201
|
Mizukami Y, Yoshioka K, Morimoto S, Yoshida KI. A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. J Biol Chem 1997; 272:16657-62. [PMID: 9195981 DOI: 10.1074/jbc.272.26.16657] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokines and various cellular stresses are known to activate c-Jun NH2-terminal kinase (JNK), which plays a role in conveying signals from the cytosol to the nucleus. Here we investigate the translocation and activation of JNK1 during ischemia and reperfusion in perfused rat heart. Ischemia induces the translocation of JNK1 from the cytosol fraction to the nuclear fraction in a time-dependent manner. Immunohistochemical observation also shows that JNK1 staining in the nucleus is enhanced after ischemia. During reperfusion after ischemia, further nuclear translocation of JNK1 is apparently inhibited. In contrast, JNK1 activity in the nuclear fraction does not increased during ischemia but increases significantly during reperfusion with a peak at 10 min of reperfusion. The activation of JNK1 is confirmed by the phosphorylation of endogenous c-Jun (Ser-73) with similar kinetics. The level of c-jun mRNA also increases during reperfusion but not during ischemia. Based on fractionation and immunohistochemical analyses, an upstream kinase for JNK1, SAPK/ERK kinase 1 (SEK1), is constantly present in both the nucleus and cytoplasm throughout ischemia and reperfusion, whereas an upstream kinase for mitogen-activated protein kinase, MAPK/ERK kinase 1, remains in the cytosol. Furthermore, phosphorylation at Thr-223 of SEK1, necessary for its activation, rapidly increases in the nuclear fraction during postischemic reperfusion. These findings demonstrate that JNK1 translocates to the nucleus during ischemia without activation and is then activated during reperfusion, probably by SEK1 in the nucleus.
Collapse
Affiliation(s)
- Y Mizukami
- Department of Legal Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan.
| | | | | | | |
Collapse
|
202
|
Martin KC, Michael D, Rose JC, Barad M, Casadio A, Zhu H, Kandel ER. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 1997; 18:899-912. [PMID: 9208858 DOI: 10.1016/s0896-6273(00)80330-x] [Citation(s) in RCA: 430] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term facilitation of the sensory to motor synapse in Aplysia requires gene expression. While some transcription factors involved in long-term facilitation are phosphorylated by PKA, others lack PKA sites but contain MAP Kinase (MAPK) phosphorylation sites. We now show that MAPK translocates into the nucleus of the presynaptic but not the postsynaptic cell during 5-HT-induced long-term facilitation. The presynaptic nuclear translocation of MAPK is also triggered by elevations in intracellular cAMP. Injection of anti-MAPK antibodies or of MAPK Kinase inhibitors into the presynaptic cell blocks long-term facilitation, without affecting basal synaptic transmission or short-term facilitation. Thus, MAPK appears to be specifically recruited and necessary for the long-term form of facilitation. This mechanism for long-term plasticity may be quite general: cAMP also activated MAPK in mouse hippocampal neurons, suggesting that MAPK may play a role in hippocampal long-term potentiation.
Collapse
Affiliation(s)
- K C Martin
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Khoo S, Cobb MH. Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proc Natl Acad Sci U S A 1997; 94:5599-604. [PMID: 9159118 PMCID: PMC20824 DOI: 10.1073/pnas.94.11.5599] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the insulinoma cell line INS-1, a model system for glucose-regulated insulin secretion, the mitogen-activating protein (MAP) kinases/extracellular signal-regulated protein kinases, ERK1 and ERK2 are activated up to 15-fold by physiological concentrations of glucose, in the range of 3-12 mM. The related MAP kinase family members, the c-Jun-N-terminal kinases/stress-activated protein kinases are insensitive to glucose, while the p38 MAP kinase is slightly glucose responsive (1.5-fold). ERK activation is dependent on glucose metabolism and the subsequent increase in calcium influx. Inhibiting activation of ERK1 and ERK2 with the MEK1/2 inhibitor PD98059 has no effect on insulin secretion, indicating that ERK activity is not necessary for secretion under these conditions. Glucose activates ERK1 and ERK2 in cytosolic and purified nuclear fractions of INS-1 cells and more of each is found in nuclei from glucose-treated cells. These findings suggest that some of the glucose-dependent actions of ERKs will be exerted in the nucleus.
Collapse
Affiliation(s)
- S Khoo
- University of Texas Southwestern Medical Center, Department of Pharmacology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA
| | | |
Collapse
|
204
|
Kim SJ, Kahn CR. Insulin regulation of mitogen-activated protein kinase kinase (MEK), mitogen-activated protein kinase and casein kinase in the cell nucleus: a possible role in the regulation of gene expression. Biochem J 1997; 323 ( Pt 3):621-7. [PMID: 9169593 PMCID: PMC1218363 DOI: 10.1042/bj3230621] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
After insulin receptor activation, many cytoplasmic enzymes, including mitogen-activated protein (MAP) kinase, MAP kinase kinase (MEK) and casein kinase II (CKII) are activated, but exactly how insulin signalling progresses to the nucleus remains poorly understood. In Chinese hamster ovary cells overexpressing human insulin receptors [CHO(Hirc)], MEK, CKII and the MAP kinases ERK I and ERK II can be detected by immunoblotting in the nucleus, as well as in the cytoplasm, in the unstimulated state. Nuclear localization of MAP kinase is also observed in 3T3-F442A adipocytes, NIH-3T3 cells and Fao hepatoma cells, whereas MEK is found in the nucleus only in Fao and CHO cells. Insulin treatment for 5-30 min induces a translocation of MEK from the cytoplasm to the nucleus, whereas the MAP kinases and CKII are not translocated into the nucleus in response to insulin during this period. However, nuclear MAP kinase and CKII activities increase by 2-3-fold within 1-10 min after stimulation with insulin. By using gel-shift assays, it has been shown that insulin also stimulates nuclear protein binding to an AP-1 site with kinetics similar to MEK translocation and MAP kinase and CKII activation. Treatment of the extracts in vitro with protein phosphatase 2A or treatment of the intact cells with 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole, a cell-permeable inhibitor of CKII, almost completely blocks the insulin-induced DNA-binding activity, whereas incubation of cells with a MEK inhibitor produces only a slight decrease. These results suggest that insulin signalling results in the activation of serine kinases in the nucleus via two pathways: (1) insulin stimulates the nuclear translocation of some kinases, such as MEK, which might directly phosphorylate nuclear protein substrates or activate other nuclear kinases, and (2) insulin activates nuclear kinases without translocation. The latter is true of CKII, which seems to regulate the binding of nuclear proteins to the AP-1 site, possibly by phosphorylation of AP-1 transcription factors.
Collapse
Affiliation(s)
- S J Kim
- Joslin Diabetes Center, Research Division, Room 620, One Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
205
|
Mizukami Y, Yoshida KI. Mitogen-activated protein kinase translocates to the nucleus during ischaemia and is activated during reperfusion. Biochem J 1997; 323 ( Pt 3):785-90. [PMID: 9169613 PMCID: PMC1218383 DOI: 10.1042/bj3230785] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growth factors and various cellular stresses are known to activate mitogen-activated protein (MAP) kinase, which plays a role in conveying signals from the cytosol to the nucleus. The phosphorylation of MAP kinase is thought to be a prerequisite for translocation. Here, we investigate the translocation and activation of MAP kinase during ischaemia and reperfusion in perfused rat heart. Ischaemia (0-40 min) induces the translocation of MAP kinase from the cytosol fraction to the nuclear fraction. Immunohistochemical observation shows that MAP kinase staining in the nucleus is enhanced after ischaemia for 40 min. Unexpectedly, tyrosine phosphorylation of MAP kinase is unchanged in the nuclear fraction during ischaemia, indicating that unphosphorylated MAP kinase translocates from the cytosol to the nucleus. During reperfusion (0-30 min), after ischaemia for 20 min, tyrosine phosphorylation of MAP kinase in the nuclear fraction is increased with a peak at 10 min of reperfusion. The activation is confirmed by MAP kinase activity with similar kinetics to the tyrosine phosphorylation. However, the amount of MAP kinase in the fraction is almost constant during reperfusion for 10 min. Although an upstream kinase for MAP kinase, MAP kinase/extracellular signal-regulated kinase kinase (MEK)-1, remains in the cytosol throughout ischaemia and reperfusion, MEK-2, another upstream kinase for MAP kinase, is constantly present in the nucleus as well as in the cytoplasm, based on analyses by fractionation and immunohistochemistry. Furthermore, MEK-2 activity in the nuclear fraction is rapidly increased during post-ischaemic reperfusion. These findings demonstrate that nuclear MAP kinase is activated by tyrosine phosphorylation during reperfusion, probably by MEK-2.
Collapse
Affiliation(s)
- Y Mizukami
- Department of Legal Medicine, Yamaguchi University School of Medicine, 1144 Kogushi, Ube, Yamaguchi 755, Japan
| | | |
Collapse
|
206
|
Bjorkoy G, Perander M, Overvatn A, Johansen T. Reversion of Ras- and phosphatidylcholine-hydrolyzing phospholipase C-mediated transformation of NIH 3T3 cells by a dominant interfering mutant of protein kinase C lambda is accompanied by the loss of constitutive nuclear mitogen-activated protein kinase/extracellular signal-regulated kinase activity. J Biol Chem 1997; 272:11557-65. [PMID: 9111071 DOI: 10.1074/jbc.272.17.11557] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transformed phenotype of v-Ras- or Bacillus cereus phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC)-expressing NIH 3T3 cells is reverted by expressing a kinase-defective mutant of protein kinase C lambda (lambdaPKC). We report here that extracellular signal-regulated kinase (ERK)-1 and -2 are constitutively activated in v-Ras- and PC-PLC-transformed cells in the absence of added growth factors. Interestingly, the activated ERKs were exclusively localized to the cell nucleus. Consistently, the transactivating potential of the C-terminal domain of Elk-1, which is activated upon ERK-mediated phosphorylation, was strongly induced in serum-starved cells expressing v-Ras or PC-PLC. Reversion of v-Ras- or PC-PLC-induced transformation by expression of dominant negative lambdaPKC abolished the nuclear ERK activation suggesting lambdaPKC as a novel, direct or indirect, activator of mitogen-activated protein kinase/ERK kinase in response to activated Ras or elevated levels of phosphatidylcholine-derived diacylglycerol. Transient transfection experiments confirmed that lambdaPKC acts downstream of Ras but upstream of mitogen-activated protein kinase/ERK kinase. We found both the v-Ras- and PC-PLC-transformed cells to be insensitive to stimulation with platelet-derived growth factor (PDGF). No detectable receptor level, autophosphorylation, or superinduction of DNA synthesis could be observed in response to treatment with PDGF. Reversion of the transformed cell lines by expression of dominant negative lambdaPKC restored the receptor level and the ability to respond to PDGF in terms of receptor autophosphorylation, ERK activation, and induction of DNA synthesis.
Collapse
Affiliation(s)
- G Bjorkoy
- Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | | | | | | |
Collapse
|
207
|
Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 1997; 137:481-92. [PMID: 9128257 PMCID: PMC2139771 DOI: 10.1083/jcb.137.2.481] [Citation(s) in RCA: 987] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1996] [Revised: 02/06/1997] [Indexed: 02/04/2023] Open
Abstract
Cell interaction with adhesive proteins or growth factors in the extracellular matrix initiates Ras/mitogen-activated protein (MAP) kinase signaling. Evidence is provided that MAP kinase (ERK1 and ERK2) influences the cells' motility machinery by phosphorylating and, thereby, enhancing myosin light chain kinase (MLCK) activity leading to phosphorylation of myosin light chains (MLC). Inhibition of MAP kinase activity causes decreased MLCK function, MLC phosphorylation, and cell migration on extracellular matrix proteins. In contrast, expression of mutationally active MAP kinase kinase causes activation of MAP kinase leading to phosphorylation of MLCK and MLC and enhanced cell migration. In vitro results support these findings since ERK-phosphorylated MLCK has an increased capacity to phosphorylate MLC and shows increased sensitivity to calmodulin. Thus, we define a signaling pathway directly downstream of MAP kinase, influencing cell migration on the extracellular matrix.
Collapse
Affiliation(s)
- R L Klemke
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
208
|
Wang XM, Zhai Y, Ferrell JE. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells. J Cell Biol 1997; 137:433-43. [PMID: 9128253 PMCID: PMC2139774 DOI: 10.1083/jcb.137.2.433] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1996] [Revised: 01/24/1997] [Indexed: 02/04/2023] Open
Abstract
The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.
Collapse
Affiliation(s)
- X M Wang
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| | | | | |
Collapse
|
209
|
Fukuda M, Gotoh Y, Nishida E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 1997; 16:1901-8. [PMID: 9155016 PMCID: PMC1169793 DOI: 10.1093/emboj/16.8.1901] [Citation(s) in RCA: 325] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.
Collapse
Affiliation(s)
- M Fukuda
- Institute for Virus Research, Kyoto University, Sakyo-ku, Japan
| | | | | |
Collapse
|
210
|
Banno Y, Tamiya-Koizumi K, Oshima H, Morikawa A, Yoshida S, Nozawa Y. Nuclear ADP-ribosylation factor (ARF)- and oleate-dependent phospholipase D (PLD) in rat liver cells. Increases of ARF-dependent PLD activity in regenerating liver cells. J Biol Chem 1997; 272:5208-13. [PMID: 9030590 DOI: 10.1074/jbc.272.8.5208] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two forms of phospholipase D (PLD) have been found to be present in nuclei isolated from rat hepatocytes by measuring phosphatidylbutanol produced from exogenous radiolabeled phosphatidylcholine in the presence of butanol. In nuclear lysates from either rat liver or ascites hepatoma AH 7974 cells, the PLD activity was markedly stimulated by a recombinant ADP-ribosylation factor (rARF) in the presence of the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) and phosphatidylinositol 4, 5-bisphosphate. ATP and phorbol-12-myristate 13-acetate had no synergistic effect on this PLD activity. On the other hand, the nuclear PLD was stimulated by unsaturated fatty acids, especially by oleic acid. The ARF-dependent nuclear PLD activity was increased in the S-phase of the regenerating rat liver after partial hepatectomy and also was much higher in AH 7974 cells than in the resting rat liver. In contrast, the levels of the oleate-dependent PLD activity remained constant throughout the cell cycle in liver regeneration. The intranuclear levels of the stimulating proteins of the nuclear PLD activity, e.g. ARF, RhoA, and protein kinase Cdelta increased in the S-phase of the regenerating liver. These results suggested that the nuclear ARF-dependent PLD activity may be associated with cell proliferation.
Collapse
Affiliation(s)
- Y Banno
- Department of Biochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500, Japan
| | | | | | | | | | | |
Collapse
|
211
|
Read MA, Whitley MZ, Gupta S, Pierce JW, Best J, Davis RJ, Collins T. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem 1997; 272:2753-61. [PMID: 9006914 DOI: 10.1074/jbc.272.5.2753] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
E-selectin expression by endothelium is crucial for leukocyte recruitment during inflammatory responses. Transcriptional regulation of the E-selectin promoter by tumor necrosis factor alpha (TNFalpha) requires multiple nuclear factor-kappaB (NF-kappaB) binding sites and a cAMP-responsive element/activating transcription factor-like binding site designated positive domain II (PDII). Here we characterize the role of the stress-activated family of mitogen-activated protein (MAP) kinases in induced expression of this adhesion molecule. By UV cross-linking and immunoprecipitation, we demonstrated that a heterodimer of transcription factors ATF-2 and c-JUN is constitutively bound to the PDII site. TNFalpha stimulation of endothelial cells induces transient phosphorylation of both ATF-2 and c-JUN and induces marked activation of the c-JUN N-terminal kinase (JNK1) and p38 but not extracellular signal-regulated kinase (ERK1). JNK and p38 are constitutively present in the nucleus, and DNA-bound c-JUN and ATF-2 are stably contacted by JNK and p38, respectively. MAP/ERK kinase kinase 1 (MEKK1), an upstream activator of MAP kinases, increases E-selectin promoter transcription and requires an intact PDII site for maximal induction. MEKK1 can also activate NF-kappaB -dependent gene expression. The effects of dominant interfering forms of the JNK/p38 signaling pathway demonstrate that activation of these kinases is critical for cytokine-induced E-selectin gene expression. Thus, TNFalpha activates two signaling pathways, NF-kappaB and JNK/p38, which are both required for maximal expression of E-selectin.
Collapse
Affiliation(s)
- M A Read
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Pumiglia KM, Decker SJ. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 1997; 94:448-52. [PMID: 9012803 PMCID: PMC19532 DOI: 10.1073/pnas.94.2.448] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays a crucial role in the transduction of extracellular signals into responses governing growth and differentiation. The effects of a specific inhibitor of the MAPK kinase (MEK)/MAPK pathway (PD98059) on nerve growth factor (NGF)-induced growth arrest and inhibition of cell cycle-dependent kinases (CDKs) have been examined. Treatment of NIH 3T3 cells expressing TRKA with PD98059 dramatically reversed the complete inhibition of growth of these cells caused by NGF. PD98059 also blocked the ability of NGF to inhibit the activities of CDK4 and CDK2, while partially preventing NGF induction of p21Cip1/WAF1. To independently evaluate the involvement of the MEK/MAPK pathway in growth arrest, an inducible activated form of the Raf-1 protooncogene (delta RAF-1:ER) was expressed in these cells. Activation of delta RAF-1:ER resulted in a prolonged increase in MAPK activity and growth arrest of these cells, with concomitant induction of p21Cip1/WAF1 and inhibition of CDK2 activity. These effects of delta RAF-1:ER activation were all reversed by treatment of cells with PD98059. These data indicate that in addition to functioning as a positive effector of growth, stimulation of the MEK/MAPK pathway can result in an inhibition of CDK activity and cell cycle arrest.
Collapse
Affiliation(s)
- K M Pumiglia
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | |
Collapse
|
213
|
Lu D, Yang H, Raizada MK. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase. J Cell Biol 1996; 135:1609-17. [PMID: 8978826 PMCID: PMC2133950 DOI: 10.1083/jcb.135.6.1609] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.
Collapse
Affiliation(s)
- D Lu
- Department of Physiology, University of Florida, College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|
214
|
Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 1996. [PMID: 8757255 DOI: 10.1523/jneurosci.16-17-05425.1996] [Citation(s) in RCA: 577] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The regulation of gene expression by neurotransmitters is likely to play a key role in neuroplasticity both during development and in the adult animal. Therefore, it is important to determine the mechanisms of neuronal gene regulation to understand fully the mechanisms of learning, memory, and other long-term adaptive changes in neurons. The neurotransmitter glutamate stimulates rapid and transient induction of many genes, including the c-fos proto-oncogene. The c-fos promoter contains several critical regulatory elements, including the serum response element (SRE), that mediate glutamate-induced transcription in neurons; however, the mechanism by which the SRE functions in neurons has not been defined. In this study, we sought to identify transcription factors that mediate glutamate induction of transcription through the SRE in cortical neurons and to elucidate the mechanism(s) of transcriptional activation by these factors. To facilitate this analysis, we developed an improved calcium phosphate coprecipitation procedure to transiently introduce DNA into primary neurons, both efficiently and consistently. Using this protocol, we demonstrate that the transcription factors serum response factor (SRF) and Elk-1 can mediate glutamate induction of transcription through the SRE in cortical neurons. There are at least two distinct pathways by which glutamate signals through the SRE: an SRF-dependent pathway that can operate in the absence of Elk and an Elk-dependent pathway. Activation of the Elk-dependent pathway of transcription seems to require phosphorylation of Elk-1 by extracellular signal-regulated kinases (ERKs), providing evidence for a physiological function of ERKs in glutamate signaling in neurons. Taken together, these findings suggest that SRF, Elk, and ERKs may have important roles in neuroplasticity.
Collapse
|
215
|
Xu X, Sonntag WE. Growth hormone-induced nuclear translocation of Stat-3 decreases with age: modulation by caloric restriction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E903-9. [PMID: 8944679 DOI: 10.1152/ajpendo.1996.271.5.e903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- X Xu
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157-1083, USA
| | | |
Collapse
|
216
|
Chen CY, Forman LW, Faller DV. Calcium-dependent immediate-early gene induction in lymphocytes is negatively regulated by p21Ha-ras. Mol Cell Biol 1996; 16:6582-92. [PMID: 8887687 PMCID: PMC231660 DOI: 10.1128/mcb.16.11.6582] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The induction of immediate-early (IE) response genes, such as egr-1, c-fos, and c-jun, occurs rapidly after the activation of T lymphocytes. The process of activation involves calcium mobilization, activation of protein kinase C (PKC), and phosphorylation of tyrosine kinases. p21(ras), a guanine nucleotide binding factor, mediates T-cell signal transduction through PKC-dependent and PKC-independent pathways. The involvement of p21(ras) in the regulation of calcium-dependent signals has been suggested through analysis of its role in the activation of NF-AT. We have investigated the inductions of the IE genes in response to calcium signals in Jurkat cells (in the presence of activated p21(ras)) and their correlated consequences. The expression of activated p21(ras) negatively regulated the induction of IE genes by calcium ionophore. This inhibition of calcium-activated IE gene induction was reversed by treatment with cyclosporin A, suggesting the involvement of calcineurin in this regulation. A later result of inhibition of this activation pathway by p21(ras) was down-regulation of the activity of the transcription factor AP-1 and subsequent coordinate reductions in IL-2 gene expression and protein production. These results suggest that p2l(ras) is an essential mediator in generating not only positive but also negative modulatory mechanisms controlling the competence of T cells in response to inductive stimulations.
Collapse
Affiliation(s)
- C Y Chen
- Department of Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
217
|
Law RE, Meehan WP, Xi XP, Graf K, Wuthrich DA, Coats W, Faxon D, Hsueh WA. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 1996; 98:1897-905. [PMID: 8878442 PMCID: PMC507630 DOI: 10.1172/jci118991] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are responses to arterial injury that are highly important to the processes of restenosis and atherosclerosis. In the arterial balloon injury model in the rat, platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) are induced in the vessel wall and regulate these VSMC activities. Novel insulin sensitizing agents, thiazolidinediones, have been demonstrated to inhibit insulin and epidermal growth factor-induced growth of VSMCs. We hypothesized that these agents might also inhibit the effect of PDGF and bFGF on cultured VSMCs and intimal hyperplasia in vivo. Troglitazone (1 microM), a member of the thiazolidinedione class, produced a near complete inhibition of both bFGF-induced DNA synthesis as measured by bromodeoxyuridine incorporation (6.5+/-3.9 vs. 17.6+/-4.3% cells labeled, P < 0.05) and c-fos induction. This effect was associated with an inhibition (by 73+/-4%, P < 0.01) by troglitazone of the transactivation of the serum response element, which regulates c-fos expression. Inhibition of c-fos induction by troglitazone appeared to occur via a blockade of the MAP kinase pathway at a point downstream of MAP kinase activation by MAP kinase kinase. At this dose, troglitazone also inhibited PDGF-BB-directed migration of VSMC (by 70+/-6%, P < 0.01). These in vitro effects were operative in vivo. Quantitative image analysis revealed that troglitazone-treated rats had 62% (P < 0.001) less neointima/media area ratio 14 d after balloon injury of the aorta compared with injured rats that received no troglitazone. These results suggest troglitazone is a potent inhibitor of VSMC proliferation and migration and, thus, may be a useful agent to prevent restenosis and possibly atherosclerosis.
Collapse
Affiliation(s)
- R E Law
- University of Southern California School of Medicine, Department of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Kawasaki H, Moriguchi T, Matsuda S, Li HZ, Nakamura S, Shimohama S, Kimura J, Gotoh Y, Nishida E. Ras-dependent and Ras-independent activation pathways for the stress-activated-protein-kinase cascade. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:315-21. [PMID: 8917425 DOI: 10.1111/j.1432-1033.1996.00315.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously shown that osmotic stress activates both the mitogen-activated protein kinase (MAPK) cascade and the stress-activated protein kinase (SAPK, also known as JNK) cascade in rat fibroblastic 3Y1 cells and rat PC12 cells. Here, we show that treatment of these cells with sodium arsenite, a chemical compound that mimics the effects of heat shock, or anisomycin, a protein synthesis inhibitor, induces activation of SAPKs potently. These chemical compounds also stimulated the activity of SEK1/MKK4/JNKK, SAPK activator, and the activity of MEKK, SEK1 activator. Expression of a dominant negative mutant of Ras blocked the anisomycin-induced activation of SAPK and SEK1, but did not affect markedly the arsenite-induced or heat shock-induced activation in PC12 cells. The osmotic-stress-induced activation of SAPK was insensitive to the expression of a dominant negative Ras, but was partly sensitive to down-regulation of protein kinase C. These results suggest the existence of Ras-dependent and Ras-independent activation pathways for the SAPK cascade triggered by environmental stresses including chemical stress in PC12 cells. Cell staining with a specific anti-SAPK serum showed that SAPKs were present in both the cytoplasm and the nucleus under normal conditions, and became located mainly in the nucleus after osmotic stress or ultraviolet treatment, suggesting the nuclear translocation of SAPKs.
Collapse
Affiliation(s)
- H Kawasaki
- Department of Genetics and Molecular Biology, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Meili R, Ballmer-Hofer K. Activation-independent nuclear translocation of mitogen activated protein kinase ERK1 mediated by thiol-modifying chemicals. FEBS Lett 1996; 394:34-8. [PMID: 8925922 DOI: 10.1016/0014-5793(96)00927-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The extracellular signal-regulated kinases ERK1 and ERK2 are key mediators of mitogenic signals in most cell types. In fibroblasts, sustained activation and nuclear translocation are mandatory for S-phase induction. The events leading to activation of these kinases are well understood, whereas little is known about the mechanism of their translocation. Using indirect immunofluorescence and biochemical analysis we show that ERK1 can translocate to the nucleus in the absence of activation and phosphorylation by upstream kinases when cells are treated with thiol-modifying chemicals. We propose that these chemicals inactivate a protein contributing to the cytoplasmic localization of ERK1.
Collapse
Affiliation(s)
- R Meili
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
220
|
Xia Z, Dudek H, Miranti CK, Greenberg ME. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 1996; 16:5425-36. [PMID: 8757255 PMCID: PMC6578897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The regulation of gene expression by neurotransmitters is likely to play a key role in neuroplasticity both during development and in the adult animal. Therefore, it is important to determine the mechanisms of neuronal gene regulation to understand fully the mechanisms of learning, memory, and other long-term adaptive changes in neurons. The neurotransmitter glutamate stimulates rapid and transient induction of many genes, including the c-fos proto-oncogene. The c-fos promoter contains several critical regulatory elements, including the serum response element (SRE), that mediate glutamate-induced transcription in neurons; however, the mechanism by which the SRE functions in neurons has not been defined. In this study, we sought to identify transcription factors that mediate glutamate induction of transcription through the SRE in cortical neurons and to elucidate the mechanism(s) of transcriptional activation by these factors. To facilitate this analysis, we developed an improved calcium phosphate coprecipitation procedure to transiently introduce DNA into primary neurons, both efficiently and consistently. Using this protocol, we demonstrate that the transcription factors serum response factor (SRF) and Elk-1 can mediate glutamate induction of transcription through the SRE in cortical neurons. There are at least two distinct pathways by which glutamate signals through the SRE: an SRF-dependent pathway that can operate in the absence of Elk and an Elk-dependent pathway. Activation of the Elk-dependent pathway of transcription seems to require phosphorylation of Elk-1 by extracellular signal-regulated kinases (ERKs), providing evidence for a physiological function of ERKs in glutamate signaling in neurons. Taken together, these findings suggest that SRF, Elk, and ERKs may have important roles in neuroplasticity.
Collapse
Affiliation(s)
- Z Xia
- Department of Neurology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
221
|
Fukuda M, Gotoh I, Gotoh Y, Nishida E. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 1996; 271:20024-8. [PMID: 8702720 DOI: 10.1074/jbc.271.33.20024] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated in cytoplasm in response to extracellular signals and then is translocated to nucleus. A directed activator for MAPK, MAPK kinase (MAPKK), stays in cytoplasm to transmit the signal from the plasma membrane to MAPK. Here we show that MAPKK contains a short amino acid sequence in the N-terminal region (residues 32-44), which acts as a nuclear export signal (NES) and thus is required for cytoplasmic localization of MAPKK. This NES sequence of MAPKK, like that of protein kinase inhibitor of cAMP-dependent protein kinase or Rev, is rich in leucine residues, which are crucial for the NES activity. Furthermore, the NES peptide of protein kinase inhibitor, as well as the NES peptide of MAPKK, inhibited the nuclear export of ovalbumin conjugated to the NES peptide of MAPKK. These results may suggest a common mechanism of nuclear export using a general leucine-rich NES.
Collapse
Affiliation(s)
- M Fukuda
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | |
Collapse
|
222
|
Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, Kadowaki T, Hirai H. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 1996; 16:3967-79. [PMID: 8668214 PMCID: PMC231393 DOI: 10.1128/mcb.16.7.3967] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AML1 (also called PEBP2alphaB, CBFA2, or CBFalpha2) is one of the most frequently disrupted genes in chromosome abnormalities seen in human leukemias. It has been reported that AML1 plays several pivotal roles in myeloid hematopoietic differentiation and other biological phenomena, probably through the transcriptional regulation of various relevant genes. Here, we investigated the mechanism of regulation of AML1 functions through signal transduction pathways. The results showed that AML1 is phosphorylated in vivo on two serine residues within the proline-, serine-, and threonine-rich region, with dependence on the activation of extracellular signal-regulated kinase (ERK) and with interleukin-3 stimulation in a hematopoietic cell line. These in vivo phosphorylation sites of AML1 were phosphorylated directly in vitro by ERK. Although differences between wild-type AML1 and phosphorylation site mutants in DNA-binding affinity were not observed, we have shown that ERK-dependent phosphorylation potentiates the transactivation ability of AML1. Furthermore the phosphorylation site mutations reduced the transforming capacity of AML1 in fibroblast cells. These data indicate that AML1 functions are potentially regulated by ERK, which is activated by cytokine and growth factor stimuli. This study provides some important clues for clarifying unidentified facets of the regulatory mechanism of AML1 function.
Collapse
Affiliation(s)
- T Tanaka
- Third Department of Internal Medicine, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Morishima-Kawashima M, Kosik KS. The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 1996; 7:893-905. [PMID: 8816996 PMCID: PMC275941 DOI: 10.1091/mbc.7.6.893] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated by many kinds of stimuli and plays an important role in integrating signal transduction cascades. MAPK is present abundantly in brain, where we have studied its association with microtubules. Immunofluorescence of primary hippocampal neurons revealed that MAPK staining co-localized with microtubules and biochemical analyses showed that MAPK co-purified with microtubules. Approximately 4% of MAPK in cytosolic extracts was associated with microtubules, where it was associated with both tubulin and microtubule-associated proteins (MAPs) fractions. Further fractionation of MAPs suggested that a portion of MAPK is associated with MAP2. An association with MAP2 was also demonstrated by co-immunoprecipitation and in vitro binding experiments. A similar association was shown for the juvenile MAP2 isoform, MAP2C. The pool of MAPK associated with microtubules had a higher activity relative to the nonassociated pool in both brain and proliferating PC12 cells. Although MAPK was activated by nerve growth factor in PC12 cells, the activity of microtubule-associated MAPK did not further increase. These results raise the possibility that microtubule-associated MAPK operates through constitutive phosphorylation activity to regulate microtubule function in neurons.
Collapse
|
224
|
Suzuki T. Messengers from the synapses to the nucleus (MSNs) that establish late phase of long-term potentiation (LTP) and long-term memory. Neurosci Res 1996; 25:1-6. [PMID: 8808794 DOI: 10.1016/0168-0102(96)01023-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The late stage of long-term potentiation (LTP) and long-term memory is believed to be largely governed by altered gene expression for its generation and maintenance, while the early stages of LTP and memory are controlled mainly by the phosphorylation-dephosphorylation of the synaptic proteins. For the altered gene expression, synaptic information must be transmitted from the synaptic sites to the nucleus. This article describes the presence of specific messenger molecules that transmit synaptic information to the nucleus; these molecules are referred to as MSNs (Messengers from Synapse to the Nucleus). In addition, recent studies have indicated that certain transcription factors localize at postsynaptic sites as well as the nucleus, and may function as MSNs.
Collapse
Affiliation(s)
- T Suzuki
- Department of Neuroplasticity, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
225
|
Ding A, Chen B, Fuortes M, Blum E. Association of mitogen-activated protein kinases with microtubules in mouse macrophages. J Exp Med 1996; 183:1899-904. [PMID: 8666946 PMCID: PMC2192474 DOI: 10.1084/jem.183.4.1899] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Taxol, a microtubule-binding diterpene, mimics many effects of lipopolysaccharide (LPS) on mouse macrophages. The LPS-mimetic effects of taxol appear to be under the same genetic control as responses to LPS itself. Thus we have postulated a role for microtubule-associated proteins (MAP) in the response of macrophages to LPS. Stimulation of macrophages by LPS quickly induces the activation of mitogen-activated protein kinases (MAPK). MAPK are generally considered cytosolic enzymes. Herein we report that much of the LPS-activatable pool of MAPK in primary mouse peritoneal macrophages is microtubule associated. By immunofluorescence, MAPK were localized to colchicine- and nocodazole-disruptible filaments. From both mouse brain and RAW 264.7 macrophages, MAPK could be coisolated with polymerized tubulin. Fractionation of primary macrophages into cytosol-, microfilament-, microtubule-, and intermediated filament-rich extracts revealed that approximately 10% of MAPK but none of MAPK kinase (MEK1A and MEK2) was microtubule bound. Exposure of macrophages to LPS did not change the proportion of MAPK bound to microtubules, but preferentially activated the microtubule-associated pool. These findings confirm the prediction that LPS activates a kinase bound to microtubules. Together with LPS-mimetic actions of taxol and the shared genetic control of responses to LPS and taxol, these results support the hypothesis that a major LPS-signaling pathway in mouse macrophages may involve activation of one or more microtubule-associated kinases.
Collapse
Affiliation(s)
- A Ding
- Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York 10021, USA
| | | | | | | |
Collapse
|
226
|
Sutherland C, O'Brien RM, Granner DK. New connections in the regulation of PEPCK gene expression by insulin. Philos Trans R Soc Lond B Biol Sci 1996; 351:191-9. [PMID: 8650266 DOI: 10.1098/rstb.1996.0016] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) catalyses the rate-limiting step in hepatic gluconeogenesis. Glucagon (via the second messenger cAMP) and glucocorticoids stimulate transcription of the PEPCK gene whereas insulin and phorbol esters have a dominant inhibitory effect. Wortmannin, an inhibitor of 1-phosphatidylinositol 3-kinase (PI 3-kinase), blocks the inhibition of glucocorticoid- and cAMP-stimulated PEPCK gene transcription by insulin. By contrast, although phorbol esters mimic the action of insulin on the regulation of PEPCK gene transcription, wortmannin does not block the effect of these agents. Thus PI 3-kinase is required for the regulation of PEPCK gene expression by insulin but not by phorbol esters. In liver cells, insulin administration stimulates the activity of multiple protein kinases, including the p42/p44 Mitogen Activated Protein (MAP) kinase and the p70/p85 ribosomal protein S6 kinase. Selective inhibition of the activation of either kinase, utilizing the compounds PD98059 and rapamycin respectively, does not affect insulin regulation of PEPCK gene transcription. Thus regulation of PEPCK gene transcription requires PI 3-kinase but does not require the activation of either p42/p44 MAP kinase or p70/p85 ribosomal protein S6 kinase.
Collapse
Affiliation(s)
- C Sutherland
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
227
|
Mechanisms of Growth Factor-Mediated Signal Transduction in PC12 Cells. MEDICAL INTELLIGENCE UNIT 1996. [DOI: 10.1007/978-3-662-21948-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
228
|
Affiliation(s)
- J E Galán
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794-5222, USA
| |
Collapse
|
229
|
Tonks NK. Protein tyrosine phosphatases and the control of cellular signaling responses. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 36:91-119. [PMID: 8783556 DOI: 10.1016/s1054-3589(08)60578-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N K Tonks
- Cold Spring Harbor Laboratory, New York 11724, USA
| |
Collapse
|
230
|
Csermely P, Schnaider T, Szántó I. Signalling and transport through the nuclear membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:425-51. [PMID: 8547304 DOI: 10.1016/0304-4157(95)00015-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Csermely
- Institute of Biochemistry I., Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
231
|
Urich M, el Shemerly MY, Besser D, Nagamine Y, Ballmer-Hofer K. Activation and nuclear translocation of mitogen-activated protein kinases by polyomavirus middle-T or serum depend on phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:29286-92. [PMID: 7493960 DOI: 10.1074/jbc.270.49.29286] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several cellular signal transduction pathways activated by middle-T in polyomavirus-transformed cells are required for viral oncogenicity. Here we focus on the role of phosphatidylinositol 3-kinase (PI 3-kinase) and Ras and address the question how these signaling molecules cooperate during cell cycle activation. Ras activation is mediated through association with SHC.GRB2.SOS and leads to increased activity of several members of the mitogen-activated protein (MAP) kinase family, while activation of PI 3-kinase results in the generation of D3-phosphorylated phosphatidylinositides whose downstream targets remain elusive. PI 3-kinase activation might also ensue as a direct consequence of Ras activation. Oncogenicity of middle-T requires stimulation of both Ras- and PI 3-kinase-dependent pathways. Mutants of middle-T incapable to bind either SHC.GRB2.SOS or PI 3-kinase are not oncogenic. Sustained activation and nuclear localization of one of the MAP kinases, ERK1, was observed in wild type but not in mutant middle-T-expressing cells. Wortmannin, an inhibitor of PI 3-kinase, prevented MAP kinase activation and nuclear localization in middle-T-transformed cells. PI 3-kinase activity was also required for activation of the MAP kinase pathway in normal serum-stimulated cells, generalizing the concept that signaling through MAP kinases requires not only Ras-but also PI 3-kinase-mediated signals.
Collapse
Affiliation(s)
- M Urich
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
232
|
Abstract
Tyrosine kinase growth factor receptors activate MAP kinase by a complex mechanism involving the SH2/3 protein Grb2, the exchange protein Sos, and Ras. The GTP-bound Ras protein binds to the Raf kinase and initiates a protein kinase cascade that leads to MAP kinase activation. Three MAP kinase kinase kinases have been described--c-Raf, c-Mos, and Mekk--that phosphorylate and activate Mek, the MAP kinase kinase. Activated Mek phosphorylates and activates MAP kinase. Subsequently, the activated MAP kinase translocates into the nucleus where many of the physiological targets of the MAP kinase signal transduction pathway are located. These substrates include transcription factors that are regulated by MAP kinase phosphorylation (e.g., Elk-1, c-Myc, c-Jun, c-Fos, and C/EBP beta). Thus the MAP kinase pathway represents a significant mechanism of signal transduction by growth factor receptors from the cell surface to the nucleus that results in the regulation of gene expression. Three MAP kinase homologs have been identified in the rat: Erk1, Erk2, and Erk3. Human MAP kinases that are similar to the rat Erk kinases have also been identified by molecular cloning. The human Erk1 protein kinase has been shown to be widely expressed as a 44-kDa protein in many tissues. The human Erk2 protein kinase is a 41-kDa protein that is expressed ubiquitously. In contrast, a human Erk3-related protein kinase has been found to be expressed at a high level only in heart muscle and brain. The loci of these MAP kinase genes are widely distributed within the human genome: erk2 at 22q11.2; erk1 at 16p11.2; and ek3-related at 18q12-21. In the yeast Saccharomyces cerevisiae, five MAP kinase gene homologs have been described: smkl, mpk1, hog1, fus3, and kss1. Together, these kinases are a more diverse group than the human erks that have been identified. Thus the erks are likely to represent only one subgroup of a larger human MAP kinase gene family. A candidate for this extended family of MAP kinases is the c-Jun NH2-terminal kinase (Jnk), which binds to and phosphorylates the transcription factor c-Jun at the activating sites Ser-63 and Ser-73. Evidence is presented here to demonstrate that Jnk is a distant relative of the MAP kinase group that is activated by dual phosphorylation at Tyr and Thr.
Collapse
Affiliation(s)
- R J Davis
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| |
Collapse
|
233
|
Pagès G, Stanley ER, Le Gall M, Brunet A, Pouysségur J. The mouse p44 mitogen-activated protein kinase (extracellular signal-regulated kinase 1) gene. Genomic organization and structure of the 5'-flanking regulatory region. J Biol Chem 1995; 270:26986-92. [PMID: 7592946 DOI: 10.1074/jbc.270.45.26986] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase are ubiquitous kinases conserved from fungi to mammals. Their activity is regulated by phosphorylation on both threonine and tyrosine, and they play a crucial role in the regulation of proliferation and differentiation. We report here the cloning of the murine p44 MAP kinase (extracellular signal-regulated kinase 1) gene, the determination of its intron/exon boundaries, and the characterization of its promoter. The gene spans approximately eight kilobases (kb) and can be divided into nine exons and eight introns, each coding region exon containing from one to three of the highly conserved protein kinase domains. Primer extension analysis reveals the existence of two major start sites of transcription located at -183 and -186 base pairs (bp) as well as four discrete start sites for transcription located at -178, -192, -273, and -292 bp of the initiation of translation. However, the start site region lacks TATA-like sequences but does contain initiator-like sequences proximal to the major start sites obtained by primer extension. 1 kb of the promoter region has been sequenced. It contains three putative TATA boxes far upstream of the main start sites region, one AP-1 box, one AP-2 box, one Malt box, one GAGA box, one half serum-responsive element, and putative binding sites for Sp1 (five), GC-rich binding factor (five), CTF-NF1 (one), Myb (one), p53 (two), Ets-1 (one), NF-IL6 (two), MyoD (two), Zeste (one), and hepatocyte nuclear factor-5 (one). To determine the sites critical for the function of the p44 MAPK promoter, we constructed a series of chimeric genes containing variable regions of the 5'-flanking sequence of p44 MAPK gene and the coding region for luciferase. Activity of the promoter, measured by its capacity to direct expression of a luciferase reporter gene, is strong, being comparable with the activity of the Rous sarcoma virus promoter. Progressive deletions of the approximately 1 kb (-1200/-78) promoter region allowed us to define a minimal region of 186 bp (-284/-78) that has maximal promoter activity. Within this context, deletion of the AP-2 binding site reduces by 30-40% the activity of the promoter. Further deletion of this minimal promoter that removes the major start sites (-167/-78) surprisingly preserves promoter activity. This result implicates a major role of this region that contains the Sp1 sites.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Pagès
- Centre de Biochimie, CNRS UMR134, Nice, France
| | | | | | | | | |
Collapse
|
234
|
Jonak C, Kiegerl S, Lloyd C, Chan J, Hirt H. MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:686-94. [PMID: 7476871 DOI: 10.1007/bf02191708] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termed MMK2. The predicted amino acid sequence of MMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termed MMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness of MMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeast MPK1(SLT2) kinase by MMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, Biocenter Vienna, Austria
| | | | | | | | | |
Collapse
|
235
|
Virdee K, Tolkovsky AM. Activation of p44 and p42 MAP kinases is not essential for the survival of rat sympathetic neurons. Eur J Neurosci 1995; 7:2159-69. [PMID: 8542072 DOI: 10.1111/j.1460-9568.1995.tb00637.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have examined whether activation of MAP kinases [or extracellular signal-regulated kinases (ERKs)] is required for the survival of rat sympathetic neurons by comparing the actions of three survival factors whose survival-promoting actions can be blocked by neutralizing Fab fragments to p21 ras (Nobes and Tolkovsky, 1995, Eur. J. Neurosci., 7, 344-350), nerve growth factor (NGF), the cytokines ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF), and the cyclic AMP analogue 4-(8-chlorophenylthio)cAMP (CPTcAMP). NGF-induced survival was accompanied by an intense (15- to 30-fold) and steady (> 24 h) activation of p44 and p42 ERKs which waned rapidly (t1/2 approximately 30 min) upon NGF withdrawal. However, concentrations of NGF that induced a weak (4- to 5-fold) stimulation of the ERKs were not sufficient to maintain long-term survival. Moreover, prolonged and intense stimulation of the ERKs by NGF for up to 15.5 h was unable to confer long-term survival, since withdrawal of NGF after this time resulted in neuronal death that was kinetically indistinguishable from the death of neurons that had not been exposed to NGF. By contrast, CNTF and LIF continued to support survival for up to 3 days after eliciting only transient (< 30 min and 1 h respectively) activation of p44 and p42 ERKs, while CPTcAMP induced survival for several days without any measurable activation of the ERKs. Taken together, these data suggest that ERK activation per se is neither necessary nor sufficient for survival and that alternative pathways exist for effecting long-term survival of rat sympathetic neurons.
Collapse
Affiliation(s)
- K Virdee
- Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
236
|
Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci U S A 1995; 92:8881-5. [PMID: 7568036 PMCID: PMC41071 DOI: 10.1073/pnas.92.19.8881] [Citation(s) in RCA: 285] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using indirect immunofluorescence microscopy and biochemical techniques, we have determined that approximately one-third of the total mitogen-activated protein kinase (MAPK) is associated with the microtubule cytoskeleton in NIH 3T3 mouse fibroblasts. This population of enzyme can be separated from the soluble form that is found distributed throughout the cytosol and is also present in the nucleus after mitogen stimulation. The microtubule-associated enzyme pool constitutes half of all detectable MAPK activity after mitogenic stimulation. These findings extend the known in vivo associations of MAPK with microtubules to include the entire microtubule cytoskeleton of proliferating cells, and they suggest that a direct association of MAPK with microtubules may be in part responsible for the observed correlations between MAPK activities and cytoskeletal alteration.
Collapse
Affiliation(s)
- A A Reszka
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
237
|
Arendt T, Holzer M, Grossmann A, Zedlick D, Brückner MK. Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer's disease. Neuroscience 1995; 68:5-18. [PMID: 7477934 DOI: 10.1016/0306-4522(95)00146-a] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sequential activation of the mitogen-activated protein kinase kinase and its substrate, the mitogen-activated protein kinase is involved in a cascade of protein kinases which link a number of cell surface signals to intracellular changes in enzyme activity and gene expression. In vitro, mitogen-activated protein kinase is able to phosphorylate the microtubule-associated protein tau at Ser-Pro and Thr-Pro sites, thereby generating abnormally hyperphosphorylated tau species that are similar to paired helical filament-tau found in Alzheimer's disease. In the present study, we analysed the levels of immunoreactive mitogen-activated protein kinase kinase and mitogen-activated protein kinase in the temporal cortex (area 22) of patients with Alzheimer's disease by means of enzyme-linked immuno-sorbent assays and compared these changes with the content of abnormally phosphorylated paired helical filament-tau. The levels of immunochemically detected mitogen-activated protein kinase kinase and mitogen-activated protein kinase were both increased in Alzheimer's disease by between 35 and 40% compared with age-matched controls. Elevation of mitogen-activated protein kinase kinase was most pronounced during early stages of Alzheimer's disease and was inversely related to the tissue content of abnormally phosphorylated paired helical filament-tau. Pronounced immunoreactivity of mitogen-activated protein kinase kinase and mitogen-activated protein kinase was present in both tangle bearing neurons and unaffected neurons of the temporal cortex. Immunoreactive neurons were most often localized in the direct vicinity of neuritic plaques. In Alzheimer's disease, the subcellular distribution of mitogen-activated protein kinase kinase and mitogen-activated protein kinase showed a striking translocation from the cytoplasmic to the nuclear compartment. It is suggested that the activation of the mitogen-activated protein kinase cascade which appears to be an early feature of Alzheimer's disease might be critically involved in self-stimulating processes of neurodegeneration and aberrant repair under these conditions.
Collapse
Affiliation(s)
- T Arendt
- Department of Neurochemistry, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | | | | | | | | |
Collapse
|
238
|
Zhao Y, Bjørbaek C, Weremowicz S, Morton CC, Moller DE. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol 1995; 15:4353-63. [PMID: 7623830 PMCID: PMC230675 DOI: 10.1128/mcb.15.8.4353] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel pp90rsk Ser/Thr kinase (referred to as RSK3) was cloned from a human cDNA library. The RSK3 cDNA encodes a predicted 733-amino-acid protein with a unique N-terminal region containing a putative nuclear localization signal. RSK3 mRNA was widely expressed (but was predominant in lung and skeletal muscle). By using fluorescence in situ hybridization, the human RSK3 gene was localized to band q27 of chromosome 6. Hemagglutinin epitope-tagged RSK3 was expressed in transiently transfected COS cells. Growth factors, serum, and phorbol ester stimulated autophosphorylation of recombinant RSK3 and its kinase activity toward several protein substrates known to be phosphorylated by RSKs. However, the relative substrate specificity of RSK3 differed from that reported for other isoforms. RSK3 also phosphorylated potential nuclear target proteins including c-Fos and histones. Furthermore, although RSK3 was inactivated by protein phosphatase 2A in vitro, the enzyme was not activated by ERK2/mitogen-activated protein (MAP) kinase. In contrast, the kinase activity of another epitope-tagged RSK isoform (RSK-1) was significantly increased by in vitro incubation with ERK2/MAP kinase. Finally, we used affinity-purified RSK3 antibodies to demonstrate by immunofluorescence that endogenous RSK3 undergoes serum-stimulated nuclear translocation in cultured HeLa cells. These results provide evidence that RSK3 is a third distinct isoform of pp90rsk which translocates to the cell nucleus, phosphorylates potential nuclear targets, and may have a unique upstream activator. RSK3 may therefore subserve a discrete physiologic role(s) that differs from those of the other two known mammalian RSK isoforms.
Collapse
Affiliation(s)
- Y Zhao
- Charles A. Dana Research Institute, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
239
|
Karin M, Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 1995; 5:747-57. [PMID: 7583121 DOI: 10.1016/s0960-9822(95)00151-5] [Citation(s) in RCA: 572] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two general mechanisms have evolved for the rapid and accurate transmission of signals from cell-surface receptors to the nucleus, both involving protein phosphorylation. One mechanism depends on the regulated translocation of activated protein kinases from the cytoplasm to the nucleus, where they phosphorylate target transcription factors. In the second mechanism, transcription factors are kept in a latent state in the cytoplasm and are translocated into the nucleus upon activation.
Collapse
Affiliation(s)
- M Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093-0636, USA
| | | |
Collapse
|
240
|
Carrington WA, Lynch RM, Moore ED, Isenberg G, Fogarty KE, Fay FS. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 1995; 268:1483-7. [PMID: 7770772 DOI: 10.1126/science.7770772] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorescent probes offer insight into the highly localized and rapid molecular events that underlie cell function. However, methods are required that can efficiently transform the limited signals from such probes into high-resolution images. An algorithm has now been developed that produces highly accurate images of fluorescent probe distribution inside cells with minimal light exposure and a conventional light microscope. This method provides resolution nearly four times greater than that currently available from any fluorescence microscope and was used to study several biological problems.
Collapse
Affiliation(s)
- W A Carrington
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | | | | | |
Collapse
|
241
|
Meloche S. Cell cycle reentry of mammalian fibroblasts is accompanied by the sustained activation of p44mapk and p42mapk isoforms in the G1 phase and their inactivation at the G1/S transition. J Cell Physiol 1995; 163:577-88. [PMID: 7775600 DOI: 10.1002/jcp.1041630319] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that are rapidly activated in response to mitogenic stimuli. Here we examined the enzymatic activity and phosphorylation state of the individual p44mapk and p42mapk isoforms during early G1 and late G1 phase of the mammalian cell cycle. Release of fibroblast cells from early G1 block was accompanied by a rapid rise in the myelin basic protein (MBP) kinase activity of p44mapk and p42mapk, which declined slowly over several hours to reach negligible values as cells enter S phase. When cells were released from late G1 block, the activity of p44mapk and p42mapk increased transiently, and then rapidly declined to baseline values during G1 to S phase transition. Cells released at the G1/S boundary in a medium lacking growth factors entered S phase in the complete absence of MAP kinase activity. Unlike MAP kinases, the histone H1 kinase activity of p33cdk2 was elevated in late G1 arrested cells and continued to increase during S phase entry. The enzymatic activation of p44mapk and p42mapk in both early G1 and late G1 phase was accompanied by an increase in the phosphothreonine and phosphotyrosine content of the proteins. These findings suggest that the sustained activation of MAP kinases during G1 progression and their inactivation at the G1/S transition are two regulatory processes involved in the mitogenic response to growth factors.
Collapse
Affiliation(s)
- S Meloche
- Centre de Recherche, Hôtel-Dieu de Montréal, Quebec, Canada
| |
Collapse
|
242
|
Suzuki T, Okumura-Noji K, Nishida E. ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci Res 1995; 22:277-85. [PMID: 7478291 DOI: 10.1016/0168-0102(95)00902-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein kinase (MAPK) and MAPK kinase (MAPKK) were detected by Western blotting in the synaptic fraction prepared from the rat brain. There were two bands immunoreactive to the anti-MAPK antiserum in the soluble, P2, synaptosome, and synaptic plasma membrane fractions. These immunoreactive bands possibly corresponded to extracellular signal-regulated kinase (ERK) 1 and 2 (Boulton et al., 1991b), respectively. Only ERK2 was detected in the postsynaptic density (PSD) fraction. We then surveyed MAPK substrates in the synaptic fractions using purified Xenopus MAPK (ERK2-type MAPK), and found a number of MAPK substrates unique to the PSD fraction. Thus, ERK2 is present in the synapse, especially at the postsynaptic site, and it may play a role(s) in synaptic function via the phosphorylation of synapse-specific substrates. Developmental changes in ERK2 also supported its role in the synapse.
Collapse
Affiliation(s)
- T Suzuki
- Department of Biochemistry, Nagoya City University Medical School, Japan
| | | | | |
Collapse
|
243
|
Khalil RA, Menice CB, Wang CL, Morgan KG. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells. Circ Res 1995; 76:1101-8. [PMID: 7538916 DOI: 10.1161/01.res.76.6.1101] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tyrosine phosphorylation has been linked to plasmalemmal targeting of src homology-2-containing proteins, activation of mitogen-activated protein (MAP) kinase, nuclear signaling, and proliferation of cultured cells. Significant tyrosine phosphorylation and MAP kinase activities have also been reported in differentiated cells, but the signaling role of tyrosine-phosphorylated MAP kinase in these cells is unclear. The spatial and temporal relation between phosphotyrosine and MAP kinase immunoreactivity was quantified in differentiated contractile vascular smooth muscle cells by using digital imaging microscopy. An initial association of MAP kinase with the plasmalemma required upstream protein kinase C activity but occurred in a tyrosine phosphorylation-independent manner. Subsequent to membrane association, a delayed redistribution of MAP kinase, colocalizing with the actin-binding protein caldesmon, occurred in a tyrosine phosphorylation-dependent manner. The apparent association of MAP kinase with the contractile proteins coincided with contractile activation. Thus, tyrosine phosphorylation appears to target MAP kinase to cytoskeletal proteins in contractile vascular cells. This targeting mechanism may determine the specific destination and thereby the specialized function of MAP kinase in other phenotypes.
Collapse
Affiliation(s)
- R A Khalil
- Program in Smooth Muscle Research, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
244
|
Rzymkiewicz DM, DuMaine J, Morrison AR. IL-1 beta regulates rat mesangial cyclooxygenase II gene expression by tyrosine phosphorylation. Kidney Int 1995; 47:1354-63. [PMID: 7637265 DOI: 10.1038/ki.1995.191] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pro-inflammatory cytokine, interleukin-1 beta, induces the mRNA for prostaglandin endoperoxide synthase II gene in renal mesangial cells. This inductive effect is selective for prostaglandin endoperoxide synthase II and not prostaglandin endoperoxide synthase I. In the present experiments IL-1 beta increased COX II mRNA, and this was inhibited by genistein and herbimycin A, both inhibitors of protein tyrosine kinases. The dose dependent effect of genistein on inhibition of mRNA for COX II correlated with the inhibition of the release of PGE2 into the media. Induction of COX II by interleukin-1 beta was mimicked by incubating the cells in the presence of a protein tyrosine phosphatase inhibitor, vanadate. These experiments also illustrate selective induction of COX II mRNA without induction of COX I mRNA. Western analysis utilizing antiphosphotyrosine antibodies demonstrated in whole lysates of mesangial cells treated with interleukin-1 beta that the transient phosphorylation of several proteins occurred. Interleukin-1 beta induced the transient phosphorylation of a protein of about 39/40 kD. Similarly, vanadate also produced a rapid and transient phosphorylation of a protein of about 39/40 kD in addition to other proteins. Immunoprecipitation of mesangial cell lysates with agarose conjugated antiphosphotyrosine antibody and Western analysis of precipitated proteins with anti-ERK2 antibody demonstrate that the 39/40 kD protein phosphorylated on tyrosine is ERK2 and suggests participation of one of the MAP kinase family of extracellular receptor kinases in IL-1 beta stimulated induction of the COX II gene.
Collapse
Affiliation(s)
- D M Rzymkiewicz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
245
|
Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270:7420-6. [PMID: 7535770 DOI: 10.1074/jbc.270.13.7420] [Citation(s) in RCA: 1795] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein kinases activated by dual phosphorylation on Tyr and Thr (MAP kinases) can be grouped into two major classes: ERK and JNK. The ERK group regulates multiple targets in response to growth factors via a Ras-dependent mechanism. In contrast, JNK activates the transcription factor c-Jun in response to pro-inflammatory cytokines and exposure of cells to several forms of environmental stress. Recently, a novel mammalian protein kinase (p38) that shares sequence similarity with mitogen-activated protein (MAP) kinases was identified. Here, we demonstrate that p38, like JNK, is activated by treatment of cells with pro-inflammatory cytokines and environmental stress. The mechanism of p38 activation is mediated by dual phosphorylation on Thr-180 and Tyr-182. Immunofluorescence microscopy demonstrated that p38 MAP kinase is present in both the nucleus and cytoplasm of activated cells. Together, these data establish that p38 is a member of the mammalian MAP kinase group.
Collapse
Affiliation(s)
- J Raingeaud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | | | | | | | |
Collapse
|
246
|
al-Alawi N, Rose DW, Buckmaster C, Ahn N, Rapp U, Meinkoth J, Feramisco JR. Thyrotropin-induced mitogenesis is Ras dependent but appears to bypass the Raf-dependent cytoplasmic kinase cascade. Mol Cell Biol 1995; 15:1162-8. [PMID: 7862110 PMCID: PMC230338 DOI: 10.1128/mcb.15.3.1162] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular growth control requires the coordination and integration of multiple signaling pathways which are likely to be activated concomitantly. Mitogenic signaling initiated by thyrotropin (TSH) in thyroid cells seems to require two distinct signaling pathways, a cyclic AMP (cAMP)-dependent signaling pathway and a Ras-dependent pathway. This is a paradox, since activated cAMP-dependent protein kinase disrupts Ras-dependent signaling induced by growth factors such as epidermal growth factor and platelet-derived growth factor. This inhibition may occur by preventing Raf-1 protein kinase from binding to Ras, an event thought to be necessary for the activation of Raf-1 and the subsequent activation of the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinases (MEKs) and MAP kinase (MAPK)/ERKs. Here we report that serum-stimulated hyperphosphorylation of Raf-1 was inhibited by TSH treatment of Wistar rat thyroid cells, indicating that in this cell line, as in other cell types, increases in intracellular cAMP levels inhibit activation of downstream kinases targeted by Ras. Ras-stimulated expression of genes containing AP-1 promoter elements was similarly inhibited by TSH. On the other hand, stimulation of thyroid cells with TSH resulted in stimulation of DNA synthesis which was Ras dependent but both Raf-1 and MEK independent. We also show that Ras-stimulated DNA synthesis required the use of this kinase cascade in untreated quiescent cells but not in TSH-treated cells. These data suggest that in TSH-treated thyroid cells, Ras might be able to signal through effectors other than the well-studied cytoplasmic kinase cascade.
Collapse
Affiliation(s)
- N al-Alawi
- Department of Pharmacology, University of California at San Diego, La Jolla 92093
| | | | | | | | | | | | | |
Collapse
|
247
|
Segall JE, Kuspa A, Shaulsky G, Ecke M, Maeda M, Gaskins C, Firtel RA, Loomis WF. A MAP kinase necessary for receptor-mediated activation of adenylyl cyclase in Dictyostelium. J Biophys Biochem Cytol 1995; 128:405-13. [PMID: 7844154 PMCID: PMC2120359 DOI: 10.1083/jcb.128.3.405] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Analysis of a developmental mutant in Dictyostelium discoideum which is unable to initiate morphogenesis has shown that a protein kinase of the MAP kinase/ERK family affects relay of the cAMP chemotactic signal and cell differentiation. Strains in which the locus encoding ERK2 is disrupted respond to a pulse of cAMP by synthesizing cGMP normally but show little synthesis of cAMP. Since mutant cells lacking ERK2 contain normal levels of both the cytosolic regulator of adenylyl cyclase (CRAC) and manganese-activatable adenylyl cyclase, it appears that this kinase is important for receptor-mediated activation of adenylyl cyclase.
Collapse
Affiliation(s)
- J E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Gotoh Y, Nishida E. The MAP kinase cascade: its role in Xenopus oocytes, eggs and embryos. PROGRESS IN CELL CYCLE RESEARCH 1995; 1:287-297. [PMID: 9552371 DOI: 10.1007/978-1-4615-1809-9_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine kinase that is activated by mitogens. Now MAPK and its activator, MAPK kinase (MAPKK), are thought to function in a wide variety of intracellular signalling pathways from yeast to vertebrate. We describe here a brief summary of the dissection of the MAPK cascade and its possible functions, especially in Xenopus oocytes and embryos.
Collapse
Affiliation(s)
- Y Gotoh
- Department of Genetics and Molecular Biology, Kyoto University, Japan
| | | |
Collapse
|
249
|
Campbell JS, Seger R, Graves JD, Graves LM, Jensen AM, Krebs EG. The MAP kinase cascade. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:131-59. [PMID: 7740155 DOI: 10.1016/b978-0-12-571150-0.50011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J S Campbell
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
250
|
|