3'-UTR reporter system, they found that miR-145 down-regulated the reporter activity, and this down-regulation was reversed by anti-miR-145. Mutation of the miR-145 microRNA regulatory element sequence in the FLI1 3'-UTR abolished the activity of miR-145. miR-145 decreased FLI1 protein but not FLI1 mRNA, suggesting a mechanism of translational regulation. Furthermore, the authors demonstrated that miR-145 inhibited cell proliferation and sensitized LS174T cells to 5-fluorouracil-induced apoptosis. CONCLUSIONS Taken together, these results suggest that miR-145 functions as a tumor suppressor by down-regulating oncogenic FLI1 in colon cancer.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
DeAngelis T, Morrione A, Baserga R. Mutual interaction and reciprocal down-regulation between c-met and insulin receptor substrate-1. J Cell Physiol 2010; 224:658-63. [PMID: 20578241 DOI: 10.1002/jcp.22164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The insulin receptor substrate-1 (IRS-1) and c-met, the receptor for the hepatocyte growth factor (HGF) co-immuno-precipitate from lysates treated with the respective antibodies. The interaction between IRS-1 and c-met requires a tyrosyl phosphorylated IRS-1 and results in reciprocal down-regulation. IRS-1 inhibits cell motility, while the activated c-met promotes it. These and other results suggest an explanation for reports in the literature indicating that c-met levels are high and IRS-1 levels are low in human cancer metastases.
Collapse
Affiliation(s)
- Tiziana DeAngelis
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
217
|
Zhang J, Guo H, Qian G, Ge S, Ji H, Hu X, Chen W. MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network. Mol Cancer 2010; 9:211. [PMID: 20687965 PMCID: PMC2924312 DOI: 10.1186/1476-4598-9-211] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/06/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNA-145 (miR-145) is considered to play key roles in many cellular processes, such as proliferation, differentiation and apoptosis, by inhibiting target gene expression. DNA Fragmentation Factor-45 (DFF45) has been found to be the substrate of Caspase-3, and the cleavage of DFF45 by caspase-3 during apoptosis releases DFF40 that degrades chromosomal DNA into nucleosomal fragments. There are currently no in-depth studies on the relationship between miR-145 and the DFF45 gene. RESULTS In this study, we identified DFF45 as a novel target of miR-145. We demonstrated that miR-145 targets a putative binding site in the coding sequence (CDS) of DFF45, and its abundance is inversely associated with DFF45 expression in colon cancer cells. Using a luciferase reporter system, we found that miR-145 suppresses the expression of the luciferase reporter gene fused to the putative binding site of DFF45. The level of DFF45 protein, but not DFF45 mRNA, was decreased by miR-145, suggesting a mechanism of translational regulation. Furthermore, we demonstrate that this specific silencing of DFF45 by miR-145 accounts, at least in part, for the staurosporine-induced tumor cell apoptosis in vitro. CONCLUSIONS Our study reveals a previously unrecognized function of miR-145 in DFF45 processing, which may underlie crucial aspects of cancer biology.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao TongUniversity School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
218
|
Nitric Oxide Inhibits the Proliferation and Invasion of Pancreatic Cancer Cells through Degradation of Insulin Receptor Substrate-1 Protein. Mol Cancer Res 2010; 8:1152-63. [DOI: 10.1158/1541-7786.mcr-09-0472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
219
|
Sevli S, Uzumcu A, Solak M, Ittmann M, Ozen M. The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer Prostatic Dis 2010; 13:208-17. [PMID: 20585343 DOI: 10.1038/pcan.2010.21] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is one of the most significant cancers of men all over the world. The microRNAs (miRNAs) possess crucial functions in pathogenesis of the disease and its gain of androgen independency. The miRNAs are small, approximately 18-24 nucleotides, non-coding, endogenously synthesized RNAs that regulate gene expression post-transcriptionally. They are found in viruses, plants, and animal cells. The miRNAs have critical functions in gene expression and their dysregulation may cause tumor formation and progression of several diseases. Here, we have reviewed the most current literature to elucidate the function of miRNAs in human prostate cancer. We believe that this will help investigators not only working in prostate cancer, but also studying the miRNAs in other diseases to delineate the functions of miRNAs implicated in human prostate cancer development and progression.
Collapse
Affiliation(s)
- S Sevli
- Department of Medical Genetics, Faculty of Medicine and Yeditepe University Hospital, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
220
|
Iio A, Nakagawa Y, Hirata I, Naoe T, Akao Y. Identification of non-coding RNAs embracing microRNA-143/145 cluster. Mol Cancer 2010; 9:136. [PMID: 20525177 PMCID: PMC2903500 DOI: 10.1186/1476-4598-9-136] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 06/02/2010] [Indexed: 01/07/2023] Open
Abstract
In a variety of cancers, altered patterns of microRNA (miRNA) expression are reported and may affect the cell cycle and cell survival. Recent studies suggest that the expression level of miRNAs that act as tumor suppressors is frequently reduced in cancers because of chromosome deletions, epigenetical changes, aberrant transcription and disturbances in miRNA processing. miR-143 and -145, which are located approximately 1.3 kb from each other at chromosome 5q33, are highly expressed in several tissues, but down-regulated in most cancers. However, the mechanism of this down-regulation has not been investigated in detail. Here, we show that both miRNAs were expressed well under the same control program in human tissues, but were down-regulated equally in the most of the cancer cell lines tested. Then we identified the host gene encoding both miRNAs. The transcripts of this gene were approximately 11, 7.5, and 5.5 kb long; and the expression of these transcripts was coordinated with that of its resident miRNAs and down-regulated in the cancer cell lines tested as well as in colorectal cancer tissue samples. These data demonstrate that the host gene can function as a primary miRNA transcript and suggest that the down-regulation of host gene expression caused the low-expression of its encoded microRNAs-143 and -145 in human cancer cell lines and in cancer tissues.
Collapse
Affiliation(s)
- Akio Iio
- Department of Medical Oncology, Gifu International Institute of Biotechnology, 1-1 Naka-Fudogaoka, Kakamigahara, Gifu 504-0838, Japan.
| | | | | | | | | |
Collapse
|
221
|
Yang JJ, Ma YL, Qin HL. Advances in understanding the role of microRNA regulatory network in the pathogenesis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2010; 18:1478-1484. [DOI: 10.11569/wcjd.v18.i14.1478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs, typically 19-24 nucleotides in length. By down-regulating gene expression, they widely participate in a variety of important life processes, such as apoptosis, differentiation, proliferation and development. Recent studies have shown that miRNAs can control many oncogene and tumor suppressor pathways that are involved in the development and progression of colorectal cancer (CRC), such as the Wnt/β-catenin, K-ras, phosphatidylinositol-3-kinase (PI3-K), and P53 signaling pathways. In addition, the research on the effects of single nucleotide polymorphisms (SNPs) on miRNA expression and the epigenetic regulation of microRNAs in CRC has attracted much attention from researchers. This paper will review the role of microRNA regulatory network in the pathogenesis of CRC.
Collapse
|
222
|
Abstract
Obesity and the metabolic syndrome are major public health concerns, and present a formidable therapeutic challenge. Many patients remain recalcitrant to conventional lifestyle changes and medical therapies. Bariatric surgery has made laudable progress in the treatment of obesity and its related metabolic disorders, yet carries inherent risks. Unravelling the molecular mechanisms of metabolic disorders is essential in order to develop novel, valid therapeutic strategies. Mi(cro)RNAs play important regulatory roles in a variety of biological processes including adipocyte differentiation, metabolic integration, insulin resistance and appetite regulation. Investigation of these molecules and their genetic targets may potentially identify new pathways involved in complex metabolic disease processes, improving our understanding of metabolic disorders and influence future approaches to the treatment of obesity. This review discusses the role of miRNAs in obesity and related components of the metabolic syndrome, and highlights the potential of using miRNAs as novel biomarkers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- H M Heneghan
- Department of Surgery, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
223
|
Abstract
MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.
Collapse
|
224
|
Chen X, Gong J, Zeng H, Chen N, Huang R, Huang Y, Nie L, Xu M, Xia J, Zhao F, Meng W, Zhou Q. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res 2010; 70:2728-38. [PMID: 20332243 DOI: 10.1158/0008-5472.can-09-3718] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The putative tumor suppressor miR145 is transcriptionally regulated by TP53 and is downregulated in many tumors; however, its role in prostate cancer is unknown. On the other hand, BCL2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is overexpressed in various tumors, including prostate cancer, and may transcriptionally repress the apoptosis-inducing factor (AIF) gene. Although BNIP3 transcription is controlled by hypoxia-inducible factor 1alpha (also elevated in prostate cancer), we postulated the posttranscriptional regulation of BNIP3 by miR145 through bioinformatics analysis, and herein we experimentally showed that miR145 negatively regulated BNIP3 by targeting its 3'-untranslated region. Artificial overexpression of miR145 by using adenoviral vectors in prostate cancer PC-3 and DU145 cells significantly downregulated BNIP3, together with the upregulation of AIF, reduced cell growth, and increased cell death. Artificial overexpression of wild-type TP53 in PC-3 cells (which lack TP53 protein) and DU145 cells (in which mutated nonfunctioning TP53 is expressed) significantly upregulated miR145 expression with consequent effects on BNIP3 and cell behavior as with miR145 overexpression. Analysis of prostate cancer (n = 134) and benign prostate (n = 83) tissue sample showed significantly decreased miR145 and increased BNIP3 expression in prostate cancer (P < 0.001), particularly in those with tumor progression, and both molecular changes were associated with unfavorable outcome. Abnormalities of the miR145-BNIP3 pair as part of TP53-miR145-BNIP3-AIF network may play a major role in prostate cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Xueqin Chen
- Laboratory of Pathology, State Key Laboratory of Biotherapy and Department of Pathology, West China Hospital, West China Medical School, Sichuan University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer 2010; 102:883-91. [PMID: 20160723 PMCID: PMC2833258 DOI: 10.1038/sj.bjc.6605570] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: We have recently identified down-regulated microRNAs including miR-145 and miR-133a in bladder cancer (BC). The aim of this study is to determine the genes targeted by miR-145, which is the most down-regulated microRNA in BC. Methods: We focused on fascin homologue 1 (FSCN1) from the gene expression profile in miR-145 transfectant. The luciferase assay was used to confirm the actual binding sites of FSCN1 mRNA. Cell viability was evaluated by cell growth, wound-healing, and matrigel invasion assays. BC specimens were subjected to immunohistochemistry of FSCN1 and in situ hybridisation of miR-145. Results: The miR-133a as well as miR-145 had the target sequence of FSCN1 mRNA by the database search, and both microRNAs repressed the mRNA and protein expression of FSCN1. The luciferase assay revealed that miR-145 and miR-133a were directly bound to FSCN1 mRNA. Cell viability was significantly inhibited in miR-145, miR-133a, and si-FSCN1 transfectants. In situ hybridisation revealed that miR-145 expression was markedly repressed in the tumour lesion in which FSCN1 was strongly stained. The immunohistochemical score of FSCN1 in invasive BC (n=46) was significantly higher than in non-invasive BC (n=20) (P=0.0055). Conclusion: Tumour suppressive miR-145 and miR-133a directly control oncogenic FSCN1 in BC.
Collapse
|
226
|
Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, Jin Y, Dong JF, Ren Q, Whiteheart SW, Shaw C, Bray PF. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 2010; 8:369-78. [PMID: 19943878 PMCID: PMC3312605 DOI: 10.1111/j.1538-7836.2009.03700.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Variation in platelet reactivity contributes to disorders of hemostasis and thrombosis, but the molecular mechanisms are not well understood. OBJECTIVES To discover associations between interindividual platelet variability and the responsible platelet genes, and to begin to define the molecular mechanisms altering platelet gene expression. SUBJECTS/METHODS Two hundred and eighty-eight healthy subjects were phenotyped for platelet responsiveness. Platelet RNA from subjects demonstrating hyperreactivity (n=18) and hyporeactivity (n=11) was used to screen the human transcriptome. RESULTS Distinctly different mRNA profiles were observed between subjects with differing platelet reactivity. Increased levels of mRNA for VAMP8/endobrevin, a critical v-SNARE involved in platelet granule secretion, were associated with platelet hyperreactivity (Q=0.0275). Validation studies of microarray results showed 4.8-fold higher mean VAMP8 mRNA levels in hyperreactive than hyporeactive platelets (P=0.0023). VAMP8 protein levels varied 13-fold among platelets from these normal subjects, and were 2.5-fold higher in hyperreactive platelets (P=0.05). Among our cohort of 288 subjects, a VAMP8 single-nucleotide polymorphism (rs1010) was associated with platelet reactivity in an age-dependent manner (P<0.003). MicroRNA-96 was predicted to bind to the 3'-untranslated regionof VAMP8 mRNA and was detected in platelets. Overexpression of microRNA-96 in VAMP8-expressing cell lines caused a dose-dependent decrease in VAMP8 protein and mRNA, suggesting a role in VAMP8 mRNA degradation. CONCLUSIONS These findings support a role for VAMP8/endobrevin in the heterogeneity of platelet reactivity, and suggest a role for microRNA-96 in the regulation of VAMP8 expression.
Collapse
Affiliation(s)
- A A Kondkar
- Thomas Jefferson University, The Cardeza Foundation for Hematologic Research and the Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Gregersen LH, Jacobsen AB, Frankel LB, Wen J, Krogh A, Lund AH. MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS One 2010; 5:e8836. [PMID: 20098684 PMCID: PMC2809101 DOI: 10.1371/journal.pone.0008836] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/31/2009] [Indexed: 12/05/2022] Open
Abstract
Background MicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in tumorigenesis. miR-145 is reported to be down-regulated in several cancers, but knowledge of its targets in colon cancer remains limited. Methodology/Principal Findings To investigate the role of miR-145 in colon cancer, we have employed a microarray based approach to identify miR-145 targets. Based on seed site enrichment analyses and unbiased word analyses, we found a significant enrichment of miRNA binding sites in the 3′-untranslated regions (UTRs) of transcripts down-regulated upon miRNA overexpression. Gene Ontology analysis showed an overrepresentation of genes involved in cell death, cellular growth and proliferation, cell cycle, gene expression and cancer. A number of the identified miRNA targets have previously been implicated in cancer, including YES, FSCN1, ADAM17, BIRC2, VANGL1 as well as the transcription factor STAT1. Both YES and STAT1 were verified as direct miR-145 targets. Conclusions/Significance The study identifies and validates new cancer-relevant direct targets of miR-145 in colon cancer cells and hereby adds important mechanistic understanding of the tumor-suppressive functions of miR-145.
Collapse
Affiliation(s)
- Lea H. Gregersen
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders B. Jacobsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lisa B. Frankel
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Jiayu Wen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krogh
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders H. Lund
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
228
|
Grillari J, Grillari-Voglauer R. Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage. Exp Gerontol 2010; 45:302-11. [PMID: 20080172 DOI: 10.1016/j.exger.2010.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/08/2009] [Accepted: 01/08/2010] [Indexed: 02/06/2023]
Abstract
During the last decade evidence has accumulated that the aging process is driven by limited allocation of energy to somatic maintenance resulting in accumulation of stochastic damage. This damage, affecting molecules, cells, and tissues, is counteracted by genetically programmed repair, the efficiency of which thus importantly determines the life and 'health span' of organisms. Therefore, understanding the regulation of gene expression during cellular and organismal aging as well as upon exposure to various damaging events is important to understand the biology of aging and to positively influence the health span. The recent identification of small non-coding RNAs (ncRNAs), has added an additional layer of complexity to the regulation of gene expression with the classes of endogenous small inhibitory RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), QDE1-interacting RNAs (qiRNAs) and microRNAs (miRNAs). Some of these ncRNAs have not yet been identified in mammalian cells and are dependent on RNA-dependent RNA polymerases. The first mammalian enzyme with such activity has only now emerged and surprisingly consists of the catalytic subunit of telomerase (hTERT) together with RMPR, an alternative RNA component. The so far most studied small non-coding RNAs, miRNAs, however, are now increasingly found to operate in the complex network of cellular aging. Recent findings show that (i) miRNAs are regulated during cellular senescence in vitro, (ii) they contribute to tissue regeneration by regulation of stem cell function, and (iii) at least one miRNA modulates the life span of the model organism C. elegans. Additionally, (iv) they act as inhibitors of proteins mediating the insulin/IGF1 and target of rapamycin (TOR) signalling, both of which are conserved modulators of organism life span. Here we will give an overview on the current status of these topics. Since little is so far known on the functions of small ncRNAs in the context of aging and longevity, the entry of the RNA world into the field of biogerontology certainly holds additional surprises and promises. Even more so, as miRNAs are implicated in many age-associated pathologies, and as RNAi and miRNA based therapeutics are on their way to clinics.
Collapse
Affiliation(s)
- Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | |
Collapse
|
229
|
Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG. microRNA, cell cycle, and human breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1058-64. [PMID: 20075198 DOI: 10.2353/ajpath.2010.090664] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of microRNAs as a novel class of gene expression regulators has led to a new strategy for disease diagnostics and therapeutics. Cell cycle, cell proliferation, and tumorigenesis are all regulated by microRNAs. Several general principles linking microRNAs and cancer have been recently reviewed; therefore, the current review focuses specifically on the perspective of microRNAs in control of cell cycle, stem cells, and heterotypic signaling, as well as the role of these processes in breast cancer. Altered abundance of cell cycle regulation proteins and aberrant expression of microRNAs frequently coexist in human breast cancers. Altered microRNA expression in breast cancer cell lines is associated with altered cell cycle progression and cell proliferation. Indeed, recent studies have demonstrated a causal role for microRNA in governing breast tumor suppression or collaborative oncogenesis. This review summarizes the current understanding of the role for microRNA in regulating the cell cycle and summarizes the evidence for aberrant microRNA expression in breast cancer. The new evidence for microRNA regulation by annotated genes and the involvement of microRNA in breast cancer metastasis are discussed, as is the potential for microRNA to improve breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zuoren Yu
- Department of Cancer Biology, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
230
|
Cao K, Di JB, Wei WX, Pang Z. Use of microRNAs in early detection and screening for colorectal cancer. Shijie Huaren Xiaohua Zazhi 2009; 17:3615-3619. [DOI: 10.11569/wcjd.v17.i35.3615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have identified unique small RNAs, called microRNAs (miRNAs), in colorectal cancer. They can be used to accurately diagnose the presence of colorectal cancer and help predict disease recurrence. Upregulation or downregulation of specific miRNAs are associated with the progression of colorectal cancer. MiRNAs are implicated in tumor metastasis and cytotoxic drug resistance in colorectal cancer. Differential expression of specific miRNAs in tissues and blood offers the prospect of their use in early detection and screening for colorectal cancer. MiRNAs may be important targets for cancer gene therapies, and their manipulation has potential in both prevention of recurrence and palliation. In this article, we will review the potential use of these biomarkers in early detection and screening for colorectal cancer.
Collapse
|
231
|
Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 2009; 70:378-87. [PMID: 19996288 DOI: 10.1158/0008-5472.can-09-2021] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs are important gene regulators that could play a profound role in tumorigenesis. Our previous studies indicate that miR-145 is a tumor suppressor capable of inhibiting tumor cell growth both in vitro and in vivo. In this study, we show that miR-145 exerts its function in a cell-specific manner. Although miR-145 inhibits cell growth in MCF-7 and HCT-116 cells, it has no significant effect on cell growth in metastatic breast cancer cell lines. However, miR-145 significantly suppresses cell invasion in these cells; in contrast, the antisense oligo against miR-145 increases cell invasion. miR-145 is also able to suppress lung metastasis in an experimental metastasis animal model. This miR-145-mediated suppression of cell invasion is in part due to the silencing of the metastasis gene mucin 1 (MUC1). Using luciferase reporters carrying the 3'-untranslated region of MUC1 combined with Western blot and immunofluorescence staining, we identify MUC1 as a direct target of miR-145. Moreover, ectopic expression of MUC1 enhances cell invasion, which can be blocked by miR-145. Of interest, suppression of MUC1 by miR-145 causes a reduction of beta-catenin as well as the oncogenic cadherin 11. Finally, suppression of MUC1 by RNAi mimics the miR-145 action in suppression of invasion, which is associated with downregulation of beta-catenin and cadherin 11. Taken together, these results suggest that as a tumor suppressor, miR-145 inhibits not only tumor growth but also cell invasion and metastasis.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794, USA
| | | |
Collapse
|
232
|
Abstract
Obesity is a serious health problem worldwide associated with an increased risk of life-threatening diseases such as type 2 diabetes, atherosclerosis, and certain types of cancer. Fundamental for the development of novel therapeutics for obesity and its associated metabolic syndromes is an understanding of the regulation of fat cell development. Recent computational and experimental studies have shown that microRNAs (miRNAs) play a role in metabolic tissue development, lipid metabolism and glucose homeostasis. In addition, many miRNAs are dysregulated in metabolic tissues from obese animals and humans, which potentially contributes to the pathogenesis of obesity-associated complications. In this review we summarize the current state of understanding of the roles of miRNAs in metabolic tissues under normal development and obese conditions, and discuss the potential use of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Huangming Xie
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
233
|
Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sørensen KD, Ulhøi B, Borre M, Kjems J, Dyrskjøt L, Ørntoft TF. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 2009; 29:1073-84. [DOI: 10.1038/onc.2009.395] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
234
|
Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 2009; 8:102. [PMID: 19912656 PMCID: PMC2780389 DOI: 10.1186/1476-4598-8-102] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/14/2009] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs 18-25 nucleotides in length that downregulate gene expression during various crucial cell processes such as apoptosis, differentiation and development. Changes in the expression profiles of miRNAs have been observed in a variety of human tumors, including colorectal cancer (CRC). Functional studies indicate that miRNAs act as tumor suppressors and oncogenes. These findings significantly extend Vogelstein's model of CRC pathogenesis and have shown great potential for miRNAs as a novel class of therapeutic targets. Several investigations have also described the ability of miRNA expression profiles to predict prognosis and response to selected treatments in CRC patients, and support diagnosis of CRC among cancer of unknown primary site. miRNAs' occurrence has been repeatedly observed also in serum and plasma, and miRNAs as novel minimally invasive biomarkers have indicated reasonable sensitivity for CRC detection and compare favorably with the fecal occult blood test. In this review, we summarize the knowledge regarding miRNAs' functioning in CRC while emphasizing their significance in pathogenetic signaling pathways and their potential to serve as disease biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Ondrej Slaby
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic.
| | | | | | | |
Collapse
|
235
|
Abstract
Obesity is currently reaching epidemic levels worldwide and is a major predisposing factor for a variety of life-threatening diseases including diabetes, hypertension and cardiovascular diseases. Recently, it has also been suggested to be linked with cancer. Epidemiological studies have shown that obesity increases the risk of colon cancer by 1.5-2 fold with obesity-associated colon cancer accounting for 14-35% of total incidence. Several factors, altered in obesity, may be important in cancer development including increased levels of blood insulin, insulin-like growth factor I, leptin, TNF-alpha, IL-6 as well as decreased adiponectin. A unifying characteristic of all these factors is that they increase the activity of the PI3K/Akt signal pathway. The PI3K/Akt signal pathway in turn activates signals for cell survival, cell growth and cell cycle leading to carcinogenesis. Here we review the evidence that PI3K/Akt and its downstream targets are important in obesity-associated colon cancer and thus, that targeted inhibition of this pathway could be employed for the prevention of obesity-associated colon cancer and incorporated into the therapy regime for those with irremovable colon cancers.
Collapse
Affiliation(s)
- X-F Huang
- School of Health Sciences, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
236
|
Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Güller I, Cerutti C, Paultre C, Disse E, Rabasa-Lhoret R, Laville M, Vidal H, Rome S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 2009; 58:2555-64. [PMID: 19720801 PMCID: PMC2768160 DOI: 10.2337/db09-0165] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Factors governing microRNA expressions in response to changes of cellular environment are still largely unknown. Our aim was to determine whether insulin, the major hormone controlling whole-body energy homeostasis, is involved in the regulation of microRNA expressions in human skeletal muscle. RESEARCH DESIGN AND METHODS We carried out comparative microRNA (miRNA) expression profiles in human skeletal muscle biopsies before and after a 3-h euglycemic-hyperinsulinemic clamp, with TaqMan low-density arrays. Then, using DNA microarrays, we determined the response to insulin of the miRNA putative target genes in order to determine their role in the transcriptional action of insulin. We further characterized the mechanism of action of insulin on two representative miRNAs, miR-1 and miR-133a, in human muscle cells. RESULTS Insulin downregulated the expressions of 39 distinct miRNAs in human skeletal muscle. Their potential target mRNAs coded for proteins that were mainly involved in insulin signaling and ubiquitination-mediated proteolysis. Bioinformatic analysis suggested that combinations of different downregulated miRNAs worked in concert to regulate gene expressions in response to insulin. We further demonstrated that sterol regulatory element-binding protein (SREBP)-1c and myocyte enhancer factor 2C were involved in the effect of insulin on miR-1 and miR-133a expression. Interestingly, we found an impaired regulation of miRNAs by insulin in the skeletal muscle of type 2 diabetic patients, likely as consequences of altered SREBP-1c activation. CONCLUSIONS This work demonstrates a new role of insulin in the regulation of miRNAs in human skeletal muscle and suggests a possible implication of these new modulators in insulin resistance.
Collapse
Affiliation(s)
- Aurélie Granjon
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | | | - Jennifer Rieusset
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Etienne Lefai
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Emmanuelle Meugnier
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Isabelle Güller
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Catherine Cerutti
- INSERM ERI22/EA 4173, Biostatistiques, Université Lyon, Lyon, France
| | - Christian Paultre
- INSERM ERI22/EA 4173, Biostatistiques, Université Lyon, Lyon, France
| | - Emmanuel Disse
- Hospices Civils de Lyon, Service de Diabétologie et Nutrition, Hôpital Edouard-Herriot, Lyon, France
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Oullins, France
| | - Rémi Rabasa-Lhoret
- Chaire de recherche J-A DeSève, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Martine Laville
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
- Hospices Civils de Lyon, Service de Diabétologie et Nutrition, Hôpital Edouard-Herriot, Lyon, France
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Oullins, France
| | - Hubert Vidal
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
- Hospices Civils de Lyon, Service de Diabétologie et Nutrition, Hôpital Edouard-Herriot, Lyon, France
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Oullins, France
| | - Sophie Rome
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
- Corresponding author: Sophie Rome,
| |
Collapse
|
237
|
Bommer GT, Feng Y, Iura A, Giordano TJ, Kuick R, Kadikoy H, Sikorski D, Wu R, Cho KR, Fearon ER. IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype. J Biol Chem 2009; 285:1928-38. [PMID: 19843521 PMCID: PMC2804351 DOI: 10.1074/jbc.m109.060319] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of β-catenin levels and localization and constitutive activation of β-catenin/TCF (T cell factor)-regulated gene expression occur in many cancers, including the majority of colorectal carcinomas and a subset of ovarian endometrioid adenocarcinomas. Based on the results of microarray-based gene expression profiling we found the insulin receptor substrate 1 (IRS1) gene as one of the most highly up-regulated genes upon ectopic expression of a mutant, constitutively active form of β-catenin in the rat kidney epithelial cell line RK3E. We demonstrate expression of IRS1 can be directly activated by β-catenin, likely in part via β-catenin/TCF binding to TCF consensus binding elements located in the first intron and downstream of the IRS1 transcriptional start site. Consistent with the proposal that β-catenin is an important regulator of IRS1 expression in vivo, we observed that IRS1 is highly expressed in many cancers with constitutive stabilization of β-catenin, such as colorectal carcinomas and ovarian endometrioid adenocarcinomas. Using a short hairpin RNA approach to abrogate IRS1 expression and function, we found that IRS1 function is required for efficient de novo neoplastic transformation by β-catenin in RK3E cells. Our findings add to the growing body of data implicating IRS1 as a critical signaling component in cancer development and progression.
Collapse
Affiliation(s)
- Guido T Bommer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
The rapid specification and differentiation of the embryonic zebrafish gut is essential to provide contractility for the digestion of food. The role of microRNAs in modulating gut epithelial or smooth muscle differentiation is currently not known. Here we show that the microRNA miR-145 is strongly expressed in zebrafish gut smooth muscle and regulates its development. Modulation of miR-145 levels results in gut smooth muscle and epithelium maturation defects. Loss of miR-145 results in defects of smooth muscle function as measured by decreased nitric oxide production but also leads to increased expression of the embryonic smooth muscle markers sm22alpha-b, nm-mhc-b, and smoothelin. Defects in gut epithelial maturation are also present as observed by immature morphology and a complete loss of alkaline phosphatase expression. Loss or gain of miR-145 function phenocopies defects observed with altered gata6 expression and accordingly, we show that miR-145 directly represses gata6, and that gata6 is a major miR-145 target in vitro and in vivo. miR-145 therefore plays a critical role in promoting the maturation of both layers of the gut during development through regulation of gata6.
Collapse
|
239
|
Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2009; 16:142-65. [DOI: 10.1093/humupd/dmp034] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
240
|
Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 2009; 10:443. [PMID: 19765282 PMCID: PMC2762473 DOI: 10.1186/1471-2164-10-443] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/18/2009] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs are the major class of gene-regulating molecules playing diverse roles through sequence complementarity to target mRNAs at post-transcriptional level. Tightly regulated expression and interaction of a multitude of genes for ovarian folliculogenesis could be regulated by these miRNAs. Identification of them is the first step towards understanding miRNA-guided gene regulation in different biological functions. Despite increasing efforts in miRNAs identification across various species and diverse tissue types, little is known about bovine ovarian miRNAs. Here, we report the identification and characterization of miRNAs expressed in the bovine ovary through cloning, expression analysis and target prediction. Results The miRNA library (5'-independent ligation cloning method), which was constructed from bovine ovary in this study, revealed cloning of 50 known and 24 novel miRNAs. Among all identified miRNAs, 38 were found to be new for bovine and were derived from 43 distinct loci showing characteristic secondary structure. While 22 miRNAs precursor loci were found to be well conserved in more than one species, 16 were found to be bovine specific. Most of the miRNAs were cloned multiple times, in which let-7a, let-7b, let-7c, miR-21, miR-23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 11 times, respectively. Expression analysis of all new and some annotated miRNAs in different intra-ovarian structures and in other multiple tissues showed that some were present ubiquitously while others were differentially expressed among different tissue types. Bta-miR-29a was localized in the follicular cells at different developmental stages in the cyclic ovary. Bio-informatics prediction, screening and Gene Ontology analysis of miRNAs targets identified several biological processes and pathways underlying the ovarian function. Conclusion Results of this study suggest the presence of miRNAs in the bovine ovary, thereby elucidate their potential role in regulating diverse molecular and physiological pathways underlying the ovarian functionality. This information will give insights into bovine ovarian miRNAs, which can be further characterized for their role in follicular development and female fertility as well.
Collapse
Affiliation(s)
- Md Munir Hossain
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
One of the most unexpected and fascinating discoveries in oncology over the past few years is the interplay between abnormalities in protein-coding genes and noncoding RNAs (ncRNAs) that is causally involved in cancer initiation, progression, and dissemination. MicroRNAs (miRNAs), small regulatory ncRNAs, are involved in the pathogenesis of all types of human cancers, including leukemias, mainly via dysregulation of expression of cancer genes. Increasing evidence shows that miRNAs can work as tumor suppressors (inhibiting malignant potential) or oncogenes (activating malignant potential). Researchers first identified this new paradigm of molecular oncology in patients with chronic lymphocytic leukemia (CLL). Understanding the roles of miRNAs and other ncRNAs in leukemic cells is not only uncovering a new layer of gene regulation but also providing new markers for improved diagnosis and prognosis, as well as novel therapeutic options for CLL patients. Herein we focus on the roles of miRNAs and ultraconserved ncRNA genes in CLL, highlighting what is already known about their function, proposing a novel model of CLL predisposition and progression, and describing the challenges for the near future.
Collapse
|
242
|
Shi J, Wang DM, Wang CM, Hu Y, Liu AH, Zhang YL, Sun B, Song JG. Insulin Receptor Substrate-1 Suppresses Transforming Growth Factor-β1–Mediated Epithelial-Mesenchymal Transition. Cancer Res 2009; 69:7180-7. [DOI: 10.1158/0008-5472.can-08-4470] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
243
|
miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ 2009; 17:246-54. [PMID: 19730444 DOI: 10.1038/cdd.2009.117] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the consequences of miR-145 reintroduction in human breast cancer (BC) could reveal its tumor-suppressive functions and may disclose new aspects of BC biology. Therefore, we characterized the effects of miR-145 re-expression in BC cell lines by using proliferation and apoptosis assays. As a result, we found that miR-145 exhibited a pro-apoptotic effect, which is dependent on TP53 activation, and that TP53 activation can, in turn, stimulate miR-145 expression, thus establishing a death-promoting loop between miR-145 and TP53. We also found that miR-145 can downregulate estrogen receptor-alpha (ER-alpha) protein expression through direct interaction with two complementary sites within its coding sequence. In conclusion, we described a tumor suppression function of miR-145 in BC cell lines, and we linked miR-145 to TP53 and ER-alpha. Moreover, our findings support a view that miR-145 re-expression therapy could be mainly envisioned in the specific group of patients with ER-alpha-positive and/or TP53 wild-type tumors.
Collapse
|
244
|
Abstract
Epigenetic aberrations, including DNA methylation, histone modifications, and micro-RNA dysregulation, are now well established in the development and progression of ovarian cancer, and their gradual accumulation is associated with advancing disease stage and grade. Epigenetic aberrations are relatively stable, associated with distinct disease subtypes, and present in circulating serum, representing promising diagnostic, prognostic, and pharmacodynamic biomarkers. In contrast to DNA mutations and deletions, aberrant gene-repressive epigenetic modifications are potentially reversible by epigenetic therapies, including inhibitors of DNA methylation or histone-modifying enzymes. Although epigenetic monotherapies have not shown activity against solid tumors, including ovarian cancer, preclinical studies suggest they will be effective when used in combination with one another or with conventional chemotherapeutics, and combinatorial epigenetic therapy regiments are being examined in cancer clinical trials. A greater understanding of the role of epigenetics in ovarian neoplasia will provide for improved interventions against this devastating malignancy.
Collapse
Affiliation(s)
- Curt Balch
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405-4401, USA
| | | | | | | | | |
Collapse
|
245
|
Lee CYF, Rennie PS, Jia WWG. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin Cancer Res 2009; 15:5126-35. [PMID: 19671871 DOI: 10.1158/1078-0432.ccr-09-0051] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Advanced castration-resistant prostate cancer, for which there are few treatment options, remains one of the leading causes of cancer death. MicroRNAs (miRNA) have provided a new opportunity for more stringent regulation of tumor-specific viral replication. The purpose of this study was to provide a proof-of-principle that miRNA-regulated oncolytic herpes simplex virus-1 (HSV-1) virus can selectively target cancer cells with reduced toxicity to normal tissues. EXPERIMENTAL DESIGN We incorporated multiple copies of miRNA complementary target sequences (for miR-143 or miR-145) into the 3'-untranslated region (3'-UTR) of an HSV-1 essential viral gene, ICP4, to create CMV-ICP4-143T and CMV-ICP4-145T amplicon viruses and tested their targeting specificity and efficacy both in vitro and in vivo. RESULTS Although miR-143 and miR-145 are highly expressed in normal tissues, they are significantly down-regulated in prostate cancer cells. We further showed that miR-143 and miR-145 inhibited the expression of the ICP4 gene at the translational level by targeting the corresponding 3'-UTR in a dose-dependent manner. This enabled selective viral replication in prostate cancer cells. When mice bearing LNCaP human prostate tumors were treated with these miRNA-regulated oncolytic viruses, a >80% reduction in tumor volume was observed, with significantly attenuated virulence to normal tissues in comparison with control amplicon viruses not carrying these 3'-UTR sequences. CONCLUSION Our study is the first to show that inclusion of specific miRNA target sequences into the 3'-UTR of an essential HSV-1 gene is a viable strategy for restricting viral replication and oncolysis to cancer cells while sparing normal tissues.
Collapse
Affiliation(s)
- Cleo Y F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
246
|
Liao Y, Lönnerdal B. miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period. Int J Biochem Cell Biol 2009; 42:1363-9. [PMID: 19665576 DOI: 10.1016/j.biocel.2009.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 07/18/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
MicroRNAs function as gene expression modulators that are critical for mammalian development. Lactoferrin receptor on the apical membrane of enterocytes has been suggested to play key roles in the absorption of lactoferrin-bound iron from breast milk. The objective of this study was to identify mechanisms of microRNA mediated post-transcriptional regulation of the lactoferrin receptor. Sequence analyses revealed that the miR-584 sequence is identical in human, mouse and rat, and there is a conserved region complementary to the seed region (5' nucleotides 2-8) of miR-584 within the lactoferrin receptor mRNA-3'-untranslated region. miR-584 was further found to co-localize with lactoferrin receptor mRNA in mouse small intestine. The 3'-untranslated region of human lactoferrin receptor mRNA was cloned into pGL3-control luciferase reporter vector. By luciferase reporter assays in HEK293 cells, miR-584 mimic specifically repressed the reporter activity in a dose-dependent manner. miR-584 mimic reduced endogenous lactoferrin receptor protein expression in Caco-2 cells, without significantly affecting the mRNA level. We also determined that miR-584 expression is inversely correlated with lactoferrin receptor mRNA and protein expression. Taken together, we propose that miR-584 contributes to the post-transcriptional expression of lactoferrin receptor during the perinatal period. These findings demonstrate a novel example of how microRNAs may be involved in regulation of nutrient metabolism in the newborn.
Collapse
Affiliation(s)
- Y Liao
- Department of Nutrition, University of California, One Shields Ave., Davis, CA 95616, USA.
| | | |
Collapse
|
247
|
Aslam MI, Taylor K, Pringle JH, Jameson JS. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 2009; 96:702-10. [PMID: 19526617 DOI: 10.1002/bjs.6628] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent studies have identified unique small ribonucleic acids called microRNAs (miRNAs) in colonic tumour tissue and blood that may accurately diagnose the presence of colorectal cancer and help predict disease recurrence. This review explores the potential role of these biomarkers. METHODS A literature search identified studies describing miRNAs in colorectal cancers. The outcomes of interest included diagnosis, progression and recurrence of disease, and future therapy. RESULTS Overexpression and silencing of specific miRNAs are associated with the development and progression of colorectal cancer. Such a role in oncogenesis suggest that miRNAs may be important targets for gene therapies. Differential expression of specific miRNAs in tissues and blood offers the prospect of their use in early detection and screening for colorectal cancer. MiRNAs are implicated in metastasis and cytotoxic drug resistance. Their manipulation has potential in both prevention of recurrence and palliation. CONCLUSION The miRNAs expression profile in tissue and blood has potential for their use in the detection, screening and surveillance of colorectal cancer. Furthermore, miRNAs may be targeted by gene therapy to treat colorectal cancer.
Collapse
Affiliation(s)
- M I Aslam
- Department of Colorectal Surgery, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
248
|
Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009; 76:665-77. [DOI: 10.1002/mrd.21005] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
249
|
La Rocca G, Badin M, Shi B, Xu SQ, Deangelis T, Sepp-Lorenzinoi L, Baserga R. Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-I receptor signaling pathway. J Cell Physiol 2009; 220:485-91. [PMID: 19391107 DOI: 10.1002/jcp.21796] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNA 145 (miR145) has been proposed as a tumor suppressor. It was previously shown that miR145 targets the 3' UTR of the insulin receptor substrate-1 (IRS-1) and dramatically inhibits the growth of colon cancer cells. miR145 also targets the type 1 insulin-like growth factor receptor (IGF-IR). We show here that an IRS-1 lacking its 3' UTR is no longer down-regulated by miR145 and rescues colon cancer cells from miR145-induced inhibition of growth. An IGF-IR resistant to miR145 (again by elimination of its 3' UTR) is not down-regulated by miR145 but fails to rescue colon cancer cells from growth inhibition. These and other results, taken together, indicate that down-regulation of IRS-1 plays a significant role in the tumor suppressor activity of miR145.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Department of Cancer Biology at Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7:14. [PMID: 19534786 PMCID: PMC2709114 DOI: 10.1186/1478-811x-7-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/17/2009] [Indexed: 12/13/2022] Open
Abstract
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|