201
|
Xing G, Barry ES, Benford B, Grunberg NE, Li H, Watson WD, Sharma P. Impact of repeated stress on traumatic brain injury-induced mitochondrial electron transport chain expression and behavioral responses in rats. Front Neurol 2013; 4:196. [PMID: 24376434 PMCID: PMC3859919 DOI: 10.3389/fneur.2013.00196] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022] Open
Abstract
A significant proportion of the military personnel returning from Iraq and Afghanistan conflicts have suffered from both mild traumatic brain injury (mTBI) and post-traumatic stress disorder. The mechanisms are unknown. We used a rat model of repeated stress and mTBI to examine brain activity and behavioral function. Adult male Sprague-Dawley rats were divided into four groups: Naïve; 3 days repeated tail-shock stress; lateral fluid percussion mTBI; and repeated stress followed by mTBI (S-mTBI). Open field activity, sensorimotor responses, and acoustic startle responses (ASRs) were measured at various time points after mTBI. The protein expression of mitochondrial electron transport chain (ETC) complex subunits (CI-V) and pyruvate dehydrogenase (PDHE1α1) were determined in four brain regions at day 7-post mTBI. Compared to Naïves, repeated stress decreased horizontal activity; repeated stress and mTBI both decreased vertical activity; and the mTBI and S-mTBI groups were impaired in sensorimotor and ASRs. Repeated stress significantly increased CI, CII, and CIII protein levels in the prefrontal cortex (PFC), but decreased PDHE1α1 protein in the PFC and cerebellum, and decreased CIV protein in the hippocampus. The mTBI treatment decreased CV protein levels in the ipsilateral hippocampus. The S-mTBI treatment resulted in increased CII, CIII, CIV, and CV protein levels in the PFC, increased CI level in the cerebellum, and increased CIII and CV levels in the cerebral cortex, but decreased CI, CII, CIV, and PDHE1α1 protein levels in the hippocampus. Thus, repeated stress or mTBI alone differentially altered ETC expression in heterogeneous brain regions. Repeated stress followed by mTBI had synergistic effects on brain ETC expression, and resulted in more severe behavioral deficits. These results suggest that repeated stress could have contributed to the high incidence of long-term neurologic and neuropsychiatric morbidity in military personnel with or without mTBI.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Anesthesiology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Erin S Barry
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Brandi Benford
- Department of Anesthesiology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Neil E Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - He Li
- Department of Psychiatry, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - William D Watson
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
202
|
Forcelli PA, Kalikhman D, Gale K. Delayed effect of craniotomy on experimental seizures in rats. PLoS One 2013; 8:e81401. [PMID: 24324691 PMCID: PMC3852486 DOI: 10.1371/journal.pone.0081401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/21/2013] [Indexed: 12/02/2022] Open
Abstract
Neurosurgical therapeutic interventions include components that are presumed to be therapeutically inert, such as craniotomy and electrode implantation. Because these procedures may themselves exert neuroactive actions, with anecdotal evidence suggesting that craniotomy and electrode placement may have a particularly significant impact on epileptic seizures, the importance of their inclusion in sham control groups has become more compelling. Here we set out to test the hypothesis that craniotomy alone is sufficient to alter experimental seizures in rats. We tested adult male rats for seizures evoked by pentylenetetrazole (70 mg/kg) between 3 and 20 days following placement of bilateral craniotomies (either 2.5 or 3.5 mm in diameter) in the parietal bone of the skull, without penetrating the dura. Control (sham-operated) animals underwent anesthesia and surgery without craniotomy. We found that craniotomy significantly decreased the severity of experimental seizures on postoperative days 3, 6, and 10; this effect was dependent on the size of craniotomy. Animals with craniotomies returned to control seizure severity by 20 days post-craniotomy. These data support the hypothesis that damage to the skull is sufficient to cause a significant alteration in seizure susceptibility over an extended postoperative period, and indicate that this damage should not be considered neurologically inert.
Collapse
Affiliation(s)
- Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States of America
| | - David Kalikhman
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States of America
| | - Karen Gale
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
203
|
Robertson CL, Saraswati M, Scafidi S, Fiskum G, Casey P, McKenna MC. Cerebral glucose metabolism in an immature rat model of pediatric traumatic brain injury. J Neurotrauma 2013; 30:2066-72. [PMID: 24032394 DOI: 10.1089/neu.2013.3007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Altered cerebral metabolism and mitochondrial function have been identified in experimental and clinical studies of pediatric traumatic brain injury (TBI). Metabolic changes detected using (1)H (proton) magnetic resonance spectroscopy correlate with long-term outcomes in children after severe TBI. We previously identified early (4-h) and sustained (24-h and 7-day) abnormalities in brain metabolites after controlled cortical impact (CCI) in immature rats. The current study aimed to identify specific alterations of cerebral glucose metabolism at 24 h after TBI in immature rats. Rats (postnatal days 16-18) underwent CCI to the left parietal cortex. Sham rats underwent craniotomy only. Twenty-four hours after CCI, rats were injected (intraperitoneally) with [1,6-(13)C]glucose. Brains were removed, separated into hemispheres, and frozen. Metabolites were extracted with perchloric acid and analyzed using (1)H and (13)C-nuclear magnetic resonance spectroscopy. TBI resulted in decreases in N-acetylaspartate in both hemispheres, compared to sham contralateral. At 24 h after TBI, there was significant decrease in the incorporation of (13)C label into [3-(13)C]glutamate and [2-(13)C]glutamate in the injured brain. There were no differences in percent enrichment of [3-(13)C]glutamate, [4-(13)C]glutamate, [3-(13)C]glutamine, or [4-(13)C]glutamine. There was significantly lower percent enrichment of [2-(13)C]glutamate in both TBI sides and the sham craniotomy side, compared to sham contralateral. No differences were detected in enrichment of (13)C glucose label in [2-(13)C]glutamine, [2-(13)C]GABA (gamma-aminobutyric acid), [3-(13)C]GABA, or [4-(13)C]GABA, [3-(13)C]lactate, or [3-(13)C]alanine between groups. Results suggest that overall oxidative glucose metabolism in the immature brain recovers at 24 h after TBI. Specific reductions in [2-(13)C]glutamate could be the result of impairments in either neuronal or astrocytic metabolism. Future studies should aim to identify pathways leading to decreased metabolism and develop cell-selective "metabolic rescue."
Collapse
Affiliation(s)
- Courtney L Robertson
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
204
|
Radomski KL, Zhou Q, Yi KJ, Doughty ML. Cortical contusion injury disrupts olfactory bulb neurogenesis in adult mice. BMC Neurosci 2013; 14:142. [PMID: 24224996 PMCID: PMC3830448 DOI: 10.1186/1471-2202-14-142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
Background Experimental brain trauma activates quiescent neural stem cells (NSCs) to increase neuronal progenitor cell proliferation in the adult rodent brain. Previous studies have shown focal brain contusion in the form of a unilateral controlled cortical impact (CCI) stimulates NSCs to bilaterally increase neurogenesis in the adult hippocampus. Results In this study we clarified the bi-lateral effects of a unilateral CCI on proliferation in the subventricular zone (SVZ) NSC niche and on neurogenesis in the olfactory bulb of adult mice. By varying the depth of impact from 1 mm to 2 mm depth, we show CCI to the left somatosensory cortex resulted in graded changes in mouse behavior and cellular pathology in the forebrain. As expected, contusion to the sensorimotor cortex resulted in motor coordination deficits in adult mice. During the first 3 days after injury, CCI increased proliferation in the impacted cortex, deeper striatum and SVZ of the forebrain ipsilateral to the CCI. In each of these regions proliferation was increased with increasing injury severity. At 30 days post-procedure, CCI resulted in a significant reduction in neurogenesis in the olfactory bulb ipsilateral to the CCI. Olfactory avoidance testing indicated disruptions in olfactory bulb neurogenesis were associated with impaired olfactory discrimination in mice post-injury. Conclusion The data demonstrate a focal cortical contusion injury to the left somatosensory cortex disrupts SVZ-olfactory bulb neurogenesis and impairs olfactory discrimination and motor coordination in adult mice.
Collapse
Affiliation(s)
| | | | | | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine (CNRM), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
205
|
Potter KA, Buck AC, Self WK, Callanan ME, Sunil S, Capadona JR. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials 2013; 34:7001-15. [PMID: 23791503 DOI: 10.1016/j.biomaterials.2013.05.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
The current study seeks to elucidate a biological mechanism which may mediate neuroinflammation, and decreases in both blood-brain barrier stability and neuron viability at the intracortical microelectrode-tissue interface. Here, we have focused on the role of pro-inflammatory reactive oxygen species. Specifically, adult rats implanted within intracortical microelectrodes were systemically administered the anti-oxidant, resveratrol, both the day before and the day of surgery. Animals were sacrificed at two or four weeks post-implantation for histological analysis of the neuroinflammatory and neurodegenerative responses to the microelectrode. At two weeks post-implantation, we found animals treated with resveratrol demonstrated suppression of reactive oxygen species accumulation and blood-brain barrier instability, accompanied with increased density of neurons at the intracortical microelectrode-tissue interface. Four weeks post-implantation, animals treated with resveratrol exhibited indistinguishable levels of markers for reactive oxygen species and neuronal nuclei density in comparison to untreated control animals. However, of the neurons that remained, resveratrol treated animals were seen to display reductions in the density of degenerative neurons compared to control animals at both two and four weeks post-implantation. Initial mechanistic evaluation suggested the roles of both anti-oxidative enzymes and toll-like receptor 4 expression in facilitating microglia activation and the propagation of neurodegenerative inflammatory pathways. Collectively, our data suggests that short-term attenuation of reactive oxygen species accumulation and blood-brain barrier instability can result in prolonged improvements in neuronal viability around implanted intracortical microelectrodes, while also identifying potential therapeutic targets to reduce chronic intracortical microelectrode-mediated neurodegeneration.
Collapse
Affiliation(s)
- Kelsey A Potter
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
206
|
Russell KL, Berman NEJ, Levant B. Low brain DHA content worsens sensorimotor outcomes after TBI and decreases TBI-induced Timp1 expression in juvenile rats. Prostaglandins Leukot Essent Fatty Acids 2013; 89:97-105. [PMID: 23796971 PMCID: PMC3753049 DOI: 10.1016/j.plefa.2013.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
The effects of dietary modulation of brain DHA content on outcomes after TBI were examined in a juvenile rat model. Long-Evans rats with normal or diet-induced decreases in brain DHA were subjected to a controlled cortical impact or sham surgery on postnatal day 17. Rats with the greatest decreases in brain DHA had the poorest sensorimotor outcomes after TBI. Ccl2, Gfap, and Mmp 9 mRNA levels, and MMP-2 and -9 enzymatic activities were increased after TBI regardless of brain DHA level. Lesion volume was not affected by brain DHA level. In contrast, TBI-induced Timp1 expression was lower in rats on the Deficient diet and correlated with brain DHA level. These data suggest that decreased brain DHA content contributes to poorer sensorimotor outcomes after TBI through a mechanism involving modulation of Timp1 expression.
Collapse
Affiliation(s)
- Kristin L. Russell
- Department of Pharmacology, Toxicology, and Therapeutics, 3901 Rainbow Blvd., University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Nancy E. J. Berman
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, 3901 Rainbow Blvd., University of Kansas Medical Center, Kansas City, KS 66160 USA
- Corresponding author: Department of Pharmacology, University of Kansas Medical Center, Mail Stop 1018, 3901 Rainbow Blvd., Kansas City, KS 66160, Phone: 1 913 588 7527, Fax: 1 913 588 7501,
| |
Collapse
|
207
|
Voigts J, Siegle JH, Pritchett DL, Moore CI. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Front Syst Neurosci 2013; 7:8. [PMID: 23717267 PMCID: PMC3652307 DOI: 10.3389/fnsys.2013.00008] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/25/2013] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological recordings from ensembles of neurons in behaving mice are a central tool in the study of neural circuits. Despite the widespread use of chronic electrophysiology, the precise positioning of recording electrodes required for high-quality recordings remains a challenge, especially in behaving mice. The complexity of available drive mechanisms, combined with restrictions on implant weight tolerated by mice, limits current methods to recordings from no more than 4-8 electrodes in a single target area. We developed a highly miniaturized yet simple drive design that can be used to independently position 16 electrodes with up to 64 channels in a package that weighs ~2 g. This advance over current designs is achieved by a novel spring-based drive mechanism that reduces implant weight and complexity. The device is easy to build and accommodates arbitrary spatial arrangements of electrodes. Multiple optical fibers can be integrated into the recording array and independently manipulated in depth. Thus, our novel design enables precise optogenetic control and highly parallel chronic recordings of identified single neurons throughout neural circuits in mice.
Collapse
Affiliation(s)
- Jakob Voigts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Neuroscience, Brown University Providence, RI, USA
| | | | | | | |
Collapse
|
208
|
Sebastian V, Diallo A, Ling DSF, Serrano PA. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze. Front Behav Neurosci 2013; 7:38. [PMID: 23653600 PMCID: PMC3642509 DOI: 10.3389/fnbeh.2013.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/18/2013] [Indexed: 11/13/2022] Open
Abstract
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI.
Collapse
Affiliation(s)
| | | | - Douglas S. F. Ling
- Department of Physiology and Pharmacology, SUNY Downstate Medical CenterBrooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical CenterBrooklyn, NY, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter CollegeNew York, NY, USA
- Department of Psychology, The Graduate Center of CUNYNew York, NY, USA
| |
Collapse
|
209
|
Ekmark-Lewén S, Flygt J, Kiwanuka O, Meyerson BJ, Lewén A, Hillered L, Marklund N. Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes. J Neuroinflammation 2013; 10:44. [PMID: 23557178 PMCID: PMC3651302 DOI: 10.1186/1742-2094-10-44] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/07/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diffuse traumatic axonal injury (TAI), a common consequence of traumatic brain injury, is associated with high morbidity and mortality. Inflammatory processes may play an important role in the pathophysiology of TAI. In the central fluid percussion injury (cFPI) TAI model in mice, the neuroinflammatory and astroglial response and behavioral changes are unknown. METHODS Twenty cFPI-injured and nine sham-injured mice were used, and the neuroinflammatory and astroglial response was evaluated by immunohistochemistry at 1, 3 and 7 days post-injury. The multivariate concentric square field test (MCSF) was used to compare complex behavioral changes in mice subjected to cFPI (n = 16) or sham injury (n = 10). Data was analyzed using non-parametric statistics and principal component analysis (MCSF data). RESULTS At all post-injury time points, β-amyloid precursor protein (β-APP) immunoreactivity revealed widespread bilateral axonal injury and IgG immunostaining showed increased blood-brain barrier permeability. Using vimentin and glial fibrillary acidic protein (GFAP) immunohistochemistry, glial cell reactivity was observed in cortical regions and important white matter tracts peaking at three days post-injury. Only vimentin was increased post-injury in the internal capsule and only GFAP in the thalamus. Compared to sham-injured controls, an increased number of activated microglia (MAC-2), infiltrating neutrophils (GR-1) and T-cells (CD3) appearing one day after TAI (P<0.05 for all cell types) was observed in subcortical white matter. In the MCSF, the behavioral patterns including general activity and exploratory behavior differed between cFPI mice and sham-injured controls. CONCLUSIONS Traumatic axonal injury TAI resulted in marked bilateral astroglial and neuroinflammatory responses and complex behavioral changes. The cFPI model in mice appears suitable for the study of injury mechanisms, including neuroinflammation, and the development of treatments targeting TAI.
Collapse
Affiliation(s)
- Sara Ekmark-Lewén
- Department of Neuroscience, Division of Neurosurgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Johanna Flygt
- Department of Neuroscience, Division of Neurosurgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Olivia Kiwanuka
- Department of Neuroscience, Division of Neurosurgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Bengt J Meyerson
- Department of Neuroscience, Division of Pharmacology, Biomedical Center, Uppsala University, Uppsala, 715 23, Sweden
| | - Anders Lewén
- Department of Neuroscience, Division of Neurosurgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Lars Hillered
- Department of Neuroscience, Division of Neurosurgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Division of Neurosurgery, Uppsala University, Uppsala, 751 85, Sweden
| |
Collapse
|
210
|
Turtzo LC, Budde MD, Gold EM, Lewis BK, Janes L, Yarnell A, Grunberg NE, Watson W, Frank JA. The evolution of traumatic brain injury in a rat focal contusion model. NMR IN BIOMEDICINE 2013; 26:468-479. [PMID: 23225324 PMCID: PMC3596464 DOI: 10.1002/nbm.2886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/28/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
Serial MRI facilitates the in vivo analysis of the intra- and intersubject evolution of traumatic brain injury lesions. Despite the availability of MRI, the natural history of experimental focal contusion lesions in the controlled cortical impact (CCI) rat model has not been well described. We performed CCI on rats and MRI during the acute to chronic stages of cerebral injury to investigate the time course of changes in the brain. Female Wistar rats underwent CCI of their left motor cortex with a flat impact tip driven by an electromagnetic piston. In vivo MRI was performed at 7 T serially over 6 weeks post-CCI. The appearances of CCI-induced lesions and lesion-associated cortical volumes were variable on MRI, with the percentage change in cortical volume of the CCI ipsilateral side relative to the contralateral side ranging from 18% within 2 h of injury on day 0 to a peak of 35% on day 1, and a trough of -28% by week 5/6, with an average standard deviation of ± 14% at any given time point. In contrast, the percentage change in cortical volume of the ipsilateral side relative to the contralateral side in control rats was not significant (1 ± 2%). Hemorrhagic conversion within and surrounding the CCI lesion occurred between days 2 and 9 in 45% of rats, with no hemorrhage noted on the initial scan. Furthermore, hemorrhage and hemosiderin within the lesion were positive for Prussian blue and highly autofluorescent on histological examination. Although some variation in injuries may be technique related, the divergence of similar lesions between initial and final scans demonstrates the inherent biological variability of the CCI rat model.
Collapse
Affiliation(s)
- L. Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D. Budde
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Eric M. Gold
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Bobbi K. Lewis
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Janes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Angela Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William Watson
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Joseph A. Frank
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
211
|
Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA. Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 2013; 4:28. [PMID: 23519723 PMCID: PMC3604640 DOI: 10.3389/fneur.2013.00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/03/2013] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has been reported to increase seizure susceptibility and also contribute to the development of epilepsy. However, the mechanistic basis of the development of increased seizure susceptibility and epilepsy is not clear. Though there is substantial work done using rats, data are lacking regarding the use of mice in the fluid percussion injury (FPI) model. It is unclear if mice, like rats, will experience increased seizure susceptibility following FPI. The availability of a mouse model of increased seizure susceptibility after FPI would provide a basis for the use of genetically modified mice to study mechanism(s) of the development of post-traumatic epilepsy. Therefore, this study was designed to test the hypothesis that, mice subjected to a FPI develop increased seizure susceptibility to a subconvulsive dose of the chemoconvulsant, pentylenetetrazole (PTZ). Three groups of mice were used: FPI, sham, and naïve controls. On day 30 after FPI, mice from the three groups were injected with PTZ. The results showed that FPI mice exhibited an increased severity, frequency, and duration of seizures in response to PTZ injection compared with the sham and naïve control groups. Histopathological assessment was used to characterize the injury at 1, 3, 7, and 30 days after FPI. The results show that mice subjected to the FPI had a pronounced lesion and glial response that was centered at the FPI focus and peaked at 3 days. By 30 days, only minimal evidence of a lesion is observed, although there is evidence of a chronic glial response. These data are the first to demonstrate an early increase in seizure susceptibility following FPI in mice. Therefore, future studies can incorporate transgenic mice into this model to further elucidate mechanisms of TBI-induced increases in seizure susceptibility.
Collapse
Affiliation(s)
- Sanjib Mukherjee
- Department of Surgery, Scott and White Hospital Temple, TX, USA ; Central Texas Veterans Health Care System Temple, TX, USA
| | | | | | | |
Collapse
|
212
|
Mouzon B, Chaytow H, Crynen G, Bachmeier C, Stewart J, Mullan M, Stewart W, Crawford F. Repetitive Mild Traumatic Brain Injury in a Mouse Model Produces Learning and Memory Deficits Accompanied by Histological Changes. J Neurotrauma 2012; 29:2761-73. [DOI: 10.1089/neu.2012.2498] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benoit Mouzon
- Roskamp Institute, Sarasota, Florida
- James A. Haley Veterans Administration Medical Center, Tampa, Florida
- The Open University, Department of Life Sciences, Milton Keynes, United Kingdom
| | - Helena Chaytow
- Roskamp Institute, Sarasota, Florida
- University of Cardiff, School of Biosciences, Cardiff, United Kingdom
| | - Gogce Crynen
- Roskamp Institute, Sarasota, Florida
- The Open University, Department of Life Sciences, Milton Keynes, United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute, Sarasota, Florida
- James A. Haley Veterans Administration Medical Center, Tampa, Florida
- The Open University, Department of Life Sciences, Milton Keynes, United Kingdom
| | - Janice Stewart
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, United Kingdom
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida
- James A. Haley Veterans Administration Medical Center, Tampa, Florida
- The Open University, Department of Life Sciences, Milton Keynes, United Kingdom
| | - William Stewart
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, United Kingdom
- University of Glasgow, Department of Neuropathology, Glasgow, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida
- James A. Haley Veterans Administration Medical Center, Tampa, Florida
- The Open University, Department of Life Sciences, Milton Keynes, United Kingdom
| |
Collapse
|
213
|
Sharma P, Su YA, Barry ES, Grunberg NE, Lei Z. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury. Int J Crit Illn Inj Sci 2012. [PMID: 23181213 PMCID: PMC3500011 DOI: 10.4103/2229-5151.100931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Context: Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. Aims: The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Settings and Design: Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2–2.5 atm) and followed up for 7 days. Materials and Methods: Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2–2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale—revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. Results: NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Conclusions: Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.
Collapse
Affiliation(s)
- Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Rockville, Maryland, USA
| | | | | | | | | |
Collapse
|
214
|
Lagraoui M, Latoche JR, Cartwright NG, Sukumar G, Dalgard CL, Schaefer BC. Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Front Neurol 2012; 3:155. [PMID: 23118733 PMCID: PMC3484408 DOI: 10.3389/fneur.2012.00155] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/09/2012] [Indexed: 11/13/2022] Open
Abstract
An immediate consequence of traumatic brain injury (TBI) is the induction of an inflammatory response. Mounting data suggest that inflammation is a major contributor to TBI-induced brain damage. However, much remains unknown regarding the induction and regulation of the inflammatory response to TBI. In this study we compared the TBI-induced inflammatory response to severe parenchymal injury (controlled cortical impact) vs. mild brain injury (craniotomy) over a 21-day period. Our data show that both severe and mild brain injury induce a qualitatively similar inflammatory response, involving highly overlapping sets of effector molecules. However, kinetic analysis revealed that the inflammatory response to mild brain injury is of much shorter duration than the response to severe TBI. Specifically, the inflammatory response to severe brain injury persists for at least 21 days, whereas the response to mild brain injury returns to near baseline values within 10 days post-injury. Our data therefore imply that the development of accurate diagnostic tests of TBI severity that are based on imaging or biomarker analysis of the inflammatory response may require repeated measures over at least a 10-day period, post-injury.
Collapse
Affiliation(s)
- Mouna Lagraoui
- Department of Microbiology and Immunology, Uniformed Services University Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
215
|
Different sham procedures for rats in traumatic brain injury experiments induce corresponding increases in levels of trauma markers. J Surg Res 2012; 179:138-44. [PMID: 23122667 DOI: 10.1016/j.jss.2012.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND In traumatic brain injury animal models, sham or naïve control groups are often used for the analysis of injured animals; however, the existence and/or significance of differences in the control groups has yet to be studied. In addition, recent controversies regarding the decompressive craniectomy trial in which decompressive craniectomies in patients with severe traumatic brain injury and refractory increased intracranial pressure remains unsettled. Although the report demonstrated that the procedure may result in less favorable long-term outcomes despite the decrease in intracranial pressure and shorter length of intensive care unit stay, the study has been criticized, and the debate is still inconclusive partly because of a lack of mechanistic explanation. We have recently discovered epithelial and endothelial tyrosine kinase (Etk) to exhibit upregulation after traumatic neural injury and will compare the effects of craniectomy procedure with those of other procedures inducing different levels of severity. MATERIALS AND METHODS Four groups of rats receiving different procedures (controlled cortical impact, craniectomy, bicortical drilling, and unicortical drilling [UD]) were compared. Polymerase chain reaction, Western blot analysis, and immunoflorescence staining of Etk, S100, and glial fibrillary acidic protein levels were used to analyze the results and compare the different groups. RESULTS Etk upregulation was statistically significant between craniectomy and UD groups. The level of change for glial fibrillary acidic protein and S100 was only significant when cortex was impacted. CONCLUSIONS UD may be preferable as a sham control procedure over craniectomy or bicortical drilling. Increases in the expression of Etk in the craniectomy group suggest a possible mechanism by which unfavorable outcome occurs in patients receiving craniectomy procedures.
Collapse
|
216
|
Martens KM, Vonder Haar C, Hutsell BA, Hoane MR. A discrimination task used as a novel method of testing decision-making behavior following traumatic brain injury. J Neurotrauma 2012; 29:2505-12. [PMID: 22924664 DOI: 10.1089/neu.2012.2388] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in a multitude of deficits following injury. Some of the most pervasive in humans are the changes that affect frontally-mediated cognitive functioning, such as decision making. The assessment of decision-making behavior in rodents has been extensively tested in the field of the experimental analysis of behavior. However, due to the narrow therapeutic window following TBI, time-intensive operant paradigms are rarely incorporated into the battery of tests traditionally used, the majority of which assess motor and sensory functioning. The cognitive measures that are used are frequently limited to memory and do not account for changes in decision-making behavior. The purpose of the present study was to develop a simplified discrimination task that can assess deficits in decision-making behavior in rodents. For the task, rats were required to dig in cocoa-scented sand (versus unscented sand) for a reinforcer. Rats were given 12 sessions per day until a criterion level of 80% accuracy for 3 days straight was reached. Once the criterion was achieved, cortical contusion injuries were induced (frontal, parietal, or sham). Following a recovery period, the rats were re-tested on cocoa versus unscented sand. Upon reaching criterion, a reversal discrimination was evaluated in which the reinforcer was placed in unscented sand. Finally, a novel scent discrimination (basil versus coffee with basil reinforced), and a reversal (coffee) were evaluated. The results indicated that the Dig task is a simple experimental preparation that can be used to assess deficits in decision-making behavior following TBI.
Collapse
Affiliation(s)
- Kris M Martens
- Restorative Neuroscience Laboratory, Center for Integrative Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
217
|
Amenta PS, Jallo JI, Tuma RF, Elliott MB. A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 2012; 90:2293-305. [PMID: 22903455 DOI: 10.1002/jnr.23114] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 01/28/2023]
Abstract
After traumatic brain injury (TBI), inflammation participates in both the secondary injury cascades and the repair of the CNS, both of which are influenced by the endocannabinoid system. This study determined the effects of repeated treatment with a cannabinoid type 2 receptor (CB(2) R) agonist on blood-brain barrier integrity, neuronal degeneration, and behavioral outcome in mice with TBI. We also looked for the presence of a prolonged treatment effect on the macrophage/microglial response to injury. C57BL/6 mice underwent controlled cortical impact (CCI) and received repeated treatments with a CB(2) R agonist, 0-1966, or vehicle. After euthanasia at 6 hr or 1, 2, 3, or 7 days postinjury, brains were removed for histochemical analysis. Blood-brain barrier permeability changes were evaluated by using sodium fluorescein (NaF). Perilesional degenerating neurons, injury volumes, and macrophage/microglia cells were quantified by stereological methods. Rota-rod and open-field testing were performed to evaluate motor function and natural exploratory behavior in mice. 0-1966 Treatment resulted in a significant reduction in NaF uptake and number of degenerating neurons compared with the vehicle-treated group. 0-1966-Treated mice demonstrated improvement on rota-rod and open-field testing compared with vehicle-treated mice. These changes in CCI mice treated with 0-1966 were associated with a prolonged reduction in macrophage/microglia cell counts. In conclusion, repeated treatments with a CB(2) R agonist, 0-1966, result in attenuated blood-brain barrier disruption and neuronal degeneration. In addition, repeated treatment with 0-1966 shows prolonged treatment effects on behavior and the macrophage/microglia cell response over several days.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
218
|
Schober ME, Block B, Requena DF, Hale MA, Lane RH. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury. Metab Brain Dis 2012; 27:167-73. [PMID: 22527999 PMCID: PMC3383795 DOI: 10.1007/s11011-012-9309-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/15/2012] [Indexed: 01/06/2023]
Abstract
Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.
Collapse
|
219
|
Elliott MB, Oshinsky ML, Amenta PS, Awe OO, Jallo JI. Nociceptive neuropeptide increases and periorbital allodynia in a model of traumatic brain injury. Headache 2012; 52:966-84. [PMID: 22568499 DOI: 10.1111/j.1526-4610.2012.02160.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This study tests the hypothesis that injury to the somatosensory cortex is associated with periorbital allodynia and increases in nociceptive neuropeptides in the brainstem in a mouse model of controlled cortical impact (CCI) injury. METHODS Male C57BL/6 mice received either CCI or craniotomy-only followed by weekly periorbital von Frey (mechanical) sensory testing for up to 28 days post-injury. Mice receiving an incision only and naïve mice were included as control groups. Changes in calcitonin gene-related peptide (CGRP) and substance P (SP) within the brainstem were determined using enzyme-linked immunosorbent assay and immunohistochemistry, respectively. Activation of ionized calcium-binding adaptor molecule-1-labeled macrophages/microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were evaluated using immunohistochemistry because of their potential involvement in nociceptor sensitization. RESULTS Incision-only control mice showed no changes from baseline periorbital von Frey mechanical thresholds. CCI significantly reduced mean periorbital von Frey thresholds (periorbital allodynia) compared with baseline and craniotomy-only at each endpoint, analysis of variance P < .0001. Craniotomy significantly reduced periorbital threshold at 14 days but not 7, 21, or 28 days compared with baseline threshold, P < .01. CCI significantly increased SP immunoreactivity in the brainstem at 7 and 14 days but not 28 days compared with craniotomy-only and controls, P < .001. CGRP levels in brainstem tissues were significantly increased in CCI groups compared with controls (incision-only and naïve mice) or craniotomy-only mice at each endpoint examined, P < .0001. There was a significant correlation between CGRP and periorbital allodynia (P < .0001, r = -0.65) but not for SP (r = 0.20). CCI significantly increased the number of macrophage/microglia in the injured cortex at each endpoint up to 28 days, although cell numbers declined over weeks post-injury, P < .001. GFAP(+) immunoreactivity was significantly increased at 7 but not 14 or 28 days after CCI, P < .001. Craniotomy resulted in transient periorbital allodynia accompanied by transient increases in SP, CGRP, and GFAP immunoreactivity compared with control mice. There was no increase in the number of macrophage/microglia cells compared with controls after craniotomy. CONCLUSION Injury to the somatosensory cortex results in persistent periorbital allodynia and increases in brainstem nociceptive neuropeptides. Findings suggest that persistent allodynia and increased neuropeptides are maintained by mechanisms other than activation of macrophage/microglia or astrocyte in the injured somatosensory cortex.
Collapse
Affiliation(s)
- Melanie B Elliott
- Department of Neurological Surgery, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
220
|
Plantman S, Ng KC, Lu J, Davidsson J, Risling M. Characterization of a novel rat model of penetrating traumatic brain injury. J Neurotrauma 2012; 29:1219-32. [PMID: 22181060 DOI: 10.1089/neu.2011.2182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A penetrating traumatic brain injury (pTBI) occurs when an object impacts the head with sufficient force to penetrate the skin, skull, and meninges, and inflict injury directly to the brain parenchyma. This type of injury has been notoriously difficult to model in small laboratory animals such as rats or mice. To this end, we have established a novel non-fatal model for pTBI based on a modified air rifle that accelerates a pellet, which in turn impacts a small probe that then causes the injury to the experimental animal's brain. In the present study, we have focused on the acute phase and characterized the tissue destruction, including increasing cavity formation, white matter degeneration, hemorrhage, edema, and gliosis. We also used a battery of behavioral models to examine the neurological outcome, with the most noteworthy finding being impairment of reference memory function. In conclusion, we have described a number of events taking place after pTBI in our model. We expect this model will prove useful in our efforts to unravel the biological events underlying injury and regeneration after pTBI and possibly serve as a useful animal model in the development of novel therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Stefan Plantman
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
221
|
Griesbach GS, Vincelli J, Tio DL, Hovda DA. Effects of acute restraint-induced stress on glucocorticoid receptors and brain-derived neurotrophic factor after mild traumatic brain injury. Neuroscience 2012; 210:393-402. [PMID: 22445725 DOI: 10.1016/j.neuroscience.2012.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/23/2012] [Accepted: 03/04/2012] [Indexed: 01/12/2023]
Abstract
We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post-injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either an FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30 min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7, and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain-derived neurotrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors was determined by Western blot analysis. Results indicated injury-dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle-treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14. These findings suggest that the increased sensitivity to stressful events during the first post-injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity.
Collapse
Affiliation(s)
- G S Griesbach
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
222
|
Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD. The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 2012; 5:6. [PMID: 22291617 PMCID: PMC3265961 DOI: 10.3389/fnmol.2012.00006] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.
Collapse
Affiliation(s)
- Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behav Brain Res 2011; 229:145-52. [PMID: 22245525 DOI: 10.1016/j.bbr.2011.12.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/05/2011] [Accepted: 12/11/2011] [Indexed: 11/16/2022]
Abstract
Sub-concussive brain injuries may result in neurophysiological changes, cumulative effects, and neurodegeneration. The current study investigated the effects of a mild lateral fluid percussion injury (0.50-0.99 atm) on rat behavior and neuropathology to address the need to better understand sub-concussive brain injury. Male Long-Evans rats received either a single mild lateral fluid percussion injury or a sham-injury, followed by either a short (24 h) or long (4 weeks) recovery period. After recovery, rats underwent extensive behavioral testing consisting of tasks for rodent cognition, anxiety- and depression-like behaviors, social behavior, and sensorimotor function. At the completion of behavioral testing rats were sacrificed and brains were examined immunohistochemically with markers for neuroinflammation and axonal injury. No significant group differences were found on behavioral and axonal injury measures. However, rats given one mild fluid percussion injury displayed an acute neuroinflammatory response, consisting of increased microglia/macrophages and reactive astrogliosis, at 4 days post-injury. Neuroinflammation is a mechanism with the potential to contribute to the cumulative and neurodegenerative effects of repeated sub-concussive injuries. The current findings are consistent with findings in humans experiencing a sub-concussive blow, and provide support for the use of mild lateral fluid percussion injury in the rat as a model of sub-concussive brain injury.
Collapse
Affiliation(s)
- Sandy R Shultz
- Graduate Program in Neuroscience, Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
224
|
Chen Z, Leung LY, Mountney A, Liao Z, Yang W, Lu XCM, Dave J, Deng-Bryant Y, Wei G, Schmid K, Shear DA, Tortella FC. A novel animal model of closed-head concussive-induced mild traumatic brain injury: development, implementation, and characterization. J Neurotrauma 2011; 29:268-80. [PMID: 21988140 DOI: 10.1089/neu.2011.2057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). While single concussions result in short-term neurologic dysfunction, multiple concussions can result in cumulative damage and increased risk for neurodegenerative disease. Despite the prevalence of concussion, knowledge about what occurs in the brain following this injury is limited, in part due to the limited number of appropriate animal research models. To study clinically relevant concussion we recently developed a simple, non-invasive rodent model of closed-head projectile concussive impact (PCI) TBI. For this purpose, anesthetized rats were placed on a platform positioned above a torque-sealed microcentrifuge tube packed with fixed amounts of dry ice. Upon heating, rapid sublimation of the dry ice produced a build-up of compressed CO(2) that triggered an eruptive force causing the cap to launch as an intact projectile, resulting in a targeted PCI head injury. A stainless steel helmet was implemented to protect the head from bruising, yet allowing the brain to sustain a mild PCI event. Depending on the injury location and the application of the helmet, PCI-induced injuries ranged from severe (i.e., head injury with subdural hematomas, intracranial hemorrhage, and brain tissue damage), to mild (no head injury, intracranial hemorrhage, or gross morphological pathology). Although no gross pathology was evident in mild PCI-induced injury, the following protein changes and behavioral abnormalities were detected between 1 and 24 h after PCI injury: (1) upregulation of glial fibrillary acidic protein (GFAP) in hippocampal regions; (2) upregulation of ubiquitin carboxyl-terminal hydrolase L1 (UCHL-1) in cortical tissue; and (3) significant sensorimotor abnormalities. Overall, these results indicated that this PCI model was capable of replicating salient pathologies of a clinical concussion, and could generate reproducible and quantifiable outcome measures.
Collapse
Affiliation(s)
- Zhiyong Chen
- Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Levy D, Moskowitz MA, Noseda R, Burstein R. Activation of the migraine pain pathway by cortical spreading depression: do we need more evidence? Cephalalgia 2011; 32:581-2. [PMID: 21996564 DOI: 10.1177/0333102411424621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
226
|
Anderson GD, Farin FM, Bammler TK, Beyer RP, Swan AA, Wilkerson HW, Kantor ED, Hoane MR. The effect of progesterone dose on gene expression after traumatic brain injury. J Neurotrauma 2011; 28:1827-43. [PMID: 21770760 DOI: 10.1089/neu.2011.1911] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Microarray-based transcriptional profiling was used to determine the effect of progesterone in the cortical contusion (CCI) model. Gene ontology (GO) analysis then evaluated the effect of dose on relevant biological pathways. Treatment (vehicle, progesterone 10 mg/kg or 20 mg/kg given i.p.) was started 4 h post-injury and administered every 12 h post-injury for up to 72 h, with the last injection 12 hr prior to death for the 24 h and 72 h groups. In the CCI-injured vehicle group compared to non-injured animals, expression of 1,114, 4,229, and 291 distinct genes changed >1.5-fold (p<0.05) at 24 h, 72 h, and 7 days, respectively. At 24 h, the effect of low-dose progesterone on differentially expressed genes was <20% the effect of higher dose compared to vehicle. GO analysis identified a significant effect of low- and high-dose progesterone treatment compared to vehicle on DNA damage response. At 72 h, high-dose progesterone treatment compared to vehicle affected expression of almost twice as many genes as did low-dose progesterone. Both low- and high-dose progesterone resulted in expression of genes regulating inflammatory response and apoptosis. At 7 days, there was only a modest difference in high-dose progesterone compared to vehicle, with only 14 differentially expressed genes. In contrast, low-dose progesterone resulted in 551 differentially expressed genes compared to vehicle. GO analysis identified genes for the low-dose treatment involved in positive regulation of cell proliferation, innate immune response, positive regulation of anti-apoptosis, and blood vessel remodeling.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Russell KL, Kutchko KM, Fowler SC, Berman NEJ, Levant B. Sensorimotor behavioral tests for use in a juvenile rat model of traumatic brain injury: assessment of sex differences. J Neurosci Methods 2011; 199:214-22. [PMID: 21600923 PMCID: PMC3142868 DOI: 10.1016/j.jneumeth.2011.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 12/23/2022]
Abstract
Modeling juvenile traumatic brain injury (TBI) in rodents presents several unique challenges compared to adult TBI, one of which is selecting appropriate sensorimotor behavioral tasks that enable the assessment of the extent of injury and recovery over time in developing animals. To address this challenge, we performed a comparison of common sensorimotor tests in Long-Evans rats of various sizes and developmental stages (postnatal days 16-45, 35-190 g). Tests were compared and selected for their developmental appropriateness, scalability for growth, pre-training requirements, and throughput capability. Sex differences in response to TBI were also assessed. Grid walk, automated gait analysis, rotarod, beam walk, spontaneous forelimb elevation test, and measurement of motor activity using the force-plate actometer were evaluated. Grid walk, gait analysis, and rotarod failed to meet one or more of the evaluation criteria. Beam walk, spontaneous forelimb elevation test, and measurement of motor activity using the force-plate actometer satisfied all criteria and were capable of detecting motor abnormalities in rats subjected to controlled cortical impact on postnatal day 17. No sex differences were detected in the acute effects of TBI or functional recovery during the 28 days after injury using these tests. This demonstrates the utility of these tests for the evaluation of sensorimotor function in studies using rat models of pediatric TBI, and suggests that pre-pubertal males and females respond similarly to TBI with respect to sensorimotor outcomes.
Collapse
Affiliation(s)
- Kristin L. Russell
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Katrina M. Kutchko
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Stephen C. Fowler
- Department of Pharmacology & Toxicology, University of Kansas, 5036 Mallot Hall, Lawrence, KS 66045 USA
| | - Nancy E. J. Berman
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| |
Collapse
|
228
|
DeGeorge M, Marlowe D, Werner E, Soderstrom K, Stock M, Mueller A, Bohn M, Kozlowski D. Combining glial cell line-derived neurotrophic factor gene delivery (AdGDNF) with L-arginine decreases contusion size but not behavioral deficits after traumatic brain injury. Brain Res 2011; 1403:45-56. [PMID: 21672665 PMCID: PMC3143313 DOI: 10.1016/j.brainres.2011.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/09/2023]
Abstract
Our laboratory has previously demonstrated that viral administration of glial cell line-derived neurotrophic factor (AdGDNF), one week prior to a controlled cortical impact (CCI) over the forelimb sensorimotor cortex of the rat (FL-SMC) is neuroprotective, but does not significantly enhance recovery of sensorimotor function. One possible explanation for this discrepancy is that although protected, neurons may not have been functional due to enduring metabolic deficiencies. Additionally, metabolic events following TBI may interfere with expression of therapeutic proteins administered to the injured brain via gene therapy. The current study focused on enhancing the metabolic function of the brain by increasing cerebral blood flow (CBF) with l-arginine in conjunction with administration of AdGDNF immediately following CCI. An adenoviral vector harboring human GDNF was injected unilaterally into FL-SMC of the rat immediately following a unilateral CCI over the FL-SMC. Within 30min of the CCI and AdGDNF injections, some animals were injected with l-arginine (i.v.). Tests of forelimb function and asymmetry were administered for 4weeks post-injury. Animals were sacrificed and contusion size and GDNF protein expression measured. This study demonstrated that rats treated with AdGDNF and l-arginine post-CCI had a significantly smaller contusion than injured rats who did not receive any treatment, or injured rats treated with either AdGDNF or l-arginine alone. Nevertheless, no amelioration of behavioral deficits was seen. These findings suggest that AdGDNF alone following a CCI was not therapeutic and although combining it with l-arginine decreased contusion size, it did not enhance behavioral recovery.
Collapse
Affiliation(s)
- M.L. DeGeorge
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| | - D. Marlowe
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| | - E. Werner
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| | - K.E. Soderstrom
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| | - M. Stock
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| | - A. Mueller
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| | - M.C. Bohn
- Childrenf’s Memorial Research Center, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614
| | - D.A. Kozlowski
- DePaul University, Department of Biological Sciences, Chicago, IL 60614
| |
Collapse
|
229
|
Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. A single mild fluid percussion injury induces short-term behavioral and neuropathological changes in the Long-Evans rat: support for an animal model of concussion. Behav Brain Res 2011; 224:326-35. [PMID: 21704658 DOI: 10.1016/j.bbr.2011.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 06/06/2011] [Accepted: 06/11/2011] [Indexed: 11/30/2022]
Abstract
Brain concussion is a serious public health concern and is associated with short-term cognitive impairments and behavioral disturbances that typically occur in the absence of significant brain damage. The current study addresses the need to better understand the effects of a mild lateral fluid percussion injury on rat behavior and neuropathology in an animal model of concussion. Male Long-Evans rats received either a single mild fluid percussion injury or a sham-injury, and either a short (24h) or long (4 weeks) post-injury recovery period. After recovery, rats underwent a detailed behavioral analysis consisting of tests for rodent anxiety, cognition, social behavior, sensorimotor function, and depression-like behavior. After testing all rats were sacrificed and brains were examined immunohistochemically with markers for microglia/macrophage activation, reactive astrocytosis, and axonal injury. Injured rats (mean injury force: 1.20 ±.03 atm) displayed significant short-term cognitive impairments in the water maze and significantly more anxiolytic-like behavior in the elevated-plus maze compared to sham controls. Neuropathological analysis of the brains of injured rats showed an acute increase in reactive astrogliosis and activated microglia in cortex and evidence of axonal injury in the corpus callosum. There were no significant long-term effects on any behavioral or neuropathological measure 4 weeks after injury. These short-term behavioral and neuropathological changes are consistent with findings in human patients suffering a brain concussion, and provide further evidence for the use of a single mild lateral fluid percussion injury to study concussion in the rat.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario, London, Canada.
| | | | | | | | | |
Collapse
|