201
|
Dowland SN, Madawala RJ, Lindsay LA, Murphy CR. The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy. Acta Histochem 2016; 118:137-43. [PMID: 26738975 DOI: 10.1016/j.acthis.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
During early pregnancy in the rat, the luminal uterine epithelial cells (UECs) must transform to a receptive state to permit blastocyst attachment and implantation. The implantation process involves penetration of the epithelial barrier, so it is expected that the transformation of UECs includes alterations in the lateral junctional complex. Previous studies have demonstrated a deepening of the tight junction (zonula occludens) and a reduction in the number of desmosomes (macula adherens) in UECs at the time of implantation. However, the adherens junction (zonula adherens), which is primarily responsible for cell-cell adhesion, has been little studied during early pregnancy. This study investigated the adherens junction in rat UECs during the early stages of normal pregnancy and ovarian hyperstimulated (OH) pregnancy using transmission electron microscopy. The adherens junction is present in UECs at the time of fertilisation, but is lost at the time of blastocyst implantation during normal pregnancy. Interestingly, at the time of implantation after OH, adherens junctions are retained and may impede blastocyst penetration of the epithelium. The adherens junction anchors the actin-based terminal web, which is known to be disrupted in UECs during early pregnancy. However, artificial disruption of the terminal web, using cytochalasin D, did not cause removal of the adherens junction in UECs. This study revealed that adherens junction disassembly occurs during early pregnancy, but that this process does not occur during OH pregnancy. Such disassembly does not appear to depend on the disruption of the terminal web.
Collapse
|
202
|
Thorlakson HH, Schreurs O, Schenck K, Blix IJS. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes. Eur J Oral Sci 2016; 124:164-71. [PMID: 26913569 DOI: 10.1111/eos.12255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 12/20/2022]
Abstract
Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation.
Collapse
Affiliation(s)
- Hong H Thorlakson
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Olav Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Inger J S Blix
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
203
|
Smith YE, Vellanki SH, Hopkins AM. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk. World J Biol Chem 2016; 7:64-77. [PMID: 26981196 PMCID: PMC4768125 DOI: 10.4331/wjbc.v7.i1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.
Collapse
|
204
|
Kumar S, Kapoor A, Desai S, Inamdar MM, Sen S. Proteolytic and non-proteolytic regulation of collective cell invasion: tuning by ECM density and organization. Sci Rep 2016; 6:19905. [PMID: 26832069 PMCID: PMC4735823 DOI: 10.1038/srep19905] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/18/2015] [Indexed: 12/30/2022] Open
Abstract
Cancer cells manoeuvre through extracellular matrices (ECMs) using different invasion modes, including single cell and collective cell invasion. These modes rely on MMP-driven ECM proteolysis to make space for cells to move. How cancer-associated alterations in ECM influence the mode of invasion remains unclear. Further, the sensitivity of the two invasion modes to MMP dynamics remains unexplored. In this paper, we address these open questions using a multiscale hybrid computational model combining ECM density-dependent MMP secretion, MMP diffusion, ECM degradation by MMP and active cell motility. Our results demonstrate that in randomly aligned matrices, collective cell invasion is more efficient than single cell invasion. Although increase in MMP secretion rate enhances invasiveness independent of cell-cell adhesion, sustenance of collective invasion in dense matrices requires high MMP secretion rates. However, matrix alignment can sustain both single cell and collective cell invasion even without ECM proteolysis. Similar to our in-silico observations, increase in ECM density and MMP inhibition reduced migration of MCF-7 cells embedded in sandwich gels. Together, our results indicate that apart from cell intrinsic factors (i.e., high cell-cell adhesion and MMP secretion rates), ECM density and organization represent two important extrinsic parameters that govern collective cell invasion and invasion plasticity.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Aastha Kapoor
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Sejal Desai
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
205
|
Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides. J Pharm Sci 2016; 105:754-765. [DOI: 10.1016/j.xphs.2015.11.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
|
206
|
Yasin HWR, van Rensburg SH, Feiler CE, Johnson RI. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 2016; 410:135-149. [PMID: 26772997 DOI: 10.1016/j.ydbio.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.
Collapse
Affiliation(s)
- Hannah W R Yasin
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | | | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
207
|
Formins at the Junction. Trends Biochem Sci 2015; 41:148-159. [PMID: 26732401 DOI: 10.1016/j.tibs.2015.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.
Collapse
|
208
|
Boivin FJ, Sarin S, Evans JC, Bridgewater D. The Good and Bad of β-Catenin in Kidney Development and Renal Dysplasia. Front Cell Dev Biol 2015; 3:81. [PMID: 26734608 PMCID: PMC4686587 DOI: 10.3389/fcell.2015.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
Abstract
Congenital renal malformations are a major cause of childhood and adult onset chronic kidney disease. Identifying the etiology of these renal defects is often challenging since disruptions in the processes that drive kidney development can result from disruptions in environmental, genetic, or epigenetic cues. β-catenin is an intracellular molecule involved in cell adhesion, cell signaling, and regulation of gene transcription. It plays essential roles in kidney development and in the pathogenesis of renal dysplasia. Here, we review the function of β-catenin during kidney development and in the genesis of renal dysplasia.
Collapse
Affiliation(s)
- Felix J Boivin
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - Sanjay Sarin
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - J Colin Evans
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
209
|
Yan Z, Wang ZG, Segev N, Hu S, Minshall RD, Dull RO, Zhang M, Malik AB, Hu G. Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function. Arterioscler Thromb Vasc Biol 2015; 36:339-49. [PMID: 26663395 PMCID: PMC4732894 DOI: 10.1161/atvbaha.115.306549] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Vascular endothelial (VE)-cadherin is the predominant component of endothelial adherens junctions essential for cell-cell adhesion and formation of the vascular barrier. Endocytic recycling is an important mechanism for maintaining the expression of cell surface membrane proteins. However, little is known about the molecular mechanism of VE-cadherin recycling and its role in maintenance of vascular integrity. APPROACH AND RESULTS Using calcium-switch assay, confocal imaging, cell surface biotinylation, and flow cytometry, we showed that VE-cadherin recycling required Ras-related proteins in brain (Rab)11a and Rab11 family-interacting protein 2. Yeast 2-hybrid assay and coimmunoprecipitation demonstrated that direct interaction of VE-cadherin with family-interacting protein 2 (at aa 453-484) formed a ternary complex with Rab11a in human endothelial cells. Silencing of Rab11a or Rab11 family-interacting protein 2 in endothelial cells prevented VE-cadherin recycling and VE-cadherin expression at endothelial plasma membrane. Furthermore, inactivation of Rab11a signaling blocked junctional reannealing after vascular inflammation. Selective knockdown of Rab11a in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide or polymicrobial sepsis. CONCLUSIONS Rab11a/Rab11 family-interacting protein 2-mediated VE-cadherin recycling is required for formation of adherens junctions and restoration of VE barrier integrity and hence a potential target for clinical intervention in inflammatory disease.
Collapse
Affiliation(s)
- Zhibo Yan
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Zhen-Guo Wang
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Nava Segev
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Sanyuan Hu
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Richard D Minshall
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Randal O Dull
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Meihong Zhang
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Asrar B Malik
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Guochang Hu
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.).
| |
Collapse
|
210
|
Cruz LA, Vedula P, Gutierrez N, Shah N, Rodriguez S, Ayee B, Davis J, Rodriguez AJ. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers. Cytoskeleton (Hoboken) 2015; 72:597-608. [PMID: 26615964 PMCID: PMC4968411 DOI: 10.1002/cm.21265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin-mediated endocytosis regulates epithelial monolayer structure and barrier function.
Collapse
Affiliation(s)
- Lissette A. Cruz
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Pavan Vedula
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Natasha Gutierrez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Neel Shah
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Steven Rodriguez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Brian Ayee
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Justin Davis
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Alexis J. Rodriguez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| |
Collapse
|
211
|
Simmons AJ, Banerjee A, McKinley ET, Scurrah CR, Herring CA, Gewin LS, Masuzaki R, Karp SJ, Franklin JL, Gerdes MJ, Irish JM, Coffey RJ, Lau KS. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo. Mol Syst Biol 2015; 11:835. [PMID: 26519361 PMCID: PMC4631206 DOI: 10.15252/msb.20156282] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single-cell resolution. However, probing signaling in epithelial tissues using cytometry-based single-cell analysis has been confounded by the necessity of single-cell dissociation, where disrupting cell-to-cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue-DISSECT) that preserves native signaling for Cytometry Time-of-Flight (CyTOF) and fluorescent flow cytometry applications. A 21-plex CyTOF analysis encompassing core signaling and cell-identity markers was performed on the small intestinal epithelium after systemic tumor necrosis factor-alpha (TNF-α) stimulation. Unsupervised and supervised analyses robustly selected signaling features that identify a unique subset of epithelial cells that are sensitized to TNF-α-induced apoptosis in the seemingly homogeneous enterocyte population. Specifically, p-ERK and apoptosis are divergently regulated in neighboring enterocytes within the epithelium, suggesting a mechanism of contact-dependent survival. Our novel single-cell approach can broadly be applied, using both CyTOF and multi-parameter flow cytometry, for investigating normal and diseased cell states in a wide range of epithelial tissues.
Collapse
Affiliation(s)
- Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leslie S Gewin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Ryota Masuzaki
- The Transplant Center and Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Karp
- The Transplant Center and Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jonathan M Irish
- Departments of Cancer Biology, and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA Department of Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
212
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
213
|
Yaoita E, Nishimura H, Nameta M, Yoshida Y, Takimoto H, Fujinaka H, Kawachi H, Magdeldin S, Zhang Y, Xu B, Oyama T, Nakamura F, Yamamoto T. Avian Podocytes, Which Lack Nephrin, Use Adherens Junction Proteins at Intercellular Junctions. J Histochem Cytochem 2015; 64:67-76. [PMID: 26416242 DOI: 10.1369/0022155415611708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/19/2015] [Indexed: 12/14/2022] Open
Abstract
Nephrin, a major intercellular junction (ICJ) molecule of mammalian podocytes in the renal glomerulus, is absent in the avian genome. We hypothesized that birds use ICJ molecules other than nephrin in their podocytes. Therefore, in the present study, we examined the possible involvement of adherens junction (AJ) proteins in the ICJs of avian podocytes. We found the AJ proteins N-cadherin and α- and β-catenins in podocytes of quail and chickens but not in those of rats, pigs or humans. The AJ proteins were prominent in avian glomerulus-rich fractions in immunoblot analyses, and in immunofluorescence microscopy analyses, they were localized along glomerular capillary walls appearing in at least two staining patterns: weakly diffuse and distinctly granular. Immunoelectron microscopy demonstrated that the significant accumulation of immunogold particles for the AJ proteins were especially evident in avian slit diaphragms and AJs. Furthermore, N-cadherin was found to be expressed in all nephron cells in the early developmental stage but became confined to podocytes during maturation. These results indicate that avian slit diaphragms clearly express AJ proteins as compared with that in the mammal-where AJ proteins are suppressed to an extremely low level-and that avian podocytes are interconnected by AJs per se in addition to slit diaphragms.
Collapse
Affiliation(s)
- Eishin Yaoita
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Hiroko Nishimura
- Department of Health Informatics, Niigata University of Health and Welfare, Niigata, Japan (HN)
| | - Masaaki Nameta
- Cooperative Laboratory of Electron Microscopy, Niigata University, Niigata, Japan (MN)
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Hiroki Takimoto
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Hidehiko Fujinaka
- Institute for Clinical Research, Niigata National Hospital, Niigata, Japan (HF)
| | - Hiroshi Kawachi
- Department of Cell Biology (HK), Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sameh Magdeldin
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Ying Zhang
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Bo Xu
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Tomizo Oyama
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Fujio Nakamura
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| | - Tadashi Yamamoto
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (EY, YY, HT, SM, YZ, BX, TO, FN, TY)
| |
Collapse
|
214
|
Lan H, Wang Q, Fernandez-Gonzalez R, Feng JJ. A biomechanical model for cell polarization and intercalation duringDrosophilagermband extension. Phys Biol 2015; 12:056011. [DOI: 10.1088/1478-3975/12/5/056011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
215
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
216
|
Šileikis A, Nutautienė V, Šeinin D, Strupas K. Solid Pseudopapillary Neoplasm of the Pancreas: Analysis of Seven Cases. VISZERALMEDIZIN 2015; 30:211-5. [PMID: 26288595 PMCID: PMC4513820 DOI: 10.1159/000362183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background The purpose of this study was to describe as well as compare our surgical treatment experiences of solid pseudopapillary neoplasms (SPN) of the pancreas and to provide a review of the literature. Methods A retrospective analysis of data from Vilnius University Hospital Santariskiu Klinikos (VUH SK) and of the literature, which was researched using Karger Publishers, Springer Science, BioMed Central, and disserCat databases, was conducted. Results From 2001 to 2012, seven cases were identified with pathologically confirmed SPN diagnosis. A precise preoperative diagnosis was made by computertomography and magnetic resonance imaging. The median diameter of the tumors was 6.36 cm (range 1.5-12 cm). Surgical treatment was undertaken for all patients. Results of the immunohistochemical analysis confirmed a nuclear accumulation of β-catenin. The Ki-67 level was 1-2% in all of the cases. According to our collected data, all types of histological analysis revealed decent prognostic behavior with low mitotic activity (1-2 mitoses per 50 high power fields). Besides, angioinvasion, perineural invasion, and outside capsule invasion were not detected. Conclusions There was no correlation between more aggressive types of SPN and tumor size, localization, age, and gender.
Collapse
Affiliation(s)
- Audrius Šileikis
- Center of Abdominal Surgery, Vilnius University, Vilnius, Lithuania
| | | | | | - Kęstutis Strupas
- Center of Abdominal Surgery, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
217
|
Seebach J, Taha AA, Lenk J, Lindemann N, Jiang X, Brinkmann K, Bogdan S, Schnittler HJ. The CellBorderTracker, a novel tool to quantitatively analyze spatiotemporal endothelial junction dynamics at the subcellular level. Histochem Cell Biol 2015; 144:517-32. [PMID: 26275669 DOI: 10.1007/s00418-015-1357-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Endothelial junctions are dynamic structures organized by multi-protein complexes that control monolayer integrity, homeostasis, inflammation, cell migration and angiogenesis. Newly developed methods for both the genetic manipulation of endothelium and microscopy permit time-lapse recordings of fluorescent proteins over long periods of time. Quantitative data analyses require automated methods. We developed a software package, the CellBorderTracker, allowing quantitative analysis of fluorescent-tagged cell junction protein dynamics in time-lapse sequences. The CellBorderTracker consists of the CellBorderExtractor that segments cells and identifies cell boundaries and mapping tools for data extraction. The tool is illustrated by analyzing fluorescent-tagged VE-cadherin the backbone of adherence junctions in endothelium. VE-cadherin displays high dynamics that is forced by junction-associated intermittent lamellipodia (JAIL) that are actin driven and WASP/ARP2/3 complex controlled. The manual segmentation and the automatic one agree to 90 %, a value that indicates high reliability. Based on segmentations, different maps were generated allowing more detailed data extraction. This includes the quantification of protein distribution pattern, the generation of regions of interest, junction displacements, cell shape changes, migration velocities and the visualization of junction dynamics over many hours. Furthermore, we demonstrate an advanced kymograph, the J-kymograph that steadily follows irregular cell junction dynamics in time-lapse sequences for individual junctions at the subcellular level. By using the CellBorderTracker, we demonstrate that VE-cadherin dynamics is quickly arrested upon thrombin stimulation, a phenomenon that was largely due to transient inhibition of JAIL and display a very heterogeneous subcellular and divers VE-cadherin dynamics during intercellular gap formation and resealing.
Collapse
Affiliation(s)
- Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany.
| | - Abdallah Abu Taha
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Janine Lenk
- Faculty of Medicine Carl Gustav Carus, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nico Lindemann
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Xiaoyi Jiang
- Department of Computer Science, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Klaus Brinkmann
- Institute for Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany.
| |
Collapse
|
218
|
Cdc42-Interacting Protein 4 Represses E-Cadherin Expression by Promoting β-Catenin Translocation to the Nucleus in Murine Renal Tubular Epithelial Cells. Int J Mol Sci 2015; 16:19170-83. [PMID: 26287173 PMCID: PMC4581292 DOI: 10.3390/ijms160819170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
Renal fibrosis is an inevitable outcome of end-stage chronic kidney disease. During this process, epithelial cells lose E-cadherin expression. β-Catenin may act as a mediator by accumulation and translocation to the nucleus. Studies have suggested that CIP4, a Cdc42 effector protein, is associated with β-catenin. However, whether CIP4 contributes to E-cadherin loss in epithelial cells by regulating β-catenin translocation is unclear. In this study, we investigated the involvement of CIP4 in β-catenin translocation. Expression of CIP4 was upregulated in renal tissues of 5/6 nephrectomized rats and mainly distributed in renal tubular epithelia. In TGF-β1-treated NRK-52E cells, upregulation of CIP4 expression was accompanied by reduced expression of E-cadherin. CIP4 overexpression promoted the translocation of β-catenin to the nucleus, which was accompanied by reduced expression of E-cadherin even without TGF-β1 stimulation. In contrast, CIP4 depletion by using siRNA inhibited the translocation of β-catenin to the nucleus and reversed the decrease in expression of E-cadherin. The interaction between CIP4 and β-catenin was detected. We also show that β-catenin depletion could restore the expression of E-cadherin that was suppressed by CIP4 overexpression. In conclusion, these results suggest that CIP4 overexpression represses E-cadherin expression by promoting β-catenin translocation to the nucleus.
Collapse
|
219
|
Sternemalm J, Geimer S, Frikstad KAM, Schink KO, Stokke T, Patzke S. CSPP-L Associates with the Desmosome of Polarized Epithelial Cells and Is Required for Normal Spheroid Formation. PLoS One 2015; 10:e0134789. [PMID: 26241740 PMCID: PMC4524657 DOI: 10.1371/journal.pone.0134789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
Deleterious mutations of the Centrosome/Spindle Pole associated Protein 1 gene, CSPP1, are causative for Joubert-syndrome and Joubert-related developmental disorders. These disorders are defined by a characteristic mal-development of the brain, but frequently involve renal and hepatic cyst formation. CSPP-L, the large protein isoform of CSPP1 localizes to microtubule ends of the mitotic mid-spindle and the ciliary axoneme, and is required for ciliogenesis. We here report the microtubule independent but Desmoplakin dependent localization of CSPP-L to Desmosomes in apical-basal polarized epithelial cells. Importantly, siRNA conferred depletion of CSPP-L or Desmoplakin promoted multi-lumen spheroid formation in 3D-cultures of non-ciliated human colon carcinoma Caco-2 cells. Multi-lumen spheroids of CSPP1 siRNA transfectants showed disrupted apical cell junction localization of the cytoskeleton organizing RhoGEF ECT2. Our results hence identify a novel, non-ciliary role for CSPP-L in epithelial morphogenesis.
Collapse
Affiliation(s)
- Johan Sternemalm
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Stefan Geimer
- Cell Biology/Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Kay O Schink
- Department of Molecular Cell Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
220
|
Klinke DJ, Horvath N, Cuppett V, Wu Y, Deng W, Kanj R. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway. Mol Biol Cell 2015. [PMID: 26224311 PMCID: PMC4710243 DOI: 10.1091/mbc.e15-02-0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein-protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin-induced gene expression.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506 )
| | - Nicholas Horvath
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Vanessa Cuppett
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Yueting Wu
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Wentao Deng
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Rania Kanj
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
221
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
222
|
Maddala R, Nagendran T, Lang RA, Morozov A, Rao PV. Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis. Dev Biol 2015. [PMID: 26212757 DOI: 10.1016/j.ydbio.2015.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard A Lang
- The Visual System Group, Division of Pediatric Ophthalmology and Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
223
|
Loxham M, Davies DE, Blume C. Epithelial function and dysfunction in asthma. Clin Exp Allergy 2015; 44:1299-313. [PMID: 24661647 DOI: 10.1111/cea.12309] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/06/2014] [Accepted: 03/19/2014] [Indexed: 12/15/2022]
Abstract
Asthma was previously defined as an allergic Th2-mediated inflammatory immune disorder. Recently, this paradigm has been challenged because not all pathological changes observed in the asthmatic airways are adequately explained simply as a result of Th2-mediated processes. Contemporary thought holds that asthma is a complex immune disorder involving innate as well as adaptive immune responses, with the clinical heterogeneity of asthma perhaps a result of the different relative contribution of these two systems to the disease. Epidemiological studies show that exposure to certain environmental substances is strongly associated with the risk of developing asthma. The airway epithelium is first barrier to interact with, and respond to, environmental agents (pollution, viral infection, allergens), suggesting that it is a key player in the pathology of asthma. Epithelial cells play a key role in the regulation of tissue homeostasis by the modulation of numerous molecules, from antioxidants and lipid mediators to growth factors, cytokines, and chemokines. Additionally, the epithelium is also able to suppress mechanisms involved in, for example, inflammation in order to maintain homeostasis. An intrinsic alteration or defect in these regulation mechanisms compromises the epithelial barrier, and therefore, the barrier may be more prone to environmental substances and thus more likely to exhibit an asthmatic phenotype. In support of this, polymorphisms in a number of genes that are expressed in the bronchial epithelium have been linked to asthma susceptibility, while environmental factors may affect epigenetic mechanisms that can alter epithelial function and response to environmental insults. A detailed understanding of the regulatory role of the airway epithelium is required to develop new therapeutic strategies for asthma that not only address the symptoms but also the underlining pathogenic mechanism(s) and prevent airway remodelling.
Collapse
Affiliation(s)
- M Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, Hampshire, UK
| | | | | |
Collapse
|
224
|
Kan R, Shuen WH, Lung HL, Cheung AKL, Dai W, Kwong DLW, Ng WT, Lee AWM, Yau CC, Ngan RKC, Tung SY, Lung ML. NF-κB p65 Subunit Is Modulated by Latent Transforming Growth Factor-β Binding Protein 2 (LTBP2) in Nasopharyngeal Carcinoma HONE1 and HK1 Cells. PLoS One 2015; 10:e0127239. [PMID: 25974126 PMCID: PMC4431814 DOI: 10.1371/journal.pone.0127239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/12/2015] [Indexed: 01/22/2023] Open
Abstract
NF-κB is a well-characterized transcription factor, widely known as a key player in tumor-derived inflammation and cancer development. Herein, we present the functional and molecular relevance of the canonical NF-κB p65 subunit in nasopharyngeal carcinoma (NPC). Loss- and gain-of-function approaches were utilized to reveal the functional characteristics of p65 in propagating tumor growth, tumor-associated angiogenesis, and epithelial-to-mesenchymal transition in NPC cells. Extracellular inflammatory stimuli are critical factors that trigger the NF-κB p65 signaling; hence, we investigated the components of the tumor microenvironment that might potentially influence the p65 signaling pathway. This led to the identification of an extracellular matrix (ECM) protein that was previously reported as a candidate tumor suppressor in NPC. Our studies on the Latent Transforming Growth Factor-β Binding Protein 2 (LTBP2) protein provides substantial evidence that it can modulate the p65 transcriptional activity. Re-expression of LTBP2 elicits tumor suppressive effects that parallel the inactivation of p65 in NPC cells. LTBP2 was able to reduce phosphorylation of p65 at Serine 536, inhibit nuclear localization of active phosphorylated p65, and impair the p65 DNA-binding ability. This results in a consequential down-regulation of p65-related gene expression. Therefore, the data suggest that the overall up-regulation of p65 expression and the loss of this candidate ECM tumor suppressor are milestone events contributing to NPC development.
Collapse
Affiliation(s)
- Rebecca Kan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Wai Ho Shuen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Hong Lok Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Wai Tong Ng
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong (SAR), PR China
| | - Anne Wing Mui Lee
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, The University of Hong Kong—Shen Zhen Hospital, PR China
| | - Chun Chung Yau
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Oncology, Princess Margaret Hospital, Hong Kong (SAR), PR China
| | - Roger Kai Cheong Ngan
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (SAR), PR China
| | - Stewart Yuk Tung
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong (SAR), PR China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- * E-mail:
| |
Collapse
|
225
|
Spencer AK, Siddiqui BA, Thomas JH. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin. Dev Biol 2015; 402:192-207. [PMID: 25929228 DOI: 10.1016/j.ydbio.2015.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.
Collapse
Affiliation(s)
- Allison K Spencer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States
| | - Bilal A Siddiqui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States.
| |
Collapse
|
226
|
Gueron G, Giudice J, Valacco P, Paez A, Elguero B, Toscani M, Jaworski F, Leskow FC, Cotignola J, Marti M, Binaghi M, Navone N, Vazquez E. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget 2015; 5:4087-102. [PMID: 24961479 PMCID: PMC4147308 DOI: 10.18632/oncotarget.1826] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa.
Collapse
|
227
|
Liu L, Xu Z, Zhong L, Wang H, Jiang S, Long Q, Xu J, Guo J. Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. BJU Int 2015; 117:351-62. [PMID: 24612432 DOI: 10.1111/bju.12702] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism and clinical significance for an oncogenic role of enhancer of zeste homolog 2 (EZH2) in renal cell carcinoma (RCC). MATERIALS AND METHODS Immunohistochemistry analyses of EZH2, histone H3 trimethyl Lys27 (H3K27me3) and E-cadherin were performed in tumour tissue samples from 257 patients with RCC. Regulatory effects of EZH2 on E-cadherin expression were examined by quantitative real-time polymerase chain reaction, Western blot, chromatin immunoprecipitation assay and immunohistochemical staining. Migration and invasion assays were performed in RCC cell lines. Tumour xenograft experiments with RCC cells were carried out in nude mice. RESULTS EZH2 promoted migration and invasion in RCC cell lines. Silencing EZH2 with short-hairpin EZH2 (shEZH2) or 3-deazaneplanocin A (DZNep) inhibited migration and invasion (P < 0.001), up-regulated the expression of E-cadherin in vitro, inhibited tumour growth, and prolonged survival in vivo (P = 0.022). EZH2 expression accompanied with E-cadherin repression was associated with advanced disease stage (P = 0.004) and poor overall (P < 0.001) and disease-free survival (P < 0.001). CONCLUSION EZH2 may contribute to RCC progression and is a potential therapeutic target for advanced RCC.
Collapse
Affiliation(s)
- Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhibing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
228
|
Lam KH, Jin R. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery. Curr Opin Struct Biol 2015; 31:89-95. [PMID: 25889616 DOI: 10.1016/j.sbi.2015.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
229
|
Klinke DJ. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling. Mol Cell Oncol 2015; 3:e1029061. [PMID: 27308541 DOI: 10.1080/23723556.2015.1029061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center; West Virginia University, Morgantown, WV USA; Department of Microbiology, Immunology, & Cell Biology; West Virginia University, Morgantown, WV USA
| |
Collapse
|
230
|
Zhang X, Ren J, Yan L, Tang Y, Zhang W, Li D, Zang Y, Kong F, Xu Z. Cytoplasmic expression of pontin in renal cell carcinoma correlates with tumor invasion, metastasis and patients' survival. PLoS One 2015; 10:e0118659. [PMID: 25751257 PMCID: PMC4353622 DOI: 10.1371/journal.pone.0118659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most lethal of all genitourinary malignancies. Distant metastasis represents the major cause of death in patients with RCC. Recent studies have implicated the AAA+ ATPase pontin in many cellular activities that are highly relevant to carcinogenesis. In this study, we demonstrate for the first time that pontin was up-regulated in RCC, and plays a previously unknown pro-invasive role in the metastatic progression of RCC through epithelial-to-mesenchymal transition (EMT) pathway. 28 pairs of freshly frozen clear cell RCC samples and the matched normal renal tissues analyzed by quantitative RT-PCR and western blotting demonstrated that pontin was up-regulated in clear cell RCC tissues than in normal renal tissues. In addition, immunohistochemistry was used to evaluate subcellular pontin expression in 95 RCC patients, and found that overexpression of pontin in cytoplasm positively correlated with the metastatic features, predicting unfavorable outcomes of RCC patients. Furthermore, in vitro experiments show pontin was predominantly expressed in cytoplasm of RCC cell lines, and a significant suppression of cell migration and invasion in pontin siRNA treated RCC cell lines was observed. Mechanistic studies show that pontin depletion up-regulated the E-cadherin protein and down-regulated vimentin protein, and decreased nuclear β-catenin expression, suggesting the involvement of EMT in pontin induced metastatic progression. Together, our data suggest pontin as a potential prognostic biomarker in RCC, and provide new promising therapeutic targets for clinical intervention of kidney cancers.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Institute of Basic Medical Science and Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Institute of Basic Medical Science and Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail: (JR); (ZX)
| | - Lei Yan
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yueqing Tang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Wenhua Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Dawei Li
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yuanwei Zang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Institute of Basic Medical Science and Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Feng Kong
- Central Laboratory, Shandong University Second Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail: (JR); (ZX)
| |
Collapse
|
231
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
232
|
iASPP, a previously unidentified regulator of desmosomes, prevents arrhythmogenic right ventricular cardiomyopathy (ARVC)-induced sudden death. Proc Natl Acad Sci U S A 2015; 112:E973-81. [PMID: 25691752 DOI: 10.1073/pnas.1408111112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.
Collapse
|
233
|
Röper K. Integration of cell-cell adhesion and contractile actomyosin activity during morphogenesis. Curr Top Dev Biol 2015; 112:103-27. [PMID: 25733139 DOI: 10.1016/bs.ctdb.2014.11.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During embryonic development, cells become organized into complex tissues. Cells need to adhere and communicate with their immediate and remote neighbors to allow morphogenesis to take place in a coordinated way. Cell-cell adhesion, mediated by transmembrane adhesion receptors such as Cadherins and their intracellular interaction partners, is intimately linked to cell contractility that drives cell shape changes. Research in recent years has revealed that the contractile machinery responsible for cell shape changes, actomyosin, can in fact be organized into a number of different functional assemblies such as cortical-junctional actomyosin, apical-medial actomyosin, supracellular actomyosin cables as well as basal actomyosin networks. During coordinated shape changes of a tissue, these assemblies have to be functionally and mechanically linked between cells through cell-cell junctions. Although many actin-binding proteins associated with adherens junctions have been identified, which specific factors are required for the linkage of particular actomyosin assemblies to junctions is not well understood. This review will summarize our current knowledge, based mainly on the in vivo study of morphogenesis in the fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Katja Röper
- MRC-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom.
| |
Collapse
|
234
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
235
|
Favale NO, Santacreu BJ, Pescio LG, Marquez MG, Sterin-Speziale NB. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity. J Lipid Res 2015; 56:786-800. [PMID: 25670801 DOI: 10.1194/jlr.m050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype.
Collapse
Affiliation(s)
- Nicolás Octavio Favale
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bruno Jaime Santacreu
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Gabriela Marquez
- IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja , La Rioja, Argentina
| | | |
Collapse
|
236
|
Vega FM, Thomas M, Reymond N, Ridley AJ. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Commun Signal 2015; 13:6. [PMID: 25630770 PMCID: PMC4334914 DOI: 10.1186/s12964-015-0085-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Rho GTPase RhoB has been proposed to be a tumor suppressor in cancer and is downregulated in various tumors including prostate. RhoB has different effects on cell migration depending on the cell type and conditions, but the molecular basis for this variability is unclear. RhoB regulates trafficking of membrane receptors and integrins. We have previously shown that RhoB depletion alters focal adhesion dynamics and reduces surface levels of β1 integrin in PC3 prostate cancer cells, correlating with increased migration speed. RESULTS Here we show that RhoB depletion reduces cell-cell adhesion and downregulates E-cadherin levels as well as increasing internalized E-cadherin in DU145 prostate cancer cells. This is accompanied by increased migration speed. RhoB localizes to cell-cell junctions together with E-cadherin in DU145 cells. RhoB depletion also reduces N-cadherin levels in PC3 cells, which do not express E-cadherin. CONCLUSIONS These results indicate that RhoB alters migration of cells with cell-cell adhesions by regulating cadherin levels. We propose that the relative contribution of integrins and cadherins to cell migration underlies the variable involvement for RhoB in this process and that the downregulation of RhoB in some epithelial cancers could contribute to the weakening of epithelial cell-cell junction during tumor progression.
Collapse
Affiliation(s)
- Francisco M Vega
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
- Current address: Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Edificio IBiS, E-14013, Seville, Spain.
| | - Mairian Thomas
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Nicolas Reymond
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
237
|
Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci U S A 2015; 112:1785-90. [PMID: 25624491 DOI: 10.1073/pnas.1420850112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Collapse
|
238
|
Shahmanesh M, Phillips K, Boothby M, Tomlinson JW. Differential adipose tissue gene expression profiles in abacavir treated patients that may contribute to the understanding of cardiovascular risk: a microarray study. PLoS One 2015; 10:e0117164. [PMID: 25617630 PMCID: PMC4305285 DOI: 10.1371/journal.pone.0117164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/19/2014] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To compare changes in gene expression by microarray from subcutaneous adipose tissue from HIV treatment naïve patients treated with efavirenz based regimens containing abacavir (ABC), tenofovir (TDF) or zidovidine (AZT). DESIGN Subcutaneous fat biopsies were obtained before, at 6- and 18-24-months after treatment, and from HIV negative controls. Groups were age, ethnicity, weight, biochemical profile, and pre-treatment CD4 count matched. Microarray data was generated using the Agilent Whole Human Genome Microarray. Identification of differentially expressed genes and genomic response pathways was performed using limma and gene set enrichment analysis. RESULTS There were significant divergences between ABC and the other two groups 6 months after treatment in genes controlling cell adhesion and environmental information processing, with some convergence at 18-24 months. Compared to controls the ABC group, but not AZT or TDF showed enrichment of genes controlling adherence junction, at 6 months and 18-24 months (adjusted p<0.05) and focal adhesions and tight junction at 6 months (p<0.5). Genes controlling leukocyte transendothelial migration (p<0.05) and ECM-receptor interactions (p = 0.04) were over-expressed in ABC compared to TDF and AZT at 6 months but not at 18-24 months. Enrichment of pathways and individual genes controlling cell adhesion and environmental information processing were specifically dysregulated in the ABC group in comparison with other treatments. There was little difference between AZT and TDF. CONCLUSION After initiating treatment, there is divergence in the expression of genes controlling cell adhesion and environmental information processing between ABC and both TDF and AZT in subcutaneous adipose tissue. If similar changes are also taking place in other tissues including the coronary vasculature they may contribute to the increased risk of cardiovascular events reported in patients recently started on abacavir-containing regimens.
Collapse
Affiliation(s)
- Mohsen Shahmanesh
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kenneth Phillips
- ILS Genomics (formerly Beckman Coulter Genomics), Morrisville, North Carolina, United States of America
| | - Meg Boothby
- University Hospital Birmingham NHS Foundation Trust, HIV Medicine, Birmingham, United Kingdom
| | - Jeremy W. Tomlinson
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Headington, Oxford, United Kingdom
| |
Collapse
|
239
|
Rodríguez MI, Majuelos-Melguizo J, Martí Martín-Consuegra JM, Ruiz de Almodóvar M, López-Rivas A, Javier Oliver F. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med Res Rev 2015; 35:678-97. [PMID: 25604534 DOI: 10.1002/med.21339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.
Collapse
Affiliation(s)
- María Isabel Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | - Jara Majuelos-Melguizo
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | | | | | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Sevilla, Spain, 41092
| | | |
Collapse
|
240
|
Karaköse E, Geiger T, Flynn K, Lorenz-Baath K, Zent R, Mann M, Fässler R. The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. J Cell Sci 2015; 128:1023-33. [PMID: 25609703 DOI: 10.1242/jcs.162545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN.
Collapse
Affiliation(s)
- Esra Karaköse
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Tamar Geiger
- Department of Proteomics and Signal Transductions, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Kevin Flynn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katrin Lorenz-Baath
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, 37232, USA Department of Medicine, Nashville Veterans Affairs Medical Center, Nashville, TN, 37232, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transductions, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
241
|
Tria S, Jimison LH, Hama A, Bongo M, Owens RM. Sensing of EGTA Mediated Barrier Tissue Disruption with an Organic Transistor. BIOSENSORS-BASEL 2015; 3:44-57. [PMID: 24563778 PMCID: PMC3930842 DOI: 10.3390/bios3010044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Barrier tissue protects the body against external factors by restricting the passage of molecules. The gastrointestinal epithelium is an example of barrier tissue with the primary purpose of allowing the passage of ions and nutrients, while restricting the passage of pathogens and toxins. It is well known that the loss of barrier function can be instigated by a decrease in extracellular calcium levels, leading to changes in protein conformation and an increase in paracellular transport. In this study, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetra acetic acid (EGTA), a calcium chelator, was used to disrupt the gastrointestinal epithelial barrier. The effect of EGTA on barrier tissue was monitored by a novel label-free method based on an organic electrochemical transistor (OECT) integrated with living cells and validated against conventional methods for measuring barrier tissue integrity. We demonstrate that the OECT can detect breaches in barrier tissue upon exposure to EGTA with the same sensitivity as existing methods but with increased temporal resolution. Due to the potential of low cost processing techniques and the flexibility in design associated with organic electronics, the OECT has great potential for high-throughput, disposable sensing and diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Róisín M. Owens
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-442-616-645; Fax: +33-442-616-697
| |
Collapse
|
242
|
Laval L, Martin R, Natividad JN, Chain F, Miquel S, de Maredsous CD, Capronnier S, Sokol H, Verdu EF, van Hylckama Vlieg JET, Bermúdez-Humarán LG, Smokvina T, Langella P. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 2015; 6:1-9. [PMID: 25517879 PMCID: PMC4615674 DOI: 10.4161/19490976.2014.990784] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities.
Collapse
Affiliation(s)
- L Laval
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France,Danone Nutricia Research; Palaiseau, France
| | - R Martin
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | - JN Natividad
- FarncombeFamily Digestive Health Research Institute; McMaster University; Hamilton, Canada
| | - F Chain
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | - S Miquel
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | | | | | - H Sokol
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France,ERL INSERM U 1057/UMR7203; Faculté de Médecine Saint-Antoine; Université Pierre et Marie Curie (UPMC); Paris, France,Service de Gastroentérologie; Hôpital Saint-Antoine; Assistance Publique – Hôpitaux de Paris (APHP); Paris, France
| | - EF Verdu
- FarncombeFamily Digestive Health Research Institute; McMaster University; Hamilton, Canada
| | | | - LG Bermúdez-Humarán
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France
| | - T Smokvina
- Danone Nutricia Research; Palaiseau, France
| | - P Langella
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; F-78350; Jouy-en-Josas, France,AgroParisTech; UMR1319 Micalis; F-78350; Jouy-en-Josas, France,Correspondence to: Philippe Langella;
| |
Collapse
|
243
|
Abstract
Mucosal healing has been a central issue in inflammatory bowel disease (IBD) for the last years, and has been proposed to be included as the new treatment goal in IBD. The molecular understanding of both the disruption and the healing of the intestinal epithelial cell lining and the mucosal barrier in IBD is complex and only partly understood. There is no general agreement on how to define healed mucosa, but there is a general acceptance that clinicians should use endoscopy and imaging technique in their assessments. Mucosal healing is an old concept that has been actualized in the present era of the highly effective biological agents. Randomized clinical studies with mucosal healing as end-point parameters have been reported, and early mucosal healing has been associated with low complication rates. We are waiting for documentation of whether treatment to healed mucosa can change the natural course of IBD. The concept of immunological remission has recently been introduced and can be the new treatment goal and one of several criteria for discontinuation of biological treatment in IBD. In conclusion, mucosal healing is a fairly novel concept and goal for biological treatment of IBD. There is a need for a standardization of its assessment and validation of the prognostic value.
Collapse
Affiliation(s)
- Jon Florholmen
- Research group of Gastroenterology and Nutrition, Institute of Clinicel Medicine, Arctic University of Norway , Tromsø , Norway
| |
Collapse
|
244
|
The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun 2014; 5:5826. [PMID: 25518808 PMCID: PMC4284802 DOI: 10.1038/ncomms6826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023] Open
Abstract
Dividing epithelial cells need to coordinate spindle positioning with shape changes to maintain cell–cell adhesion. Microtubule interactions with the cell cortex regulate mitotic spindle positioning within the plane of division. How the spindle crosstalks with the actin cytoskeleton to ensure faithful mitosis and spindle positioning is unclear. Here we demonstrate that the tumour suppressor DLC2, a negative regulator of Cdc42, and the interacting kinesin Kif1B coordinate cell junction maintenance and planar spindle positioning by regulating microtubule growth and crosstalk with the actin cytoskeleton. Loss of DLC2 induces the mislocalization of Kif1B, increased Cdc42 activity and cortical recruitment of the Cdc42 effector mDia3, a microtubule stabilizer and promoter of actin dynamics. Accordingly, DLC2 or Kif1B depletion promotes microtubule stabilization, defective spindle positioning, chromosome misalignment and aneuploidy. The tumour suppressor DLC2 and Kif1B are thus central components of a signalling network that guides spindle positioning, cell–cell adhesion and mitotic fidelity. Epithelial cells must position their mitotic spindle correctly to maintain cell–cell adhesion. Here Vitiello et al. show that the tumour suppressor DLC2 and the mitotic kinesin Kif1b coordinate microtubule–actin interactions upstream of mDia3, guiding spindle positioning and mitotic fidelity.
Collapse
|
245
|
8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Strahlenther Onkol 2014; 191:429-36. [DOI: 10.1007/s00066-014-0782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
246
|
Viotti M, Nowotschin S, Hadjantonakis AK. SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol 2014; 16:1146-56. [PMID: 25419850 PMCID: PMC4250291 DOI: 10.1038/ncb3070] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 10/20/2014] [Indexed: 12/11/2022]
Abstract
Gastrulation leads to three germ layers--ectoderm, mesoderm and endoderm--that are separated by two basement membranes. In the mouse embryo, the emergent gut endoderm results from the widespread intercalation of cells of two distinct origins: pluripotent epiblast-derived definitive endoderm (DE) and extra-embryonic visceral endoderm (VE). Here we image the trajectory of prospective DE cells before intercalating into the VE epithelium. We show that the transcription factor SOX17, which is activated in prospective DE cells before intercalation, is necessary for gut endoderm morphogenesis and the assembly of the basement membrane that separates gut endoderm from mesoderm. Our results mechanistically link gut endoderm morphogenesis and germ layer segregation, two central and conserved features of gastrulation.
Collapse
Affiliation(s)
- Manuel Viotti
- 1] Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York 10065, USA [2] Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York 10065, USA
| | | |
Collapse
|
247
|
Bodin S, Planchon D, Rios Morris E, Comunale F, Gauthier-Rouvière C. Flotillins in intercellular adhesion - from cellular physiology to human diseases. J Cell Sci 2014; 127:5139-47. [PMID: 25413346 DOI: 10.1242/jcs.159764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Flotillin 1 and 2 are ubiquitous and highly conserved proteins. They were initially discovered in 1997 as being associated with specific caveolin-independent cholesterol- and glycosphingolipid-enriched membrane microdomains and as being expressed during axon regeneration. Flotillins have a role in a large number of physiopathological processes, mainly through their function in membrane receptor clustering and in the regulation of clathrin-independent endocytosis. In this Commentary, we summarize the research performed so far on the role of flotillins in cell-cell adhesion. Recent studies have demonstrated that flotillins directly regulate the formation of cadherin complexes. Indeed, flotillin microdomains are required for the dynamic association and stabilization of cadherins at cell-cell junctions and also for cadherin signaling. Moreover, because flotillins regulate endocytosis and also the actin cytoskeleton, they could have an indirect role in the assembly and stabilization of cadherin complexes. Because it has also recently been shown that flotillins are overexpressed during neurodegenerative diseases and in human cancers, where their upregulation is associated with metastasis formation and poor prognosis, understanding to what extent flotillin upregulation participates in the development of such pathologies is thus of particular interest, as well as how, at the molecular level, it might affect cell adhesion processes.
Collapse
Affiliation(s)
- Stéphane Bodin
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Damien Planchon
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Eduardo Rios Morris
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Franck Comunale
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Cécile Gauthier-Rouvière
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
248
|
Abstract
Vertebrate adherens junctions mediate cell–cell adhesion via a “classical” cadherin–catenin “core” complex, which is associated with and regulated by a functional network of proteins, collectively named the cadherin adhesome (“cadhesome”). The most basal metazoans have been shown to conserve the cadherin–catenin “core”, but little is known about the evolution of the cadhesome. Using a bioinformatics approach based on both sequence and structural analysis, we have traced the evolution of this larger network in 26 organisms, from the uni-cellular ancestors of metazoans, through basal metazoans, to vertebrates. Surprisingly, we show that approximately 70% of the cadhesome, including proteins with similarity to the catenins, predate metazoans. We found that the transition to multicellularity was accompanied by the appearance of a small number of adaptor proteins, and we show how these proteins may have helped to integrate pre-metazoan sub-networks via PDZ domain–peptide interactions. Finally, we found the increase in network complexity in higher metazoans to have been driven primarily by expansion of paralogs. In summary, our analysis helps to explain how the complex protein network associated with cadherin at adherens junctions first came together in the first metazoan and how it evolved into the even more complex mammalian cadhesome.
Collapse
Affiliation(s)
- Paul S Murray
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA Center of Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, Irving Cancer Research Center, New York, NY 10032, USA
| | - Ronen Zaidel-Bar
- Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
249
|
Shriver M, Stroka KM, Vitolo MI, Martin S, Huso DL, Konstantopoulos K, Kontrogianni-Konstantopoulos A. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene 2014; 34:4248-59. [PMID: 25381817 DOI: 10.1038/onc.2014.358] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Obscurins, encoded by the single OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. The OBSCN gene is highly mutated in different types of cancers. Loss of giant obscurins from breast epithelial cells confers them with a survival and growth advantage, following exposure to DNA-damaging agents. Here we demonstrate that the expression levels and subcellular distribution of giant obscurins are altered in human breast cancer biopsies compared with matched normal samples. Stable clones of non-tumorigenic MCF10A cells lacking giant obscurins fail to form adhesion junctions, undergo epithelial-to-mesenchymal transition and generate >100-μm mammospheres bearing markers of cancer-initiating cells. Obscurin-knockdown MCF10A cells display markedly increased motility as a sheet in 2-dimensional (2D) substrata and individually in confined spaces and invasion in 3D matrices. In line with these observations, actin filaments redistribute to extending filopodia where they exhibit increased dynamics. MCF10A cells that stably express the K-Ras oncogene and obscurin short hairpin RNA (shRNA), but not scramble control shRNA, exhibit increased primary tumor formation and lung colonization after subcutaneous and tail vein injections, respectively. Collectively, our findings reveal that loss of giant obscurins from breast epithelium results in disruption of the cell-cell contacts and acquisition of a mesenchymal phenotype that leads to enhanced tumorigenesis, migration and invasiveness in vitro and in vivo.
Collapse
Affiliation(s)
- M Shriver
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K M Stroka
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA [2] Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA [3] Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - M I Vitolo
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Martin
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - D L Huso
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - K Konstantopoulos
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA [2] Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA [3] Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - A Kontrogianni-Konstantopoulos
- 1] Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA [2] Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
250
|
A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32:1269-1282. [DOI: 10.1016/j.biotechadv.2014.07.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
|