201
|
Ando S, Suzuki S, Okubo S, Ohuchi K, Takahashi K, Nakamura S, Shimazawa M, Fuji K, Hara H. Discovery of a CNS penetrant small molecule SMN2 splicing modulator with improved tolerability for spinal muscular atrophy. Sci Rep 2020; 10:17472. [PMID: 33060681 PMCID: PMC7562719 DOI: 10.1038/s41598-020-74346-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease, typically resulting from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Nusinersen/SPINRAZA, a splice-switching oligonucleotide that modulates SMN2 (a paralog of SMN1) splicing and consequently increases SMN protein levels, has a therapeutic effect for SMA. Previously reported small-molecule SMN2 splicing modulators such as risdiplam/EVRYSDI and its analog SMN-C3 modulate not only the splicing of SMN2 but also that of secondary splice targets, including forkhead box protein M1 (FOXM1). Through screening SMA patient-derived fibroblasts, a novel small molecule, designated TEC-1, was identified that selectively modulates SMN2 splicing over three secondary splice targets. TEC-1 did not strongly affect the splicing of FOXM1, and unlike risdiplam, did not induce micronucleus formation. In addition, TEC-1 showed higher selectively on galactosylceramidase and huntingtin gene expression compared to previously reported compounds (e.g., SMN-C3) due to off-target effects on cryptic exon inclusion and nonsense-mediated mRNA decay. Moreover, TEC-1 significantly ameliorated the disease phenotype in an SMA murine model in vivo. Thus, TEC-1 may have promising therapeutic potential for SMA, and our study demonstrates the feasibility of RNA-targeting small-molecule drug development with an improved tolerability profile.
Collapse
Affiliation(s)
- Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | | | | | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kei Takahashi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Koji Fuji
- Reborna Biosciences Inc., Kanagawa, 251-0012, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
202
|
Spinal muscular atrophy - insights and challenges in the treatment era. Nat Rev Neurol 2020; 16:706-715. [PMID: 33057172 DOI: 10.1038/s41582-020-00413-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deletion or mutation of SMN1. Four subtypes exist, characterized by different clinical severities. New therapeutic approaches have become available in the past few years, dramatically changing the natural history of all SMA subtypes, including substantial clinical improvement with the severe and advanced SMA type 1 variant. Trials have now demonstrated that phenotypic rescue is even more dramatic when pre-symptomatic patients are treated, and emerging real-world data are demonstrating the benefits of intervention even in the chronic phase of the condition. Here, we critically review how the field is rapidly evolving in response to the new therapies and questions that the new treatments have posed, including the effects of treatment at different ages and stages of disease, new phenotypes and long-term outcomes in patients who would not have survived without treatment, and decisions of who to treat and when. We also discuss how the outcomes associated with different timing of therapeutic intervention are contributing to our understanding of the biology and pathogenesis of SMA.
Collapse
|
203
|
Eggermann K, Gläser D, Abicht A, Wirth B. Spinal muscular atrophy (5qSMA): best practice of diagnostics, newborn screening and therapy. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal-recessive inherited neuromuscular disorder caused by the degeneration of alpha motor neurons in the anterior horn of the spinal cord. Patients show hypotonia, muscular atrophy and weakness of voluntary proximal muscles. SMA is one of the most common genetic diseases, with a frequency of about 1 in 7,000 newborns in Germany. The vast majority of patients carry a homozygous deletion of exons 7 and 8 of the survival motor neuron (SMN) 1 gene on chromosome 5q13.2; only about 3–4 % of patients are compound heterozygous for this common mutation and an additional subtle mutation in SMN1. The severity of the disease is mainly influenced by the copy number of the highly homologous SMN2.
Since the discovery of the underlying genetic defect 25 years ago, both the diagnostics of SMA and its treatment have undergone constant and in recent times rapid improvements. SMA has become one of the first neuromuscular disorders with effective therapies based on gene targeted strategies such as splice correction of SMN2 via antisense oligonucleotides or small molecules or gene replacement therapy with a self-complementary adeno-associated virus 9 expressing the SMN1-cDNA. With the availability of treatment options, which are most effective when therapy starts at a pre-symptomatic stage, a newborn screening is indispensable and about to be introduced in Germany. New challenges for diagnostic labs as well as for genetic counsellors are inevitable.
This article aims at summarising the current state of SMA diagnostics, treatment and perspectives for this disorder and offering best practice testing guidelines to diagnostic labs.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Medical Faculty , RWTH Aachen University , Pauwelsstr. 30 , Aachen , Germany
| | - Dieter Gläser
- genetikum®, Center for Human Genetics , Wegenerstr. 15 , Neu-Ulm , Germany
| | - Angela Abicht
- Medical Genetics Center Munich , Munich , Germany
- Department of Neurology, Friedrich-Baur-Institute , Klinikum der Ludwig-Maximilians-University , Munich , Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases , University of Cologne , Kerpener Str. 34 , Cologne , Germany
| |
Collapse
|
204
|
Jones CC, Cook SF, Jarecki J, Belter L, Reyna SP, Staropoli J, Farwell W, Hobby K. Spinal Muscular Atrophy (SMA) Subtype Concordance in Siblings: Findings From the Cure SMA Cohort. J Neuromuscul Dis 2020; 7:33-40. [PMID: 31707372 PMCID: PMC7029365 DOI: 10.3233/jnd-190399] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous survival of motor neuron 1 (SMN1) gene disruption. Despite a genetic etiology, little is known about subtype concordance among siblings. Objective: To investigate subtype concordance among siblings with SMA. Methods: Cure SMA maintains a database of newly diagnosed patients with SMA, which was utilized for this research. Results: Among 303 sibships identified between 1996 and 2016, 84.8% were subtype concordant. Of concordant sibships, subtype distribution was as follows: Type I, 54.5%; Type II, 31.9%; Type III, 13.2%; Type IV, 0.4%. Subtype and concordance/discordance association was significant (Fisher’s exact test; p < 0.0001). Among discordant sibships (chi-square test, p < 0.0001), Types II/III (52.2%) and Types I/II (28.3%) were the most common pairs. No association was found between sibling sex and concordance. Our findings show that most siblings with SMA shared the same subtype concordance (most commonly Type I). Conclusions: These data are valuable for understanding familial occurrence of SMA subtypes, enabling better individual treatment and management planning in view of new treatment options and newborn screening initiatives.
Collapse
|
205
|
Senel GB, Arkali NB, Saltik S, Yalcinkaya C, Karadeniz D. The effects of non-invasive mechanical ventilation on cardiac autonomic dysfunction in spinal muscular atrophy. Neuromuscul Disord 2020; 30:845-850. [PMID: 32972779 DOI: 10.1016/j.nmd.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
In patients with spinal muscular atrophy (SMA), obstructive sleep apnea syndrome (OSAS) constitutes an important cause of cardiovascular morbidity and mortality. We investigated heart rate variability (HRV) to evaluate the effects of non-invasive mechanical ventilation on cardiac autonomic dysfunction in patients with SMA and OSAS. Six patients with SMA (type 1 and 2) and six age- and sex-matched healthy children were consecutively enrolled. A whole-night diagnostic polysomnography was performed, and SMA patients with OSAS were given non-invasive mechanical ventilation therapy. HRV analysis was performed on the basis of whole-night electrocardiography recordings via a computer-base program. Apnea-hypopnea index (AHI) was 9.2 ± 6.2/hr in SMA patients, while it was 0.4 ± 0.5/hr in controls (p = 0.036). All SMA patients had OSAS, while none of the controls had OSAS (p = 0.012). Mean percentage of successive R wave of QRS complex (R-R) intervals>50 ms was significantly lower in SMA patients than those in controls (p = 0.031). Significant correlations were found between AHI and high-frequency power, low/high-frequency ratio in wakefulness and in sleep (p<0.05). Repeated HRV analysis in SMA patients following OSAS therapy showed significant reductions in average R-R duration (p = 0.028) and percentage of successive R-R intervals>50 ms (p = 0.043). Our study demonstrates the beneficial effects of non-invasive mechanical ventilation on cardiac autonomic dysfunction in SMA patients with OSAS.
Collapse
Affiliation(s)
- Gulcin Benbir Senel
- Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - N Burcu Arkali
- Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sema Saltik
- Cerrahpasa Faculty of Medicine, Department of Pediatrics, Division of Child Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cengiz Yalcinkaya
- Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Derya Karadeniz
- Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
206
|
Fang YL, Li N, Zhi XF, Zheng J, Liu Y, Pu LJ, Gu CY, Shu JB, Cai CQ. Discovery of specific mutations in spinal muscular atrophy patients by next-generation sequencing. Neurol Sci 2020; 42:1827-1833. [PMID: 32895776 DOI: 10.1007/s10072-020-04697-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Spinal muscular atrophy (SMA) is a type of autosomal recessive genetic disease, which seriously threatens the health and lives of children and adolescents. We attempted to find some genes and mutations related to the onset of SMA. Eighty-three whole-blood samples were collected from 28 core families, including 28 probands with clinically suspected SMA (20 SMA patients, 5 non-SMA children, and 3 patients with unknown etiology) and their parents. The multiplex ligation probe amplification (MLPA) was performed for preliminary diagnosis. The high-throughput sequencing technology was used to conduct the whole-exome sequencing analysis. We analyzed the mutations in adjacent genes of SMN1 gene and the unique mutations that only occurred in SMA patients. According to the MLPA results, 20 probands were regarded as experimental group and 5 non-SMA children as control group. A total of 10 mutations were identified in the adjacent genes of SMN1 gene. GUSBP1 g.[69515863G>A], GUSBP1 g.[69515870C>T], and SMA4 g.[69515738C>A] were the top three most frequent sites. SMA4 g.[69515726A>G] and OCLN c.[818G>T] have not been reported in the existing relevant researches. Seventeen point mutations in the DYNC1H1 gene were only recognized in SMA children, and the top two most common mutations were c.[2869-34A>T] and c.[345-89A>G]; c.[7473+105C>T] was the splicing mutation that might change the mRNA splicing site. The mutations of SMA4 g.[69515726A>G], OCLN c.[818G>T], DYNC1H1 c.[2869-34A>T], DYNC1H1 c.[345-89A>G], and DYNC1H1 c.[7473+105C>T] in the adjacent genes of SMN1 gene and other genes might be related to the onset of SMA.
Collapse
Affiliation(s)
- Yu-Lian Fang
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Na Li
- Department of Neonatology, The Pediatric Clinical College, Tianjin Medical University, Tianjin, 300134, China.,Department of Neonatology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Xiu-Fang Zhi
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zheng
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Neonatology, The Pediatric Clinical College, Tianjin Medical University, Tianjin, 300134, China.,Department of Neonatology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Lin-Jie Pu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Chun-Yu Gu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Jian-Bo Shu
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chun-Quan Cai
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
207
|
Jaudon F, Baldassari S, Musante I, Thalhammer A, Zara F, Cingolani LA. Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines 2020; 8:E332. [PMID: 32899500 PMCID: PMC7555146 DOI: 10.3390/biomedicines8090332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
| |
Collapse
|
208
|
Perego MGL, Galli N, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cell Mol Life Sci 2020; 77:3351-3367. [PMID: 32123965 PMCID: PMC11104977 DOI: 10.1007/s00018-020-03492-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.
Collapse
Affiliation(s)
- Martina G L Perego
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michela Taiana
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
209
|
Nichterwitz S, Nijssen J, Storvall H, Schweingruber C, Comley LH, Allodi I, Lee MVD, Deng Q, Sandberg R, Hedlund E. LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy. Genome Res 2020; 30:1083-1096. [PMID: 32820007 PMCID: PMC7462070 DOI: 10.1101/gr.265017.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
Somatic motor neurons are selectively vulnerable in spinal muscular atrophy (SMA), which is caused by a deficiency of the ubiquitously expressed survival of motor neuron protein. However, some motor neuron groups, including oculomotor and trochlear (ocular), which innervate eye muscles, are for unknown reasons spared. To reveal mechanisms of vulnerability and resistance in SMA, we investigate the transcriptional dynamics in discrete neuronal populations using laser capture microdissection coupled with RNA sequencing (LCM-seq). Using gene correlation network analysis, we reveal a TRP53-mediated stress response that is intrinsic to all somatic motor neurons independent of their vulnerability, but absent in relatively resistant red nucleus and visceral motor neurons. However, the temporal and spatial expression analysis across neuron types shows that the majority of SMA-induced modulations are cell type-specific. Using Gene Ontology and protein network analyses, we show that ocular motor neurons present unique disease-adaptation mechanisms that could explain their resilience. Specifically, ocular motor neurons up-regulate (1) Syt1, Syt5, and Cplx2, which modulate neurotransmitter release; (2) the neuronal survival factors Gdf15, Chl1, and Lif; (3) Aldh4, that protects cells from oxidative stress; and (4) the caspase inhibitor Pak4. Finally, we show that GDF15 can rescue vulnerable human spinal motor neurons from degeneration. This confirms that adaptation mechanisms identified in resilient neurons can be used to reduce susceptibility of vulnerable neurons. In conclusion, this in-depth longitudinal transcriptomics analysis in SMA reveals novel cell type-specific changes that, alone and combined, present compelling targets, including Gdf15, for future gene therapy studies aimed toward preserving vulnerable motor neurons.
Collapse
Affiliation(s)
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Storvall
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Laura Helen Comley
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ilary Allodi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mirjam van der Lee
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
210
|
Smeriglio P, Langard P, Querin G, Biferi MG. The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment. J Pers Med 2020; 10:jpm10030075. [PMID: 32751151 PMCID: PMC7564782 DOI: 10.3390/jpm10030075] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| | - Paul Langard
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
| | - Giorgia Querin
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Association Institut de Myologie, Plateforme Essais Cliniques Adultes, 75013 Paris, France
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| |
Collapse
|
211
|
Berciano MT, Castillo-Iglesias MS, Val-Bernal JF, Lafarga V, Rodriguez-Rey JC, Lafarga M, Tapia O. Mislocalization of SMN from the I-band and M-band in human skeletal myofibers in spinal muscular atrophy associates with primary structural alterations of the sarcomere. Cell Tissue Res 2020; 381:461-478. [PMID: 32676861 DOI: 10.1007/s00441-020-03236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by a deletion or mutation of the survival motor neuron 1 (SMN1) gene. Reduced SMN levels lead to motor neuron degeneration and muscular atrophy. SMN protein localizes to the cytoplasm and Cajal bodies. Moreover, in myofibrils from Drosophila and mice, SMN is a sarcomeric protein localized to the Z-disc. Although SMN participates in multiple functions, including the biogenesis of spliceosomal small nuclear ribonucleoproteins, its role in the sarcomere is unclear. Here, we analyzed the sarcomeric organization of SMN in human control and type I SMA skeletal myofibers. In control sarcomeres, we demonstrate that human SMN is localized to the titin-positive M-band and actin-positive I-band, and to SMN-positive granules that flanked the Z-discs. Co-immunoprecipitation assays revealed that SMN interacts with the sarcomeric protein actin, α-actinin, titin, and profilin2. In the type I SMA muscle, SMN levels were reduced, and atrophic (denervated) and hypertrophic (nondenervated) myofibers coexisted. The hypertrophied myofibers, which are potential primary targets of SMN deficiency, exhibited sites of focal or segmental alterations of the actin cytoskeleton, where the SMN immunostaining pattern was altered. Moreover, SMN was relocalized to the Z-disc in overcontracted minisarcomeres from hypertrophic myofibers. We propose that SMN could have an integrating role in the molecular components of the sarcomere. Consequently, low SMN levels might impact the normal sarcomeric architecture, resulting in the disruption of myofibrils found in SMA muscle. This primary effect might be independent of the neurogenic myopathy produced by denervation and contribute to pathophysiology of the SMA myopathy.
Collapse
Affiliation(s)
- María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | | | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain.
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
212
|
Alves CRR, Zhang R, Johnstone AJ, Garner R, Eichelberger EJ, Lepez SDSD, Yi V, Stevens V, Poxson R, Schwartz R, Zaworski P, Swoboda KJ. Whole blood survival motor neuron protein levels correlate with severity of denervation in spinal muscular atrophy. Muscle Nerve 2020; 62:351-357. [PMID: 32511765 PMCID: PMC7496476 DOI: 10.1002/mus.26995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION We sought to determine whether survival motor neuron (SMN) protein blood levels correlate with denervation and SMN2 copies in spinal muscular atrophy (SMA). METHODS Using a mixed-effect model, we tested associations between SMN levels, compound muscle action potential (CMAP), and SMN2 copies in a cohort of 74 patients with SMA. We analyzed a subset of 19 of these patients plus four additional patients who had been treated with received gene therapy to examine SMN trajectories early in life. RESULTS Patients with SMA who had lower CMAP values had lower circulating SMN levels (P = .04). Survival motor neuron protein levels were different between patients with two and three SMN2 copies (P < .0001) and between symptomatic and presymptomatic patients (P < .0001), with the highest levels after birth and progressive decline over the first 3 years. Neither nusinersen nor gene therapy clearly altered SMN levels. DISCUSSION These data provide evidence that whole blood SMN levels correlate with SMN2 copy number and severity of denervation.
Collapse
Affiliation(s)
- Christiano R R Alves
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ren Zhang
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alec J Johnstone
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Reid Garner
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric J Eichelberger
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Vivian Yi
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Victoria Stevens
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
213
|
Nusinersen ameliorates motor function and prevents motoneuron Cajal body disassembly and abnormal poly(A) RNA distribution in a SMA mouse model. Sci Rep 2020; 10:10738. [PMID: 32612161 PMCID: PMC7330045 DOI: 10.1038/s41598-020-67569-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease characterized by degeneration of spinal cord alpha motor neurons (αMNs). SMA is caused by the homozygous deletion or mutation of the survival motor neuron 1 (SMN1) gene, resulting in reduced expression of SMN protein, which leads to αMN degeneration and muscle atrophy. The majority of transcripts of a second gene (SMN2) generate an alternative spliced isoform that lacks exon 7 and produces a truncated nonfunctional form of SMN. A major function of SMN is the biogenesis of spliceosomal snRNPs, which are essential components of the pre-mRNA splicing machinery, the spliceosome. In recent years, new potential therapies have been developed to increase SMN levels, including treatment with antisense oligonucleotides (ASOs). The ASO-nusinersen (Spinraza) promotes the inclusion of exon 7 in SMN2 transcripts and notably enhances the production of full-length SMN in mouse models of SMA. In this work, we used the intracerebroventricular injection of nusinersen in the SMN∆7 mouse model of SMA to evaluate the effects of this ASO on the behavior of Cajal bodies (CBs), nuclear structures involved in spliceosomal snRNP biogenesis, and the cellular distribution of polyadenylated mRNAs in αMNs. The administration of nusinersen at postnatal day (P) 1 normalized SMN expression in the spinal cord but not in skeletal muscle, rescued the growth curve and improved motor behavior at P12 (late symptomatic stage). Importantly, this ASO recovered the number of canonical CBs in MNs, significantly reduced the abnormal accumulation of polyadenylated RNAs in nuclear granules, and normalized the expression of the pre-mRNAs encoding chondrolectin and choline acetyltransferase, two key factors for αMN homeostasis. We propose that the splicing modulatory function of nusinersen in SMA αMN is mediated by the rescue of CB biogenesis, resulting in enhanced polyadenylated pre-mRNA transcription and splicing and nuclear export of mature mRNAs for translation. Our results support that the selective restoration of SMN expression in the spinal cord has a beneficial impact not only on αMNs but also on skeletal myofibers. However, the rescue of SMN expression in muscle appears to be necessary for the complete recovery of motor function.
Collapse
|
214
|
Spinal muscular atrophy in Venezuela: quantitative analysis of SMN1 and SMN2 genes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy (SMA) is mostly caused by homozygous deletions in the survival motor neuron 1 (SMN1) gene. SMN2, its paralogous gene, is a genetic modifier of the disease phenotype, and its copy number is correlated with SMA severity. The purpose of the study was to investigate the number of copies of the SMN1 and SMN2 genes in a Venezuelan population control sample and in patients with a presumptive diagnosis of SMA, besides estimating the frequency of mutation carriers in the population.
Results
SMN1 and SMN2 gene copies were assessed in 49 Venezuelan dweller unrelated normal individuals and in 94 subjects from 29 families with a SMA presumptive diagnosis, using the quantitative PCR method. A SMN1 deletion carrier frequency of 0.01 and 0.163 of homozygous absence of the SMN2 gene were found in the Venezuelan control sample. Deletion of SMN1 exon 7 was confirmed in 15 families; the remaining 14 index cases had two SMN1 copies and a heterogeneous phenotype not attributable to SMN deletions. Based on clinical features of the index cases and the SMN2 copy number, a positive phenotype-genotype correlation was demonstrated. No disease geographical aggregation was found in the country.
Conclusion
The frequency of carriers of the deletion of exon 7 in SMN1 in the Venezuelan control population was similar to that observed in populations worldwide, while the frequency of 0 copies of the SMN2 gene (16.3 %) seems to be relatively high. All these findings have pertinent implications for the diagnosis and genetic counseling on SMA in Venezuela.
Collapse
|
215
|
Villalón E, Kline RA, Smith CE, Lorson ZC, Osman EY, O'Day S, Murray LM, Lorson CL. AAV9-Stathmin1 gene delivery improves disease phenotype in an intermediate mouse model of spinal muscular atrophy. Hum Mol Genet 2020; 28:3742-3754. [PMID: 31363739 DOI: 10.1093/hmg/ddz188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating infantile genetic disorder caused by the loss of survival motor neuron (SMN) protein that leads to premature death due to loss of motor neurons and muscle atrophy. The approval of an antisense oligonucleotide therapy for SMA was an important milestone in SMA research; however, effective next-generation therapeutics will likely require combinatorial SMN-dependent therapeutics and SMN-independent disease modifiers. A recent cross-disease transcriptomic analysis identified Stathmin-1 (STMN1), a tubulin-depolymerizing protein, as a potential disease modifier across different motor neuron diseases, including SMA. Here, we investigated whether viral-based delivery of STMN1 decreased disease severity in a well-characterized SMA mouse model. Intracerebroventricular delivery of scAAV9-STMN1 in SMA mice at P2 significantly increased survival and weight gain compared to untreated SMA mice without elevating Smn levels. scAAV9-STMN1 improved important hallmarks of disease, including motor function, NMJ pathology and motor neuron cell preservation. Furthermore, scAAV9-STMN1 treatment restored microtubule networks and tubulin expression without affecting tubulin stability. Our results show that scAAV9-STMN1 treatment improves SMA pathology possibly by increasing microtubule turnover leading to restored levels of stable microtubules. Overall, these data demonstrate that STMN1 can significantly reduce the SMA phenotype independent of restoring SMN protein and highlight the importance of developing SMN-independent therapeutics for the treatment of SMA.
Collapse
Affiliation(s)
- E Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - R A Kline
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - C E Smith
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Z C Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - E Y Osman
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - S O'Day
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - L M Murray
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - C L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
216
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
217
|
Raimer AC, Singh SS, Edula MR, Paris-Davila T, Vandadi V, Spring AM, Matera AG. Temperature-sensitive spinal muscular atrophy-causing point mutations lead to SMN instability, locomotor defects and premature lethality in Drosophila. Dis Model Mech 2020; 13:dmm043307. [PMID: 32501283 PMCID: PMC7325441 DOI: 10.1242/dmm.043307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of death in young children, arising from homozygous deletion or mutation of the survival motor neuron 1 (SMN1) gene. SMN protein expressed from a paralogous gene, SMN2, is the primary genetic modifier of SMA; small changes in overall SMN levels cause dramatic changes in disease severity. Thus, deeper insight into mechanisms that regulate SMN protein stability should lead to better therapeutic outcomes. Here, we show that SMA patient-derived missense mutations in the Drosophila SMN Tudor domain exhibit a pronounced temperature sensitivity that affects organismal viability, larval locomotor function and adult longevity. These disease-related phenotypes are domain specific and result from decreased SMN stability at elevated temperature. This system was utilized to manipulate SMN levels during various stages of Drosophila development. Owing to a large maternal contribution of mRNA and protein, Smn is not expressed zygotically during embryogenesis. Interestingly, we find that only baseline levels of SMN are required during larval stages, whereas high levels of the protein are required during pupation. This previously uncharacterized period of elevated SMN expression, during which the majority of adult tissues are formed and differentiated, could be an important and translationally relevant developmental stage in which to study SMN function. Taken together, these findings illustrate a novel in vivo role for the SMN Tudor domain in maintaining SMN homeostasis and highlight the necessity for high SMN levels at crucial developmental time points that are conserved from Drosophila to humans.
Collapse
Affiliation(s)
- Amanda C Raimer
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Suhana S Singh
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Maina R Edula
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tamara Paris-Davila
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ashlyn M Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
218
|
SMN-deficiency disrupts SERCA2 expression and intracellular Ca 2+ signaling in cardiomyocytes from SMA mice and patient-derived iPSCs. Skelet Muscle 2020; 10:16. [PMID: 32384912 PMCID: PMC7206821 DOI: 10.1186/s13395-020-00232-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of alpha motor neurons and skeletal muscle atrophy. The disease is caused by mutations of the SMN1 gene that result in reduced functional expression of survival motor neuron (SMN) protein. SMN is ubiquitously expressed, and there have been reports of cardiovascular dysfunction in the most severe SMA patients and animal models of the disease. In this study, we directly assessed the function of cardiomyocytes isolated from a severe SMA model mouse and cardiomyocytes generated from patient-derived IPSCs. Consistent with impaired cardiovascular function at the very early disease stages in mice, heart failure markers such as brain natriuretic peptide were significantly elevated. Functionally, cardiomyocyte relaxation kinetics were markedly slowed and the T50 for Ca2+ sequestration increased to 146 ± 4 ms in SMN-deficient cardiomyocytes from 126 ± 4 ms in wild type cells. Reducing SMN levels in cardiomyocytes from control patient IPSCs slowed calcium reuptake similar to SMA patent-derived cardiac cells. Importantly, restoring SMN increased calcium reuptake rate. Taken together, these results indicate that SMN deficiency impairs cardiomyocyte function at least partially through intracellular Ca2+ cycling dysregulation.
Collapse
|
219
|
Chen TH. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int J Mol Sci 2020; 21:3297. [PMID: 32392694 PMCID: PMC7246502 DOI: 10.3390/ijms21093297] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a congenital neuromuscular disorder characterized by motor neuron loss, resulting in progressive weakness. SMA is notable in the health care community because it accounts for the most common cause of infant death resulting from a genetic defect. SMA is caused by low levels of the survival motor neuron protein (SMN) resulting from SMN1 gene mutations or deletions. However, patients always harbor various copies of SMN2, an almost identical but functionally deficient copy of the gene. A genotype-phenotype correlation suggests that SMN2 is a potent disease modifier for SMA, which also represents the primary target for potential therapies. Increasing comprehension of SMA pathophysiology, including the characterization of SMN1 and SMN2 genes and SMN protein functions, has led to the development of multiple therapeutic approaches. Until the end of 2016, no cure was available for SMA, and management consisted of supportive measures. Two breakthrough SMN-targeted treatments, either using antisense oligonucleotides (ASOs) or virus-mediated gene therapy, have recently been approved. These two novel therapeutics have a common objective: to increase the production of SMN protein in MNs and thereby improve motor function and survival. However, neither therapy currently provides a complete cure. Treating patients with SMA brings new responsibilities and unique dilemmas. As SMA is such a devastating disease, it is reasonable to assume that a unique therapeutic solution may not be sufficient. Current approaches under clinical investigation differ in administration routes, frequency of dosing, intrathecal versus systemic delivery, and mechanisms of action. Besides, emerging clinical trials evaluating the efficacy of either SMN-dependent or SMN-independent approaches are ongoing. This review aims to address the different knowledge gaps between genotype, phenotypes, and potential therapeutics.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Division of Pediatric Emergency, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Translational Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
220
|
Deguise MO, De Repentigny Y, Tierney A, Beauvais A, Michaud J, Chehade L, Thabet M, Paul B, Reilly A, Gagnon S, Renaud JM, Kothary R. Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine 2020; 55:102750. [PMID: 32339936 PMCID: PMC7184161 DOI: 10.1016/j.ebiom.2020.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mouse models of mild spinal muscular atrophy (SMA) have been extremely challenging to generate. This paucity of model systems has limited our understanding of pathophysiological events in milder forms of the disease and of the effect of SMN depletion during aging. Methods A mild mouse model of SMA, termed Smn2B/−;SMN2+/−, was generated by crossing Smn−/−;SMN2 and Smn2B/2B mice. This new model was characterized using behavioral testing, histology, western blot, muscle-nerve electrophysiology as well as ultrasonography to study classical SMA features and extra-neuronal involvement. Findings Smn2B/−;SMN2+/− mice have normal survival, mild but sustained motor weakness, denervation and neuronal/neuromuscular junction (NMJ) transmission defects, and neurogenic muscle atrophy that are more prominent in male mice. Increased centrally located nuclei, intrinsic contractile and relaxation muscle defects were also identified in both female and male mice, with some male predominance. There was an absence of extra-neuronal pathology. Interpretation The Smn2B/−;SMN2+/− mouse provides a model of mild SMA, displaying some hallmark features including reduced weight, sustained motor weakness, electrophysiological transmission deficit, NMJ defects, and muscle atrophy. Early and prominent increase central nucleation and intrinsic electrophysiological deficits demonstrate the potential role played by muscle in SMA disease. The use of this model will allow for the understanding of the most susceptible pathogenic molecular changes in motor neurons and muscles, investigation of the effects of SMN depletion in aging, sex differences and most importantly will provide guidance for the currently aging SMA patients treated with the recently approved genetic therapies. Funding : This work was supported by Cure SMA/Families of SMA Canada (grant numbers KOT-1819 and KOT-2021); Muscular Dystrophy Association (USA) (grant number 575466); and Canadian Institutes of Health Research (CIHR) (grant number PJT-156379).
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Alexandra Tierney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Brittany Paul
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aoife Reilly
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
221
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
222
|
Wijngaarde CA, Veldhoen ES, van Eijk RPA, Stam M, Otto LAM, Asselman FL, Wösten-van Asperen RM, Hulzebos EHJ, Verweij-van den Oudenrijn LP, Bartels B, Cuppen I, Wadman RI, van den Berg LH, van der Ent CK, van der Pol WL. Natural history of lung function in spinal muscular atrophy. Orphanet J Rare Dis 2020; 15:88. [PMID: 32276635 PMCID: PMC7149916 DOI: 10.1186/s13023-020-01367-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Respiratory muscle weakness is an important feature of spinal muscular atrophy (SMA). Progressive lung function decline is the most important cause of mortality and morbidity in patients. The natural history of lung function in SMA has, however, not been studied in much detail. RESULTS We analysed 2098 measurements of lung function from 170 treatment-naïve patients with SMA types 1c-4, aged 4-74 years. All patients are participating in an ongoing population-based prevalence cohort study. We measured Forced Expiratory Volume in 1 s (FEV1), Forced Vital Capacity (FVC), and Vital Capacity (VC). Longitudinal patterns of lung function were analysed using linear mixed-effects and non-linear models. Additionally, we also assessed postural effects on results of FEV1 and FVC tests. In early-onset SMA types (1c-3a), we observed a progressive decline of lung function at younger ages with relative stabilisation during adulthood. Estimated baseline values were significantly lower in more severely affected patients: %FEV1 ranged from 42% in SMA type 1c to 100% in type 3b, %FVC 50 to 109%, and %VC 44 to 96%. Average annual decline rates also differed significantly between SMA types, ranging from - 0.1% to - 1.4% for FEV1, - 0.2% to - 1.4% for FVC, and + 0.2% to - 1.7% for VC. In contrast to SMA types 1c-3a, we found normal values for all outcomes in later-onset SMA types 3b and 4 throughout life, although with some exceptions and based on limited available data. Finally, we found no important differences in FVC or FEV1 values measured in either sitting or supine position. CONCLUSIONS Our data illustrate the longitudinal course of lung function in patients with SMA, which is characterised by a progressive decline in childhood and stabilisation in early adulthood. The data do not support an additional benefit of measuring FEV1 or FVC in both sitting and supine position. These data may serve as a reference to assess longer-term outcomes in clinical trials.
Collapse
Affiliation(s)
- Camiel A Wijngaarde
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Esther S Veldhoen
- Department of Paediatric Intensive Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marloes Stam
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Louise A M Otto
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Roelie M Wösten-van Asperen
- Department of Paediatric Intensive Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Erik H J Hulzebos
- Child Development and Exercise Centre, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Bart Bartels
- Child Development and Exercise Centre, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge Cuppen
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Renske I Wadman
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Paediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands.
| |
Collapse
|
223
|
Hryshchenko NV, Yurchenko AA, Karaman HS, Livshits LA. Genetic Modifiers of the Spinal Muscular Atrophy Phenotype. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
224
|
Wijngaarde CA, Stam M, Otto LAM, van Eijk RPA, Cuppen I, Veldhoen ES, van den Berg LH, Wadman RI, van der Pol WL. Population-based analysis of survival in spinal muscular atrophy. Neurology 2020; 94:e1634-e1644. [PMID: 32217777 DOI: 10.1212/wnl.0000000000009248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/18/2019] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To investigate probabilities of survival and its surrogate, that is, mechanical ventilation, in patients with spinal muscular atrophy (SMA). METHODS We studied survival in a population-based cohort on clinical prevalence of genetically confirmed, treatment-naive patients with SMA, stratified for best acquired motor milestone (i.e., none: type 1a/b; head control in supine position or rolling: type 1c; sitting independently: type 2a; standing: type 2b; walking: type 3a/b; adult onset: type 4). We also assessed the need for mechanical ventilation as a surrogate endpoint for survival. RESULTS We included 307 patients with a total follow-up of 7,141 person-years. Median survival was 9 days in SMA type 1a, 7.7 months in type 1b, and 17.0 years in type 1c. Patients with type 2a had endpoint-free survival probabilities of 74.2% and 61.5% at ages 40 and 60 years, respectively. Endpoint-free survival of SMA types 2b, 3, and 4 was relatively normal, at least within the first 60 years of life. Patients with SMA types 1c and 2a required mechanical ventilation more frequently and from younger ages compared to patients with milder SMA types. In our cohort, patients ventilated up to 12 h/d progressed not gradually, but abruptly, to ≥16 h/d. CONCLUSIONS Shortened endpoint-free survival is an important characteristic of SMA types 1 and 2a, but not types 2b, 3, and 4. For SMA types 1c and 2a, the age at which initiation of mechanical ventilation is necessary may be a more suitable endpoint than the arbitrarily set 16 h/d.
Collapse
Affiliation(s)
- Camiel A Wijngaarde
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marloes Stam
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Louise A M Otto
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Ruben P A van Eijk
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Inge Cuppen
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Esther S Veldhoen
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Leonard H van den Berg
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Renske I Wadman
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - W Ludo van der Pol
- From the Department of Neurology, UMC Utrecht Brain Center (C.A.W., M.S., L.A.M.O., R.P.A.v.E., I.C., L.H.v.d.B., R.I.W., W.L.v.d.P.), Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.P.A.v.E.), and Department of Pediatric Intensive Care (E.S.V.), University Medical Center Utrecht, Utrecht University, the Netherlands.
| |
Collapse
|
225
|
Alves CRR, Zhang R, Johnstone AJ, Garner R, Nwe PH, Siranosian JJ, Swoboda KJ. Serum creatinine is a biomarker of progressive denervation in spinal muscular atrophy. Neurology 2020; 94:e921-e931. [PMID: 31882526 PMCID: PMC7238944 DOI: 10.1212/wnl.0000000000008762] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/08/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Identifying simple biomarkers that can predict or track disease progression in patients with spinal muscular atrophy (SMA) remains an unmet clinical need. To test the hypothesis that serum creatinine (Crn) could be a prognostic biomarker for monitoring progression of denervation in patients with SMA, we determined whether serum Crn concentration correlates with disease severity in patients with SMA. METHODS We examined a cohort of 238 patients with SMA with 1,130 Crn observations between 2000 and 2016. Analyses were corrected for age, and 156 patients with SMA had dual-energy x-ray absorptiometry data available for correction for lean mass. We investigated the relationship between Crn and SMA type, survival motor neuron 2 (SMN2) copies, and Hammersmith Functional Motor Scale (HFMS) score as primary outcomes. In addition, we tested for associations between Crn and maximum ulnar compound muscle action potential amplitude (CMAP) and motor unit number estimation (MUNE). RESULTS Patients with SMA type 3 had 2.2-fold (95% confidence interval [CI] 1.93-2.49; p < 0.0001) higher Crn levels compared to those with SMA type 1 and 1.7-fold (95% CI 1.52-1.82; p < 0.0001) higher Crn levels compared to patients with SMA type 2. Patients with SMA type 2 had 1.4-fold (95% CI 1.31-1.58; p < 0.0001) higher Crn levels than patients with SMA type 1. Patients with SMA with 4 SMN2 copies had 1.8-fold (95% CI 1.57-2.11; p < 0.0001) higher Crn levels compared to patients with SMA with 2 SMN2 copies and 1.4-fold (95% CI 1.24-1.58; p < 0.0001) higher Crn levels compared to patients with SMA with 3 SMN2 copies. Patients with SMA with 3 SMN2 copies had 1.4-fold (95% CI 1.21-1.56; p < 0.0001) higher Crn levels than patients with SMA with 2 SMN2 copies. Mixed-effect model revealed significant differences in Crn levels among walkers, sitters, and nonsitters (p < 0.0001) and positive associations between Crn and maximum CMAP (p < 0.0001) and between Crn and MUNE (p < 0.0001). After correction for lean mass, there were still significant associations between Crn and SMA type, SMN2 copies, HFMS, CMAP, and MUNE. CONCLUSIONS These findings indicate that decreased Crn levels reflect disease severity, suggesting that Crn is a candidate biomarker for SMA progression. We conclude that Crn measurements should be included in the routine analysis of all patients with SMA. In future studies, it will be important to determine whether Crn levels respond to molecular and gene therapies.
Collapse
Affiliation(s)
- Christiano R R Alves
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Ren Zhang
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Alec J Johnstone
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Reid Garner
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Pann H Nwe
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Jennifer J Siranosian
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston.
| |
Collapse
|
226
|
Chen X, Sanchis-Juan A, French CE, Connell AJ, Delon I, Kingsbury Z, Chawla A, Halpern AL, Taft RJ, Bentley DR, Butchbach MER, Raymond FL, Eberle MA. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet Med 2020; 22:945-953. [PMID: 32066871 PMCID: PMC7200598 DOI: 10.1038/s41436-020-0754-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose Spinal muscular atrophy (SMA), caused by loss of the SMN1 gene, is a leading cause of early childhood death. Due to the near identical sequences of SMN1 and SMN2, analysis of this region is challenging. Population-wide SMA screening to quantify the SMN1 copy number (CN) is recommended by the American College of Medical Genetics and Genomics. Methods We developed a method that accurately identifies the CN of SMN1 and SMN2 using genome sequencing (GS) data by analyzing read depth and eight informative reference genome differences between SMN1/2. Results We characterized SMN1/2 in 12,747 genomes, identified 1568 samples with SMN1 gains or losses and 6615 samples with SMN2 gains or losses, and calculated a pan-ethnic carrier frequency of 2%, consistent with previous studies. Additionally, 99.8% of our SMN1 and 99.7% of SMN2 CN calls agreed with orthogonal methods, with a recall of 100% for SMA and 97.8% for carriers, and a precision of 100% for both SMA and carriers. Conclusion This SMN copy-number caller can be used to identify both carrier and affected status of SMA, enabling SMA testing to be offered as a comprehensive test in neonatal care and an accurate carrier screening tool in GS sequencing projects.
Collapse
Affiliation(s)
| | - Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Courtney E French
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Connell
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Isabelle Delon
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | | | | | | | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
227
|
Vorster E, Essop FB, Rodda JL, Krause A. Spinal Muscular Atrophy in the Black South African Population: A Matter of Rearrangement? Front Genet 2020; 11:54. [PMID: 32117462 PMCID: PMC7033609 DOI: 10.3389/fgene.2020.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder, characterized by muscle atrophy and impaired mobility. A homozygous deletion of survival motor neuron 1 (SMN1), exon 7 is the main cause of SMA in ~94% of patients worldwide, but only accounts for 51% of South African (SA) black patients. SMN1 and its highly homologous centromeric copy, survival motor neuron 2 (SMN2), are located in a complex duplicated region. Unusual copy number variations (CNVs) have been reported in black patients, suggesting the presence of complex pathogenic rearrangements. The aim of this study was to further investigate the genetic cause of SMA in the black SA population. Multiplex ligation-dependent probe amplification (MLPA) testing was performed on 197 unrelated black patients referred for SMA testing (75 with a homozygous deletion of SMN1, exon 7; 50 with a homozygous deletion of SMN2, exon 7; and 72 clinically suggestive patients with no homozygous deletions). Furthermore, 122 black negative controls were tested. For comparison, 68 white individuals (30 with a homozygous deletion of SMN1, exon 7; 8 with a homozygous deletion of SMN2, exon 7 and 30 negative controls) were tested. Multiple copies (>2) of SMN1, exon 7 were observed in 50.8% (62/122) of black negative controls which could mask heterozygous SMN1 deletions and potential pathogenic CNVs. MLPA is not a reliable technique for detecting carriers in the black SA population. Large deletions extending into the rest of SMN1 and neighboring genes were more frequently observed in black patients with homozygous SMN1, exon 7 deletions when compared to white patients. Homozygous SMN2, exon 7 deletions were commonly observed in black individuals. No clear pathogenic CNVs were identified in black patients but discordant copy numbers of exons suggest complex rearrangements, which may potentially interrupt the SMN1 gene. Only 8.3% (6/72) of clinically suggestive patients had heterozygous deletions of SMN1, exon 7 (1:0) which is lower than previous SA reports of 69.5%. This study emphasizes the lack of understanding of the architecture of the SMN region as well as the cause of SMA in the black SA population. These factors need to be taken into account when counseling and performing diagnostic testing in black populations.
Collapse
Affiliation(s)
- Elana Vorster
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fahmida B Essop
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - John L Rodda
- Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
228
|
Wirth B, Karakaya M, Kye MJ, Mendoza-Ferreira N. Twenty-Five Years of Spinal Muscular Atrophy Research: From Phenotype to Genotype to Therapy, and What Comes Next. Annu Rev Genomics Hum Genet 2020; 21:231-261. [PMID: 32004094 DOI: 10.1146/annurev-genom-102319-103602] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Twenty-five years ago, the underlying genetic cause for one of the most common and devastating inherited diseases in humans, spinal muscular atrophy (SMA), was identified. Homozygous deletions or, rarely, subtle mutations of SMN1 cause SMA, and the copy number of the nearly identical copy gene SMN2 inversely correlates with disease severity. SMA has become a paradigm and a prime example of a monogenic neurological disorder that can be efficiently ameliorated or nearly cured by novel therapeutic strategies, such as antisense oligonucleotide or gene replacement therapy. These therapies enable infants to survive who might otherwise have died before the age of two and allow individuals who have never been able to sit or walk to do both. The major milestones on the road to these therapies were to understand the genetic cause and splice regulation of SMN genes, the disease's phenotype-genotype variability, the function of the protein and the main affected cellular pathways and tissues, the disease's pathophysiology through research on animal models, the windows of opportunity for efficient treatment, and how and when to treat patients most effectively.This review aims to bridge our knowledge from phenotype to genotype to therapy, not only highlighting the significant advances so far but also speculating about the future of SMA screening and treatment.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| |
Collapse
|
229
|
Bonanno S, Marcuzzo S, Malacarne C, Giagnorio E, Masson R, Zanin R, Arnoldi MT, Andreetta F, Simoncini O, Venerando A, Gellera C, Pantaleoni C, Mantegazza R, Bernasconi P, Baranello G, Maggi L. Circulating MyomiRs as Potential Biomarkers to Monitor Response to Nusinersen in Pediatric SMA Patients. Biomedicines 2020; 8:biomedicines8020021. [PMID: 31991852 PMCID: PMC7168147 DOI: 10.3390/biomedicines8020021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in survival motor neuron (SMN) 1 gene, resulting in a truncated SMN protein responsible for degeneration of brain stem and spinal motor neurons. The paralogous SMN2 gene partially compensates full-length SMN protein production, mitigating the phenotype. Antisense oligonucleotide nusinersen (Spinraza®) enhances SMN2 gene expression. SMN is involved in RNA metabolism and biogenesis of microRNA (miRNA), key gene expression modulators, whose dysregulation contributes to neuromuscular diseases. They are stable in body fluids and may reflect distinct pathophysiological states, thus acting as promising biomarkers. Muscle-specific miRNAs (myomiRs) as biomarkers for clinical use in SMA have not been investigated yet. Here, we analyzed the expression of miR-133a, -133b, -206 and -1, in serum of 21 infantile SMA patients at baseline and after 6 months of nusinersen treatment, and correlated molecular data with response to therapy evaluated by the Hammersmith Functional Motor Scale Expanded (HFMSE). Our results demonstrate that myomiR serological levels decrease over disease course upon nusinersen treatment. Notably, miR-133a reduction predicted patients’ response to therapy. Our findings identify myomiRs as potential biomarkers to monitor disease progression and therapeutic response in SMA patients.
Collapse
Affiliation(s)
- Silvia Bonanno
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
- Correspondence: (S.B.); (S.M.); Tel.: +39-02-2394-2284 (S.B.); +39-02-2394-4651 (S.M.); Fax: +39-02-70633874 (S.B. & S.M.)
| | - Stefania Marcuzzo
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
- Correspondence: (S.B.); (S.M.); Tel.: +39-02-2394-2284 (S.B.); +39-02-2394-4651 (S.M.); Fax: +39-02-70633874 (S.B. & S.M.)
| | - Claudia Malacarne
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Eleonora Giagnorio
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (R.M.); (R.Z.); (M.T.A.); (C.P.); (G.B.)
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (R.M.); (R.Z.); (M.T.A.); (C.P.); (G.B.)
| | - Maria Teresa Arnoldi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (R.M.); (R.Z.); (M.T.A.); (C.P.); (G.B.)
| | - Francesca Andreetta
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
| | - Ornella Simoncini
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
| | - Anna Venerando
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.G.); (A.V.)
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.G.); (A.V.)
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (R.M.); (R.Z.); (M.T.A.); (C.P.); (G.B.)
| | - Renato Mantegazza
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
| | - Pia Bernasconi
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (R.M.); (R.Z.); (M.T.A.); (C.P.); (G.B.)
- The Dubowitz Neuromuscular Centre, UCL NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Lorenzo Maggi
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (F.A.); (O.S.); (P.B.); (L.M.)
| |
Collapse
|
230
|
Hassan HA, Zaki MS, Issa MY, El-Bagoury NM, Essawi ML. Genetic pattern of SMN1, SMN2, and NAIP genes in prognosis of SMA patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-019-0044-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy (SMA) is the most common autosomal recessive disorder in humans after cystic fibrosis. It is classified into five clinical grades based on age of onset and severity of the disease. Although SMN1 was identified as the SMA disease-determining gene, modifier genes mapped to 5q13 were affirmed to play a crucial role in determination of disease severity and used as a target for SMA therapy. In this study, we determined SMN2 copy number and NAIP deletion status in SMA Egyptian patients with different clinical phenotypes and had homozygous deletion of SMN1. We aimed at finding a prognostic genetic pattern including SMN1, SMN2, and NAIP gene genotypes to determine the clinical SMA type of the patient to help in genetic counseling and prenatal diagnosis.
Results
Copy number variations (CNVs) of exon 7 of SMN2 gene were significantly decreased with the increase in disease severity. Homozygous deletion of exon 5 of NAIP was detected in 60% (12/20) of type I SMA and in 73% (8/11) of type III SMA cases. Combining the data of the SMN2 and NAIP genes showed 8 genotypes. Patients with D2 genotype (0 copies of NAIP and 2 copies of SMN2) were likely to have type I SMA. Type II SMA patients mostly had no homozygous deletion of NAIP and 2 copies of SMN2. However, patients with N3 genotype (> 1 copy of NAIP and 3 copies of SMN2) and patients with D3 genotype (0 copies of NAIP and > 3 copies of SMN2) had type III SMA.
Conclusion
SMN2 and NAIP are the most important modifier genes whose copy numbers can affect the severity of SMA. We concluded that the combination of modifier genes to provide prognostic genetic pattern for phenotype determination is preferable than using CNVs of exon 7 of SMN2 gene only. CNVs of exon 7 of SMN2 are of high importance to predict patients’ response to genetic therapy. On the other hand, deletion of exon5 of NAIP gene alone is not a sufficient predictor of SMA severity.
Collapse
|
231
|
Valsecchi V, Anzilotti S, Serani A, Laudati G, Brancaccio P, Guida N, Cuomo O, Pignataro G, Annunziato L. miR-206 Reduces the Severity of Motor Neuron Degeneration in the Facial Nuclei of the Brainstem in a Mouse Model of SMA. Mol Ther 2020; 28:1154-1166. [PMID: 32075715 DOI: 10.1016/j.ymthe.2020.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting infants caused by alterations of the survival motor neuron gene, which results in progressive degeneration of motor neurons (MNs). Although an effective treatment for SMA patients has been recently developed, the molecular pathway involved in selective MN degeneration has not been yet elucidated. In particular, miR-206 has been demonstrated to play a relevant role in the regeneration of neuromuscular junction in several MN diseases, and particularly it is upregulated in the quadriceps, tibialis anterior, spinal cord, and serum of SMA mice. In the present paper, we demonstrated that miR-206 was transiently upregulated also in the brainstem of the mouse model of SMA, SMAΔ7, in the early phase of the disease paralleling MN degeneration and was down-regulated in the late symptomatic phase. To prevent this downregulation, we intracerebroventricularly injected miR-206 in SMA pups, demonstrating that miR-206 reduced the severity of SMA pathology, slowing down disease progression, increasing survival rate, and improving behavioral performance of mice. Interestingly, exogenous miRNA-206-induced upregulation caused a reduction of the predicted target sodium calcium exchanger isoform 2, NCX2, one of the main regulators of intracellular [Ca2+] and [Na+]. Therefore, we hypothesized that miR-206 might exert part of its neuroprotective effect modulating NCX2 expression in SMA disease.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | |
Collapse
|
232
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
233
|
Miralles R, Panjwani D. Neonatal Hypotonia. EMERGING TOPICS AND CONTROVERSIES IN NEONATOLOGY 2020:71-101. [DOI: 10.1007/978-3-030-28829-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
234
|
Schorling DC, Pechmann A, Kirschner J. Advances in Treatment of Spinal Muscular Atrophy - New Phenotypes, New Challenges, New Implications for Care. J Neuromuscul Dis 2020; 7:1-13. [PMID: 31707373 PMCID: PMC7029319 DOI: 10.3233/jnd-190424] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal Muscular Atrophy (SMA) is caused by autosomal recessive mutations in SMN1 and results in the loss of motor neurons and progressive muscle weakness. The spectrum of disease severity ranges from early onset with respiratory failure during the first months of life to a mild, adult-onset type with slow rate of progression. Over the past decade, new treatment options such as splicing modulation of SMN2 and SMN1 gene replacement by gene therapy have been developed. First drugs have been approved for treatment of patients with SMA and if initiated early they can significantly modify the natural course of the disease. As a consequence, newborn screening for SMA is explored and implemented in an increasing number of countries. However, available evidence for these new treatments is often limited to a small spectrum of patients concerning age and disease stage. In this review we provide an overview of available and emerging therapies for spinal muscular atrophy and we discuss new phenotypes and associated challenges in clinical care. Collection of real-world data with standardized outcome measures will be essential to improve both the understanding of treatment effects in patients of all SMA subtypes and the basis for clinical decision-making in SMA.
Collapse
Affiliation(s)
- David C. Schorling
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Astrid Pechmann
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuropediatrics, University Hospital Bonn, Germany
| |
Collapse
|
235
|
Jiang J, Huang J, Gu J, Cai X, Zhao H, Lu H. Genomic analysis of a spinal muscular atrophy (SMA) discordant family identifies a novel mutation in TLL2, an activator of growth differentiation factor 8 (myostatin): a case report. BMC MEDICAL GENETICS 2019; 20:204. [PMID: 31888525 PMCID: PMC6938020 DOI: 10.1186/s12881-019-0935-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
Background Spinal muscular atrophy (SMA) is a rare neuromuscular disorder threating hundreds of thousands of lives worldwide. And the severity of SMA differs among different clinical types, which has been demonstrated to be modified by factors like SMN2, SERF1, NAIP, GTF2H2 and PLS3. However, the severities of many SMA cases, especially the cases within a family, often failed to be explained by these modifiers. Therefore, other modifiers are still waiting to be explored. Case presentation In this study, we presented a rare case of SMA discordant family with a mild SMA male patient and a severe SMA female patient. The two SMA cases fulfilled the diagnostic criteria defined by the International SMA Consortium. With whole exome sequencing, we confirmed the heterozygous deletion of exon7 at SMN1 on the parents’ genomes and the homozygous deletions on the two patients’ genomes. The MLPA results confirmed the deletions and indicated that all the family members carry two copies of SMN2, SERF1, NAIP and GTF2H2. Further genomic analysis identified compound heterozygous mutations at TLL2 on the male patient’s genome, and compound heterozygous mutations at VPS13A and the de novo mutation at AGAP5 on female patient’s genome. TLL2 is an activator of myostatin, which negatively regulates the growth of skeletal muscle tissue. Mutation in TLL2 has been proved to increase muscular function in mice model. VPS13A encodes proteins that control the cycling of proteins through the trans-Golgi network to endosomes, lysosomes and the plasma membrane. And AGAP5 was reported to have GTPase activator activity. Conclusions We reported a case of SMA discordant family and identified mutations at TLL2, VPS13A and AGAP5 on the patients’ genomes. The mutations at TLL2 were predicted to be pathogenic and are likely to alleviate the severity of the male SMA patient. Our finding broadens the spectrum of genetic modifiers of SMA and will contribute to accurate counseling of SMA affected patients and families.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China.,Department of Biostatistics, Yale School of Public Health, 300 George Street, New Haven, CT, USA
| | - Jinwei Huang
- Department of Respiration and Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jianlei Gu
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China.,Department of Biostatistics, Yale School of Public Health, 300 George Street, New Haven, CT, USA.,Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Hongyu Zhao
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China. .,Department of Biostatistics, Yale School of Public Health, 300 George Street, New Haven, CT, USA.
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China. .,Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
236
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
237
|
Baek J, Jeong H, Ham Y, Jo YH, Choi M, Kang M, Son B, Choi S, Ryu HW, Kim J, Shen H, Sydara K, Lee SW, Kim SY, Han SB, Oh SR, Cho S. Improvement of spinal muscular atrophy via correction of the SMN2 splicing defect by Brucea javanica (L.) Merr. extract and Bruceine D. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153089. [PMID: 31563042 DOI: 10.1016/j.phymed.2019.153089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a rare neuromuscular disease and a leading genetic cause of infant mortality. SMA is caused primarily by the deletion of the survival motor neuron 1 (SMN1) gene, which leaves the duplicate gene SMN2 as the sole source of SMN protein. The splicing defect (exon 7 skipping) of SMN2 leads to an insufficient amount of SMN protein. Therefore, correcting this SMN2 splicing defect is considered to be a promising approach for the treatment of SMA. PURPOSE This study aimed to identify active compounds and extracts from plant resources to rescue SMA phenotypes through the correction of SMN2 splicing. STUDY DESIGN Of available plant resources, candidates with SMA-related traditional medicine information were selected for screening using a robust luciferase-based SMN2 splicing reporter. Primary hits were further evaluated for their ability to correct the splicing defect and resultant increase of SMN activity in SMA patient-derived fibroblasts. Confirmed hits were finally tested to determine the beneficial effects on the severe Δ7 SMA mouse. METHODS SMN2 splicing was analyzed using a luciferase-based SMN2 splicing reporter and subsequent RT-PCR of SMN2 mRNAs. SMA phenotypes were evaluated by the survival, body weights, and righting reflex of Δ7 SMA mice. RESULTS In a screen of 492 selected plant extracts, we found that Brucea javanica extract and its major constituent Bruceine D have SMN2 splicing-correcting activity. Their ability to correct the splicing defect and the resulting increased SMN activity were further confirmed in SMA fibroblasts. Importantly, both B. javanica and Bruceine D noticeably improved the phenotypic defects, especially muscle function, in SMA mice. Reduced expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributed to the correction of splicing by B. javanica. CONCLUSION Our work revealed that B. javanica and Bruceine D correct the SMN2 splicing defect and improve the symptoms of SMA in mice. These resources will provide another possibility for development of a plant-derived SMA drug candidate.
Collapse
Affiliation(s)
- Jiyeon Baek
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyejeong Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yang Hee Jo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mingu Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Bora Son
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kongmany Sydara
- Ministry of Health, Institute of Traditional Medicine, Vientiane 116, Lao Democratic People's Republic
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
238
|
Shinohara M, Niba ETE, Wijaya YOS, Takayama I, Mitsuishi C, Kumasaka S, Kondo Y, Takatera A, Hokuto I, Morioka I, Ogiwara K, Tobita K, Takeuchi A, Nishio H. A Novel System for Spinal Muscular Atrophy Screening in Newborns: Japanese Pilot Study. Int J Neonatal Screen 2019; 5:41. [PMID: 33072999 PMCID: PMC7510215 DOI: 10.3390/ijns5040041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 01/23/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by SMN1 gene deletion/mutation. The drug nusinersen modifies SMN2 mRNA splicing, increasing the production of the full-length SMN protein. Recent studies have demonstrated the beneficial effects of nusinersen in patients with SMA, particularly when treated in early infancy. Because nusinersen treatment can alter disease trajectory, there is a strong rationale for newborn screening. In the current study, we validated the accuracy of a new system for detecting SMN1 deletion (Japanese patent application No. 2017-196967, PCT/JP2018/37732) using dried blood spots (DBS) from 50 patients with genetically confirmed SMA and 50 controls. Our system consists of two steps: (1) targeted pre-amplification of SMN genes by direct polymerase chain reaction (PCR) and (2) detection of SMN1 deletion by real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) using the pre-amplified products. Compared with PCR analysis results of freshly collected blood samples, our system exhibited a sensitivity of 1.00 (95% confidence interval [CI] 0.96-1.00) and a specificity of 1.00 (95% CI 0.96-1.00). We also conducted a prospective SMA screening study using DBS from 4157 Japanese newborns. All DBS tested negative, and there were no screening failures. Our results indicate that the new system can be reliably used in SMA newborn screening.
Collapse
Affiliation(s)
- Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Izumi Takayama
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Chisako Mitsuishi
- Japanese Red Cross Katsushika Maternity Hospital, 5-11-12 Tateishi, Katsushika-ku, Tokyo 124-0012, Japan; (C.M.); (S.K.)
| | - Sakae Kumasaka
- Japanese Red Cross Katsushika Maternity Hospital, 5-11-12 Tateishi, Katsushika-ku, Tokyo 124-0012, Japan; (C.M.); (S.K.)
| | - Yoichi Kondo
- Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama 790-8524, Japan;
| | - Akihiro Takatera
- Chibune General Hospital, 3-2-39 Fukumachi, Nishiyodogawa-ku, Osaka 555-0034, Japan;
| | - Isamu Hokuto
- Department of Pediatrics, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki 216-8511, Japan;
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchi kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | - Kazutaka Ogiwara
- Biogen Japan Ltd., 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.O.); (K.T.)
| | - Kimimasa Tobita
- Biogen Japan Ltd., 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.O.); (K.T.)
| | - Atsuko Takeuchi
- Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| |
Collapse
|
239
|
Rahhal R, Seto E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 2019; 47:4911-4926. [PMID: 31162605 PMCID: PMC6547430 DOI: 10.1093/nar/gkz292] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Histone modifications and RNA splicing, two seemingly unrelated gene regulatory processes, greatly increase proteome diversity and profoundly influence normal as well as pathological eukaryotic cellular functions. Like many histone modifying enzymes, histone deacetylases (HDACs) play critical roles in governing cellular behaviors and are indispensable in numerous biological processes. While the association between RNA splicing and histone modifications is beginning to be recognized, a lack of knowledge exists regarding the role of HDACs in splicing. Recent studies however, reveal that HDACs interact with spliceosomal and ribonucleoprotein complexes, actively control the acetylation states of splicing-associated histone marks and splicing factors, and thereby unexpectedly could modulate splicing. Here, we review the role of histone/protein modifications and HDACs in RNA splicing and discuss the convergence of two parallel fields, which supports the argument that HDACs, and perhaps most histone modifying enzymes, are much more versatile and far more complicated than their initially proposed functions. Analogously, an HDAC-RNA splicing connection suggests that splicing is regulated by additional upstream factors and pathways yet to be defined or not fully characterized. Some human diseases share common underlying causes of aberrant HDACs and dysregulated RNA splicing and, thus, further support the potential link between HDACs and RNA splicing.
Collapse
Affiliation(s)
- Raneen Rahhal
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
240
|
Poppe L, Smolders S, Rué L, Timmers M, Lenaerts A, Storm A, Schoonaert L, de Boer A, Van Damme P, Van Den Bosch L, Robberecht W, Lemmens R. Lowering EphA4 Does Not Ameliorate Disease in a Mouse Model for Severe Spinal Muscular Atrophy. Front Neurosci 2019; 13:1233. [PMID: 31803009 PMCID: PMC6877733 DOI: 10.3389/fnins.2019.01233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
EphA4 is a receptor of the Eph-ephrin system, which plays an important role in axon guidance during development. Previously, we identified EphA4 as a genetic modifier of amyotrophic lateral sclerosis (ALS) in both zebrafish and rodent models, via modulation of the intrinsic vulnerability, and re-sprouting capacity of motor neurons. Moreover, loss of EphA4 rescued the motor axon phenotype in a zebrafish model of spinal muscular atrophy (SMA). Similar to ALS, SMA is a neurodegenerative disorder affecting spinal motor neurons resulting in neuromuscular junction (NMJ) denervation, muscle atrophy and paralysis. In this study, we investigated the disease modifying potential of reduced EphA4 protein levels in the SMNΔ7 mouse model for severe SMA. Reduction of EphA4 did not improve motor function, survival, motor neuron survival or NMJ innervation. Our data suggest that either lowering EphA4 has limited therapeutic potential in SMA or that the clinical severity hampers the potential beneficial role of EphA4 reduction in this mouse model for SMA.
Collapse
Affiliation(s)
- Lindsay Poppe
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Silke Smolders
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Rué
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Mieke Timmers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Annette Lenaerts
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Annet Storm
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Lies Schoonaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Antina de Boer
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB – KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
241
|
244th ENMC international workshop: Newborn screening in spinal muscular atrophy May 10-12, 2019, Hoofdorp, The Netherlands. Neuromuscul Disord 2019; 30:93-103. [PMID: 31882184 DOI: 10.1016/j.nmd.2019.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
|
242
|
Zhao M, Lian M, Cheah FSH, Tan ASC, Agarwal A, Chong SS. Identification of Novel Microsatellite Markers Flanking the SMN1 and SMN2 Duplicated Region and Inclusion Into a Single-Tube Tridecaplex Panel for Haplotype-Based Preimplantation Genetic Testing of Spinal Muscular Atrophy. Front Genet 2019; 10:1105. [PMID: 31781167 PMCID: PMC6851269 DOI: 10.3389/fgene.2019.01105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Preimplantation genetic testing for the monogenic disorder (PGT-M) spinal muscular atrophy (SMA) is significantly improved by supplementation of SMN1 deletion detection with marker-based linkage analysis. To expand the availability of informative markers for PGT-M of SMA, we identified novel non-duplicated and highly polymorphic microsatellite markers closely flanking the SMN1 and SMN2 duplicated region. Six of the novel markers within 0.5 Mb of the 1.7 Mb duplicated region containing SMN1 and SMN2 (SMA6863, SMA6873, SMA6877, SMA7093, SMA7115, and SMA7120) and seven established markers (D5S1417, D5S1413, D5S1370, D5S1408, D5S610, D5S1999, and D5S637), all with predicted high heterozygosity values, were selected and optimized in a tridecaplex PCR panel, and their polymorphism indices were determined in two populations. Observed marker heterozygosities in the Chinese and Caucasian populations ranged from 0.54 to 0.86, and 98.4% of genotyped individuals (185 of 188) were heterozygous for ≥2 markers on either side of SMN1. The marker panel was evaluated for disease haplotype phasing using single cells from two parent–child trios after whole-genome amplification, and applied to a clinical IVF (in vitro fertilization) PGT-M cycle in an at-risk couple, in parallel with SMN1 deletion detection. Both direct and indirect test methods determined that none of five tested embryos were at risk for SMA, with haplotype analysis further identifying one embryo as unaffected and four as carriers. Fresh transfer of the unaffected embryo did not lead to implantation, but subsequent frozen-thaw transfer of a carrier embryo produced a pregnancy, with fetal genotype confirmed by amniocentesis, and a live birth at term.
Collapse
Affiliation(s)
- Mingjue Zhao
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mulias Lian
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Felicia S H Cheah
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Arnold S C Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Anupriya Agarwal
- Clinic for Human Reproduction, Department of Obstetrics and Gynecology, National University Hospital, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore.,Molecular Diagnosis Center and Clinical Cytogenetics Service, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
243
|
Kizina K, Stolte B, Totzeck A, Bolz S, Fleischer M, Mönninghoff C, Guberina N, Oldenburg D, Forsting M, Kleinschnitz C, Hagenacker T. Clinical Implication of Dosimetry of Computed Tomography- and Fluoroscopy-Guided Intrathecal Therapy With Nusinersen in Adult Patients With Spinal Muscular Atrophy. Front Neurol 2019; 10:1166. [PMID: 31787921 PMCID: PMC6856637 DOI: 10.3389/fneur.2019.01166] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is a genetic disorder that leads to progressive tetraparesis. Nusinersen is the first approved drug for the treatment of SMA and is administered via intrathecal injections. Neuromyopathic scoliosis and spondylodesis can impede lumbar punctures, thus necessitating the use of radiological imaging. Furthermore, dosimetry of this potentially lifelong therapy should be supervised. Methods: Fluoroscopy-assisted or computed tomography (CT)-guided intrathecal injections of nusinersen were performed in adult patients with SMA type 2 and 3. The mean effective dose was compared in patients with and without spondylodesis as well as in those with SMA type 2 and 3. The dosimetry was analyzed in relation to the motor function evaluated with the Revised Upper Limb module (RULM) score and the Hammersmith Functional Motor Scale-Expanded (HFMSE) score. Results: Fifteen patients with SMA type 2 and 3 underwent radiological imaging-assisted intrathecal injections. The mean effective dose per CT-guided injection per patient was 2.59 (±1.67) mSv (n = 12). The mean dose area product (DAP) per fluoroscopy-guided injection per patient was 200.48 (±323.67) μGym2 (n = 3). With increase in the number of injections, the effective dose (r = −0.23) (p < 0.05) and the DAP (r = −0.09) (p > 0.05) decreased. The mean effective dose in 4 patients without spinal fusion (SMA type 2) was 1.39 (±0.51) mSv, whereas that in 8 patients with spondylodesis (SMA type 2 and 3) was 3.21 (±1.73) mSv. The mean effective dose in 5 SMA type 2 patients with spondylodesis was 2.68 (±1.47) mSv (n = 5) and in 3 SMA type 3 patients was 4.00 (±1.82) mSv. Dosimetry did not show significant correlation with the clinical severity of the disease (RULM score: r = −0.045, p > 0.05 and HFMSE score: r = −0.001, p > 0.05). Conclusions: In SMA type 2 and 3 patients undergoing radiological imaging-assisted injections, the effective dose and DAP decreased during therapy with nusinersen. The mean effective dose in patients with spondylodesis was higher than that in patients without spondylodesis. Dosimetry should be monitored carefully in order to detect and prevent unnecessary radiation exposure.
Collapse
Affiliation(s)
- Kathrin Kizina
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Andreas Totzeck
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | | - Christoph Mönninghoff
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Nika Guberina
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Denise Oldenburg
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | | | - Tim Hagenacker
- Department of Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
244
|
De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, Kirschner J, Kuntz NL, Parsons JA, Ryan MM, Butterfield RJ, Topaloglu H, Ben-Omran T, Sansone VA, Jong YJ, Shu F, Staropoli JF, Kerr D, Sandrock AW, Stebbins C, Petrillo M, Braley G, Johnson K, Foster R, Gheuens S, Bhan I, Reyna SP, Fradette S, Farwell W. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019; 29:842-856. [PMID: 31704158 PMCID: PMC7127286 DOI: 10.1016/j.nmd.2019.09.007] [Citation(s) in RCA: 430] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease associated with severe muscle atrophy and weakness in the limbs and trunk. We report interim efficacy and safety outcomes as of March 29, 2019 in 25 children with genetically diagnosed SMA who first received nusinersen in infancy while presymptomatic in the ongoing Phase 2, multisite, open-label, single-arm NURTURE trial. Fifteen children have two SMN2 copies and 10 have three SMN2 copies. At last visit, children were median (range) 34.8 [25.7-45.4] months of age and past the expected age of symptom onset for SMA Types I or II; all were alive and none required tracheostomy or permanent ventilation. Four (16%) participants with two SMN2 copies utilized respiratory support for ≥6 h/day for ≥7 consecutive days that was initiated during acute, reversible illnesses. All 25 participants achieved the ability to sit without support, 23/25 (92%) achieved walking with assistance, and 22/25 (88%) achieved walking independently. Eight infants had adverse events considered possibly related to nusinersen by the study investigators. These results, representing a median 2.9 years of follow up, emphasize the importance of proactive treatment with nusinersen immediately after establishing the genetic diagnosis of SMA in presymptomatic infants and emerging newborn screening efforts.
Collapse
Affiliation(s)
- Darryl C De Vivo
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Post-Graduate Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Wuh-Liang Hwu
- Departments of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Finkel
- Division of Neurology, Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Neuropediatrics, University Medical Hospital, Bonn, Germany
| | - Nancy L Kuntz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Julie A Parsons
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monique M Ryan
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Haluk Topaloglu
- Department of Pediatric Neurology, Hacettepe University, Ankara, Turkey
| | - Tawfeg Ben-Omran
- Sidra Medicine, Department of Pediatrics, Qatar Foundation, Doha, Qatar; Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Valeria A Sansone
- NEMO Clinical Center - NEuroMuscular Omniservice, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University; Departments of Pediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Francy Shu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Al-Zaidy SA, Mendell JR. From Clinical Trials to Clinical Practice: Practical Considerations for Gene Replacement Therapy in SMA Type 1. Pediatr Neurol 2019; 100:3-11. [PMID: 31371124 DOI: 10.1016/j.pediatrneurol.2019.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023]
Abstract
Spinal muscular atrophy is a devastating neurodegenerative autosomal recessive disease that results from survival of motor neuron 1 (SMN1) gene mutation or deletion. Patients with spinal muscular atrophy type 1 utilizing supportive care, which focuses on symptom management, never sit unassisted, and 75% die or require permanent ventilation by age 13.6 months. Onasemnogene abeparvovec (Zolgensma, formerly AVXS-101) is a gene replacement therapy comprising an adeno-associated viral vector containing the human SMN gene under control of the chicken beta-actin promoter. This therapy addresses the genetic root cause of the disease by increasing functional SMN protein in motor neurons and preventing neuronal cell death, resulting in improved neuronal and muscular function as previously demonstrated in transgenic animal models. In an open-label, one-arm, dose-escalation phase 1 trial, systemic administration of onasemnogene abeparvovec via a one-time infusion over one hour demonstrated improved motor function and survival in all infants symptomatic for spinal muscular atrophy type 1. Of the 12 patients who received the proposed therapeutic dose, 11 achieved independent sitting, two achieved independent standing, and two are able to walk. Most of these 12 patients remained free of respiratory supportive care. The only treatment-related adverse event observed was transient asymptomatic transaminasemia that resolved with a short course of prednisolone treatment. This review discusses the biological rationale underlying gene replacement therapy for spinal muscular atrophy, describes the onasemnogene abeparvovec clinical trial experience, and provides expert recommendations as a reference for the real-world use of onasemnogene abeparvovec in clinical practice. As of May 24, 2019, the Food and Drug Administration approved onasemnogene abeparvovec, the first gene therapy approved to treat children younger than two years with spinal muscular atrophy.
Collapse
Affiliation(s)
- Samiah A Al-Zaidy
- Department of Pediatrics, Ohio State University, Columbus, Ohio; Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio
| | - Jerry R Mendell
- Department of Pediatrics, Ohio State University, Columbus, Ohio; Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio; Department of Neurology, Ohio State University, Columbus, Ohio.
| |
Collapse
|
246
|
Rehorst WA, Thelen MP, Nolte H, Türk C, Cirak S, Peterson JM, Wong GW, Wirth B, Krüger M, Winter D, Kye MJ. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol Commun 2019; 7:154. [PMID: 31615574 PMCID: PMC6794869 DOI: 10.1186/s40478-019-0806-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder, which causes dysfunction/loss of lower motor neurons and muscle weakness as well as atrophy. While SMA is primarily considered as a motor neuron disease, recent data suggests that survival motor neuron (SMN) deficiency in muscle causes intrinsic defects. We systematically profiled secreted proteins from control and SMN deficient muscle cells with two combined metabolic labeling methods and mass spectrometry. From the screening, we found lower levels of C1q/TNF-related protein 3 (CTRP3) in the SMA muscle secretome and confirmed that CTRP3 levels are indeed reduced in muscle tissues and serum of an SMA mouse model. We identified that CTRP3 regulates neuronal protein synthesis including SMN via mTOR pathway. Furthermore, CTRP3 enhances axonal outgrowth and protein synthesis rate, which are well-known impaired processes in SMA motor neurons. Our data revealed a new molecular mechanism by which muscles regulate the physiology of motor neurons via secreted molecules. Dysregulation of this mechanism contributes to the pathophysiology of SMA.
Collapse
|
247
|
Abstract
Onasemnogene abeparvovec (onasemnogene abeparvovec-xioi; formerly AVXS-101; ZOLGENSMA®) is an adeno-associated viral vector-based gene therapy designed to deliver a functional copy of the human survival motor neuron (SMN) gene to the motor neuron cells of patients with spinal muscular atrophy (SMA). It has been developed by AveXis, a Novartis company, and was approved in May 2019 in the USA for the treatment of paediatric patients aged < 2 years with SMA and bi-allelic mutations in the SMN1 gene (the primary gene encoding survival motor neuron protein). Onasemnogene abeparvovec is the first gene therapy to be approved for SMA in the USA. The recommended dose is 1.1 × 1014 vector genomes per kg of bodyweight, administered as a single intravenous infusion over 60 min. Regulatory assessments for this formulation of onasemnogene abeparvovec are underway in the EU and Japan; an intrathecal formulation is currently undergoing clinical development in the USA. This article summarizes the milestones in the development of onasemnogene abeparvovec leading to this first approval for the treatment of paediatric patients aged < 2 years with SMA and bi-allelic mutations in SMN1.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
248
|
Al-Zaidy SA, Kolb SJ, Lowes L, Alfano LN, Shell R, Church KR, Nagendran S, Sproule DM, Feltner DE, Wells C, Ogrinc F, Menier M, L’Italien J, Arnold WD, Kissel JT, Kaspar BK, Mendell JR. AVXS-101 (Onasemnogene Abeparvovec) for SMA1: Comparative Study with a Prospective Natural History Cohort. J Neuromuscul Dis 2019; 6:307-317. [DOI: 10.3233/jnd-190403] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Samiah A. Al-Zaidy
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Linda Lowes
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lindsay N. Alfano
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Richard Shell
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kathleen R. Church
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | | | | | | | | | | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John T. Kissel
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jerry R. Mendell
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
249
|
Lowes LP, Alfano LN, Arnold WD, Shell R, Prior TW, McColly M, Lehman KJ, Church K, Sproule DM, Nagendran S, Menier M, Feltner DE, Wells C, Kissel JT, Al-Zaidy S, Mendell J. Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatr Neurol 2019; 98:39-45. [PMID: 31277975 DOI: 10.1016/j.pediatrneurol.2019.05.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND This study characterizes motor function responses after early dosing of AVXS-101 (onasemnogene abeparvovec) in gene replacement therapy in infants with severe spinal muscular atrophy type 1 (SMA1). METHODS This study is a follow-up analysis of 12 infants with SMA1 who received the proposed therapeutic dose of AVXS-101 in a Phase 1 open-label study (NCT02122952). Infants were grouped according to age at dosing and baseline Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders scores: (1) early dosing/low motor, dosed age less than three months with scores <20 (n = 3), (2) late dosing, dosed at age three months or greater (n = 6), and (3) early dosing/high motor, dosed age less than three months with scores ≥20 (n = 3). RESULTS Early dosing/low motor group demonstrated a mean gain of 35.0 points from a mean baseline of 15.7, whereas the late dosing group had a mean gain of 23.3 from a mean baseline of 26.5. The early dosing/high motor group quickly reached a mean score of 60.3, near the scale maximum (64), from a mean baseline of 44.0. Despite a lower baseline motor score, the early dosing/low motor group achieved sitting unassisted earlier than the late dosing group (mean age: 17.0 vs 22.0 months). The early dosing/high motor group reached this milestone earliest (mean age: 9.4 months). CONCLUSIONS The rapid, significant motor improvements among infants with severe SMA1 treated with AVXS-101 at an early age highlight the importance of newborn screening and early treatment and demonstrate the therapeutic potential of AVXS-101 regardless of baseline motor function.
Collapse
Affiliation(s)
- Linda P Lowes
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Ohio State University, Columbus, Ohio.
| | - Lindsay N Alfano
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - W David Arnold
- Department of Neurology, Ohio State University, Columbus, Ohio
| | - Richard Shell
- Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Thomas W Prior
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Markus McColly
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kelly J Lehman
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathleen Church
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | | | - John T Kissel
- Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Samiah Al-Zaidy
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Jerry Mendell
- Center for Gene Therapy at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Ohio State University, Columbus, Ohio; Department of Neurology, Ohio State University, Columbus, Ohio
| |
Collapse
|
250
|
Kariyawasam DST, D'Silva A, Lin C, Ryan MM, Farrar MA. Biomarkers and the Development of a Personalized Medicine Approach in Spinal Muscular Atrophy. Front Neurol 2019; 10:898. [PMID: 31481927 PMCID: PMC6709682 DOI: 10.3389/fneur.2019.00898] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent unprecedented advances in treatment for spinal muscular atrophy (SMA) enabled patients to access the first approved disease modifying therapy for the condition. There are however many uncertainties, regarding timing of treatment initiation, response to intervention, treatment effects and long-term outcomes, which are complicated by the evolving phenotypes seen in the post-treatment era for patients with SMA. Biomarkers of disease, with diagnostic, prognostic, predictive, and pharmacodynamic value are thus urgently required, to facilitate a wider understanding in this dynamic landscape. A spectrum of these candidate biomarkers, will be evaluated in this review, including genetic, epigenetic, proteomic, electrophysiological, and imaging measures. Of these, SMN2 appears to be the most significant modifier of phenotype to date, and its use in prognostication shows considerable clinical utility. Longitudinal studies in patients with SMA highlight an emerging role of circulatory markers such as neurofilament, in tracking disease progression and response to treatment. Furthermore, neurophysiological biomarkers such as CMAP and MUNE values show considerable promise in the real word setting, in following the dynamic response and output of the motor unit to therapeutic intervention. The specific value for these possible biomarkers across diagnosis, prognosis, prediction of treatment response, efficacy, and safety will be central to guide future patient-targeted treatments, the design of clinical trials, and understanding of the pathophysiological mechanisms of disease and intervention.
Collapse
Affiliation(s)
- Didu S T Kariyawasam
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cindy Lin
- Department of Neurophysiology, Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Monique M Ryan
- Department of Neurology, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|