201
|
Hansson GK. How to repeat a success and control a bad influence. Circulation 2015; 131:525-7. [PMID: 25552358 DOI: 10.1161/circulationaha.114.014560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Göran K Hansson
- From Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
202
|
Yin C, Mohanta S, Ma Z, Weber C, Hu D, Weih F, Habenicht A. Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays. Methods Mol Biol 2015; 1339:297-308. [PMID: 26445797 DOI: 10.1007/978-1-4939-2929-0_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is a transmural chronic inflammatory disease of medium and large arteries. Though it is well recognized that immune responses contribute to atherosclerosis, it remains unclear whether these responses are carried out in secondary lymphoid organs such as the spleen and lymph nodes and/or within the arterial wall. Arteries are composed of three major layers, i.e., the laminae intima, media, and adventitia. However, each of these layers may play different roles in arterial wall biology and atherogenesis. We identified well-structured artery tertiary lymphoid organs (ATLOs) in the abdominal aorta adventitia but not in the intima of aged apolipoprotein E-null (ApoE(-/-)) mice. These observations suggested that disease-associated immune responses are highly territorialized within the arterial wall and that the adventitia may play distinct and hitherto unrecognized roles. Here, we set out to apply laser capture microdissection (LCM) to dissect plaque, media, adventitia, and adjacent aorta-draining lymph nodes (LN) in aged ApoE(-/-) mice in attempts to establish the territoriality of atherosclerosis immune responses. Using whole-genome mRNA expression microarrays of arterial wall tissues, we constructed robust transcript atlases of wild-type and ApoE(-/-) mouse aortas. Data were deposited in the National Center for Biotechnology Information's gene expression omnibus (GEO) and are accessible to the public through the Internet. These transcript atlases are anticipated to prove valuable to address a wide scope of issues ranging from atherosclerosis immunity and inflammation to the role of single genes in regulating arterial wall remodeling. This chapter presents protocols for LCM of mouse aorta and microarray expression analysis from LCM-isolated aorta laminae.
Collapse
Affiliation(s)
- Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstraße 9, 80336, Munich, Germany.
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstraße 9, 80336, Munich, Germany
| | - Zhe Ma
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstraße 9, 80336, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstraße 9, 80336, Munich, Germany
| | - Desheng Hu
- Institute of Molecular Immunology, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, Munich, Germany
| | | | - Andreas Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstraße 9, 80336, Munich, Germany.
| |
Collapse
|
203
|
Guedj K, Khallou-Laschet J, Clement M, Morvan M, Delbosc S, Gaston AT, Andreata F, Castier Y, Deschildre C, Michel JB, Caligiuri G, Nicoletti A. Inflammatory micro-environmental cues of human atherothrombotic arteries confer to vascular smooth muscle cells the capacity to trigger lymphoid neogenesis. PLoS One 2014; 9:e116295. [PMID: 25548922 PMCID: PMC4280229 DOI: 10.1371/journal.pone.0116295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Experimental atherosclerosis is characterized by the formation of tertiary lymphoid structures (TLOs) within the adventitial layer, which involves the chemokine-expressing aortic smooth muscle cells (SMCs). TLOs have also been described around human atherothrombotic arteries but the mechanisms of their formation remain poorly investigated. Herein, we tested whether human vascular SMCs play the role of chemokine-expressing cells that would trigger the formation of TLOs in atherothrombotic arteries. RESULTS We first characterized, by flow cytometry and immunofluorescence analysis, the prevalence and cell composition of TLOs in human abdominal aneurysms of the aorta (AAAs), an evolutive form of atherothrombosis. Chemotaxis experiments revealed that the conditioned medium from AAA tissues recruited significantly more B and T lymphocytes than the conditioned medium from control (N-AAA) tissues. This was associated with an increase in the concentration of CXCL13, CXCL16, CCL19, CCL20, and CCL21 chemokines in the conditioned medium from AAA tissues. Immunofluorescence analysis of AAA cryosections revealed that α-SMA-positive SMCs were the main contributors to the chemokine production. These results were confirmed by RT-qPCR assays where we found that primary vascular SMCs from AAA tissues expressed significantly more chemokines than SMCs from N-AAA. Finally, in vitro experiments demonstrated that the inflammatory cytokines found to be increased in the conditioned medium from AAA were able to trigger the production of chemokines by primary SMCs. CONCLUSION Together, these results suggest that human vascular SMCs in atherothrombotic arteries, in response to inflammatory signals, are converted into chemokine-expressing cells that trigger the recruitment of immune cells and the formation of aortic TLOs.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/metabolism
- Cells, Cultured
- Culture Media, Conditioned
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation, Fungal
- Humans
- Inflammation/metabolism
- Lymphocytes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
Collapse
Affiliation(s)
- Kevin Guedj
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
- Université Denis Diderot, Paris VII, Paris, France
| | - Jamila Khallou-Laschet
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
- Université Denis Diderot, Paris VII, Paris, France
| | - Marc Clement
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
- Université Denis Diderot, Paris VII, Paris, France
| | - Marion Morvan
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Sandrine Delbosc
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Anh-Thu Gaston
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Francesco Andreata
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
- Université Denis Diderot, Paris VII, Paris, France
| | - Yves Castier
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Catherine Deschildre
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Jean-Baptiste Michel
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Giuseppina Caligiuri
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
| | - Antonino Nicoletti
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France
- Université Denis Diderot, Paris VII, Paris, France
- * E-mail:
| |
Collapse
|
204
|
Tsiantoulas D, Sage AP, Mallat Z, Binder CJ. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler Thromb Vasc Biol 2014; 35:296-302. [PMID: 25359862 DOI: 10.1161/atvbaha.114.303569] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerotic plaque formation is strongly influenced by different arms of the immune system, including B lymphocytes. B cells are divided into 2 main families: the B1 and the B2 cells. B1 cells are atheroprotective mainly via the production of natural IgM antibodies that bind oxidized low-density lipoprotein and apoptotic cells. B2 cells, which include follicular and marginal zone B cells, are suggested to be proatherogenic. Antibody-mediated depletion of B cells has become a valuable treatment option for certain autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis that are also characterized by the development of premature atherosclerosis. Thus, B cells represent a novel interesting target for therapeutic modulation of the atherosclerotic disease process. Here, we discuss the effect of different of B-cell subsets in experimental atherosclerosis, their mechanism of action as well as potential ways to exploit these findings for the treatment of human disease.
Collapse
Affiliation(s)
- Dimitrios Tsiantoulas
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | - Andrew P Sage
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | - Ziad Mallat
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | - Christoph J Binder
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.).
| |
Collapse
|
205
|
Sakamoto S, Tsuruda T, Hatakeyama K, Imamura T, Asada Y, Kitamura K. Impact of age-dependent adventitia inflammation on structural alteration of abdominal aorta in hyperlipidemic mice. PLoS One 2014; 9:e105739. [PMID: 25153991 PMCID: PMC4143271 DOI: 10.1371/journal.pone.0105739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/28/2014] [Indexed: 11/23/2022] Open
Abstract
Background The adventitia is suggested to contribute to vascular remodeling; however, the site-selective inflammatory responses in association with the development of atherosclerosis remain to be elucidated. Methods and Results Wild-type or apolipoprotein E knockout male C57BL/6J background mice were fed standard chow for 16, 32, and 52 weeks, and the morphology of the aortic arch, descending aorta, and abdominal aorta was compared. Atheromatous plaque formation progressed with age, particularly in the aortic arch and abdominal aorta but not in the descending aorta. In addition, we found that the numbers of macrophages, T-lymphocytes, and microvessels, assessed by anti-F4/80, CD3, and CD31 antibodies, were higher in the adventitia of the abdominal aorta at 52 weeks. These numbers were positively correlated with plaque formation, but negatively correlated with elastin content, resulting in the enlargement of the total vessel area. In aortic tissues, interleukin-6 levels increased in the atheromatous plaque with age, whereas the level of regulated on activation, normal T cell expressed and secreted (RANTES) increased with age, and compared with other sites, it was particularly distributed in inflammatory cells in the adventitia of the abdominal aorta. Conclusion This study suggests that adventitial inflammation contributes to the age-dependent structural alterations, and that the activation/inactivation of cytokines/chemokines is involved in the process.
Collapse
Affiliation(s)
- Sumiharu Sakamoto
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuroh Imamura
- Department of Internal Medicine, Koga General Hospital, Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
206
|
Akhavanpoor M, Wangler S, Gleissner CA, Korosoglou G, Katus HA, Erbel C. Adventitial inflammation and its interaction with intimal atherosclerotic lesions. Front Physiol 2014; 5:296. [PMID: 25152736 PMCID: PMC4126462 DOI: 10.3389/fphys.2014.00296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of adventitial inflammation in correlation with atherosclerotic lesions has been recognized for decades. In the last years, several studies have investigated the relevance and impact of adventitial inflammation on atherogenesis. In the abdominal aorta of elderly Apoe−/− mice, adventitial inflammatory structures were characterized as organized ectopic lymphoid tissue, and therefore termed adventitial tertiary lymphoid organs (ATLOs). These ATLOs possess similarities in development, structure and function to secondary lymphoid organs. A crosstalk between intimal atherosclerotic lesions and ATLOs has been suggested, and several studies could demonstrate a potential role for medial vascular smooth muscle cells in this process. We here review the development, phenotypic characteristics, and function of ATLOs in atherosclerosis. Furthermore, we discuss the possible role of medial vascular smooth muscle cells and their interaction between plaque and ATLOs.
Collapse
Affiliation(s)
- Mohammadreza Akhavanpoor
- Department of Cardiology, University of Heidelberg Heidelberg, Germany ; DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Susanne Wangler
- Department of Cardiology, University of Heidelberg Heidelberg, Germany ; DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Christian A Gleissner
- Department of Cardiology, University of Heidelberg Heidelberg, Germany ; DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Grigorios Korosoglou
- Department of Cardiology, University of Heidelberg Heidelberg, Germany ; DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg Heidelberg, Germany ; DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| | - Christian Erbel
- Department of Cardiology, University of Heidelberg Heidelberg, Germany ; DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
207
|
Abstract
The development of atherosclerosis is the major etiological factor causing cardiovascular disease and constitutes a lipid-induced, chronic inflammatory and autoimmune disease of the large arteries. A long-standing view of the protective role of B cells in atherosclerosis has been challenged by recent studies using B cell depletion in animal models. Whereas complete B cell deficiency increases atherosclerosis, depletion of B2 but not B1 cells reduces atherosclerosis. This has led to a re-evaluation of the multiple potential pathways by which B cells can regulate atherosclerosis, and the apparent opposing roles of B1 and B2 cells. B cells, in addition to having the unique ability to produce antibodies, are now recognized to play a number of important roles in the immune system, including cytokine production and direct regulation of T cell responses. This review summarizes current knowledge on B cell subsets and functions, and how these could distinctly influence atherosclerosis development.
Collapse
Affiliation(s)
- Andrew P Sage
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
208
|
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy. Clin Transl Sci 2014; 7:500-11. [PMID: 25043950 DOI: 10.1111/cts.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
209
|
Pitzalis C, Jones GW, Bombardieri M, Jones SA. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 2014; 14:447-62. [PMID: 24948366 DOI: 10.1038/nri3700] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ectopic lymphoid-like structures often develop at sites of inflammation where they influence the course of infection, autoimmune disease, cancer and transplant rejection. These lymphoid aggregates range from tight clusters of B cells and T cells to highly organized structures that comprise functional germinal centres. Although the mechanisms governing ectopic lymphoid neogenesis in human pathology remain poorly defined, the presence of ectopic lymphoid-like structures within inflamed tissues has been linked to both protective and deleterious outcomes in patients. In this Review, we discuss investigations in both experimental model systems and patient cohorts to provide a perspective on the formation and functions of ectopic lymphoid-like structures in human pathology, with particular reference to the clinical implications and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gareth W Jones
- Cardiff Institute for Infection and Immunity, The School of Medicine, Cardiff University, The Tenovus Building, Heath Campus, Cardiff CF14 4XN, Wales, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Simon A Jones
- Cardiff Institute for Infection and Immunity, The School of Medicine, Cardiff University, The Tenovus Building, Heath Campus, Cardiff CF14 4XN, Wales, UK
| |
Collapse
|
210
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
211
|
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Michael Simons
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| |
Collapse
|
212
|
Mohanta SK, Yin C, Peng L, Srikakulapu P, Bontha V, Hu D, Weih F, Weber C, Gerdes N, Habenicht AJ. Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis. Circ Res 2014; 114:1772-87. [PMID: 24855201 DOI: 10.1161/circresaha.114.301137] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E–deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node–like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4
+
and CD8
+
effector and memory T cells, natural and induced CD4
+
regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall–derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis.
Collapse
Affiliation(s)
- Sarajo Kumar Mohanta
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Changjun Yin
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Li Peng
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Prasad Srikakulapu
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Vineela Bontha
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Desheng Hu
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Falk Weih
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Norbert Gerdes
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Andreas J.R. Habenicht
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| |
Collapse
|
213
|
Gisterå A, Robertson AKL, Andersson J, Ketelhuth DFJ, Ovchinnikova O, Nilsson SK, Lundberg AM, Li MO, Flavell RA, Hansson GK. Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci Transl Med 2014; 5:196ra100. [PMID: 23903754 DOI: 10.1126/scitranslmed.3006133] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adaptive immunity has a major impact on atherosclerosis, with pro- and anti-atherosclerotic effects exerted by different subpopulations of T cells. Transforming growth factor-β (TGF-β) may promote development either of anti-atherosclerotic regulatory T cells or of T helper 17 (TH17) cells, depending on factors in the local milieu. We have addressed the effect on atherosclerosis of enhanced TGF-β signaling in T cells. Bone marrow from mice with a T cell-specific deletion of Smad7, a potent inhibitor of TGF-β signaling, was transplanted into hypercholesterolemic Ldlr(-/-) mice. Smad7-deficient mice had significantly larger atherosclerotic lesions that contained large collagen-rich caps, consistent with a more stable phenotype. The inflammatory cytokine interleukin-6 (IL-6) was expressed in the atherosclerotic aorta, and increased mRNA for IL-17A and the TH17-specific transcription factor RORγt were detected in draining lymph nodes. Treating Smad7-deficient chimeras with neutralizing IL-17A antibodies reversed stable cap formation. IL-17A stimulated collagen production by human vascular smooth muscle cells, and RORγt mRNA correlated positively with collagen type I and α-smooth muscle actin mRNA in a biobank of human atherosclerotic plaques. These data link IL-17A to induction of a stable plaque phenotype, could lead to new plaque-stabilizing therapies, and should prompt an evaluation of cardiovascular events in patients treated with IL-17 receptor blockade.
Collapse
Affiliation(s)
- Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Vuorio T, Nurmi H, Moulton K, Kurkipuro J, Robciuc MR, Ohman M, Heinonen SE, Samaranayake H, Heikura T, Alitalo K, Ylä-Herttuala S. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34:1162-70. [PMID: 24723556 DOI: 10.1161/atvbaha.114.302528] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Lymphatic vessels collect extravasated fluid and proteins from tissues to blood circulation as well as play an essential role in lipid metabolism by taking up intestinal chylomicrons. Previous studies have shown that impairment of lymphatic vessel function causes lymphedema and fat accumulation, but clear connections between arterial pathologies and lymphatic vessels have not been described. APPROACH AND RESULTS Two transgenic mouse strains with lymphatic insufficiency (soluble vascular endothelial growth factor 3 [sVEGFR3] and Chy) were crossed with atherosclerotic mice deficient of low-density lipoprotein receptor and apolipoprotein B48 (LDLR(-/-)/ApoB(100/100)) to study the effects of insufficient lymphatic vessel transport on lipoprotein metabolism and atherosclerosis. Both sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had higher plasma cholesterol levels compared with LDLR(-/-)/ApoB(100/100) control mice during both normal chow diet (16.3 and 13.7 versus 8.2 mmol/L, respectively) and Western-type high-fat diet (eg, after 2 weeks of fat diet, 45.9 and 42.6 versus 30.2 mmol/L, respectively). Cholesterol and triglyceride levels in very-low-density lipoprotein and low-density lipoprotein fractions were increased. Atherosclerotic lesions in young and intermediate cohorts of sVEGFR3×LDLR(-/-)/ApoB(100/100) mice progressed faster than in control mice (eg, intermediate cohort mice at 6 weeks, 18.3% versus 7.7% of the whole aorta, respectively). In addition, lesions in sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had much less lymphatic vessels than lesions in control mice (0.33% and 1.07% versus 7.45% of podoplanin-positive vessels, respectively). CONCLUSIONS We show a novel finding linking impaired lymphatic vessels to lipoprotein metabolism, increased plasma cholesterol levels, and enhanced atherogenesis.
Collapse
Affiliation(s)
- Taina Vuorio
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Harri Nurmi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Karen Moulton
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Jere Kurkipuro
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Marius R Robciuc
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Miina Ohman
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Suvi E Heinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Haritha Samaranayake
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Kari Alitalo
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
215
|
Upadhyay V, Fu YX. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine Growth Factor Rev 2014; 25:227-33. [PMID: 24411493 PMCID: PMC3999173 DOI: 10.1016/j.cytogfr.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/15/2013] [Indexed: 01/02/2023]
Abstract
The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States
| | - Yang-Xin Fu
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States.
| |
Collapse
|
216
|
Halvorsen B, Smedbakken LM, Michelsen AE, Skjelland M, Bjerkeli V, Sagen EL, Taskén K, Bendz B, Gullestad L, Holm S, Biessen EA, Aukrust P. Activated platelets promote increased monocyte expression of CXCR5 through prostaglandin E2-related mechanisms and enhance the anti-inflammatory effects of CXCL13. Atherosclerosis 2014; 234:352-9. [PMID: 24732574 DOI: 10.1016/j.atherosclerosis.2014.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND We have previously shown that the homeostatic chemokine CXCL13 is up-regulated in monocytes in atherosclerosis, mediating anti-apoptotic and anti-inflammatory effects. OBJECTIVE To investigate the regulation of CXCL13s receptor, CXCR5. METHODS/PATIENTS In vitro studies in THP-1 and primary monocytes and studies of CXCR5 expression in thrombus material obtained at the site of plaque rupture during myocardial infarction (MI). RESULTS Our major findings were: (i) toll-like receptor agonists and particularly β-adrenergic receptor activation and releasate from thrombin-activated platelets increased CXCR5 mRNA levels in monocytes. (ii) The platelet-mediated induction of CXCR5 involved prostaglandin E2/cAMP/protein kinase A-dependent as well as RANTES-dependent pathways with NFκB activation as a potential common down-stream mediator. (iii) Releasate from thrombin-activated platelets augmented the anti-inflammatory effects of CXCL13 in monocytes at least partly by enhancing the effects of CXCL13 on CXCR5 expression. (iv) We found strong immunostaining of CXCR5 in thrombus material obtained at the site of plaque rupture in patients with ST elevation MI (STEMI) and in unstable carotid lesions, co-localized with platelets. CONCLUSION Our findings suggest that platelet-mediated signaling through CXCR5 may be active in vivo during plaque destabilization, potentially representing a counteracting mechanism to inflammation.
Collapse
Affiliation(s)
- Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Linda M Smedbakken
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway; Centre for Molecular Medicine Norway, Nordic EMBL Partnership and Biotechnology Centre, Oslo University Hospital and University of Oslo, Oslo, Norway; Biotechnology Centre, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Bjørn Bendz
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Erik A Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, Netherlands
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
217
|
Abstract
Tertiary lymphoid organs (TLOs) are accumulations of lymphoid cells in chronic inflammation that resemble LNs in their cellular content and organization, high endothelial venules, and lymphatic vessels (LVs). Although acute inflammation can result in defective LVs, TLO LVs appear to function normally in that they drain fluid and transport cells that respond to chemokines and sphingosine-1-phosphate (S1P) gradients. Molecular regulation of TLO LVs differs from lymphangiogenesis in ontogeny with a dependence on cytokines and hematopoietic cells. Ongoing work to elucidate the function and molecular regulation of LVs in TLOs is providing insight into therapies for conditions as diverse as lymphedema, autoimmunity, and cancer.
Collapse
|
218
|
Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. PLoS One 2014; 9:e89983. [PMID: 24587165 PMCID: PMC3937418 DOI: 10.1371/journal.pone.0089983] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023] Open
Abstract
Aneurysm is associated to a complex remodeling of arteries that affects all their layers. Although events taking place in the intima and the media have received a particular attention, molecular and cellular events taking place in the adventitia have started to be deciphered only recently. In this study, we have precisely described the composition and distribution of stromal and hematopoietic cells in human arterial adventitia, both at steady state and in the setting of aortic aneurysm. Using polychromatic immunofluorescent and flow cytometry analyses, we observed that unlike the medial layer (which comprises mostly macrophages and T cells among leukocytes), the adventitia comprises a much greater variety of leukocytes. We observed an altered balance in macrophages subsets in favor of M2-like macrophages, an increased proliferation of macrophages, a greater number of all stromal cells in aneurysmal aortas. We also confirmed that in this pathological setting, adventitia comprised blood vessels and arterial tertiary lymphoid organs (ATLOs), which contained also M-DC8+ dendritic cells (slanDCs) that could participate in the induction of T-cell responses. Finally, we showed that lymphatic vessels can be detected in aneurysmal adventitia, the functionality of which will have to be evaluated in future studies. All together, these observations provide an integrative outlook of the stromal and hematopoietic cell network of the human adventitia both at steady state and in the context of aneurysm.
Collapse
|
219
|
Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A, Laghi L, Allavena P, Mantovani A, Marchesi F. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 2014; 20:2147-58. [PMID: 24523438 DOI: 10.1158/1078-0432.ccr-13-2590] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Tumor-infiltrating T lymphocytes (TIL) play a key role in the clinical outcome of human colorectal cancer; however, the dynamics of their recruitment along colorectal cancer clinical progression have not been fully elucidated. Tertiary lymphoid tissue (TLT) is an ectopic organized lymph node-like structure that typically forms at sites of chronic inflammation and is involved in adaptive immune responses. Its occurrence in cancer is sporadically documented and its role and clinical relevance is largely unknown. EXPERIMENTAL DESIGN The occurrence of TLT, the correlation with TILs, and the clinical relevance were evaluated retrospectively, in a cohort study involving a consecutive series of 351 patients with stage II and III colorectal cancer. The role of TLT in lymphocyte recruitment was assessed in a preclinical model of colorectal cancer. RESULTS In both human colorectal cancer and in a murine model of colorectal cancer, we identified organized TLT, highly vascularized (including high endothelial venules), and correlated with the density of CD3(+) TILs. Intravenous injection in mice of GFP splenocytes resulted in homing of lymphocytes to TLT, suggesting an active role of TLT in the recruitment of lymphocytes to tumor areas. Accordingly, TLT density and TIL infiltration correlated and were coordinated in predicting better patient's outcome among patients with stage II colorectal cancer. CONCLUSIONS We provide evidence that TLT is associated with lymphocyte infiltration in colorectal cancer, providing a pathway of recruitment for TILs. TLT cooperates with TILs in a coordinated antitumor immune response, when identifying patients with low-risk early-stage colorectal cancer, thus, representing a novel prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Giuseppe Di Caro
- Authors' Affiliations: Departments of Immunology and Inflammation; and Gastroenterology; Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano; and Department of Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Kobayashi S, Murata K, Shibuya H, Morita M, Ishikawa M, Furu M, Ito H, Ito J, Matsuda S, Watanabe T, Yoshitomi H. A distinct human CD4+ T cell subset that secretes CXCL13 in rheumatoid synovium. ACTA ACUST UNITED AC 2014; 65:3063-72. [PMID: 24022618 DOI: 10.1002/art.38173] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE A subset of CD4+ T cells in the synovium of patients with rheumatoid arthritis (RA) produce CXCL13, a chemokine that is crucial for the formation of germinal centers. This study was undertaken to determine the relevance of this population to known subsets of T helper cells and to proinflammatory cytokines, and how these cells are generated. METHODS The expression of Th markers and CXCL13 by CD4+ T cells in RA synovium and the involvement of proinflammatory cytokines in CXCL13 production were assessed. We also investigated whether CXCL13+CD4+ T cells could be newly induced. RESULTS CXCL13+CD4+ T cells in RA synovium were negative for interferon-γ (IFNγ), interleukin-4 (IL-4), IL-17, FoxP3, and CXCR5 and expressed low levels of inducible T cell costimulator, indicating that this population is a distinct human CD4 subset. T cell receptor (TCR) stimulation of CD4+ T cells, obtained from RA synovium with low expression of CXCL13, promptly induced CXCL13 production and addition of proinflammatory cytokines supported the long-term production of CXCL13. These findings indicate that CXCL13-producing CD4+ T cells can be in a memory state ready to be reactivated upon TCR stimulation and that proinflammatory cytokines are involved in persistent CXCL13 production. TCR stimulation of CD4+ T cells from the blood of healthy volunteers, together with proinflammatory cytokine supplementation, induced a population that produced CXCL13, but not IFNγ. Synovial T cells recruited CXCR5+ cells in a CXCL13-dependent manner. CONCLUSION CXCL13-producing CD4+ T cells induced in RA synovium may play a role in the recruitment of CXCR5+ cells, such as B cells and circulating follicular helper T cells, and in ectopic lymphoid neogenesis at sites of inflammation.
Collapse
Affiliation(s)
- Shio Kobayashi
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Blanco-Colio LM. TWEAK/Fn14 Axis: A Promising Target for the Treatment of Cardiovascular Diseases. Front Immunol 2014; 5:3. [PMID: 24478772 PMCID: PMC3895871 DOI: 10.3389/fimmu.2014.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases (CVD) are the first cause of mortality in Western countries. CVD include several pathologies such as coronary heart disease, stroke or cerebrovascular accident, congestive heart failure, peripheral arterial disease, and aortic aneurysm, among others. Interaction between members of the tumor necrosis factor (TNF) superfamily and their receptors elicits several biological actions that could participate in CVD. TNF-like weak inducer of apoptosis (TWEAK) and its functional receptor and fibroblast growth factor-inducible molecule 14 (Fn14) are two proteins belonging to the TNF superfamily that activate NF-κB by both canonical and non-canonical pathways and regulate several cell functions such as proliferation, migration, differentiation, cell death, inflammation, and angiogenesis. TWEAK/Fn14 axis plays a beneficial role in tissue repair after acute injury. However, persistent TWEAK/Fn14 activation mediated by blocking experiments or overexpression experiments in animal models has shown an important role of this axis in the pathological remodeling underlying CVD. In this review, we summarize the role of TWEAK/Fn14 pathway in the development of CVD, focusing on atherosclerosis and stroke and the molecular mechanisms by which TWEAK/Fn14 interaction participates in these pathologies. We also review the role of the soluble form of TWEAK as a biomarker for the diagnosis and prognosis of CVD. Finally, we highlight the results obtained with other members of the TNF superfamily that also activate canonical and non-canonical NF-κB pathway.
Collapse
|
222
|
Rammos C, Hendgen-Cotta UB, Deenen R, Pohl J, Stock P, Hinzmann C, Kelm M, Rassaf T. Age-related vascular gene expression profiling in mice. Mech Ageing Dev 2014; 135:15-23. [PMID: 24447783 DOI: 10.1016/j.mad.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/19/2013] [Accepted: 01/04/2014] [Indexed: 02/06/2023]
Abstract
Increasing age involves a number of detrimental changes in the cardiovascular system and particularly on the large arteries. It deteriorates vascular integrity and leads to increased vascular stiffness entailing hypertension with increased cardiovascular morbidity and mortality. The consequences of continuous oxidative stress and damages to biomolecules include altered gene expression, genomic instability, mutations, loss of cell division and cellular responses to increased stress. Many studies have been performed in aged C57BL/6 mice; however, analyses of the age-related changes that occur at a gene expression level and transcriptional profile in vascular tissue have not been elucidated in depth. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of adult and old mice, in which age-related vascular dysfunction was confirmed by increased stiffness and associated systolic hypertension. Our results highlight differentially expressed genes overrepresented in Gene Ontology categories. Molecular interaction and reaction pathways involved in vascular functions and disease, within the transforming growth factor-beta (TGF-β) pathway, the renin-angiotensin system and the detoxification systems are displayed. Our results provide insight to an altered gene expression profile related to age, thus offering useful clues to counteract or prevent vascular aging and its detrimental consequences.
Collapse
Affiliation(s)
- Christos Rammos
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Ulrike B Hendgen-Cotta
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Rene Deenen
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Julia Pohl
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Pia Stock
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Christian Hinzmann
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Malte Kelm
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Tienush Rassaf
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
223
|
Biros E, Moran CS, Rush CM, Gäbel G, Schreurs C, Lindeman JHN, Walker PJ, Nataatmadja M, West M, Holdt LM, Hinterseher I, Pilarsky C, Golledge J. Differential gene expression in the proximal neck of human abdominal aortic aneurysm. Atherosclerosis 2014; 233:211-8. [PMID: 24529146 DOI: 10.1016/j.atherosclerosis.2013.12.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/16/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) represents a common cause of morbidity and mortality in elderly populations but the mechanisms involved in AAA formation remain incompletely understood. Previous human studies have focused on biopsies obtained from the center of the AAA however it is likely that pathological changes also occur in relatively normal appearing aorta away from the site of main dilatation. The aim of this study was to assess the gene expression profile of biopsies obtained from the neck of human AAAs. METHODS We performed a microarray study of aortic neck specimens obtained from 14 patients with AAA and 8 control aortic specimens obtained from organ donors. Two-fold differentially expressed genes were identified with correction for multiple testing. Mechanisms represented by differentially expressed genes were identified using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Some of the differentially expressed genes were validated by quantitative real-time PCR (qPCR) and immunohistochemistry. RESULTS We identified 1047 differentially expressed genes in AAA necks. The KEGG analysis revealed marked upregulation of genes related to immunity. These pathways included cytokine-cytokine receptor interaction (P = 8.67*10(-12)), chemokine signaling pathway (P = 5.76*10(-07)), and antigen processing and presentation (P = 4.00*10(-04)). Examples of differentially expressed genes validated by qPCR included the T-cells marker CD44 (2.16-fold upregulated, P = 0.008) and the B-cells marker CD19 (3.14-fold upregulated, P = 0.029). The presence of B-cells in AAA necks was confirmed by immunohistochemistry. CONCLUSIONS The role of immunity in AAA is controversial. This study suggests that immune pathways are also upregulated within the undilated aorta proximal to an AAA.
Collapse
Affiliation(s)
- Erik Biros
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia
| | - Corey S Moran
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia
| | - Catherine M Rush
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia; School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig Maximilians University Munich, Munich, Germany
| | - Charlotte Schreurs
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Philip J Walker
- University of Queensland, School of Medicine, Discipline of Surgery, and Centre for Clinical Research and Royal Brisbane and Women's Hospital, Department of Vascular Surgery Herston, Queensland 4029, Australia
| | - Maria Nataatmadja
- The Cardiovascular Research Group, Department of Medicine, the University of Queensland, Queensland, Australia
| | - Malcolm West
- The Cardiovascular Research Group, Department of Medicine, the University of Queensland, Queensland, Australia
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Irene Hinterseher
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Christian Pilarsky
- Department of Vascular and Endovascular Surgery, Ludwig Maximilians University Munich, Munich, Germany
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.
| |
Collapse
|
224
|
Cole JE, Mitra AT, Monaco C. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 2014; 8:1619-35. [DOI: 10.1586/erc.10.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
225
|
Slevin M, Baldellou M, Hill E, Alexander Y, McDowell G, Murgatroyd C, Carroll M, Degens H, Krupinski J, Rovira N, Chowdhury M, Serracino-Inglott F, Badimon L. Novel methods for accurate identification, isolation, and genomic analysis of symptomatic microenvironments in atherosclerotic arteries. Methods Mol Biol 2014; 1135:289-305. [PMID: 24510873 DOI: 10.1007/978-1-4939-0320-7_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A challenge facing surgeons is identification and selection of patients for carotid endarterectomy or coronary artery bypass/surgical intervention. While some patients with atherosclerosis develop unstable plaques liable to undergo thrombosis, others form more stable plaques and are asymptomatic. Identification of the cellular signaling mechanisms associated with production of the inflammatory, hemorrhagic lesions of mature heterogenic plaques will help significantly in our understanding of the differences in microenvironment associated with development of regions susceptible to rupture and thrombosis and may help to predict the risk of plaque rupture and guide surgical intervention to patients who will most benefit. Here, we demonstrate detailed and novel methodologies for successful and, more importantly, accurate and reproducible extraction, sampling, and analysis of micro-regions in stable and unstable coronary/carotid arteries. This information can be applied to samples from other origins and so should be useful for scientists working with micro-isolation techniques in all fields of biomedical science.
Collapse
Affiliation(s)
- Mark Slevin
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Sakamoto A, Ishizaka N, Imai Y, Ando J, Nagai R, Komuro I. Association of serum IgG4 and soluble interleukin-2 receptor levels with epicardial adipose tissue and coronary artery calcification. Clin Chim Acta 2014. [DOI: 10.1016/j.cca.2013.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
227
|
Morris-Rosenfeld S, Lipinski MJ, McNamara CA. Understanding the role of B cells in atherosclerosis: potential clinical implications. Expert Rev Clin Immunol 2013; 10:77-89. [PMID: 24308836 DOI: 10.1586/1744666x.2014.857602] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease of the medium to large arteries that is the largest contributor to cardiovascular disease. B-cell subsets have been shown in animal models of atherosclerosis to have both atherogenic and atheroprotective properties. In this review, we highlight the research that developed our understanding of the role of B cells in atherosclerosis both in humans and mice. From this we discuss the potential clinical impact B cells could have both as diagnostic biomarkers and as targets for immunotherapy. Finally, we recognize the inherent difficulty in translating findings from animal models into humans given the differences in both cardiovascular disease and the immune system between mice and humans, making the case for greater efforts at addressing the role of B cells in human atherosclerosis.
Collapse
Affiliation(s)
- Samuel Morris-Rosenfeld
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA and Department of Medicine, Cardiovascular Division at the University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
228
|
Guedj K, Khallou-Laschet J, Clement M, Morvan M, Gaston AT, Fornasa G, Dai J, Gervais-Taurel M, Eberl G, Michel JB, Caligiuri G, Nicoletti A. M1 macrophages act as LTβR-independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis. Cardiovasc Res 2013; 101:434-43. [PMID: 24272771 DOI: 10.1093/cvr/cvt263] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS The goal of this study was to characterize the role of inflammatory macrophages in the induction of the vascular smooth muscle cell (VSMC)-mediated formation of aortic tertiary lymphoid organs (TLOs). METHODS AND RESULTS Mouse bone marrow-derived M1 macrophages acted as lymphoid tissue inducer cells. Indeed, they expressed high levels of tumour necrosis factor (TNF)-α and membrane-bound lymphotoxin (LT)-α, two inducing cytokines that triggered expression of the chemokines CCL19, CCL20, and CXCL16, as did M1 supernatant. The blockade of LTβR signalling with LTβR-Ig had no effect, whereas that of TNFR1/2 signalling reduced chemokine expression by VSMCs in both wild-type (WT) and LTβR KO mice, demonstrating that LTβR signalling is dispensable for the M1-inducing effect. This effect was corroborated by the development of TLOs observed in LTβR KO->apolipoprotein E knockout (ApoE KO) aortic segments after orthotopic transplantation. Furthermore, treatment of ApoE KO mice with anti-TNF-α antibody decreased the number and incidence of aortic TLOs. Finally, lymphoid nodules composed of T and B cells formed in in vivo-implanted scaffolds seeded with VSMCs previously stimulated ex vivo by M1-conditioned medium. CONCLUSIONS These results are the first to identify M1 macrophages as inducer cells that trigger the expression of chemokines by VSMCs independently of LTβR signalling. We propose that the dialogue between macrophages and VSMCs-established across the vascular wall-contributes to the formation of aortic TLOs.
Collapse
Affiliation(s)
- Kevin Guedj
- Unité 698, Institut National de la Santé et de la Recherche Médicale, Hôpital Xavier Bichat, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Subramanian M, Tabas I. Dendritic cells in atherosclerosis. Semin Immunopathol 2013; 36:93-102. [PMID: 24196454 DOI: 10.1007/s00281-013-0400-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/13/2013] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with activation of both the innate and adaptive arms of the immune system. Dendritic cells (DCs) are potent activators of adaptive immunity and have been identified in the normal arterial wall and within atherosclerotic lesions. Recent evidence points to a functional role for DCs in all stages of atherosclerosis because of their myriad functions including lipid uptake, antigen presentation, efferocytosis, and inflammation resolution. Moreover, DC-based vaccination strategies are currently being developed for the treatment of atherosclerosis. This review will focus on the current evidence as well as the proposed roles for DCs in the pathogenesis of atherosclerosis and discuss future therapeutic strategies.
Collapse
Affiliation(s)
- Manikandan Subramanian
- Department of Medicine, Columbia University, 630 West 168th Street PH9-406, New York, NY, 10032, USA,
| | | |
Collapse
|
230
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
231
|
Perry HM, Oldham SN, Fahl SP, Que X, Gonen A, Harmon DB, Tsimikas S, Witztum JL, Bender TP, McNamara CA. Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler Thromb Vasc Biol 2013; 33:2771-9. [PMID: 24115031 DOI: 10.1161/atvbaha.113.302571] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Natural immunity is emerging as an important mediator of protection from atherogenesis. Natural IgM antibodies that recognize oxidation-specific epitopes on low-density lipoprotein or phospholipids and the B-1a B cells that produce them attenuate atherosclerosis. We previously demonstrated that Apoe(-/-) mice globally deficient in the helix-loop-helix protein inhibitor of differentiation 3 (Id3) develop early diet-induced atherosclerosis. Furthermore, B cell-mediated attenuation of atherosclerosis in B cell-deficient mice was dependent on Id3. Here, we sought to determine whether Id3 regulates B-1a B cells and the natural antibodies that they produce and identify mechanisms mediating these effects. APPROACH AND RESULTS Mice lacking Id3 had significantly fewer B-1a B cells in the spleen and peritoneal cavity and reduced serum levels of the natural antibody E06. B cell-specific deletion of Id3 revealed that this effect was not because of the loss of Id3 in B cells. Interleukin (IL)-33 induced abundant, Id3-dependent IL-5 production in the recently identified innate lymphoid cell, the natural helper (NH) cell, but not Th2 or mast cells. In addition, delivery of IL-5 to Id3-deficient mice restored B-1a B cell proliferation. B-1a B cells were present in aortic samples also containing NH cells. Aortic NH cells produced IL-5, a B-1a B cell mitogen in response to IL-33 stimulation. CONCLUSIONS These studies are the first to identify NH and B-1a B cells in the aorta and provide evidence that Id3 is a key regulator of NH cell IL-5 production and B-1a B cell homeostasis.
Collapse
Affiliation(s)
- Heather M Perry
- From the Cardiovascular Research Center (H.M.P., S.N.O., D.B.H., C.A.M.), Department of Pathology (H.M.P.), Department of Medicine (S.N.O.), Beirne B. Carter Center for Immunology Research (S.P.F., C.A.M.), Department of Microbiology, Immunology and Cancer Biology (S.P.F., T.P.B.), Department of Biochemistry, Molecular Biology and Genetics (D.B.H., T.P.B.), Department of Medicine, Cardiovascular Division (C.A.M.), Department of Molecular Physiology and Biological Physics (C.A.M.), University of Virginia, Charlottesville; and the Department of Medicine, University of California, San Diego (X.Q., A.G., S.T., J.L.W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, Defraigne JO, Delvenne P, Michel JB, Colige AC, Sakalihasan N. 18F-FDG Uptake Assessed by PET/CT in Abdominal Aortic Aneurysms Is Associated with Cellular and Molecular Alterations Prefacing Wall Deterioration and Rupture. J Nucl Med 2013; 54:1740-7. [DOI: 10.2967/jnumed.112.115873] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
233
|
Brinkman CC, Peske JD, Engelhard VH. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front Immunol 2013; 4:241. [PMID: 23966998 PMCID: PMC3746678 DOI: 10.3389/fimmu.2013.00241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/03/2013] [Indexed: 01/13/2023] Open
Abstract
T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues.
Collapse
Affiliation(s)
- C Colin Brinkman
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine , Charlottesville, VA , USA
| | | | | |
Collapse
|
234
|
Hamze M, Desmetz C, Berthe ML, Roger P, Boulle N, Brancherau P, Picard E, Guzman C, Tolza C, Guglielmi P. Characterization of Resident B Cells of Vascular Walls in Human Atherosclerotic Patients. THE JOURNAL OF IMMUNOLOGY 2013; 191:3006-16. [DOI: 10.4049/jimmunol.1202870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
235
|
Abstract
Cardiovascular disease is the leading cause of death in several countries. The underlying process is atherosclerosis, a slowly progressing chronic disorder that can lead to intravascular thrombosis. There is overwhelming evidence for the underlying importance of our immune system in atherosclerosis. Monocytes, which comprise part of the innate immune system, can be recruited to inflamed endothelium and this recruitment has been shown to be proportional to the extent of atherosclerotic disease. Monocytes undergo migration into the vasculature, they differentiate into macrophage phenotypes, which are highly phagocytic and can scavenge modified lipids, leading to foam cell formation and development of the lipid-rich atheroma core. This increased influx leads to a highly inflammatory environment and along with other immune cells can increase the risk in the development of the unstable atherosclerotic plaque phenotype. The present review provides an overview and description of the immunological aspect of innate and adaptive immune cell subsets in atherosclerosis, by defining their interaction with the vascular environment, modified lipids and other cellular exchanges. There is a particular focus on monocytes and macrophages, but shorter descriptions of dendritic cells, lymphocyte populations, neutrophils, mast cells and platelets are also included.
Collapse
|
236
|
Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard JP. High Endothelial Venule Blood Vessels for Tumor-Infiltrating Lymphocytes Are Associated with Lymphotoxin β–Producing Dendritic Cells in Human Breast Cancer. THE JOURNAL OF IMMUNOLOGY 2013; 191:2001-8. [DOI: 10.4049/jimmunol.1300872] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
237
|
Affiliation(s)
- Hiroshi Iwata
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ichiro Manabe
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ryozo Nagai
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| |
Collapse
|
238
|
Abstract
The field of lymphotoxin biology has seen many advances in the past decade. Notably, a role for lymphotoxin as a key effector cytokine has emerged to add to its foundational contribution to lymphoid organogenesis. It is now clear that lymphotoxin contributes to host defense for a wide variety of pathogens, and the lymphotoxin receptor is a defining feature of and regulatory mechanism in both innate and adaptive immunities. Specifically, lymphotoxin contributes to Th education, licensing of IL-22 production from type 3 innate lymphoid cells, and even maintains innate myeloid populations within the fully developed lymph node. Most recently, lymphotoxin has been implicated in regulation of the microbiota and metabolic disease. Early studies revealed that lymphotoxin might influence composition of the commensal microbiota through its regulation of immunological compartmentalization in the gut. Additionally, several epidemiological studies have linked polymorphisms in lymphotoxin to metabolic disease. Studies exploring the role of lymphotoxin in metabolic disease have demonstrated that lymphotoxin may influence metabolism both directly in the liver and indirectly through regulation of gut immune responses. It now appears that lymphotoxin may bridge the gap between altered composition of the commensal microbiota and metabolism.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
239
|
Ma Y, Adjemian S, Mattarollo S, Yamazaki T, Aymeric L, Yang H, Portela Catani J, Hannani D, Duret H, Steegh K, Martins I, Schlemmer F, Michaud M, Kepp O, Sukkurwala A, Menger L, Vacchelli E, Droin N, Galluzzi L, Krzysiek R, Gordon S, Taylor P, Van Endert P, Solary E, Smyth M, Zitvogel L, Kroemer G. Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity 2013; 38:729-41. [DOI: 10.1016/j.immuni.2013.03.003] [Citation(s) in RCA: 403] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 12/06/2012] [Indexed: 01/21/2023]
|
240
|
Jiang D, Zheng D, Wang L, Huang Y, Liu H, Xu L, Liao Q, Liu P, Shi X, Wang Z, Sun L, Zhou Q, Li N, Xu L, Le Y, Ye M, Shao G, Duan S. Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. PLoS One 2013; 8:e59752. [PMID: 23555769 PMCID: PMC3610900 DOI: 10.1371/journal.pone.0059752] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/18/2013] [Indexed: 12/22/2022] Open
Abstract
PLA2G7 gene product is a secreted enzyme whose activity is associated with coronary heart disease (CHD). The goal of our study is to investigate the contribution of PLA2G7 promoter DNA methylation to the risk of CHD. Using the bisulphite pyrosequencing technology, PLA2G7 methylation was measured among 36 CHD cases and 36 well-matched controls. Our results indicated that there was a significant association between PLA2G7 methylation and CHD (adjusted P = 0.025). Significant gender-specific correlation was observed between age and PLA2G7 methylation (males: adjusted r = −0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035). A breakdown analysis by gender showed that PLA2G7 methylation was significantly associated with CHD in females (adjusted P = 0.003) but not in males. A further two-way ANOVA analysis showed there was a significant interaction between gender and status of CHD for PLA2G7 methylation (gender*CHD: P = 6.04E−7). Moreover, PLA2G7 methylation is associated with the levels of total cholesterols (TC, r = 0.462, P = 0.009), triglyceride (TG, r = 0.414, P = 0.02) and Apolipoprotein B (ApoB, r = 0.396, P = 0.028) in females but not in males (adjusted P>0.4). Receiver operating characteristic (ROC) curves showed that PLA2G7 methylation could predict the risk of CHD in females (area under curve (AUC) = 0.912, P = 2.40E−5). Our results suggest that PLA2G7 methylation changes with aging in a gender-specific pattern. The correlation between PLA2G7 methylation and CHD risk in females is independent of other parameters including age, smoking, diabetes and hypertension. PLA2G7 methylation might exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females. The gender disparities in the PLA2G7 methylation may play a role in the molecular mechanisms underlying the pathophysiology of CHD.
Collapse
Affiliation(s)
- Danjie Jiang
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Dawei Zheng
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Yi Huang
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Haibo Liu
- Yinzhou People’s Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Leiting Xu
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Qi Liao
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Panpan Liu
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Xinbao Shi
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaoyang Wang
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Lebo Sun
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Qingyun Zhou
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ni Li
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Limin Xu
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Yanping Le
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
| | - Meng Ye
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (GS); (MY)
| | - Guofeng Shao
- Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (GS); (MY)
| | - Shiwei Duan
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (GS); (MY)
| |
Collapse
|
241
|
Nicoletti A, Khallou-Laschet J, Guedj K, Clement M, Gaston AT, Morvan M, Dutertre CA, Michel JB, Thaunat O, Caligiuri G. L19. Lymphoid neogenesis in vascular chronic inflammation. Presse Med 2013; 42:558-60. [PMID: 23481363 DOI: 10.1016/j.lpm.2013.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Antonino Nicoletti
- Unité 698, institut national de la santé et de la recherche médicale, hôpital Xavier-Bichat, Inserm UMRS698, GH Bichat-Claude Bernard, université Denis-Diderot, 46, rue Henri-Huchard, 75877 Paris cedex 18, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Rademakers T, Douma K, Hackeng TM, Post MJ, Sluimer JC, Daemen MJAP, Biessen EAL, Heeneman S, van Zandvoort MAMJ. Plaque-Associated Vasa Vasorum in Aged Apolipoprotein E–Deficient Mice Exhibit Proatherogenic Functional Features In Vivo. Arterioscler Thromb Vasc Biol 2013; 33:249-56. [DOI: 10.1161/atvbaha.112.300087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Neovascularization of human atherosclerotic plaques is implicated in plaque progression and destabilization, although its functional implications are yet unresolved. Here, we aimed to elucidate functional and morphological properties of plaque microvessels in mice in vivo.
Methods and Results—
Atherosclerotic carotid arteries from aged (>40 weeks) apolipoprotein E–deficient mice were imaged in vivo using multiphoton laser scanning microscopy. Two distinct groups of vasa vasorum microvessels were observed at sites of atherosclerosis development (median diameters of 18.5 and 5.9 μm, respectively), whereas microvessels within the plaque could only rarely be found. In vivo imaging showed ongoing angiogenic activity and injection of fluorescein isothiocyanate-dextran confirmed active perfusion. Plaque vasa vasorum showed increased microvascular leakage, combined with a loss of endothelial glycocalyx. Mean blood flow velocity in plaque-associated vasa vasorum was reduced by ±50% compared with diameter-matched control capillaries, whereas mean blood flow was reduced 8-fold. Leukocyte adhesion and extravasation were increased 6-fold in vasa vasorum versus control capillaries.
Conclusion—
Using a novel in vivo functional imaging strategy, we showed that plaque-associated vasa vasorum were angiogenically active and, albeit poorly, perfused. Moreover, plaque-associated vasa vasorum showed increased permeability, reduced blood flow, and increased leukocyte adhesion and extravasation (ie, characteristics that could contribute to plaque progression and destabilization).
Collapse
Affiliation(s)
- Timo Rademakers
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Kim Douma
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Tilman M. Hackeng
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Mark J. Post
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Judith C. Sluimer
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Mat J. A. P. Daemen
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Erik A. L. Biessen
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Sylvia Heeneman
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Marc A. M. J. van Zandvoort
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| |
Collapse
|
243
|
Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013; 339:161-6. [PMID: 23307733 DOI: 10.1126/science.1230719] [Citation(s) in RCA: 821] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases claim more lives worldwide than any other. Etiologically, the dominant trajectory involves atherosclerosis, a chronic inflammatory process of lipid-rich lesion growth in the vascular wall that can cause life-threatening myocardial infarction (MI). Those who survive MI can develop congestive heart failure, a chronic condition of inadequate pump activity that is frequently fatal. Leukocytes (white blood cells) are important participants at the various stages of cardiovascular disease progression and complication. This Review will discuss leukocyte function in atherosclerosis, MI, and heart failure.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|
244
|
Abstract
Objective Genetics plays a large role in atherosclerosis susceptibility in humans and mice. We attempted to confirm previously determined mouse atherosclerosis‐associated loci and use bioinformatics and transcriptomics to create a catalog of candidate atherosclerosis modifier genes at these loci. Methods and Results A strain intercross was performed between AKR and DBA/2 mice on the apoE−/− background generating 166 F2 progeny. Using the phenotype log10 of the aortic root lesion area, we identified 3 suggestive atherosclerosis quantitative trait loci (Ath QTLs). When combined with our prior strain intercross, we confirmed 3 significant Ath QTLs on chromosomes 2, 15, and 17, with combined logarithm of odds scores of 5.9, 5.3, and 5.6, respectively, which each met the genome‐wide 5% false discovery rate threshold. We identified all of the protein coding differences between these 2 mouse strains within the Ath QTL intervals. Microarray gene expression profiling was performed on macrophages and endothelial cells from this intercross to identify expression QTLs (eQTLs), the loci that are associated with variation in the expression levels of specific transcripts. Cross tissue eQTLs and macrophage eQTLs that replicated from a prior strain intercross were identified. These bioinformatic and eQTL analyses produced a comprehensive list of candidate genes that may be responsible for the Ath QTLs. Conclusions Replication studies for clinical traits as well as gene expression traits are worthwhile in identifying true versus false genetic associations. We have replicated 3 loci on mouse chromosomes 2, 15, and 17 that are associated with atherosclerosis. We have also identified protein coding differences and multiple replicated eQTLs, which may be useful in the identification of atherosclerosis modifier genes.
Collapse
Affiliation(s)
- Jeffrey Hsu
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
245
|
Perry HM, Bender TP, McNamara CA. B cell subsets in atherosclerosis. Front Immunol 2012; 3:373. [PMID: 23248624 PMCID: PMC3518786 DOI: 10.3389/fimmu.2012.00373] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis, the underlying cause of heart attacks and strokes, is a chronic inflammatory disease of the artery wall. Immune cells, including lymphocytes modulate atherosclerotic lesion development through interconnected mechanisms. Elegant studies over the past decades have begun to unravel a role for B cells in atherosclerosis. Recent findings provide evidence that B cell effects on atherosclerosis may be subset-dependent. B-1a B cells have been reported to protect from atherosclerosis by secretion of natural IgM antibodies. Conventional B-2 B cells can promote atherosclerosis through less clearly defined mechanism that may involve CD4 T cells. Yet, there may be other populations of B cells within these subsets with different phenotypes altering their impact on atherosclerosis. Additionally, the role of B cell subsets in atherosclerosis may depend on their environmental niche and/or the stage of atherogenesis. This review will highlight key findings in the evolving field of B cells and atherosclerosis and touch on the potential and importance of translating these findings to human disease.
Collapse
Affiliation(s)
- Heather M Perry
- Department of Pathology, University of Virginia Charlottesville, VA, USA ; Cardiovascular Research Center, University of Virginia Health System Charlottesville, VA, USA
| | | | | |
Collapse
|
246
|
Abstract
Macrophages are central regulators of disease progression in both atherosclerosis and myocardial infarction (MI). In atherosclerosis, macrophages are the dominant leukocyte population that influences lesional development. In MI, which is caused by atherosclerosis, macrophages accumulate readily and have important roles in inflammation and healing. Molecular imaging has grown considerably as a field and can reveal biological process at the molecular, cellular and tissue levels. Here, we explore how various imaging modalities, from intravital microscopy in mice to organ-level imaging in patients, are contributing to our understanding of macrophages and their progenitors in cardiovascular disease.
Collapse
|
247
|
Stranford S, Ruddle NH. Follicular dendritic cells, conduits, lymphatic vessels, and high endothelial venules in tertiary lymphoid organs: Parallels with lymph node stroma. Front Immunol 2012; 3:350. [PMID: 23230435 PMCID: PMC3515885 DOI: 10.3389/fimmu.2012.00350] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
In this communication, the contribution of stromal, or non-hematopoietic, cells to the structure and function of lymph nodes (LNs), as canonical secondary lymphoid organs (SLOs), is compared to that of tertiary lymphoid tissue or organs (TLOs), also known as ectopic lymphoid tissues. TLOs can arise in non-lymphoid organs during chronic inflammation, as a result of autoimmune responses, graft rejection, atherosclerosis, microbial infection, and cancer. The stromal components found in SLOs including follicular dendritic cells, fibroblast reticular cells, lymphatic vessels, and high endothelial venules and possibly conduits are present in TLOs; their molecular regulation mimics that of LNs. Advances in visualization techniques and the development of transgenic mice that permit in vivo real time imaging of these structures will facilitate elucidation of their precise functions in the context of chronic inflammation. A clearer understanding of the inflammatory signals that drive non-lymphoid stromal cells to reorganize into TLO should allow the design of therapeutic interventions to impede the progression of autoimmune activity, or alternatively, to enhance anti-tumor responses.
Collapse
Affiliation(s)
- Sharon Stranford
- Department of Biological Sciences, Mount Holyoke College South Hadley, MA, USA
| | | |
Collapse
|
248
|
Application of an integrative computational framework in trancriptomic data of atherosclerotic mice suggests numerous molecular players. Adv Bioinformatics 2012; 2012:453513. [PMID: 23193398 PMCID: PMC3502768 DOI: 10.1155/2012/453513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/21/2012] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a multifactorial disease involving a lot of genes and proteins recruited throughout its manifestation. The present study aims to exploit bioinformatic tools in order to analyze microarray data of atherosclerotic aortic lesions of ApoE knockout mice, a model widely used in atherosclerosis research. In particular, a dynamic analysis was performed among young and aged animals, resulting in a list of 852 significantly altered genes. Pathway analysis indicated alterations in critical cellular processes related to cell communication and signal transduction, immune response, lipid transport, and metabolism. Cluster analysis partitioned the significantly differentiated genes in three major clusters of similar expression profile. Promoter analysis applied to functional related groups of the same cluster revealed shared putative cis-elements potentially contributing to a common regulatory mechanism. Finally, by reverse engineering the functional relevance of differentially expressed genes with specific cellular pathways, putative genes acting as hubs, were identified, linking functionally disparate cellular processes in the context of traditional molecular description.
Collapse
|
249
|
Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Górecki DC. Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem 2012; 287:41374-85. [PMID: 23043099 DOI: 10.1074/jbc.m112.400044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | | | | | | | | | |
Collapse
|
250
|
Michel JB, Delbosc S, Ho-Tin-Noé B, Leseche G, Nicoletti A, Meilhac O, Martin-Ventura JL. From intraplaque haemorrhages to plaque vulnerability. J Cardiovasc Med (Hagerstown) 2012; 13:628-34. [DOI: 10.2459/jcm.0b013e328357face] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|