201
|
Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, Masoudi N, Ebrahimi M, Aghdami N, Seifinejad A, Mehrnejad F, Daftarian N, Salekdeh GH, Baharvand H. A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev 2012; 21:2262-72. [PMID: 22145677 DOI: 10.1089/scd.2011.0599] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We describe a new, efficient protocol that involves the serial addition of noggin, basic fibroblast growth factor (bFGF), retinoic acid, and sonic hedgehog (Shh) for the differentiation of human induced pluripotent stem cells (hiPSC) to retinal pigmented epithelium (RPE) in a serum- and feeder-free adherent condition. hiPSC-RPE cells exhibited RPE morphology and specific molecular markers. Additionally, several hiPSC lines were generated from retinal-specific patients with Leber's congenital amaurosis, Usher syndrome, two patients with retinitis pigmentosa, and a patient with Leber's hereditary optic neuropathy. The RPE cells generated from these disease-specific hiPSCs expressed specific markers by the same RPE lineage-directed differentiation protocol. These findings indicate a new short-term, simple, and efficient protocol for differentiation of hiPSCs to RPE cells. Such specific retinal disease-specific hiPSCs offer an unprecedented opportunity to recapitulate normal and pathologic formation of human retinal cells in vitro, thereby enabling pharmaceutical screening, and potentially autologous cell replacement therapies for retinal diseases.
Collapse
Affiliation(s)
- Azadeh Zahabi
- Department of Stem Cells and Developmental Biology, The Academic Center for Education, Culture and Research-ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Lagar'kova MA, Shilov AG, Gubanova NI, Prokhorovich MA, Kiselev SL. In vitro histogenesis of human embryonic stem cells into retina components. Bull Exp Biol Med 2012; 152:516-8. [PMID: 22803124 DOI: 10.1007/s10517-012-1566-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We developed a protocol of in vitro differentiation of human embryonic stem cells into three-dimensional structures histologically and molecularly similar to the developing retina.
Collapse
Affiliation(s)
- M A Lagar'kova
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
203
|
Rowland TJ, Buchholz DE, Clegg DO. Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol 2012; 227:457-66. [PMID: 21520078 DOI: 10.1002/jcp.22814] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite advancements made in our understanding of ocular biology, therapeutic options for many debilitating retinal diseases remain limited. Stem cell-based therapies are a potential avenue for treatment of retinal disease, and this mini-review will focus on current research in this area. Cellular therapies to replace retinal pigmented epithelium (RPE) and/or photoreceptors to treat age-related macular degeneration (AMD), Stargardt's macular dystrophy, and retinitis pigmentosa are currently being developed. Over the past decade, significant advancements have been made using different types of human stem cells with varying capacities to differentiate into these target retinal cell types. We review and evaluate pluripotent stem cells, both human embryonic stem cells and human induced pluripotent stem cells, as well as protocols for differentiation of ocular cells, and culture and transplant techniques that might be used to deliver cells to patients.
Collapse
Affiliation(s)
- Teisha J Rowland
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, California, USA
| | | | | |
Collapse
|
204
|
Juuti-Uusitalo K, Vaajasaari H, Ryhänen T, Narkilahti S, Suuronen R, Mannermaa E, Kaarniranta K, Skottman H. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells. PLoS One 2012; 7:e30089. [PMID: 22272278 PMCID: PMC3260202 DOI: 10.1371/journal.pone.0030089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/13/2011] [Indexed: 12/02/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.
Collapse
Affiliation(s)
- Kati Juuti-Uusitalo
- The Institute of Biomedical Technology, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
|
206
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
207
|
Skottman H. Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells into Retinal Pigment Epithelium. STEM CELLS AND CANCER STEM CELLS, VOLUME 7 2012. [DOI: 10.1007/978-94-007-4285-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
208
|
Jin ZB, Takahashi M. Generation of retinal cells from pluripotent stem cells. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186714 DOI: 10.1016/b978-0-444-59544-7.00008-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal degeneration is a leading cause of incurable low vision and blindness worldwide. Most retinal degenerative diseases are caused by irreversible apoptosis of retinal neural cells or adjacent supporting tissue. Because there is no radical treatment for retinal degeneration, most therapies are aimed at specific situations, such as drug or surgical intervention for late complications. Retinal cell replacement would be valuable for regenerating functional retinas, and therefore it is being examined as a next-generation treatment for retinal degeneration. With advances in stem cell biology, considerable progress has been made in recent years on generation of retinal cells. Both sensory retinal neural cells and retinal pigment epithelial cells can be induced in vitro from pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells. Here, we review the stepwise differentiation of retinal cells from pluripotent stem cells, with emphases on the methodology and application potential.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Center for Vision Research, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China.
| | | |
Collapse
|
209
|
Park UC, Cho MS, Park JH, Kim SJ, Ku SY, Choi YM, Moon SY, Yu HG. Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model. Clin Exp Reprod Med 2011; 38:216-21. [PMID: 22384445 PMCID: PMC3283081 DOI: 10.5653/cerm.2011.38.4.216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. METHODS The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells (10(5) cells/5 µL) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. RESULTS The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. CONCLUSION Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease.
Collapse
Affiliation(s)
- Un Chul Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
211
|
Abstract
Retinal degenerative disease has limited therapeutic options and the possibility of stem cell-mediated regenerative treatments is being actively explored for these blinding retinal conditions. The relative accessibility of this central nervous system tissue and the ability to visually monitor changes after transplantation make the retina and adjacent retinal pigment epithelium prime targets for pioneering stem cell therapeutics. Prior work conducted for several decades indicated the promise of cell transplantation for retinal disease, and new strategies that combine these established surgical approaches with stem cell-derived donor cells is ongoing. A variety of tissue-specific and pluripotent-derived donor cells are being advanced to replace lost or damaged retinal cells and/or to slow the disease processes by providing neuroprotective factors, with the ultimate aim of long-term improvement in visual function. Clinical trials are in the early stages, and data on safety and efficacy are widely anticipated. Positive outcomes from these stem cell-based clinical studies would radically change the way that blinding disorders are approached in the clinic.
Collapse
|
212
|
Huang Y, Enzmann V, Ildstad ST. Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev Rep 2011; 7:434-45. [PMID: 20859770 DOI: 10.1007/s12015-010-9192-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inherited retinal disease. However, this treatment was less effective with advanced disease. Stem cell-based therapy is being pursued as a potential alternative approach in the treatment of retinal degenerative diseases. In this review, we will focus on stem cell-based therapies in the pipeline and summarize progress in treatment of retinal degenerative disease.
Collapse
Affiliation(s)
- Yiming Huang
- Institute for Cellular Therapeutics, University of Louisville, 570 S. Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| | | | | |
Collapse
|
213
|
Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 2011; 29:825-35. [PMID: 21480547 DOI: 10.1002/stem.635] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Age-related macular degeneration (AMD) is one of the major causes of blindness in aging population that progresses with death of retinal pigment epithelium (RPE) and photoreceptor degeneration inducing impairment of central vision. Discovery of human induced pluripotent stem (hiPS) cells has opened new avenues for the treatment of degenerative diseases using patient-specific stem cells to generate tissues and cells for autologous cell-based therapy. Recently, RPE cells were generated from hiPS cells. However, there is no evidence that those hiPS-derived RPE possess specific RPE functions that fully distinguish them from other types of cells. Here, we show for the first time that RPE generated from hiPS cells under defined conditions exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression profile similar to those of native RPE. The hiPS-RPE could therefore be a very good candidate for RPE replacement therapy in AMD. However, these cells show rapid telomere shortening, DNA chromosomal damage, and increased p21 expression that cause cell growth arrest. This rapid senescence might affect the survival of the transplanted cells in vivo and therefore, only the very early passages should be used for regeneration therapies. Future research needs to focus on the generation of "safe" as well as viable hiPS-derived somatic cells.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | |
Collapse
|
214
|
Impedance Spectroscopy in Monitoring the Maturation of Stem Cell-Derived Retinal Pigment Epithelium. Ann Biomed Eng 2011; 39:3055-69. [DOI: 10.1007/s10439-011-0387-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/22/2011] [Indexed: 02/07/2023]
|
215
|
Wong IYH, Poon MW, Pang RTW, Lian Q, Wong D. Promises of stem cell therapy for retinal degenerative diseases. Graefes Arch Clin Exp Ophthalmol 2011; 249:1439-48. [PMID: 21866334 PMCID: PMC3178027 DOI: 10.1007/s00417-011-1764-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
With the development of stem cell technology, stem cell-based therapy for retinal degeneration has been proposed to restore the visual function. Many animal studies and some clinical trials have shown encouraging results of stem cell-based therapy in retinal degenerative diseases. While stem cell-based therapy is a promising strategy to replace damaged retinal cells and ultimately cure retinal degeneration, there are several important challenges which need to be overcome before stem cell technology can be applied widely in clinical settings. In this review, different types of donor cell origins used in retinal treatments, potential target cell types for therapy, methods of stem cell delivery to the eye, assessments of potential risks in stem cell therapy, as well as future developments of retinal stem cells therapy, will be discussed.
Collapse
Affiliation(s)
- Ian Yat-Hin Wong
- Department of Medicine and Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | | | | | | | | |
Collapse
|
216
|
Singh MS, MacLaren RE. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci 2011; 278:3009-16. [PMID: 21813553 PMCID: PMC3158947 DOI: 10.1098/rspb.2011.1028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Retinal degeneration due to genetic, diabetic and age-related disease is the most common cause of blindness in the developed world. Blindness occurs through the loss of the light-sensing photoreceptors; to restore vision, it would be necessary to introduce alternative photosensitive components into the eye. The recent development of an electronic prosthesis placed beneath the severely diseased retina has shown that subretinal stimulation may restore some visual function in blind patients. This proves that residual retinal circuits can be reawakened after photoreceptor loss and defines a goal for stem-cell-based therapy to replace photoreceptors. Advances in reprogramming adult cells have shown how it may be possible to generate autologous stem cells for transplantation without the need for an embryo donor. The recent success in culturing a whole optic cup in vitro has shown how large numbers of photoreceptors might be generated from embryonic stem cells. Taken together, these threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness.
Collapse
Affiliation(s)
- Mandeep S Singh
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
| | | |
Collapse
|
217
|
Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R, Pattnaik B, Thomson J, Gamm DM. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 2011; 29:1206-18. [PMID: 21678528 PMCID: PMC3412675 DOI: 10.1002/stem.674] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Differentiation methods for human induced pluripotent stem cells (hiPSCs) typically yield progeny from multiple tissue lineages, limiting their use for drug testing and autologous cell transplantation. In particular, early retina and forebrain derivatives often intermingle in pluripotent stem cell cultures, owing to their shared ancestry and tightly coupled development. Here, we demonstrate that three-dimensional populations of retinal progenitor cells (RPCs) can be isolated from early forebrain populations in both human embryonic stem cell and hiPSC cultures, providing a valuable tool for developmental, functional, and translational studies. Using our established protocol, we identified a transient population of optic vesicle (OV)-like structures that arose during a time period appropriate for normal human retinogenesis. These structures were independently cultured and analyzed to confirm their multipotent RPC status and capacity to produce physiologically responsive retinal cell types, including photoreceptors and retinal pigment epithelium (RPE). We then applied this method to hiPSCs derived from a patient with gyrate atrophy, a retinal degenerative disease affecting the RPE. RPE generated from these hiPSCs exhibited a disease-specific functional defect that could be corrected either by pharmacological means or following targeted gene repair. The production of OV-like populations from human pluripotent stem cells should facilitate the study of human retinal development and disease and advance the use of hiPSCs in personalized medicine.
Collapse
Affiliation(s)
- Jason S. Meyer
- Waisman Center, University of Wisconsin, Madison WI 53705
| | - Sara E. Howden
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison WI 53705
- The Genome Center of Wisconsin, University of Wisconsin, Madison WI 53705
- Morgridge Institute for Research, Madison WI 53706
| | | | | | | | | | - Isabel Pinilla
- Department of Ophthalmology, Blesa University Hospital and the Instituto Aragones de Ciencias de la Salud, Zaragoza, Spain
| | | | - Shulan Tian
- Morgridge Institute for Research, Madison WI 53706
| | - Ron Stewart
- Morgridge Institute for Research, Madison WI 53706
| | - Bikash Pattnaik
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI 53705
- Department of Pediatrics, University of Wisconsin, Madison WI 53705
- Eye Research Institute, University of Wisconsin, Madison WI 53705
| | - James Thomson
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison WI 53705
- The Genome Center of Wisconsin, University of Wisconsin, Madison WI 53705
- Morgridge Institute for Research, Madison WI 53706
- Department of Molecular, Cellular, & Developmental Biology, University of California Santa Barbara, Santa Barbara CA 93106
| | - David M. Gamm
- Waisman Center, University of Wisconsin, Madison WI 53705
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI 53705
- Eye Research Institute, University of Wisconsin, Madison WI 53705
| |
Collapse
|
218
|
Liu H, Zhang SC. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell Mol Life Sci 2011; 68:3995-4008. [PMID: 21786144 DOI: 10.1007/s00018-011-0770-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a dynamic tool for revealing early embryonic development, modeling pathological processes, and developing therapeutics through drug discovery and potential cell replacement. The first step toward the utilities of human PSCs is directed differentiation to functionally specialized cell/tissue types. Following developmental principles, human ESCs, and lately iPSCs, have been effectively differentiated to region- and/or transmitter-specific neuronal and glial types, including cerebral glutamatergic, striatal γ-aminobutyric acid (GABA)-ergic, forebrain cholinergic, midbrain dopaminergic, and spinal motor neurons, as well as astrocytes and oligodendrocytes. These studies also reveal unique aspects of human cell biology, including intrinsically programmed developmental course, differential uses of transcription factors for neuroectoderm specification, and distinct responses to extracellular signals in regulating cell fate. Such information will be instrumental in translating biological findings to therapeutic development.
Collapse
Affiliation(s)
- Huisheng Liu
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | | |
Collapse
|
219
|
Sugino IK, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, Rapista A, Johnson AC, Malcuit C, Klimanskaya I, Lanza R, Zarbin MA. Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch's membrane. Invest Ophthalmol Vis Sci 2011; 52:4979-97. [PMID: 21460262 DOI: 10.1167/iovs.10-5386] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To compare RPE derived from human embryonic stem cells (hES-RPE) and fetal RPE (fRPE) behavior on human Bruch's membrane (BM) from aged and AMD donors. METHODS hES-RPE of 3 degrees of pigmentation and fRPE were cultured on BM explants. Explants were assessed by light, confocal, and scanning electron microscopy. Integrin mRNA levels were determined by real-time polymerase chain reaction studies. Secreted proteins in media were analyzed by multiplex protein analysis after 48-hour exposure at culture day 21. RESULTS hES-RPE showed impaired initial attachment compared to fRPE; pigmented hES-RPE showed nuclear densities similar to fRPE at day 21. At days 3 and 7, hES-RPE resurfaced BM to a limited degree, showed little proliferation (Ki-67), and partial retention of RPE markers (MITF, cytokeratin, and CRALBP). TUNEL-positive nuclei were abundant at day 3. fRPE exhibited substantial BM resurfacing at day 3 with decreased resurfacing at later times. Most fRPE retained RPE markers. Ki-67-positive nuclei decreased with time in culture. TUNEL staining was variable. Increased integrin mRNA expression did not appear to affect cell survival at day 21. hES-RPE and fRPE protein secretion was similar on equatorial BM except for higher levels of nerve growth factor and thrombospondin-2 (TSP2) by hES-RPE. On submacular BM, fRPE secreted more vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, and platelet-derived growth factor; hES-RPE secreted more TSP2. CONCLUSIONS Although pigmented hES-RPE and fRPE resurfaced aged and AMD BM to a similar, limited degree at day 21, cell behavior at earlier times was markedly dissimilar. Differences in protein secretion may indicate that hES-RPE may not function identically to native RPE after seeding on aged or AMD BM.
Collapse
Affiliation(s)
- Ilene K Sugino
- The Institute of Ophthalmology and Visual Science, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 90 Bergen Street, Newark, NJ 07101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
221
|
Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells 2011; 28:1981-91. [PMID: 20882530 DOI: 10.1002/stem.531] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Induced pluripotent stem (iPS) cells have been generated from a variety of somatic cell types via introduction of transcription factors that mediate pluripotency. However, it is unknown that all cell types can be reprogrammed and whether the origin of the parental cell ultimately determines the behavior of the resultant iPS cell line. We sought to determine whether human retinal-pigmented epithelial (RPE) cells could be reprogrammed, and to test the hypothesis that reprogrammed cells retain a "memory" of their origin in terms of propensity for differentiation. We reprogrammed primary fetal RPE cells via lentiviral expression of OCT4, SOX2, LIN28, and Nanog. The iPS cell lines derived from RPE exhibited morphologies similar to human embryonic stem cells and other iPS cell lines, expressed stem cell markers, and formed teratomas-containing derivatives of all three germ layers. To test whether these iPS cells retained epigenetic imprints from the parental RPE cells, we analyzed their propensity for spontaneous differentiation back into RPE after removal of FGF2. We found that some, but not all, iPS lines exhibited a marked preference for redifferentiation into RPE. Our results show that RPE cells can be reprogrammed to pluripotency, and suggest that they often retain a memory of their previous state of differentiation.
Collapse
Affiliation(s)
- Qirui Hu
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
222
|
Zhu D, Deng X, Spee C, Sonoda S, Hsieh CL, Barron E, Pera M, Hinton DR. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Invest Ophthalmol Vis Sci 2011; 52:1573-85. [PMID: 21087957 DOI: 10.1167/iovs.10-6413] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Human embryonic stem cell-derived RPE (hES-RPE) transplantation is a promising therapy for atrophic age-related macular degeneration (AMD); however, future therapeutic approaches may consider co-transplantation of hES-RPE with retinal progenitor cells (RPCs) as a replacement source for lost photoreceptors. The purpose of this study was to determine the effect of polarization of hES-RPE monolayers on their ability to promote survival of RPCs. METHODS The hES-3 cell line was used for derivation of RPE. Polarization of hES-RPE was achieved by prolonged growth on permeable inserts. RPCs were isolated from 16- to 18-week-gestation human fetal eyes. ELISA was performed to measure pigment epithelium-derived factor (PEDF) levels from conditioned media. RESULTS Pigmented RPE-like cells appeared as early as 4 weeks in culture and were subcultured at 8 weeks. Differentiated hES-RPE had a normal chromosomal karyotype. Phenotypically polarized hES-RPE cells showed expression of RPE-specific genes. Polarized hES-RPE showed prominent expression of PEDF in apical cytoplasm and a marked increase in secretion of PEDF into the medium compared with nonpolarized culture. RPCs grown in the presence of supernatants from polarized hES-RPE showed enhanced survival, which was ablated by the presence of anti-PEDF antibody. CONCLUSIONS hES-3 cells can be differentiated into functionally polarized hES-RPE cells that exhibit characteristics similar to those of native RPE. On polarization, hES-RPE cells secrete high levels of PEDF that can support RPC survival. These experiments suggest that polarization of hES-RPE would be an important feature for promotion of RPC survival in future cell therapy for atrophic AMD.
Collapse
Affiliation(s)
- Danhong Zhu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Harness JV, Turovets NA, Seiler MJ, Nistor G, Altun G, Agapova LS, Ferguson D, Laurent LC, Loring JF, Keirstead HS. Equivalence of conventionally-derived and parthenote-derived human embryonic stem cells. PLoS One 2011; 6:e14499. [PMID: 21249129 PMCID: PMC3017547 DOI: 10.1371/journal.pone.0014499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/17/2010] [Indexed: 12/31/2022] Open
Abstract
Background As human embryonic stem cell (hESC) lines can be derived via multiple means, it is important to determine particular characteristics of individual lines that may dictate the applications to which they are best suited. The objective of this work was to determine points of equivalence and differences between conventionally-derived hESC and parthenote-derived hESC lines (phESC) in the undifferentiated state and during neural differentiation. Methodology/Principal Findings hESC and phESC were exposed to the same expansion conditions and subsequent neural and retinal pigmented epithelium (RPE) differentiation protocols. Growth rates and gross morphology were recorded during expansion. RTPCR for developmentally relevant genes and global DNA methylation profiling were used to compare gene expression and epigenetic characteristics. Parthenote lines proliferated more slowly than conventional hESC lines and yielded lower quantities of less mature differentiated cells in a neural progenitor cell (NPC) differentiation protocol. However, the cell lines performed similarly in a RPE differentiation protocol. The DNA methylation analysis showed similar general profiles, but the two cell types differed in methylation of imprinted genes. There were no major differences in gene expression between the lines before differentiation, but when differentiated into NPCs, the two cell types differed in expression of extracellular matrix (ECM) genes. Conclusions/Significance These data show that hESC and phESC are similar in the undifferentiated state, and both cell types are capable of differentiation along neural lineages. The differences between the cell types, in proliferation and extent of differentiation, may be linked, in part, to the observed differences in ECM synthesis and methylation of imprinted genes.
Collapse
Affiliation(s)
- Julie V. Harness
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Nikolay A. Turovets
- International Stem Cell Corporation, Oceanside, California, United States of America
| | - Magdalene J. Seiler
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Gabriel Nistor
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Gulsah Altun
- Center for Regenerative Medicine, Scripps Research Institute, La Jolla, California, United States of America
| | - Larissa S. Agapova
- International Stem Cell Corporation, Oceanside, California, United States of America
| | - David Ferguson
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Louise C. Laurent
- Center for Regenerative Medicine, Scripps Research Institute, La Jolla, California, United States of America
| | - Jeanne F. Loring
- Center for Regenerative Medicine, Scripps Research Institute, La Jolla, California, United States of America
| | - Hans S. Keirstead
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
224
|
|
225
|
Chung HM. Clinical application of human embryonic stem cells. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2011. [DOI: 10.5124/jkma.2011.54.5.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Hyung Min Chung
- CHA Stem Cell Institute of CHA University, Seoul, Korea
- CHA Bio & Diostech, Inc., Seoul, Korea
| |
Collapse
|
226
|
Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 2010; 28:589-603. [PMID: 20714081 DOI: 10.3233/rnn-2010-0543] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The greatest therapeutic promise of human embryonic stem cells (hESC) is to generate specialized cells to replace damaged tissue in patients suffering from various degenerative diseases. However, the signaling mechanisms involved in lineage restriction of ESC to adopt various cellular phenotypes are still under investigation. Furthermore, for progression of hESC-based therapies towards clinical applications, appropriate culture conditions must be developed to generate genetically stable homogenous populations of cells, to hinder possible adverse effects following transplantation. Other critical challenges that must be addressed for successful cell implantation include problems related to survival and functional efficacy of the grafted cells. This review initially describes the derivation of hESC and focuses on recent advances in generation, characterization, and maintenance of these cells. We also give an overview of original and emerging differentiation strategies used to convert hESC to different cell types. Finally, we will discuss transplantation studies of hESC-derived cells with respect to safety and functional recovery.
Collapse
Affiliation(s)
- Tandis Vazin
- Development and Plasticity Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.
| | | |
Collapse
|
227
|
Vaziri H, Chapman KB, Guigova A, Teichroeb J, Lacher MD, Sternberg H, Singec I, Briggs L, Wheeler J, Sampathkumar J, Gonzalez R, Larocca D, Murai J, Snyder E, Andrews WH, Funk WD, West MD. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen Med 2010; 5:345-63. [PMID: 20230312 DOI: 10.2217/rme.10.21] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2, OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length, telomerase activity and telomere-related gene expression. In addition, we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However, iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background, we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells, had telomerase activity, expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However, the clone EH3, with relatively high levels of telomerase activity, progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However, the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
Collapse
Affiliation(s)
- H Vaziri
- Ontario Cancer Institute/PMH, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Gamm DM, Meyer JS. Directed differentiation of human induced pluripotent stem cells: a retina perspective. Regen Med 2010; 5:315-7. [PMID: 20455642 DOI: 10.2217/rme.10.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
229
|
Bharti K, Miller SS, Arnheiter H. The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 2010; 24:21-34. [PMID: 20846177 DOI: 10.1111/j.1755-148x.2010.00772.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Compared with neural crest-derived melanocytes, retinal pigment epithelium (RPE) cells in the back of the eye are pigment cells of a different kind. They are a part of the brain, form an epithelial monolayer, respond to distinct extracellular signals, and provide functions that far exceed those of a light-absorbing screen. For instance, they control nutrient and metabolite flow to and from the retina, replenish 11-cis-retinal by re-isomerizing all-trans-retinal generated during photoconversion, phagocytose daily a portion of the photoreceptors' outer segments, and secrete cytokines that locally control the innate and adaptive immune systems. Not surprisingly, RPE cell damage is a major cause of human blindness worldwide, with age-related macular degeneration a prevalent example. RPE replacement therapies using RPE cells generated from embryonic or induced pluripotent stem cells provide a novel approach to a rational treatment of such forms of blindness. In fact, RPE-like cells can be obtained relatively easily when stem cells are subjected to a two-step induction protocol, a first step that leads to a neuroectodermal fate and a second to RPE differentiation. Here, we discuss the characteristics of such cells, propose criteria they should fulfill in order to be considered authentic RPE cells, and point out the challenges one faces when using such cells in attempts to restore vision.
Collapse
Affiliation(s)
- Kapil Bharti
- Mammalian Development Section, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | | | | |
Collapse
|
230
|
Westenskow PD, McKean JB, Kubo F, Nakagawa S, Fuhrmann S. Ectopic Mitf in the embryonic chick retina by co-transfection of β-catenin and Otx2. Invest Ophthalmol Vis Sci 2010; 51:5328-35. [PMID: 20463321 PMCID: PMC3066625 DOI: 10.1167/iovs.09-5015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/26/2010] [Accepted: 04/15/2010] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Development of the retinal pigment epithelium (RPE) is controlled by intrinsic and extrinsic regulators including orthodenticle homeobox 2 (Otx2) and the Wnt/β-catenin pathway, respectively. Otx2 and β-catenin are necessary for the expression of the RPE key regulator microphthalmia-associated transcription factor (Mitf); however, neither factor is sufficient to promote Mitf expression in vivo. The study was conducted to determine whether Otx2 and β-catenin act in a combinatorial manner and tested whether co-expression in the presumptive chick retina induces ectopic Mitf expression. METHODS The sufficiency of Wnt/β-catenin activation and/or Otx2 expression to induce RPE-specific gene expression was examined in chick optic vesicle explant cultures or in the presumptive neural retina using in ovo-electroporation. Luciferase assays were used to examine the transactivation potentials of Otx2 and β-catenin on the Mitf-D enhancer and autoregulation of the Mitf-D and Otx2T0 enhancers. RESULTS In optic vesicles explant cultures, RPE-specific gene expression was activated by lithium chloride, a Wnt/β-catenin agonist. However, in vivo, Mitf was induced only in the presumptive retina if both β-catenin and Otx2 are co-expressed. Furthermore, both Mitf and Otx2 can autoregulate their own enhancers in vitro. CONCLUSIONS The present study provides evidence that β-catenin and Otx2 are sufficient, at least in part, to convert retinal progenitor cells into presumptive RPE cells expressing Mitf. Otx2 may act as a competence factor that allows RPE specification in concert with additional RPE-promoting factors such as β-catenin.
Collapse
Affiliation(s)
- Peter D. Westenskow
- From the Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
- the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah; and
| | - Jon B. McKean
- From the Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Fumi Kubo
- the RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | - Sabine Fuhrmann
- From the Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
- the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
231
|
Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for Retinitis Pigmentosa: Transplantation 2010 April 27;89 (8): 911-919. Ann Neurosci 2010; 17:185-6. [PMID: 25205903 PMCID: PMC4117017 DOI: 10.5214/ans.0972.7531.1017408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022] Open
|
232
|
Marchetti V, Krohne TU, Friedlander DF, Friedlander M. Stemming vision loss with stem cells. J Clin Invest 2010; 120:3012-21. [PMID: 20811157 DOI: 10.1172/jci42951] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dramatic advances in the field of stem cell research have raised the possibility of using these cells to treat a variety of diseases. The eye is an excellent target organ for such cell-based therapeutics due to its ready accessibility, the prevalence of vasculo- and neurodegenerative diseases affecting vision, and the availability of animal models to demonstrate proof of concept. In fact, stem cell therapies have already been applied to the treatment of disease affecting the ocular surface, leading to preservation of vision. Diseases in the back of the eye, such as macular degeneration, diabetic retinopathy, and inherited retinal degenerations, present greater challenges, but rapidly emerging stem cell technologies hold the promise of autologous grafts to stabilize vision loss through cellular replacement or paracrine rescue effects.
Collapse
Affiliation(s)
- Valentina Marchetti
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
233
|
Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS, Lanza R. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010; 28:704-12. [PMID: 20155819 DOI: 10.1002/stem.321] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human induced pluripotent stem cells (hiPSC) have been shown to differentiate into a variety of replacement cell types. Detailed evaluation and comparison with their human embryonic stem cell (hESC) counterparts is critical for assessment of their therapeutic potential. Using established methods, we demonstrate here that hiPSCs are capable of generating hemangioblasts/blast cells (BCs), endothelial cells, and hematopoietic cells with phenotypic and morphologic characteristics similar to those derived from hESCs, but with a dramatic decreased efficiency. Furthermore, in distinct contrast with the hESC derivatives, functional differences were observed in BCs derived from hiPSCs, including significantly increased apoptosis, severely limited growth and expansion capability, and a substantially decreased hematopoietic colony-forming capability. After further differentiation into erythroid cells, >1,000-fold difference in expansion capability was observed in hiPSC-BCs versus hESC-BCs. Although endothelial cells derived from hiPSCs were capable of taking up acetylated low-density lipoprotein and forming capillary-vascular-like structures on Matrigel, these cells also demonstrated early cellular senescence (most of the endothelial cells senesced after one passage). Similarly, retinal pigmented epithelium cells derived from hiPSCs began senescing in the first passage. Before clinical application, it will be necessary to determine the cause and extent of such abnormalities and whether they also occur in hiPSCs generated using different reprogramming methods.
Collapse
Affiliation(s)
- Qiang Feng
- Stem Cell and Regenerative Medicine International, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Nistor G, Seiler MJ, Yan F, Ferguson D, Keirstead HS. Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. J Neurosci Methods 2010; 190:63-70. [DOI: 10.1016/j.jneumeth.2010.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/30/2022]
|
235
|
Abstract
Stem cells represent a unique opportunity for regenerative medicine to cure a broad number of diseases for which current treatment only alleviates symptoms or retards further disease progression. However, the number of stem cells available has speedily increased these past 10 years and their diversity presents new challenges to clinicians and basic scientists who intend to use them in clinics or to study their unique properties. In addition, the recent possibility to derive pluripotent stem cells from somatic cells using epigenetic reprogramming has further increased the clinical interest of stem cells since induced pluripotent stem cells could render personalized cell-based therapy possible. The present review will attempt to summarize the advantages and challenges of each type of stem cell for current and future clinical applications using specific examples.
Collapse
|
236
|
Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010; 89:911-9. [PMID: 20164818 PMCID: PMC2855750 DOI: 10.1097/tp.0b013e3181d45a61] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. METHODS Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RESULTS RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. CONCLUSIONS ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Joaquin Tosi
- Department of Ophthalmology, Columbia University, New York City, NY
| | | | - Chai Lin Chou
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Jian Kong
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Nancy Parmalee
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Genetics and Development, Columbia University, New York, NY
| | - Katherine J. Wert
- Department of Ophthalmology, Columbia University, New York City, NY
- Institute of Human Nutrient, Columbia University, New York, NY
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chyuan-Sheng Lin
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| |
Collapse
|
237
|
Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C, Sergeev Y, Chen W, Edwards AO, Stambolian D, Abecasis G, Swaroop A, Munson PJ, Miller SS. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet 2010; 19:2468-86. [PMID: 20360305 PMCID: PMC2876890 DOI: 10.1093/hmg/ddq129] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases.
Collapse
Affiliation(s)
- N V Strunnikova
- Ophthalmic Genetics & Visual Function Branch, NIH, Bethesda, MD 20892-2510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun 2010; 394:877-83. [PMID: 20206598 DOI: 10.1016/j.bbrc.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 01/17/2023]
Abstract
PURPOSE Photoreceptors cannot regenerate and recover their functions once disordered. Transplantation of retinal pigment epithelium (RPE) has recently become a possible therapeutic approach for retinal degeneration. In the present study, we investigated the induction of photoreceptors by coculturing primate embryonic stem cells (ESCs) with ESC-derived RPE cells. METHODS RPE cells were derived by coculturing ESCs and Sertoli cells. Photoreceptors were then induced by using ESC-derived RPE cells and retinoic acid (RA) RESULTS: RPE cell generation was confirmed by morphological analysis, which revealed highly pigmented polygonal cells with a compact cell-cell arrangement. After coculturing ESCs and RPE cells, some ESC derivatives became immunopositive for rhodopsin. RT-PCR analysis demonstrated the expression of retina-related gene markers such as Pax6, CRX, IRBP, rhodopsin, rhodopsin kinase, and Muschx10A. When RA was added, a distinct increase in the expression of photoreceptor-specific proteins and genes was found. In addition, the differentiation of bipolar horizontal cells was demonstrated by protein and gene expression. The ESCs that were cocultured with RPE cells and treated with RA were transplanted into the renal capsule or intra-vitreal space of nude mice. Grafted ESC derivatives demonstrated extensive rhodopsin expression, and they survived and organized into recipient tissues, although they formed teratomas. CONCLUSION These results indicate that coculturing ESCs with ESC-derived RPE cells is a useful and efficient method for inducing photoreceptors and providing an insight into the use of ESCs for retina regeneration.
Collapse
|
239
|
Abstract
Retinal degenerative diseases are the leading cause of incurable blindness worldwide. Furthermore, existing pharmacological and surgical interventions are only partially effective in halting disease progression, thus adjunctive neuroprotective strategies are desperately needed to preserve vision. Stem cells appear to possess inherent neuroprotective abilities, at least in part by providing neurotrophic support to injured neurons. Advances in stem cell biology offer the hope of new therapies for a broad range of neurodegenerative conditions, including those of the retina. Experimental cell-mediated therapies also hint at the tantalizing possibility of achieving retinal neuronal replacement and regeneration, once cells are lost to the disease process. This article summarizes the latest advances in cell therapies for neuroprotection and regeneration in neurodegenerative pathologies of both the inner and outer retina.
Collapse
Affiliation(s)
- Natalie D Bull
- Cambridge Centre for Brain Repair, Cambridge, CB2 0PY, UK
| | | |
Collapse
|
240
|
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 2009; 5:396-408. [PMID: 19796620 DOI: 10.1016/j.stem.2009.07.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 05/10/2009] [Accepted: 07/07/2009] [Indexed: 01/05/2023]
Abstract
Dysfunction and loss of retinal pigment epithelium (RPE) leads to degeneration of photoreceptors in age-related macular degeneration and subtypes of retinitis pigmentosa. Human embryonic stem cells (hESCs) may serve as an unlimited source of RPE cells for transplantation in these blinding conditions. Here we show the directed differentiation of hESCs toward an RPE fate under defined culture conditions. We demonstrate that nicotinamide promotes the differentiation of hESCs to neural and subsequently to RPE fate. In the presence of nicotinamide, factors from the TGF-beta superfamily, which presumably pattern RPE development during embryogenesis, further direct RPE differentiation. The hESC-derived pigmented cells exhibit the morphology, marker expression, and function of authentic RPE and rescue retinal structure and function after transplantation to an animal model of retinal degeneration caused by RPE dysfunction. These results are an important step toward the future use of hESCs to replenish RPE in blinding diseases.
Collapse
Affiliation(s)
- Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Retinal pigment epithelium (RPE) is a valuable cell type for a number of blinding disorders. In this issue of Cell Stem Cell, Idelson et al. (2009) use Nicotinamide and Activin A to markedly improve RPE yield from human embryonic stem cells.
Collapse
Affiliation(s)
- Barbara Corneo
- New York Neural Stem Cell Institute, One Discovery Drive, Rensselaer, NY 12144, USA
| | | |
Collapse
|
242
|
Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009; 27:2126-35. [PMID: 19521979 DOI: 10.1002/stem.149] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early-onset blindness. Here we show long-term functional rescue using hESC-derived RPE in both the RCS rat and Elov14 mouse, which are animal models of retinal degeneration and Stargardt, respectively. Good Manufacturing Practice-compliant hESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice-compliant study was carried out in the NIH III immune-deficient mouse model. Long-term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC-RPE transplantation. These results suggest that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases.
Collapse
Affiliation(s)
- Bin Lu
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJK, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 2009; 4:e8152. [PMID: 19997644 PMCID: PMC2780911 DOI: 10.1371/journal.pone.0008152] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/06/2009] [Indexed: 12/16/2022] Open
Abstract
Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs). These induced pluripotent stem (iPS) cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD), the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE). As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS) dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.
Collapse
Affiliation(s)
- Amanda-Jayne Carr
- Department of Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO. Derivation of Functional Retinal Pigmented Epithelium from Induced Pluripotent Stem Cells. Stem Cells 2009; 27:2427-34. [DOI: 10.1002/stem.189] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
245
|
Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 2009; 106:16698-703. [PMID: 19706890 PMCID: PMC2757802 DOI: 10.1073/pnas.0905245106] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells have the potential to provide comprehensive model systems for the earliest stages of human ontogenesis. To serve in this capacity, these cells must undergo a targeted, stepwise differentiation process that follows a normal developmental timeline. Here we demonstrate the ability of both human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells to meet these requirements for human retinogenesis. Upon differentiation, hESCs initially yielded a highly enriched population of early eye field cells. Thereafter, a subset of cells acquired features of advancing retinal differentiation in a sequence and time course that mimicked in vivo human retinal development. Application of this culture method to a human iPS cell line also generated retina-specific cell types at comparable times in vitro. Lastly, altering endogenous signaling during differentiation affected lineage-specific gene expression in a manner consistent with established mechanisms of early neural and retinal cell fate determination. These findings should aid in the investigation of the molecular events governing retinal specification from human pluripotent stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Su-Chun Zhang
- Stem Cell Research Program, Waisman Center
- Departments of Anatomy and Neurology
| | - David M. Gamm
- Stem Cell Research Program, Waisman Center
- Department of Ophthalmology and Visual Sciences, and
- Eye Research Institute, 1500 Highland Avenue, University of Wisconsin-Madison, Madison WI 53705
| |
Collapse
|
246
|
Abstract
PURPOSE OF REVIEW Stem-cell research is being investigated for the treatment of retina diseases. Cell replacement strategies have the potential to improve vision in patients who were previously considered to be untreatable. This review summarizes progress within the field and obstacles which must be overcome to make stem-cell therapy a viable treatment for select retinal disease. RECENT FINDINGS Researchers have demonstrated that stem-cell transplants can survive, migrate, differentiate, and integrate within the retina. Stem cells from various developmental stages have been used in these experiments, including embryonic stem cells, neural stem cells, mesenchymal stem cells, retinal stem cells, and adult stem cells from the ciliary margin. Not only can these transplants adopt retina-like morphologies and phenotypes, but they have also shown evidence of synaptic reconnection and visual recovery in both animal and human studies. Still, work must be done to achieve higher yields of functioning retinal neurons and to promote better integration within the host retina. SUMMARY Although many obstacles remain, stem-cell-based therapy is a promising treatment to restore vision in patients with retina disease.
Collapse
|
247
|
Abstract
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. They can maintain an undifferentiated state indefinitely and can differentiate into derivatives of all three germ layers, namely ectoderm, endoderm and mesoderm. Although much progress has been made in the propagation and differentiation of ES cells, induction of photoreceptors has generally required coculture with or transplantation into developing retinal tissue. Here, we describe a protocol for generating retinal cells from ES cells by stepwise treatment with defined factors. This method preferentially induces photoreceptor and retinal pigment epithelium (RPE) cells from mouse and human ES cells. In our protocol, differentiation of RPE and photoreceptors from mouse ES cells requires 28 d and the differentiation of human ES cells into mature RPE and photoreceptors requires 120 and 150 d, respectively. This differentiation system and the resulting pluripotent stem cell-derived retinal cells will facilitate the development of transplantation therapies for retinal diseases, drug testing and in vitro disease modeling. It will also improve our understanding of the development of the central nervous system, especially the eye.
Collapse
|
248
|
Lamba DA, Karl MO, Reh TA. Strategies for retinal repair: cell replacement and regeneration. PROGRESS IN BRAIN RESEARCH 2009; 175:23-31. [PMID: 19660646 DOI: 10.1016/s0079-6123(09)17502-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The retina, like most other regions of the central nervous system, is subject to degeneration from both genetic and acquired causes. Once the photoreceptors or inner retinal neurons have degenerated, they are not spontaneously replaced in mammals. In this review, we provide an overview of retinal development and regeneration with emphasis on endogenous repair and replacement seen in lower vertebrates and recent work on induced mammalian retinal regeneration from Müller glia. Additionally, recent studies demonstrating the potential for cellular replacement using postmitotic photoreceptors and embryonic stem cells are also reviewed.
Collapse
Affiliation(s)
- Deepak A Lamba
- Department of Biological Structure, Institute of Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
249
|
Osakada F, Hirami Y, Takahashi M. Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 2009; 26:297-334. [DOI: 10.5661/bger-26-297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
250
|
Nöjd N, Ilmarinen T, Lehtonen L, Skottman H, Suuronen R, Hyttinen J. Using MEA system in verifying the functionality of retinal pigment epithelium cells differentiated from human embryonic stem cells. IFMBE PROCEEDINGS 2009. [DOI: 10.1007/978-3-540-89208-3_547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|