201
|
Stingl G. Skin cancer--prospects for novel therapeutic approaches. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:137-53. [PMID: 10943321 DOI: 10.1007/978-3-662-04183-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
202
|
Abstract
Dendritic cells (DC) constitute a unique system of cells that induce, sustain and regulate immune responses. Distributed as sentinels throughout the body, DC are poised to capture antigen (Ag), migrate to draining lymphoid organs, and, after a process of maturation, select Ag-specific lymphocytes to which they present the processed Ag, thereby inducing immune responses. DC present Ag to CD4(+) T cells which in turn regulate multiple effectors, including CD8(+) cytotoxic T cells, B cells, NK cells, macrophages and eosinophils, all of which contribute to the protective immune responses. Several key features of the DC system may be highlighted: (1) the existence of different DC subsets that share biological functions, yet display unique ones such as polarization of T cell responses towards Type 1 or Type 2 or regulation of B cell responses; (2) the functional specialization of DC according to their differentiation/maturation stages; and (3) the plasticity of DC which is determined by the microenvironment (e.g. cytokines) and may manifest as (i) the final differentiation into either DC (enhanced antigen presentation) or macrophage (enhanced antigen degradation); (ii) the induction of immunity or tolerance; and (iii) the polarization of T cell responses. Because of these unique properties, DC represent both vectors and targets for immunological intervention in numerous diseases and are optimal candidates for vaccination protocols both in cancer and infectious diseases.
Collapse
Affiliation(s)
- M Nouri-Shirazi
- Baylor Institute for Immunology Research, 3434 Live Oak, Dallas, TX 75204, USA
| | | | | | | |
Collapse
|
203
|
Zhang Y, Chirmule N, Gao GP, Wilson J. CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000; 74:8003-10. [PMID: 10933709 PMCID: PMC112332 DOI: 10.1128/jvi.74.17.8003-8010.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus type 2 (rAAV) is being explored as a vector for gene therapy because of its broad host range, good safety profile, and persistent transgene expression in vivo. However, accumulating evidence indicates that administration of AAV vector may initiate a detectable cellular and humoral immune response to its transduced neo-antigen in vivo. To elucidate the cellular basis of the AAV-mediated immune response, C57BL/6 mouse bone marrow-derived immature and mature dendritic cells (DCs) were infected with AAV encoding beta-galactosidase (AAV-lacZ) and adoptively transferred into mice that had received an intramuscular injection of AAV-lacZ 10 days earlier. Unexpectedly, C57BL/6 mice but not CD40 ligand-deficient (CD40L(-/-)) mice adoptively transferred with AAV-lacZ-infected immature DCs developed a beta-galactosidase-specific cytotoxic T-lymphocyte (CTL) response that markedly diminished AAV-lacZ-transduced gene expression in muscle fibers. In contrast, adoptive transfer of AAV-lacZ-infected mature DCs failed to elicit a similar CTL response in vivo. Our findings indicate, for the first time, that immature DCs may be able to elicit a CD40L-dependent T-cell immunity to markedly diminish AAV-lacZ transduced gene expression in vivo when a sufficient number of DCs capturing rAAV vector and/or its transduced gene products is recruited.
Collapse
Affiliation(s)
- Y Zhang
- Institute for Human Gene Therapy and Departments of Medicine and of Molecular and Cellular Engineering, University of Pennsylvania, and The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
204
|
Chinnasamy N, Chinnasamy D, Toso JF, Lapointe R, Candotti F, Morgan RA, Hwu P. Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors. Hum Gene Ther 2000; 11:1901-9. [PMID: 10986562 DOI: 10.1089/10430340050129512] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells and are capable of activating naive T cells. Gene transfer of tumor antigen and cytokine genes into DCs could be an important strategy for immunotherapeutic applications. Dendritic cells derived from peripheral blood monocytes do not divide and are therefore poor candidates for gene transfer by Moloney murine leukemia virus (Mo-MuLV)-based retroviral vectors. Lentiviral vectors are emerging as a powerful tool for gene delivery into dividing and nondividing cells. A three-plasmid expression system pseudotyped with the envelope from vesicular stomatitis virus (VSV-G) was used to generate lentiviral vector particles expressing enhanced green fluorescent protein (EGFP). Peripheral blood monocyte-derived DCs were cultured in the presence of GM-CSF and IL-4 and transduced with lentiviral or Mo-MuLV-based vectors expressing EGFP. FACS analysis of lentiviral vector-transduced DCs derived either from normal healthy volunteers or from melanoma patients demonstrated transduction efficiency ranging from 70 to 90% compared with 2-8% using Mo-MuLV-based vectors pseudotyped with VSV-G. Comparison of lentiviral vectors expressing EGFP driven by CMV or human PGK promoters showed similar levels of transgene expression. Lentiviral vector preparations produced in the absence of HIV accessory proteins transduced DCs at efficiencies equal to vectors produced with accessory proteins. Alu-HIV-1 LTR PCR demonstrated the genomic integration of the lentiviral vector in the transduced DCs. Transduced cells showed characteristic dendritic cell phenotype and strong allostimulatory capacity and maintained the ability to respond to activation signals such as CD40 ligand and lipopolysaccharide. These results provide evidence that lentiviral vectors are efficient tools for gene transfer and expression in monocyte-derived DCs that could be useful for immunotherapeutic applications.
Collapse
Affiliation(s)
- N Chinnasamy
- Clinical Gene Therapy Branch, NHGRI, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Mangeot PE, Nègre D, Dubois B, Winter AJ, Leissner P, Mehtali M, Kaiserlian D, Cosset FL, Darlix JL. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 2000; 74:8307-15. [PMID: 10954529 PMCID: PMC116340 DOI: 10.1128/jvi.74.18.8307-8315.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentivirus-derived vectors are very promising gene delivery systems since they are able to transduce nonproliferating differentiated cells, while murine leukemia virus-based vectors can only transduce cycling cells. Here we report the construction and characterization of highly efficient minimal vectors derived from simian immunodeficiency virus (SIVmac251). High-fidelity PCR amplification of DNA fragments was used to generate a minimal SIV vector formed from a 5' cytomegalovirus early promoter, the 5' viral sequences up to the 5' end of gag required for reverse transcription and packaging, the Rev-responsive element, a gene-expressing cassette, and the 3' long terminal repeat (LTR). Production of SIV vector particles was achieved by transfecting 293T cells with the vector DNA and helper constructs coding for the viral genes and the vesicular stomatitis virus glycoprotein G envelope. These SIV vectors were found to have transducing titers reaching 10(7) transducing units/ml on HeLa cells and to deliver a gene without transfer of helper functions to target cells. The central polypurine tract can be included in the minimal vector, resulting in a two- to threefold increase in the transduction titers on dividing or growth-arrested cells. Based on this minimal SIV vector, a sin vector was designed by deleting 151 nucleotides in the 3' LTR U3 region, and this SIV sin vector retained high transduction titers. Furthermore, the minimal SIV vector was efficient at transducing terminally differentiated human CD34(+) cell-derived or monocyte-derived dendritic cells (DCs). Results show that up to 40% of human primary DCs can be transduced by the SIV vectors. This opens a new perspective in the field of immunotherapy.
Collapse
Affiliation(s)
- P E Mangeot
- LaboRetro, Unité de Virologie Humaine (INSERM-ENS no. 412), Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Yang S, Linette GP, Longerich S, Roberts BL, Haluska FG. HLA-A2.1/K(b) transgenic murine dendritic cells transduced with an adenovirus encoding human gp100 process the same A2.1-restricted peptide epitopes as human antigen-presenting cells and elicit A2.1-restricted peptide-specific CTL. Cell Immunol 2000; 204:29-37. [PMID: 11006015 DOI: 10.1006/cimm.2000.1695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HLA-A2.1/K(b) transgenic mice (A2.1/K(b) mice) were used to investigate the processing of human gp100 melanoma antigen by murine antigen presenting cells (APC). Bone marrow-derived dendritic cells (DC) from A2.1/K(b) mice were transduced with adenovirus encoding human gp100 (Ad2/hugp100v2). The Ad2/hugp100v2-transduced DC express human gp100, as documented by immunoperoxidase staining. Flow cytometric analysis demonstrates that Ad vector transduction does not downregulate expression of several markers, including MHC class I. We show that Ad2/hugp100v2-transduced DC are recognized by peptide-specific, A2.1-restricted CTL, suggesting correct processing and presentation of the hugp100 antigen by murine DC. To assess dominance among the various A2.1-restricted epitopes encoded by hugp100, A2.1/K(b) transgenic mice were immunized with Ad2/hugp100v2-transduced DC. Resulting effector cytotoxic T lymphocytes (CTL) were assayed for peptide specificity using a panel of six synthetic peptides known to encode A2.1-restricted epitopes of human gp100 (denoted G154, G177, G209, G280, G457, G476). CTL obtained from Ad2/hugp100v2-transduced DC immunized A2.1/K(b) mouse lysed target cells presenting five of the six epitopes, supporting the observation that murine cells correctly process the hugp100 antigen. The immunogenicity of individual gp100 epitopes correlates with their binding affinity to A2.1. CTL generated from A2.1/K(b) mice immunized with Ad2/hugp100v2-transduced DC also specifically recognize A2.1(+)/gp100(+) human melanoma cells. These data suggest that murine APC process and present the same set of HLA-restricted peptides, similar to human APC. HLA transgenic mice serve as a useful model system to study class I-restricted epitopes of human tumor-associated antigens.
Collapse
Affiliation(s)
- S Yang
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
207
|
Sonderbye L, Feng S, Yacoubian S, Buehler H, Ahsan N, Mulligan R, Langhoff E. In vivo and in vitro modulation of immune stimulatory capacity of primary dendritic cells by adenovirus-mediated gene transduction. EXPERIMENTAL AND CLINICAL IMMUNOGENETICS 2000; 15:100-11. [PMID: 9691204 DOI: 10.1159/000019060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells which are key leukocytes in the initiation of cell-mediated organ graft rejection, antiviral immunity, and antitumor responses. In this study we demonstrate that genetic modification of primary human and mouse DCs by adenoviral gene transfer is an effective means of induction and modulation of antigen presentation by DCs. An adenovirus vector (AdLacZ) was used to express an intracellular model antigen beta-galactosidase (beta-gal) in DCs. Our results show that 30-40% of precursor dendritic cells (PDCs) derived from human umbilical cord blood and circulating mature blood DCs express high levels beta-galactosidase (beta-gal) after infection with AdLacZ with no cytopathic effect observed. In vitro, AdLacZ transduced PDCs and DCs demonstrated a 10- to 20-fold higher mixed lymphocyte reaction (MLR) stimulatory capacity as compared to that of monocytes. In vivo, immunization with AdLacZ transduced mouse DCs resulted in more potent cytotoxic T lymphocyte (CTL) responses against the predicted H-2 restricted beta-gal epitope as compared to CTL responses obtained by beta-gal peptide pulsed DCs. Modulations of the MLR stimulatory capacity of DCs were examined by expression of mouse B7 and CTLA-4Ig. The results show that expression of mouse B7 by a recombinant adenoviral vector (Ad7) significantly enhances the MLR stimulatory capacity of human DCs. In contrast, expression of CTLA-4Ig (AdCTLA-4Ig) reduces the MLR stimulatory capacity of the transduced cells. We conclude that recombinant adenovirus can readily be used for genetic modulation DC-induced immune responses in vivo and in vitro. DCs targeted for induction of specific antigen responses or for modulation of the immune stimulatory capacity may have a potential use in the control of transplantation rejection or viral infections.
Collapse
Affiliation(s)
- L Sonderbye
- Division of Nephrology, Milton S. Hershey Medical Center, Penn State University, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Takayama T, Morelli AE, Robbins PD, Tahara H, Thomson AW. Feasibility of CTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T cell anergy in vitro. Gene Ther 2000; 7:1265-73. [PMID: 10918497 DOI: 10.1038/sj.gt.3301244] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dendritic cells (DC) are highly specialised, bone marrow (BM)-derived antigen-presenting cells (APC) that initiate and regulate immune responses. They provide costimulatory signals (in particular, CD40 and the CD28 ligands CD80 and CD86) necessary for naive T cell activation. Functional expression of CD80 and CD86 is blocked by the fusion protein cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4Ig), that promotes tolerance induction in animals. Here, replicating mouse (B10; H2b) myeloid DC progenitors, were retrovirally transduced to express CTLA4Ig using the centrifugal enhancement method. Gene product was detected by immunocyto- or histochemistry. Maximal DC transduction efficiency was 62%. Compared with control, zeomycin-resistance gene (Zeo)-transduced DC, CTLA4Ig-expressing cells showed markedly impaired capacity to stimulate naive allogeneic (C3H; H2k) T cell proliferation and cytotoxic T lymphocyte (CTL) generation. Their ability to induce alloantigen-specific T cell hyporesponsiveness was reversed by exogenous IL-2 in secondary mixed leukocyte reactions (MLR). Following local (s.c.) transfer to allogeneic recipients, the genetically modified DC trafficked to T cell areas of draining lymphoid tissue, where transgene expression was detected. Ex vivo analysis of proliferative and CTL responses revealed donor-specific inhibition of alloimmune reactivity by the CTLA4Ig-transduced DC. This effect was associated with marked inhibition of interferon (IFN)-gamma production, but significant augmentation of IL-4 and IL-10 secretion. Thus, retroviral transduction of DC permits in vivo delivery of CTLA4Ig to the precise microenvironment where antigen (Ag) presentation occurs. Comparatively nonimmunogenic retroviral vectors, that allow permanent transgene expression in DC, and promote localized delivery of the immunosuppressive transgene product, promote immune deviation and Ag-specific T cell hyporesponsiveness.
Collapse
Affiliation(s)
- T Takayama
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA 15213, USA
| | | | | | | | | |
Collapse
|
209
|
Rouard H, Léon A, Klonjkowski B, Marquet J, Tennezé L, Plonquet A, Agrawal SG, Abastado JP, Eloit M, Farcet JP, Delfau-Larue MH. Adenoviral transduction of human 'clinical grade' immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity. J Immunol Methods 2000; 241:69-81. [PMID: 10915850 DOI: 10.1016/s0022-1759(00)00214-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The therapeutic use of dendritic cells (DC) in antigen-specific anti-tumor vaccines, requires sufficient numbers of functional DC, the preparation of which should comply with the code of Good Manufacturing Practice. In addition, the expression of tumor specific antigen should be possible in these DC. As a preclinical step, the method reported here was developed in healthy volunteers. Monocytes (Mo) were isolated by leukapheresis from 12 donors, purified by elutriation and then cultured for 6 days in sealed bags in AIM-V serum free medium with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-13 (IL-13). Between 6x10(8) and 1x10(9) immature DC (iDC) could be differentiated from one leukapheresis. Cells displayed a characteristic iDC phenotype (CD1a(+), CD14(-), CD80(+), CD86(+), HLA DR(+), CD83(-)), and had potent allogeneic and antigen dependent autologous T cell-stimulatory capacity. Moreover, iDC could be further differentiated into mature DC by CD40 ligation as assessed by CD83 expression and the upregulation of HLA-DR and costimulatory molecules. After infection with a recombinant adenovirus encoding for beta-galactosidase (betaGal), 50% to 80% of iDC expressed betaGal without toxicity. Adenovirus infection increased the expression of both costimulatory molecules and CD83, and also increased allogeneic stimulatory capacity. Thus, the method developed here allows us to use large numbers of functional iDC as will be required for therapeutic uses in man. These DC can express a transgenic protein.
Collapse
Affiliation(s)
- H Rouard
- Service d'immunologie biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Morse MA, Lyerly HK. Dendritic cell-based immunization for cancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:335-46. [PMID: 10810637 DOI: 10.1007/0-306-46817-4_28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- M A Morse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
211
|
Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811. [PMID: 10837075 DOI: 10.1146/annurev.immunol.18.1.767] [Citation(s) in RCA: 4794] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.
Collapse
Affiliation(s)
- J Banchereau
- Baylor Institute for Immunology Research, Dallas, Texas 75204, USA.
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Avigan D, Wu Z, Joyce R, Elias A, Richardson P, McDermott D, Levine J, Kennedy L, Giallombardo N, Hurley D, Gong J, Kufe D. Immune reconstitution following high-dose chemotherapy with stem cell rescue in patients with advanced breast cancer. Bone Marrow Transplant 2000; 26:169-76. [PMID: 10918427 DOI: 10.1038/sj.bmt.1702474] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study examines the nature of humoral and cellular immune reconstitution in 28 patients with advanced breast cancer following high-dose chemotherapy with stem cell rescue. Patients underwent testing of T, B, NK and dendritic cell function at serial time points until 1 year post transplant or until the time of disease progression. Abnormalities in T cell phenotype and function were observed following high-dose chemotherapy that persisted for at least 6-12 months. The vast majority of patients experienced an inversion of the CD4/CD8 ratio and demonstrated an anergic response to candida antigen. Mean T cell proliferation in response to PHA and to co-culture with allogeneic monocytes was significantly compromised. In contrast, mean IgG and IgA levels were normal 6 months post transplant and NK cell yields and function were transiently elevated following high-dose chemotherapy. Dendritic cells generated from peripheral blood progenitors displayed a characteristic phenotype and were potent inducers of allogeneic T cell proliferation in the post-transplant period. The study demonstrates that patients undergoing autologous transplantation for breast cancer experience a prolonged period of T cell dysfunction. In contrast, B, NK, and DC recover more rapidly. These findings carry significant implications for the design of post-transplant immunotherapy.
Collapse
Affiliation(s)
- D Avigan
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 2000. [DOI: 10.1182/blood.v96.1.91] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CD40 ligand (CD40L) is essential for the initiation of antigen-specific T-cell responses. This study is based on the hypothesis that dendritic cells (DCs) genetically modified ex vivo to express CD40L will enhance in vivo presentation of tumor antigen to the cellular immune system with consequent induction of antitumor immunity to suppress tumor growth. To examine this concept, subcutaneous murine tumors were injected with bone marrow-derived DCs that had been modified in vitro with an adenovirus (Ad) vector expressing murine CD40L (AdmCD40L). In B16 (H-2b, melanoma) and CT26 (H-2d, colon cancer) murine models, intratumoral injection of 2 × 106 AdmCD40L-modified DCs (CD40L-DCs) to established (day 8) subcutaneous tumors resulted in sustained tumor regression and survival advantage. This antitumor effect was sustained when the number of CD40L-DCs were reduced 10-fold to 2 × 105. Analysis of spleens from CD40L-DC–treated animals demonstrated that CD40L-DCs injected into the subcutaneous CT26 flank tumors migrated to the spleen, resulting in activation of immune-relevant processes. Consistent with this concept, intratumoral administration of CD40L-DCs elicited tumor-specific cytotoxic T-lymphocyte responses, and the transfer of spleen cells from CD40L-DC–treated mice efficiently protected naive mice against a subsequent tumor challenge. In a distant 2-tumor model of metastatic disease, an untreated B16 tumor in the right flank regressed in parallel with a left B16 tumor treated with direct injection of CD40L-DCs. These results support the concept that genetic modification of DCs with a recombinant CD40L adenovirus vector may be a useful strategy for directly activating DCs for cancer immunotherapy.
Collapse
|
214
|
Melero I, Vile RG, Colombo MP. Feeding dendritic cells with tumor antigens: self-service buffet or à la carte? Gene Ther 2000; 7:1167-70. [PMID: 10918484 DOI: 10.1038/sj.gt.3301234] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adoptive transfer of autologous dendritic cells (DC) presenting tumor-associated antigens initiate and sustain an immune response which eradicate murine malignancies. Based on these observations, several clinical trials are in progress testing safety and efficacy with encouraging preliminary reports. In these approaches, ex vivo incubation of DC with a source of tumor antigens is required to load the relevant antigenic epitopes on the adequate antigen presenting molecules. Recent data show that in some instances exogenous DC artificially injected into malignant tissue or endogenous DC attracted to the tumor nodule by means of gene transfer of GM-CSF and CD40L into malignant cells result in efficacious antitumor immunity. In the case of intratumoral injection of DC the procedure is curative only if DC had been genetically engineered to produce IL-12, IL-6 or to express CD40L. Evidence has been obtained showing that intratumoral DC can capture and process tumor antigens to be presented to T-lymphocytes. Although the exact mechanisms of tumor antigen acquisition by DC are still unclear, available data suggest a role for heat shock proteins released from dying malignant cells and for the internalization of tumor-derived apoptotic bodies. Roles for tumor necrosis versus apoptosis are discussed in light of the 'danger theory'. Gene Therapy (2000) 7, 1167-1170.
Collapse
Affiliation(s)
- I Melero
- Gene Therapy Division, Internal Medicine Department, University of Navarra School of Medicine, Pamplona, Spain
| | | | | |
Collapse
|
215
|
Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 2000. [DOI: 10.1182/blood.v96.1.91.013k19_91_99] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40 ligand (CD40L) is essential for the initiation of antigen-specific T-cell responses. This study is based on the hypothesis that dendritic cells (DCs) genetically modified ex vivo to express CD40L will enhance in vivo presentation of tumor antigen to the cellular immune system with consequent induction of antitumor immunity to suppress tumor growth. To examine this concept, subcutaneous murine tumors were injected with bone marrow-derived DCs that had been modified in vitro with an adenovirus (Ad) vector expressing murine CD40L (AdmCD40L). In B16 (H-2b, melanoma) and CT26 (H-2d, colon cancer) murine models, intratumoral injection of 2 × 106 AdmCD40L-modified DCs (CD40L-DCs) to established (day 8) subcutaneous tumors resulted in sustained tumor regression and survival advantage. This antitumor effect was sustained when the number of CD40L-DCs were reduced 10-fold to 2 × 105. Analysis of spleens from CD40L-DC–treated animals demonstrated that CD40L-DCs injected into the subcutaneous CT26 flank tumors migrated to the spleen, resulting in activation of immune-relevant processes. Consistent with this concept, intratumoral administration of CD40L-DCs elicited tumor-specific cytotoxic T-lymphocyte responses, and the transfer of spleen cells from CD40L-DC–treated mice efficiently protected naive mice against a subsequent tumor challenge. In a distant 2-tumor model of metastatic disease, an untreated B16 tumor in the right flank regressed in parallel with a left B16 tumor treated with direct injection of CD40L-DCs. These results support the concept that genetic modification of DCs with a recombinant CD40L adenovirus vector may be a useful strategy for directly activating DCs for cancer immunotherapy.
Collapse
|
216
|
Märten A, Schöttker B, Ziske C, Weineck S, Buttgereit P, Huhn D, Sauerbruch T, Schmidt-Wolf IG. Increase of the immunostimulatory effect of dendritic cells by pulsing with CA 19-9 protein. J Immunother 2000; 23:464-72. [PMID: 10916756 DOI: 10.1097/00002371-200007000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previously, a relative resistance of solid tumor cells to immunologic effector cells was shown in vitro. This resistance could be one reason for the clinical phenomenon of resistance of patients with colon carcinoma or other solid tumors to immunologic therapeutic approaches. In this study, dendritic cells (DCs) pulsed with CA 19-9 protein were tested for their immunostimulatory capacity of immunologic effector cells against cells derived from colon and pancreatic carcinoma. Dendritic cell cultures coexpressed CMRF-44 and CD1a, markers typical of DCs, in 31.5% +/- 5.3% after 13 days of culture. Coculture of NK-like T lymphocytes with DCs led to a significant increase in cytotoxic activity, as measured using a lactate dehydrogenase release assay. Cytotoxic activity could be further increased using DCs pulsed with CA 19-9 protein. The effect of CA 19-9 on increasing the cytotoxic effect of NK-like T lymphocytes was dose dependent. Similarly, cocultivation of DCs with NK-like T cells derived from patients with metastatic pancreatic cancer and elevated CA 19-9 serum levels led to a significant increase in cytotoxic activity. In conclusion, DCs pulsed with CA 19-9 protein can increase the cytotoxic activity of immunologic effector cells against colon carcinoma and pancreatic cancer cells. Dendritic cells pulsed with CA 19-9 protein may have an important effect on immunotherapeutic protocols for patients with cancer.
Collapse
Affiliation(s)
- A Märten
- Medizinische Klinik und Poliklinik I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Hirschowitz EA, Weaver JD, Hidalgo GE, Doherty DE. Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Ther 2000; 7:1112-20. [PMID: 10918477 DOI: 10.1038/sj.gt.3301210] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DC) are highly efficient antigen presenting cells being actively evaluated as vaccine components. A number of studies have shown adenovirus-mediated gene transfer to cultured DCs is feasible and that Ad-modified DCs are effective at inducing T cell immunity in vitro and establishing antitumor immunity in experimental tumor models in vivo. The current study evaluates the biologic effects of Ad infection on murine bone marrow-derived DCs (BMDC) in primary culture. Ad infection (MOI 200) of BMDC induced significant increases in IL 12 p40 protein in culture supernatants (6 x that of uninfected BMDC and similar to that observed with addition of LPS and CD40 crosslinking antibody). Supernatants from Ad infected BMDCs induced appreciable increases in IFNgamma from naive splenocytes in culture. Consistent with DC activation, FACs analysis showed BMDC infected with Ad vectors up-regulated the surface expression of B7-2, ICAM-1 and MHC II. Additional experiments evaluated the role of virus attachment, internalization and gene expression using IL-12 p40 production as a marker of DC activation. Neither heat-inactivated Ad nor peptides containing the RGD sequence (the primary component of Ad penton base which interacts with cell surface integrins) induced significant amounts of IL12 p40. In contrast, psoralen/UV-inactivated Ad showed similar levels of IL12 p40 production compared with intact Ad. These data suggest this phenomenon is dependent on viral entry into the cell and/or translocation to the nucleus, and is independent of either viral gene or transgene expression.
Collapse
Affiliation(s)
- E A Hirschowitz
- Division of Pulmonary and Critical Care Medicine, Veteran's Administration Medical Center Lexington/University of Kentucky, Chandler Medical Center, 40536, USA
| | | | | | | |
Collapse
|
218
|
Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000; 191:1699-708. [PMID: 10811863 PMCID: PMC2193145 DOI: 10.1084/jem.191.10.1699] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have directly compared the efficacy of two immunotherapeutic strategies for the treatment of cancer: "vaccination" of tumor-bearing mice with genetically modified dendritic cells (DCs), and vaccination with genetically modified tumor cells. Using several different preexisting tumor models that make use of B16F10 melanoma cells expressing a target tumor antigen (human melanoma-associated gene [MAGE]-1), we found that vaccination with bone marrow-derived DCs engineered to express MAGE-1 via adenoviral-mediated gene transfer led to a dramatic decrease in the number of metastases in a lung metastasis model, and led to prolonged survival and some long-term cures in a subcutaneous preexisting tumor model. In contrast, vaccination with granulocyte/macrophage colony-stimulating factor (GM-CSF)-transduced tumor cells, previously shown to induce potent antitumor immunity in standard tumor challenge assays, led to a decreased therapeutic effect in the metastasis model and no effect in the subcutaneous tumor model. Further engineering of DCs to express either GM-CSF, tumor necrosis factor alpha, or CD40 ligand via retroviral-mediated gene transfer, led to a significantly increased therapeutic effect in the subcutaneous tumor model. The immunological mechanism, as shown for GM-CSF-transduced DCs, involves MAGE-1-specific CD4(+) and CD8(+) T cells. Expression of GM-CSF by DCs led to enhanced cytotoxic T lymphocyte activity, potentially mediated by increased numbers of DCs in draining lymph nodes. Our results suggest that clinical studies involving the vaccination with genetically modified DCs may be warranted.
Collapse
Affiliation(s)
- Christoph Klein
- Howard Hughes Medical Institute, Children's Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Hansruedi Bueler
- Howard Hughes Medical Institute, Children's Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Richard C. Mulligan
- Howard Hughes Medical Institute, Children's Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
219
|
Fushimi T, Kojima A, Moore MA, Crystal RG. Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest 2000; 105:1383-93. [PMID: 10811846 PMCID: PMC315459 DOI: 10.1172/jci7548] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) are powerful antigen-presenting cells that function as the principal activators of T cells. Since the human CC chemokine, macrophage inflammatory protein 3alpha (MIP-3alpha), is chemotactic for DCs in vitro, we hypothesized that adenovirus-mediated gene transfer of MIP-3alpha (AdMIP-3alpha) to tumors might induce local accumulation of DCs and inhibit growth of preexisting tumors. AdMIP-3alpha directed expression of mRNA and protein in vitro, and the supernatant of A549 cells infected with AdMIP-3alpha was chemotactic for DCs. In vivo, injection of AdMIP-3alpha into subcutaneous tumors resulted in local expression of the MIP-3alpha cDNA and in the local accumulation of DCs. In four syngeneic tumor models, growth of established tumors was significantly inhibited compared with untreated tumors or tumors injected with control vector, and in all but the poorly immunogenic LLC carcinoma model, this treatment increased survival advantage of the preexisting tumors. In all four tumor models, intratumoral injection of AdMIP-3alpha induced the local accumulation of CD8b. 2(+) cells and elicited tumor-specific cytotoxic T-lymphocyte activity, and adoptive transfer of splenocytes of animals receiving this treatment protected against a subsequent challenge with the identical tumor cells. In wild-type but not in CD8-deficient mice, AdMIP-3alpha inhibited the growth of tumors. Finally, AdMIP-3alpha also inhibited the growth of distant tumors. This strategy may be useful for enlisting the help of DCs to boost anti-tumor immunity against local and metastatic tumors without the necessity of ex vivo isolation and manipulation of DCs.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adoptive Transfer
- Animals
- Chemokine CCL20
- Chemokines, CC
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Female
- Genetic Therapy
- Genetic Vectors
- Humans
- Immunity, Cellular
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Receptors, CCR6
- Receptors, Chemokine
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- T Fushimi
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York 10021, USA
| | | | | | | |
Collapse
|
220
|
Timmerman JM, Levy R. Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4797-803. [PMID: 10779787 DOI: 10.4049/jimmunol.164.9.4797] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The unique Ag-presenting capabilities of dendritic cells (DCs) make them attractive vehicles for the delivery of therapeutic cancer vaccines. While tumor Ag-pulsed DC vaccination has shown promising results in a variety of murine tumor models and early clinical trials, the optimal form of tumor Ag for use in DC pulsing has not been determined. We have studied DC vaccination using alternative forms of a soluble protein tumor Ag, the tumor-specific Ig idiotype (Id) expressed by a murine B cell lymphoma. Vaccination of mice with Id-pulsed DCs was able to induce anti-Id Abs only when the Id was modified to constitute a hapten-carrier system. DCs pulsed with Id proteins modified to include foreign constant regions, foreign constant regions plus GM-CSF, or linkage to keyhole limpet hemocyanin (KLH) carrier protein were increasingly potent in their ability to elicit anti-Id Abs. Vaccination with Id-KLH-pulsed DCs induced tumor-protective immunity superior to that obtained with Id-KLH plus a chemical adjuvant, and protection was not dependent upon effector T cells. Rather, protection was associated with the induction of high titers of anti-Id Abs of the IgG2a subclass, characteristic of a Th1 response. These findings have implications for the design of therapeutic Ag-pulsed DC vaccines for cancer immunotherapy in humans.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/metabolism
- Adoptive Transfer
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cancer Vaccines/metabolism
- Carrier Proteins/administration & dosage
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Hemocyanins/administration & dosage
- Hemocyanins/immunology
- Hemocyanins/metabolism
- Humans
- Immunoglobulin Idiotypes/administration & dosage
- Immunoglobulin Idiotypes/genetics
- Immunoglobulin Idiotypes/metabolism
- Immunoglobulin Isotypes/administration & dosage
- Immunoglobulin Isotypes/biosynthesis
- Lymphoma/immunology
- Lymphoma/prevention & control
- Mice
- Mice, Inbred C3H
- Neoplasm Transplantation
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Recombinant Proteins
- Th1 Cells/immunology
- Tumor Cells, Cultured
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/metabolism
Collapse
Affiliation(s)
- J M Timmerman
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
221
|
Suzuki M, Suzuki S, Yamamoto N, Komatsu S, Inoue S, Hashiba T, Nishikawa M, Ishigatsubo Y. Immune responses against replication-deficient adenovirus inhibit ovalbumin-specific allergic reactions in mice. Hum Gene Ther 2000; 11:827-38. [PMID: 10779160 DOI: 10.1089/10430340050015446] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication-deficient adenovirus vector (Ad) is one of the most efficient gene transfer vehicles for human gene therapy. However, Ad is antigenic, known to evoke prominent inflammatory responses in vivo, and there are concerns that using Ad in patients with immune-mediated disorders (allergy and autoimmune diseases) may affect the status of the diseases. To evaluate this concept in a manner close to clinical scenarios, a mouse model of airway eosinophilic inflammation was developed by administering intraperitoneal injections and inhalations of chicken ovalbumin (OA), with Ad administered intranasally 5 days after the OA sensitization. The administration of Ad resulted in a significant suppression of eosinophil counts in peripheral blood as well as in the bronchoalveolar lavage fluid (BALF), and a decrease in OA-specific IgE. The decrease in the number of eosinophils in BALF was associated with a marked upregulation of interferon gamma (IFN-gamma) expression. In contrast, the Ad-specific, delayed-type hypersensitivity response and efficacy of reporter gene expression mediated by Ad were only marginally affected in animals sensitized with OA. Together, these data support the idea that Ad administration in patients with Th2-mediated immune disorders does not exacerbate the parameters of ongoing inflammations or gene transfer efficiency, and with its ability to induce prominent type 1 immune response to the antigen in vivo, Ad could potentially be used as an efficient adjuvant to control immune disorders where Th2 cell-mediated mechanisms are involved.
Collapse
Affiliation(s)
- M Suzuki
- First Department of Internal Medicine, Yokohama City University School of Medicine, Kanazawa, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells capable of priming activation of naive T cells. Because of their immunostimulatory capacity, immunization with DCs presenting tumor antigens has been proposed as a treatment regimen for cancer. The results from translational research studies and early clinical trials point to the need for improvement of DC-based tumor vaccines before they become a more broadly applicable treatment modality. In this regard, studies suggest that genetic modification of DCs to express tumor antigens and/or immunomodulatory proteins may improve their capacity to promote an antitumor response. Because the DC phenotype is relatively unstable, nonperturbing methods of gene transfer must be employed that do not compromise viability or immunostimulatory capacity. DCs expressing transgenes encoding tumor antigens have been shown to be more potent primers of antitumor immunity both in vitro and in animal models of disease; in some measures of immune priming, gene-modified DCs exceeded their soluble antigen-pulsed counterparts. Cytokine gene modification of DCs has improved their capacity to prime tumor antigen-specific T cell responses and promote antitumor immunity in vivo. Here, we review the current status of gene-modified DCs in both human and murine studies. Although successful results have been obtained to date in experimental systems, we discuss potential problems that have already arisen and may yet be encountered before gene-modified DCs are more widely applicable for use in human clinical trials.
Collapse
Affiliation(s)
- C J Kirk
- Department of Surgery, Tumor Immunology Program of the Comprehensive Cancer Center, University of Michigan Medical Center, Ann Arbor 48109-0666, USA.
| | | |
Collapse
|
223
|
Abstract
Dendritic cells (DCs) are critical subsets of leukocytes providing antigen presentation for initiation of humoral and cellular immune responses. Their role as effector cells in tumor resistance, however, is less known. We report here that human DCs generated by culturing plastic-adherent peripheral blood monocytes in the presence of granulocyte-monocyte colony–stimulating factor (GM-CSF) and interleukin-4 have potent growth-inhibition activity in vitro on a wide spectrum of human tumor lines of different tissue origin. Proinflammatory stimuli lipopolysaccharide (LPS) and interferon-γ, but not tumor necrosis factor– and CD40 signaling, can further enhance DC-mediated inhibition of tumor growth. The growth inhibition requires contact between DCs and tumor cells while LPS treatment enhances the antitumor activity in DC culture supernatants. Our results suggest that in addition to their predominant role as regulatory cells, activated DCs are also potential effector cells in tumor immunity.
Collapse
|
224
|
In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 2000. [DOI: 10.1182/blood.v95.7.2346] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Dendritic cells (DCs) are critical subsets of leukocytes providing antigen presentation for initiation of humoral and cellular immune responses. Their role as effector cells in tumor resistance, however, is less known. We report here that human DCs generated by culturing plastic-adherent peripheral blood monocytes in the presence of granulocyte-monocyte colony–stimulating factor (GM-CSF) and interleukin-4 have potent growth-inhibition activity in vitro on a wide spectrum of human tumor lines of different tissue origin. Proinflammatory stimuli lipopolysaccharide (LPS) and interferon-γ, but not tumor necrosis factor– and CD40 signaling, can further enhance DC-mediated inhibition of tumor growth. The growth inhibition requires contact between DCs and tumor cells while LPS treatment enhances the antitumor activity in DC culture supernatants. Our results suggest that in addition to their predominant role as regulatory cells, activated DCs are also potential effector cells in tumor immunity.
Collapse
|
225
|
Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, Dalgleish AG. Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:265-79. [PMID: 10699368 DOI: 10.1016/s0925-4439(99)00108-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hybrid cells created by fusion of antigen presenting and tumour cells have been shown to induce potent protective and curative anti-tumour immunity in rodent cancer models. The application of hybrid cell vaccines for human tumour therapy and the timely intervention in disease control are limited by the requirement to derive sufficient autologous cells to preserve homologous tumour antigen presentation. In this study, the efficiency of various methods of electrofusion in generating hybrid human cells have been investigated with a variety of human haemopoietic, breast and prostate cell lines. Cell fusion using an electrical pulse is enhanced by a variety of stimuli to align cells electrically or bring cells into contact. Centrifugation of cells after an exponential pulse from a Gene Pulser electroporation apparatus provided the highest yield of mixed cell hybrids by FACS analysis. An extensive fusogenic condition generated in human cells after an electrical pulse contradicts the presumption that prior cell contact is necessary for cell fusion. Alignment of cells in a concurrent direct current charge and osmotic expansion of cells in polyethylene glycol also generated high levels of cell fusion. Waxing of one electrode of the electroporation cuvette served to polarize the fusion chamber and increase cell fusion 5-fold. Optimisation of a direct current charge in combination with a fusogenic pulse in which fusion of a range of human cells approached or exceeded 30% of the total pulsed cells. The yield of hybrid prostate and breast cancer cells with dendritic cells was similar to the homologous cell fusion efficiencies indicating that dendritic cells were highly amenable to fusion with human tumour cells under similar electrical parameters. Elimination of unfused cells by density gradient and culture is possible to further increase the quantity of hybrid cells. The generation and purification of quantities of hybrid cells sufficient for human vaccination raises the possibility of rapid, autologous tumour antigen presenting vaccines for trial with common human tumours.
Collapse
Affiliation(s)
- T H Scott-Taylor
- Department of Oncology, St George's Hospital Medical School, Cranmer Terrace, London, UK.
| | | | | | | | | | | | | |
Collapse
|
226
|
Linette GP, Shankara S, Longerich S, Yang S, Doll R, Nicolette C, Preffer FI, Roberts BL, Haluska FG. In vitro priming with adenovirus/gp100 antigen-transduced dendritic cells reveals the epitope specificity of HLA-A*0201-restricted CD8+ T cells in patients with melanoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3402-12. [PMID: 10706736 DOI: 10.4049/jimmunol.164.6.3402] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Replication-deficient recombinant adenovirus (Ad) encoding human gp100 or MART-1 melanoma Ag was used to transduce human dendritic cells (DC) ex vivo as a model system for cancer vaccine therapy. A second generation E1/E4 region deleted Ad which harbors the CMV immediate-early promoter/enhancer and a unique E4-ORF6/pIX chimeric gene was employed as the backbone vector. We demonstrate that human monocyte-derived DC are permissive to Ad infection at multiplicity of infection between 100 and 500 and occurs independent of the coxsackie Ad receptor. Fluorescent-labeled Ad was used to assess the kinetics and distribution of viral vector within DC. Ad-transduced DC show peak transgene expression at 24-48 h and expression remains detectable for at least 7 days. DC transduced with replication-deficient Ad do not exhibit any unusual phenotypic characteristics or cytopathic effects. DC transduced with Ad2/gp100v2 can elicit tumor-specific CTL in vitro from patients bearing gp100+ metastatic melanoma. Using a panel of gp100-derived synthetic peptides, we show that Ad2/gp100v2-transduced DC elicit Ag-specific CTL that recognize only the G209 and G280 epitopes, both of which display relatively short half-lives ( approximately 7-8 h) on the surface of HLA-A*0201+ cells. Thus, patients with metastatic melanoma are not tolerant to gp100 Ag based on the detection of CD8+ T cells specific for multiple HLA-A*0201-restricted, gp100-derived epitopes.
Collapse
Affiliation(s)
- G P Linette
- Hematology-Oncology Unit and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A 2000; 97:2715-8. [PMID: 10688917 PMCID: PMC15995 DOI: 10.1073/pnas.050587197] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have reported that fusions of murine dendritic cells (DCs) and murine carcinoma cells reverse unresponsiveness to tumor-associated antigens and induce the rejection of established metastases. In the present study, fusions were generated with primary human breast carcinoma cells and autologous DCs. Fusion cells coexpressed tumor-associated antigens and DC-derived costimulatory molecules. The fusion cells also retained the functional potency of DCs and stimulated autologous T cell proliferation. Significantly, the results show that autologous T cells are primed by the fusion cells to induce MHC class I-dependent lysis of autologous breast tumor cells. These findings demonstrate that fusions of human breast cancer cells and DCs activate T cell responses against autologous tumors.
Collapse
Affiliation(s)
- J Gong
- Dana-Farber Cancer Institute and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 2000; 191:795-804. [PMID: 10704461 PMCID: PMC2195849 DOI: 10.1084/jem.191.5.795] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vaccination with dendritic cells (DCs) presenting tumor antigens induces primary immune response or amplifies existing cytotoxic antitumor T cell responses. This study documents that antitumor treatment with DCs may cause severe autoimmune disease when the tumor antigens are not tumor-specific but are also expressed in peripheral nonlymphoid organs. Growing tumors with such shared tumor antigens that were, at least initially, strictly located outside of secondary lymphoid organs were successfully controlled by specific DC vaccination. However, antitumor treatment was accompanied by fatal autoimmune disease, i.e., autoimmune diabetes in transgenic mice expressing the tumor antigen also in pancreatic beta islet cells or by severe arteritis, myocarditis, and eventually dilated cardiomyopathy when arterial smooth muscle cells and cardiomyocytes expressed the transgenic tumor antigen. These results reveal the delicate balance between tumor immunity and autoimmunity and therefore point out important limitations for the use of not strictly tumor-specific antigens in antitumor vaccination with DCs.
Collapse
Affiliation(s)
- B Ludewig
- Institute of Experimental Immunology, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
229
|
Barratt-Boyes SM, Zimmer MI, Harshyne LA, Meyer EM, Watkins SC, Capuano S, Murphey-Corb M, Falo LD, Donnenberg AD. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2487-95. [PMID: 10679086 DOI: 10.4049/jimmunol.164.5.2487] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.
Collapse
Affiliation(s)
- S M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, PA 15261, USA. smbb+@pitt.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Jonuleit H, Tüting T, Steitz J, Brück J, Giesecke A, Steinbrink K, Knop J, Enk AH. Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther 2000; 7:249-54. [PMID: 10694802 DOI: 10.1038/sj.gt.3301077] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed a culture method for the foreign serum-free generation of highly immunostimulatory, CD83+ human dendritic cells (DC). In this study, we evaluated the feasibility and consequences of endogenously expressing antigens in mature DC using adenoviral vectors. Transduction of DC with Ad-EGFP demonstrated endogenous fluorescence in 50-85% of CD83+ DC. Ad-transduced DC stimulated the proliferation of allogeneic CD8+ and CD4+ T cells at low DC: T cell ratios. However, at high DC: T cell ratios the stimulatory capacity of Ad-transduced DC was suppressed. This immunosuppressive effect was confirmed by demonstrating that the stimulatory function of untreated DC could be suppressed in a dose-dependent manner by addition of Ad-transduced DC. Furthermore, transwell experiments suggested that direct cell contact was required. Taken together, our results demonstrate the feasibility of efficiently expressing antigens in CD83+ DC using adenoviruses. However, immunosuppressive effects must be considered and carefully studied before Ad-transduced DC are employed for clinical trials. Gene Therapy (2000) 7, 249-254.
Collapse
Affiliation(s)
- H Jonuleit
- Department of Dermatology, J Gutenberg-University, Langenbeckstrasse 1, D-55101 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Chakraborty A, Li L, Chakraborty NG, Mukherji B. Stimulatory and inhibitory differentiation of human myeloid dendritic cells. Clin Immunol 2000; 94:88-98. [PMID: 10637093 DOI: 10.1006/clim.1999.4826] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dendritic cells (DCs) play a critical obligate role in presenting antigens to T cells for activation. In the process, upon antigen capture, DCs undergo maturation and become more stimulatory. Human myeloid DCs can be generated from various sources, including blood, bone marrow, and CD34(+) stem cells. As such, plastic-adherent monocytes from circulation have served as a ready source for generating myeloid DCs in culture in granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for translational research in active specific immunotherapy, especially in cancer, with the belief that they are essentially stimulatory or "immunogenic." Here we show that in vitro cultures of plastic-adherent circulating monocytes in GM-CSF and IL-4 followed by further maturation in interferon-gamma plus bacterial superantigens (DC maturing agents) can give rise to two diametrically opposite types of DCs-one stimulatory and another inhibitory. The stimulatory DCs express higher amounts of costimulatory molecules, synthesize IL-12, and efficiently stimulate naive allogeneic T cells in mixed lymphocyte reaction (MLR). The inhibitory DCs, in contrast, express lower concentrations of the critical costimulatory molecules, synthesize large amounts of IL-10, and are nonstimulatory in allogeneic primary MLR. Moreover, while the stimulatory DCs further amplify proliferation of T cells in lectin-driven proliferation assays, the inhibitory DCs totally block T cell proliferation in similar assays, in vitro. Most interestingly, neutralization of the endogenously derived IL-10 with anti-IL-10 antibody in DC cultures repolarizes the inhibitory DCs toward stimulatory phenotype. Accordingly, these observations have important implications in translational research involving myeloid DCs.
Collapse
Affiliation(s)
- A Chakraborty
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030-3210, USA
| | | | | | | |
Collapse
|
232
|
Abstract
Flt3 (fms-like tyrosine kinase 3) ligand (FL) is a potent hematopoietic cytokine that affects the growth and differentiation of progenitor and stem cells both in vivo and in vitro. Its capacity to augment strikingly the numbers of dendritic cells (rare antigen-presenting cells that induce and regulate immune responses) in mice and humans has stimulated considerable interest in its value as an investigational tool and therapeutic agent. In this review, we survey the hematopoietic properties and immunobiology of FL, and examine its therapeutic potential.
Collapse
Affiliation(s)
- M A Antonysamy
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
233
|
Abstract
AbstractThere is now clear clinical evidence that adoptive cellular immunotherapy can eradicate hematologic malignancy and cure otherwise lethal viral infections. With this knowledge comes the challenge of improving the effectiveness and safety of the approach and of simplifying the methodologies required whilst still meeting appropriate federal regulatory guidelines. This review provides an overview of the current status of cellular immunotherapies and addresses how they may be implemented and the future directions they are likely to take.In Section I, Dr. Brenner with Drs. Rossig and Sili reviews the clinical experience to date with adoptive transfer of viral antigen-specific T cells for the successful treatment of Epstein-Barr virus-associated malignancies as well as viral infectious diseases. Genetic modification of the T cell receptor of the infused cells to potentiate such T cells as well as modifications to improve safety of the infusions are described.In Section II, Dr. Young describes the hematopoietic lineages of human dendritic cells and some of their immunotherapeutic applications. The critical importance of dendritic cells to T cell immunity and the capacity to generate dendritic cells in large numbers has spawned enormous interest in the use of these specialized leukocytes to manipulate cellular immunity. Successful cytokine-driven differentiation of dendritic cells reveal two types, myeloid- and plasmacytoid or lymphoid-related dendritic cells. The effects of maturation on phenotype and function of the dendritic cells and their use as immune adjuvants in dendritic cell vaccines to elicit antitumor and antiviral immunity are reviewed.In Section III, Professor Goulmy illustrates some current and future approaches towards tumor-specific cellular therapy of hematopoietic malignancy. Minor histocompatibility antigen (mHag) disparities between HLA-matched bone marrow donor and recipient can induce allo-responses that may participate in post bone marrow transplantation (BMT) graft-versus-leukemia (GVL) reactivities. A lack of such allo-reactivity may result in relapse of leukemia after BMT. In these patients, adoptive immunotherapy with cytotoxic T cells (CTLs) specific for hematopoietic system-restricted mHags may be used as an extension of current efforts using immunotherapy with donor lymphocyte infusions. Adoptive immunotherapy with CTLs specific for the hematopoietic system-restricted mHags, however, offers the prospect of greater and more predictable effectiveness in the absence of graft-versus-host disease.
Collapse
|
234
|
Abstract
There is now clear clinical evidence that adoptive cellular immunotherapy can eradicate hematologic malignancy and cure otherwise lethal viral infections. With this knowledge comes the challenge of improving the effectiveness and safety of the approach and of simplifying the methodologies required whilst still meeting appropriate federal regulatory guidelines. This review provides an overview of the current status of cellular immunotherapies and addresses how they may be implemented and the future directions they are likely to take.In Section I, Dr. Brenner with Drs. Rossig and Sili reviews the clinical experience to date with adoptive transfer of viral antigen-specific T cells for the successful treatment of Epstein-Barr virus-associated malignancies as well as viral infectious diseases. Genetic modification of the T cell receptor of the infused cells to potentiate such T cells as well as modifications to improve safety of the infusions are described.In Section II, Dr. Young describes the hematopoietic lineages of human dendritic cells and some of their immunotherapeutic applications. The critical importance of dendritic cells to T cell immunity and the capacity to generate dendritic cells in large numbers has spawned enormous interest in the use of these specialized leukocytes to manipulate cellular immunity. Successful cytokine-driven differentiation of dendritic cells reveal two types, myeloid- and plasmacytoid or lymphoid-related dendritic cells. The effects of maturation on phenotype and function of the dendritic cells and their use as immune adjuvants in dendritic cell vaccines to elicit antitumor and antiviral immunity are reviewed.In Section III, Professor Goulmy illustrates some current and future approaches towards tumor-specific cellular therapy of hematopoietic malignancy. Minor histocompatibility antigen (mHag) disparities between HLA-matched bone marrow donor and recipient can induce allo-responses that may participate in post bone marrow transplantation (BMT) graft-versus-leukemia (GVL) reactivities. A lack of such allo-reactivity may result in relapse of leukemia after BMT. In these patients, adoptive immunotherapy with cytotoxic T cells (CTLs) specific for hematopoietic system-restricted mHags may be used as an extension of current efforts using immunotherapy with donor lymphocyte infusions. Adoptive immunotherapy with CTLs specific for the hematopoietic system-restricted mHags, however, offers the prospect of greater and more predictable effectiveness in the absence of graft-versus-host disease.
Collapse
|
235
|
Strong TV. Gene therapy for carcinoma of the breast: Genetic immunotherapy. Breast Cancer Res 2000; 2:15-21. [PMID: 11250688 PMCID: PMC521209 DOI: 10.1186/bcr24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1999] [Accepted: 11/18/1999] [Indexed: 11/14/2022] Open
Abstract
Advances in gene transfer technology have greatly expanded the opportunities for developing immunotherapy strategies for breast carcinoma. Genetic immunotherapy approaches include the transfer of genes encoding cytokines and costimulatory molecules to modulate immune function, as well as genetic immunization strategies which rely on the delivery of cloned tumor antigens. Improved gene transfer vectors, coupled with a better understanding of the processes that are necessary to elicit an immune response and an expanding number of target breast tumor antigens, have led to renewed enthusiasm that effective immunotherapy may be achieved. It is likely that immunotherapeutic interventions will find their greatest clinical application as adjuvants to traditional first-line therapies, targeting micrometastatic disease and thereby reducing the risk of cancer recurrence.
Collapse
Affiliation(s)
- T V Strong
- Gene Therapy Cewnter, Division of Heamtology-Oncology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
236
|
Min WP, Gorczynski R, Huang XY, Kushida M, Kim P, Obataki M, Lei J, Suri RM, Cattral MS. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:161-7. [PMID: 10605007 DOI: 10.4049/jimmunol.164.1.161] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polarization of an immune response toward tolerance or immunity is dictated by the interactions between T cells and dendritic cells (DC), which in turn are modulated by the expression of distinct cell surface molecules, and the cytokine milieu in which these interactions are taking place. Genetic modification of DC with genes coding for specific immunoregulatory cell surface molecules and cytokines offers the potential of inhibiting immune responses by selectively targeting Ag-specific T cells. In this study, the immunomodulatory effects of transfecting murine bone marrow-derived DC with Fas ligand (FasL) were investigated. In this study, we show that FasL transfection of DC markedly augmented their capacity to induce apoptosis of Fas+ cells. FasL-transfected DC inhibited allogeneic MLR in vitro, and induced hyporesponsiveness to alloantigen in vivo. The induction of hyporesponsiveness was Ag specific and was dependent on the interaction between FasL on DC and Fas on T cells. Finally, we show that transfusion of FasL-DC significantly prolonged the survival of fully MHC-mismatched vascularized cardiac allografts. Our findings suggest that DC transduced with FasL may facilitate the development of Ag-specific unresponsiveness for the prevention of organ rejection. Moreover, they highlight the potential of genetically engineering DC to express other genes that affect immune responses.
Collapse
Affiliation(s)
- W P Min
- Department of Surgery and Multiorgan Transplant Program, Toronto Hospital Research Institute, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Philip R, Alters SE, Brunette E, Ashton J, Gadea J, Yau J, Lebkowski J, Philip M. Dendritic cells loaded with MART-1 peptide or infected with adenoviral construct are functionally equivalent in the induction of tumor-specific cytotoxic T lymphocyte responses in patients with melanoma. J Immunother 2000; 23:168-76. [PMID: 10687150 DOI: 10.1097/00002371-200001000-00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immunization with tumor-specific-associated antigen--pulsed dendritic cells has proved to be efficacious in various animal models and is being evaluated for the treatment of cancer in humans. Use of dendritic cells pulsed with specific peptides or transfected with tumor-associated antigen genes has been a focused area of investigation for inducing potent tumor and viral immune responses. In this study, the authors demonstrate transgene expression, including the lacZ and MART-1 genes, in dendritic cells infected with adenoviral constructs. These transiently transduced dendritic cells, derived from melanoma patients' monocytes cultured with granulocyte-macrophage colony-stimulating factor and interleukin-4, express the transgene and can stimulate patients' CD8+ T cells to elicit an antitumor immune response comparable to dendritic cells loaded with a defined peptide. These cytotoxic T lymphocytes were able to recognize both known and unknown tumor-associated antigen epitopes and exhibited cytolytic activity against HLA-matched tumor cells expressing the antigen. The ability to induce tumor-specific cytotoxic T lymphocytes in vitro using gene-modified dendritic cells that transiently express tumor-associated antigens demonstrates the potential use of these antigen-presenting cells for developing in vivo cancer vaccines.
Collapse
Affiliation(s)
- R Philip
- RPR Gencell, Hayward, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Ribas A, Butterfield LH, Hu B, Dissette VB, Chen AY, Koh A, Amarnani SN, Glaspy JA, McBride WH, Economou JS. Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 2000; 23:59-66. [PMID: 10687138 DOI: 10.1097/00002371-200001000-00008] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The murine melanoma B16 expresses the murine counterpart of the human MART-1/Melan-A (MART-1) antigen, sharing a 68.6% amino acid sequence identity. In this study, mice were vaccinated with bone marrow-derived murine dendritic cells genetically modified with a replication-incompetent adenoviral vector to express the human MART-1 gene (AdVMART1). This treatment generated a protective response to a lethal tumor challenge of unmodified murine B16 melanoma cells. The response was mediated by major histocompatibility complex class I-restricted cytotoxic T lymphocytes specific for MART-1 antigen, which produced high levels of interferon-gamma when reexposed to MART-1 in vitro and lysed targets in a calcium-dependent mechanism suggestive of perforin/granzyme B lysis. MART-1 was presented by the dendritic cells used for vaccination and not by epitopes cross-presented by host antigen-presenting cells. In conclusion, dendritic cells genetically modified to express the human MART-1 antigen generate potent murine MART-1-specific protective responses to B16 melanoma.
Collapse
Affiliation(s)
- A Ribas
- Division of Surgical Oncology, University of California, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Wan Y, Emtage P, Zhu Q, Foley R, Pilon A, Roberts B, Gauldie J. Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transduced dendritic cells. Cell Immunol 1999; 198:131-8. [PMID: 10648127 DOI: 10.1006/cimm.1999.1585] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycoprotein 100 (gp100) is one of a series of well-characterized human melanoma-associated antigens expressed by most melanoma cells. Immunization of C57BL/6 mice with an adenovirus (Ad) vector encoding human gp100 (Adhgp100) has been shown to induce limited protective immunity against challenge with murine melanoma B16 cells. In the current study we determined whether gp100-specific immunity can be enhanced using bone-marrow-derived dendritic cells (DCs) transduced with Adhgp100 ex vivo. Subcutaneous injection of Adhgp100-infected DCs resulted in potent T-cell-mediated protective immunity and a greater than 80% reduction of established tumors when administered to B16 tumor-bearing hosts. Compared to direct injection of Adhgp100 vector alone, immunization with Adhgp100-infected DCs induced markedly greater antitumor activity. In vitro CTL analysis demonstrated that DC-Adhgp100 immunization activated both CD4(+) and CD8(+) CTLs, while no lytic activity was generated by vaccination with Adhgp100 alone. In vivo depletion of CD4(+) T cells, but not CD8(+) T cells, completely abrogated CTL activity, suggesting that Adhgp100-transduced DCs result in activation of both CD4(+) and CD8(+) CTLs via a CD4(+)-dependent mechanism. We speculate that this improved efficacy of Adhgp100-transduced DCs compared to direct immunization with Adhgp100 may be the result of direct DC-mediated CD4(+) T cell activation. These results emphasize the importance of CD4(+) T cells in the development of therapeutic antigen-specific cancer vaccines.
Collapse
Affiliation(s)
- Y Wan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | | | | | | | |
Collapse
|
240
|
Rea D, Schagen FH, Hoeben RC, Mehtali M, Havenga MJ, Toes RE, Melief CJ, Offringa R. Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J Virol 1999; 73:10245-53. [PMID: 10559341 PMCID: PMC113078 DOI: 10.1128/jvi.73.12.10245-10253.1999] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human monocyte-derived dendritic cells (DC) infected with recombinant adenoviruses (rAd) are promising candidate vaccines for inducing protective immunity against pathogens and tumors. However, since some viruses are known to negatively affect DC function, it is important to investigate the interactions between rAd and DC. We now show that infection by rAd enhances the immunostimulatory capacity of immature human monocyte-derived DC through the upregulation of the costimulatory molecules CD80, CD86, and CD40 and the major histocompatibility complex class I and II molecules. Although rAd infection fails to induce the secretion of interleukin-12 (IL-12) and only marginally induces the expression of the DC maturation marker CD83, it acts in synergy with CD40 triggering in rendering DC fully mature. rAd-infected DC triggered through CD40 produce more IL-12 and are more efficient in eliciting T-helper type 1 responses than DC activated by CD40 triggering only. rAd lacking one or more of the early regions, E1, E2A, E3, and E4, which play an important role in virus-host cell interactions are equally capable of DC activation. Efficient DC infection requires a high multiplicity of infection (>1,000), a fact which can be attributed to the absence of the coxsackievirus and adenovirus receptor on this cell type. Despite the poor ability of DC to be infected by rAd, which may be improved by targeting rAd to alternative DC surface molecules, DC infected with all currently tested rAd constitute potent immunostimulators. Our study provides new insights into the interactions between two highly promising vaccine components, rAd and DC, and indicates that their combination into one vaccine may be very advantageous for the stimulation of T-cell immunity.
Collapse
Affiliation(s)
- D Rea
- Department of Immunohematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Ranieri E, Herr W, Gambotto A, Olson W, Rowe D, Robbins PD, Kierstead LS, Watkins SC, Gesualdo L, Storkus WJ. Dendritic cells transduced with an adenovirus vector encoding Epstein-Barr virus latent membrane protein 2B: a new modality for vaccination. J Virol 1999; 73:10416-25. [PMID: 10559360 PMCID: PMC113097 DOI: 10.1128/jvi.73.12.10416-10425.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1999] [Accepted: 08/24/1999] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is a herpesvirus commonly associated with several malignancies, particularly in immunocompromised hosts. As a strategy for stimulating immunity against EBV for the treatment of EBV-associated tumors, we have genetically engineered dendritic cells (DC) to express EBV antigens, such as latent membrane protein 2B (LMP2B), using recombinant adenovirus vectors. CD8(+) T lymphocytes from HLA-A2.1(+), EBV-seropositive healthy donors were cultured with autologous DC infected with recombinant adenovirus vector AdEGFP, encoding an enhanced green fluorescent protein (EGFP), or AdLMP2B at a multiplicity of infection of 250. After 48 h, >95% of the DC were positive for EGFP expression as assessed by fluorescence-activated cell sorting analysis, indicating efficient gene transfer. AdLMP2-transduced DC were used to stimulate CD8(+) T cells. Responder CD8(+) T cells were tested for gamma interferon (IFN-gamma) release by enzyme-linked spot (ELISPOT) assay and cytotoxic activity. Prior to in vitro stimulation, the frequencies of T-cells directed against two HLA-A2-presented LMP2 peptides (LMP2 329-337 and LMP2 426-434) were very low as assessed by IFN-gamma spot formation (T-cell frequency, <0.003%). IFN-gamma ELISPOT assays performed at day 14 showed a significant (2-log) increase of the day 0 frequency of T cells reactive against the LMP2 329-337 peptide, from 0.003 to 0.3 (P < 0.001). Moreover, specific cytolytic activity was observed against the autologous EBV B-lymphoblastoid cell lines after 21 days of stimulation of T-cell responders with AdLMP2-transduced DC (P < 0.01). In summary, autologous mature DC genetically modified with an adenovirus encoding EBV antigens stimulate the generation of EBV-specific CD8(+) effector T cells in vitro, supporting the potential application of EBV-based adenovirus vector vaccination for the immunotherapy of the EBV-associated malignancies.
Collapse
Affiliation(s)
- E Ranieri
- Departments of Surgery, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Ozawa H, Ding W, Torii H, Hosoi J, Seiffert K, Campton K, Hackett NR, Topf N, Crystal RG, Granstein RD. Granulocyte-macrophage colony-stimulating factor gene transfer to dendritic cells or epidermal cells augments their antigen-presenting function including induction of anti-tumor immunity. J Invest Dermatol 1999; 113:999-1005. [PMID: 10594743 DOI: 10.1046/j.1523-1747.1999.00769.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic antigen-presenting cells derived from epidermis (Langerhans cells), bone marrow, and peripheral blood can present a wide variety of antigens, including tumor-associated antigens, for various immune responses. The development and function of dendritic cells is dependent upon a number of cytokines including granulocyte-macrophage-colony-stimulating factor. For example, Langerhans cells can present tumor-associated antigens for the induction of substantial in vivo anti-tumor immunity but only after activation in vitro by granulocyte-macrophage-colony-stimulating factor. Thus, we reasoned that insertion of a cDNA for granulocyte-macrophage-colony-stimulating factor into dendritic antigen-presenting cells may allow for autocrine stimulation and increased antigen-presenting capability. To test this possibility, we utilized an adenovirus vector to insert a cDNA for murine granulocyte-macrophage-colony-stimulating factor into the dendritic cell lines XS52-4D and XS106 (derived from neonatal mouse epidermis), bone marrow-derived dendritic cells, and epidermal cells that contain Langerhans cells. Infection of each of these cell types resulted in release of abundant quantities of granulocyte-macrophage-colony-stimulating factor. XS52-4D and XS106 cells infected with adenovirus granulocyte-macrophage-colony-stimulating factor exhibited prolonged dendrites and greater expression of major histocompatibility complex class II molecules and CD86 compared with cells infected with a null vector. Granulocyte-macrophage-colony-stimulating factor cDNA-containing XS cells, bone marrow-derived dendritic cells, and epidermal cells had more potent alloantigen presenting capability than cells infected with a null vector. Most importantly, granulocyte-macrophage-colony-stimulating factor gene-transferred epidermal cells were able to present tumor-associated antigens for in vivo anti-tumor immunity against challenge with the S1509a spindle-cell tumor whereas null vector-infected cells were unable to prime for immunity. These results suggest that introduction of a cDNA for granulocyte-macrophage-colony-stimulating factor into dendritic cells may be an effective means to augment their antigen-presenting capability and that granulocyte-macrophage-colony-stimulating factor gene-transfer- red epidermal cells may be useful in tumor vaccination strategies.
Collapse
Affiliation(s)
- H Ozawa
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Yamada N, Katz SI. Generation of Mature Dendritic Cells from a CD14+ Cell Line (XS52) by IL-4, TNF-α, IL-1β, and Agonistic Anti-CD40 Monoclonal Antibody. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We established a model system to generate mature dendritic cells (DC) from a GM-CSF-dependent cell line, XS52, which had been isolated from the epidermis of newborn BALB/c mice. Screening of various soluble factors revealed that IL-4 induces phenotypic maturation of XS52 (as evaluated by enhanced expression of class II, CD40, CD80, CD86, CD11c, and loss of expression of CD14) in a time-dependent manner. The addition of TNF-α, IL-1β, and agonistic anti-CD40 mAb further enhanced expression of these maturation markers. Consistent with their phenotypic maturation, these cells (termed XS-DC) exhibited potent Ag-presenting capacity to both naive and primed T cells. In addition, injection of hapten-conjugated XS-DC induced contact hypersensitivity in vivo, suggesting their potential as tools for vaccination. Expression of CD14 by the starting cell population, the requirement for GM-CSF and IL-4, and the relatively long culture period are the common characteristics shared between our cells and human monocyte-derived DC, whose analogues in mice have not been identified. Because large numbers of skin-associated mature DC devoid of other cell lineages are easily obtained, this model system may facilitate the study of molecular events associated with maturation of DC and the use of DC for immunization.
Collapse
Affiliation(s)
- Nobuo Yamada
- Dermatology Branch, National Cancer Institute, Bethesda, MD 20892
| | - Stephen I. Katz
- Dermatology Branch, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
244
|
Yang S, Vervaert CE, Burch J, Grichnik J, Seigler HF, Darrow TL. Murine dendritic cells transfected with human GP100 elicit both antigen-specific CD8(+) and CD4(+) T-cell responses and are more effective than DNA vaccines at generating anti-tumor immunity. Int J Cancer 1999; 83:532-40. [PMID: 10508491 DOI: 10.1002/(sici)1097-0215(19991112)83:4<532::aid-ijc16>3.0.co;2-k] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dendritic cells (DCs) are potent inducers of cytotoxic T lymphocytes (CTLs) when pulsed with an antigenic peptide or tumor lysate. In this report, we have used liposome-mediated gene transfer to examine the ability of plasmid DNA encoding the human melanoma-associated antigen gp100 to elicit CD8(+) and CD4(+) T-cell responses. We also compared the efficacy between gp100 gene-modified DCs and naked DNA (pCDNA3/gp100)-based vaccines at inducing anti-tumor immunity. DCs were generated from murine bone marrow and transfected in vitro with plasmid DNA containing the gp100 gene. These gp100-modified DCs (DC/gps) were used to stimulate syngeneic naive spleen T cells in vitro or to immunize mice in vivo. Antigen-specific, MHC-restricted CTLs were generated when DC/gps were used to prime T cells both in vitro and in vivo. Thus, these CTLs were cytolytic for gp100-transfected syngeneic (H-2(b)) tumor MCA106 (MCA/gp) and vaccinia-pMel17/gp100-infected syngeneic B16 and MCA106, but not parental tumor MCA106 and B16, or gp100-transfected allogeneic tumor P815 (H-2(d)). Immunization with DC/gp protected mice from subsequent challenge with MCA/gp but not parental MCA106. Antibody-mediated T-cell subset depletion experiments demonstrate that induction of CTLs in vivo is dependent on both CD4(+) and CD8(+) T cells. Furthermore, DC/gp immunization elicits an antigen-specific CD4(+) T-cell response, suggesting that DC/gps present MHC class II epitopes to CD4(+) T cells. In addition, our data show that gene-modified, DC-based vaccines are more effective than the naked DNA-based vaccines at eliciting anti-tumor immunity in both prophylactic and therapeutic models. These results suggest that the use of DCs transfected with plasmid DNA containing a gene for TAA may be superior to peptide-pulsed DCs and naked DNA-based vaccines for immunotherapy and could provide an alternative strategy for tumor vaccine design.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes/genetics
- Epitopes/immunology
- Female
- Immunization
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Transplantation/immunology
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Vaccines, DNA/immunology
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- S Yang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
245
|
Abstract
Two distinct developmental pathways are driving the formation of myeloid- and lymphoid-related dendritic cells (DC) which differ in anatomical localization and phenotype. In terms of function, it has been hypothesized that only the myeloid-related CD8(-) DC are able to initiate immune responses, whereas the lymphoid-related CD8(+) DC have been suggested to induce tolerance. Here we show that both subsets activate CD8(+) T cells in vitro and induce protective anti-viral CTL responses in vivo. Thus, vaccine strategies using peptide-pulsed DC do not have to take into account DC subsets for priming.
Collapse
Affiliation(s)
- C Ruedl
- Basel Institute for Immunology, Basel, Switzerland.
| | | |
Collapse
|
246
|
Tüting T, Steitz J, Brück J, Gambotto A, Steinbrink K, DeLeo AB, Robbins P, Knop J, Enk AH. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med 1999; 1:400-6. [PMID: 10753065 DOI: 10.1002/(sici)1521-2254(199911/12)1:6<400::aid-jgm68>3.0.co;2-d] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The induction of cellular immune responses to melanocyte-specific enzymes such as the tyrosinase family of proteins is the goal of various clinical studies for the immunotherapy of melanoma. Tyrosinase-related protein-2 (TRP2) is an attractive model antigen for preclinical studies in C57BL/6 mice because it is naturally expressed by the murine B16 melanoma and can be recognized by self-reactive cytolytic T lymphocytes (CTL). Here we describe efforts to develop genetic immunization with dendritic cells (DC) for the immunotherapy of melanoma in this clinically relevant system. METHODS Recombinant adenoviruses encoding green fluorescent protein (Ad-EGFP) and murine TRP2 (Ad-mTRP2) were constructed using Cre-loxP-mediated recombination. DC were generated in vitro from precursors in bone marrow and transduced with Ad-EGFP or Ad-mTRP2. Mice were immunized by direct injection of adenovirus or by injection of Ad-transduced DC. Induction of tumor immunity was assessed by intravenous challenge with B16 melanoma cells and enumeration of experimentally induced lung metastases. RESULTS Flowcytometric analysis of DC transduced with Ad-EGFP demonstrated endogenous fluorescence due to cytoplasmatic expression of EGFP in 30-60% of cells. Ad-EGFP-transduced DC simultaneously displayed the DC-specific marker NLDC145 and high levels of MHC and costimulatory molecules on their cell surface. Transduction of DC with Ad-mTRP2 resulted in strong intracellular expression of TRP2 which could be readily detected by immunostaining. Importantly, immunization of mice with cultured Ad-mTRP2-transduced DC completely prevented the development of lung metastases following an intravenous challenge with B16 melanoma cells. This striking protective effect was observed with both the intravenous and the subcutaneous route of DC immunization. In vivo depletion of T-cell subsets suggested that the protective effect of an immunization with Ad-mTRP2-transduced DC involved both CD8+ and CD4+ T-cells. CONCLUSIONS Our results demonstrate that DC-based genetic immunization of mice with TRP2, a clinically relevant melanocyte-specific self-antigen, induces effective cellular immunity and prevents metastatic growth of B16 melanoma cells in vivo.
Collapse
Affiliation(s)
- T Tüting
- Department of Dermatology, J. Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Matsue H, Morita A, Matsue K, Takashima A. New technologies toward dendritic cell-based cancer immunotherapies. J Dermatol 1999; 26:757-63. [PMID: 10635619 DOI: 10.1111/j.1346-8138.1999.tb02088.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunologically naive T cells are activated most efficiently or even exclusively by special subsets of antigen presenting cells, termed dendritic cells (DC). Members of the DC family have been identified in virtually all epithelial tissues that are constantly exposed to environmental antigens or infectious microbes. For example, skin is equipped with at least two members of this family, epidermal Langerhans cells (LC) and dermal DC. DC have been shown to play pathogenic roles in several different inflammatory/immunological disorders and protective roles against infectious pathogenes and cancer development. In this review article, we will overview the recent progress in the development of DC-based immunotherapies for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- H Matsue
- Department of Dermatology, University of Texas, Southwestern Medical Center, Dallas 75235-9069, USA
| | | | | | | |
Collapse
|
248
|
Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel ML, Jack RW, Jung G, Kosmatopoulos K, Mateo L, Suhrbier A, Lemonnier FA, Langlade-Demoyen P. H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol 1999; 29:3112-21. [PMID: 10540322 DOI: 10.1002/(sici)1521-4141(199910)29:10<3112::aid-immu3112>3.0.co;2-q] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
H-2 class I-negative, HLA-A2.1-transgenic HHD mice were used for a comparative evaluation of the immunogenicity of HLA-A2.1-restricted human tumor-associated cytotoxic T lymphocyte (CTL) epitopes. A hierarchy was established among these peptides injected into mice in incomplete Freund's adjuvant which correlates globally with their capacity to bind and stabilize HLA-A2.1 molecules. Co-injection of a helper peptide enhanced most CTL responses. In contrast, classical HLA class I-transgenic mice which still express their own class I molecules did not, in most cases, develop HLA-A2.1-restricted CTL responses under the same experimental conditions. Different monoepitope immunization strategies of acceptable clinical usage were compared in HHD mice. Recombinant Ty-virus-like particles, or DNA encoding epitopes fused to the hepatitis B virus middle envelope protein gave the best results. Using this latter approach and a melanoma-based polyepitope construct, CTL responses against five distinct epitopes could be elicited simultaneously in a single animal. Thus, HHD mice provide a versatile animal model for preclinical evaluation of peptide-based cancer immunotherapy.
Collapse
Affiliation(s)
- H Firat
- Unité d'Immunité Cellulaire Antivirale, Département SIDA-Rétrovirus, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Melero I, Duarte M, Ruiz J, Sangro B, Galofré J, Mazzolini G, Bustos M, Qian C, Prieto J. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther 1999; 6:1779-84. [PMID: 10516729 DOI: 10.1038/sj.gt.3301010] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stimulation of the antitumor immune response by dendritic cells (DC) is critically dependent on their tightly regulated ability to produce interleukin-12 (IL-12). To enhance this effect artificially, bone marrow (BM)-derived DC were genetically engineered to produce high levels of functional IL-12 by ex vivo infection with a recombinant defective adenovirus (AdCMVIL-12). DC-expressing IL-12 injected into the malignant tissue eradicated 50-100% well established malignant nodules derived from the injection of two murine colon adenocarcinoma cell lines. Successful therapy was dependent on IL-12 transfection and was mediated only by syngeneic, but not allogeneic BM-derived DC, indicating that compatible antigen-presenting molecules were required. The antitumor effect was inhibited by in vivo depletion of CD8+ T cells and completely abrogated by simultaneous depletion with anti-CD4 and anti-CD8 mAbs. Mice which had undergone tumor regression remained immune to a rechallenge with tumor cells, showing the achievement of long-lasting systemic immunity that also was able to reject simultaneously induced concomitant untreated tumors. Tumor regression was associated with a detectable CTL response directed against tumor-specific antigens probably captured by DC artificially released inside tumor nodules. Our results open the possibility of similarly treating the corresponding human malignancies.
Collapse
Affiliation(s)
- I Melero
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Navarra, C/Irunlarrea, 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Ahuja SS, Reddick RL, Sato N, Montalbo E, Kostecki V, Zhao W, Dolan MJ, Melby PC, Ahuja SK. Dendritic Cell (DC)-Based Anti-Infective Strategies: DCs Engineered to Secrete IL-12 Are a Potent Vaccine in a Murine Model of an Intracellular Infection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Infections with intracellular pathogens such as Leishmania donovani and Mycobacterium tuberculosis pose serious health problems worldwide. Effective vaccines for these pathogens are not available. Furthermore, despite optimal therapy, disease progression is often seen with several intracellular infections. For these reasons, we initiated studies to develop novel anti-infective vaccine and treatment strategies that couple the potent Ag-presenting capacity of dendritic cells (DC) with paracrine delivery of potent anti-infective cytokines such as IL-12 to local immune response sites. We tested this strategy in a murine model of visceral leishmaniasis. Adoptive transfer of DCs pulsed ex vivo with soluble L. donovani Ags (SLDA) to naive mice induced the Ag-specific production of IFN-γ, and increased the percentage of activation markers on spleen lymphocytes. SLDA-pulsed DCs engineered by retroviral gene transfer techniques to secrete high levels of biologically active murine IL-12 augmented this immune response further. In several different vaccination and immunotherapy protocols, compared with sham-treated mice, animals receiving SLDA-pulsed DCs either before or following infection had 1–3 log lower parasite burdens, and this protection was associated with a pronounced enhancement in the parasite-specific IFN-γ response. The augmentation of this protection by IL-12-engineered DCs was striking. First, live parasites were not detected in the liver of mice vaccinated with IL-12-transduced, SLDA-pulsed DCs. Second, this parasitological response was associated with a nearly normal liver histology. In contrast, parasites and granulomas were found in mice vaccinated with SLDA-pulsed, nontransduced DCs. Collectively, these studies provide the rationale for the development of potent DC-based immunotherapies.
Collapse
Affiliation(s)
- Seema S. Ahuja
- *Medicine,
- §South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78284; and
| | | | | | | | | | - Weiguo Zhao
- *Medicine,
- §South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78284; and
| | - Matthew J. Dolan
- ¶Infectious Diseases Service, Department of Medicine, Wilford Hall Medical Center, Lackland Air Force Base, TX 78236
| | - Peter C. Melby
- *Medicine,
- ‡Microbiology, University of Texas Health Science Center, San Antonio, TX 78284
- §South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78284; and
| | - Sunil K. Ahuja
- *Medicine,
- ‡Microbiology, University of Texas Health Science Center, San Antonio, TX 78284
- §South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78284; and
| |
Collapse
|