201
|
English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 2009; 156:149-60. [PMID: 19210524 PMCID: PMC2673753 DOI: 10.1111/j.1365-2249.2009.03874.x] [Citation(s) in RCA: 517] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2008] [Indexed: 12/13/2022] Open
Abstract
Adult human mesenchymal stromal or stem cells (MSC) can differentiate into a variety of cell types and are candidate cellular therapeutics in regenerative medicine. Surprisingly, these cells also display multiple potent immunomodulatory capabilities, including allosuppression, making allogeneic cell therapy a possibility. The exact mechanisms involved in regulatory T cell induction by allogeneic human MSC was examined, using purified CD4+ populations and well-characterized bone marrow-derived adult human MSC. Allogeneic MSC were shown to induce forkhead box P3 (FoxP3)+ and CD25+ mRNA and protein expression in CD4+ T cells. This phenomenon required direct contact between MSC and purified T cells, although cell contact was not required for MSC induction of FoxP3 expression in an unseparated mononuclear cell population. In addition, through use of antagonists and neutralizing antibodies, MSC-derived prostaglandins and transforming growth factor (TGF)-beta1 were shown to have a non-redundant role in the induction of CD4+CD25+FoxP3+ T cells. Purified CD4+CD25+ T cells induced by MSC co-culture expressed TGF-beta1 and were able to suppress alloantigen-driven proliferative responses in mixed lymphocyte reaction. These data clarify the mechanisms of human MSC-mediated allosuppression, supporting a sequential process of regulatory T cell induction involving direct MSC contact with CD4+ cells followed by both prostaglandin E(2) and TGF-beta1 expression. Overall, this study provides a rational basis for ongoing clinical studies involving allogeneic MSC.
Collapse
Affiliation(s)
- K English
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
202
|
Abousleiman RI, Reyes Y, McFetridge P, Sikavitsas V. Tendon Tissue Engineering Using Cell-Seeded Umbilical Veins Cultured in a Mechanical Stimulator. Tissue Eng Part A 2009; 15:787-95. [DOI: 10.1089/ten.tea.2008.0102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Yuliana Reyes
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma
| | - Peter McFetridge
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma
- The School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| | - Vassilios Sikavitsas
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma
- The School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
203
|
Mendes PN, Rahal SC, Pereira-Junior OCM, Fabris VE, Lenharo SLR, de Lima-Neto JF, da Cruz Landim-Alvarenga F. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet Scand 2009; 51:12. [PMID: 19317903 PMCID: PMC2667521 DOI: 10.1186/1751-0147-51-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. METHODS Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. RESULTS A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. CONCLUSION The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
Collapse
Affiliation(s)
- Péricles Nóbrega Mendes
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Sheila Canevese Rahal
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Oduvaldo Câmara Marques Pereira-Junior
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | | | | | - João Ferreira de Lima-Neto
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Fernanda da Cruz Landim-Alvarenga
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| |
Collapse
|
204
|
McCarty RC, Gronthos S, Zannettino AC, Foster BK, Xian CJ. Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells. J Cell Physiol 2009; 219:324-33. [PMID: 19115243 DOI: 10.1002/jcp.21670] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since discovery, significant interest has been generated in the potential application of mesenchymal stem cells or multipotential stromal cells (MSC) for tissue regeneration and repair, due to their proliferative and multipotential capabilities. Although the sheep is often used as a large animal model for translating potential therapies for musculoskeletal injury and repair, the characteristics of MSC from ovine bone marrow have been inadequately described. Histological and gene expression studies have previously shown that ovine MSC share similar properties with human and rodents MSC, including their capacity for clonogenic growth and multiple stromal lineage differentiation. In the present study, ovine bone marrow derived MSCs positively express cell surface markers associated with MSC such as CD29, CD44 and CD166, and lacked expression of CD14, CD31 and CD45. Under serum-deprived conditions, proliferation of MSC occurred in response to EGF, PDGF, FGF-2, IGF-1 and most significantly TGF-alpha. While subcutaneous transplantation of ovine MSC in association with a ceramic HA/TCP carrier into immunocomprimised mice resulted in ectopic osteogenesis, adipogenesis and haematopoietic-support activity, transplantation of these cells within a gelatin sponge displayed partial chondrogenesis. The comprehensive characterisation of ovine MSC described herein provides important information for future translational studies involving ovine MSC.
Collapse
Affiliation(s)
- Rosa C McCarty
- Department of Orthopaedic Surgery, Women's & Children's Hospital, Adelaide, Australia
| | | | | | | | | |
Collapse
|
205
|
Abstract
Optimal management of tendon overuse injuries in equine and human athletes should avoid the formation of excessive scar tissue, regenerate normal tendon matrix, and reduce re-injury rates. We hypothesized that the implantation of marrow-derived stromal stem cells (BM-MSCs), in far greater numbers than are present normally within tendon tissue, would synthesize a matrix more closely resembling tendon matrix than scar tissue, and hence increase the capacity to return to performance successfully. This article reviews the technique used clinically in the horse and the current outcome data for horses treated by the autologous implantation of BM-MSCs into moderate to severe acute superficial digital flexor tendon (SDFT) injuries. Bone marrow was aspirated from the sternum under standing sedation. The nucleated adherent cell population (containing the BM-MSCs) were isolated and expanded so that, after approximately three weeks, the cells were re-suspended in the supernatant from the bone marrow and implanted into injured SDFT under ultrasonographic guidance. The horses then entered a 48-week rehabilitation period consisting of an ascending exercise regime. By September 2006, 168 racehorses had undergone this regimen. For horses which had returned to full work, 18% had re-injured, which compared favourably to previous studies on conventional management (56% re-injury rate). No adverse effects were noted other than needle tracts visible ultrasonographically. Autologous implantation of mesenchymal stem cells into tendon injuries may therefore improve clinical outcome although definitive proof of efficacy, which is still lacking, will require randomized controlled trials.
Collapse
Affiliation(s)
- Roger K W Smith
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK.
| |
Collapse
|
206
|
Bullough R, Finnigan T, Kay A, Maffulli N, Forsyth NR. Tendon repair through stem cell intervention: cellular and molecular approaches. Disabil Rehabil 2009; 30:1746-51. [PMID: 18720123 DOI: 10.1080/09638280701788258] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tendon injuries are common in either the workplace or sport activities, with some 3 to 5 million tendon and ligament injuries occurring annually worldwide. Management of tendon injury currently follows two routes: Conservative (rehabilitation and pain relief), or surgical. Irrespective of which of these primary treatment routes are followed, even if healing does occur, it may not result in a full gain of function. The inability of the tendon to self-repair and the relative inefficiency of current treatment regimens suggest that identifying alternative strategies is a priority. One such alternative is the use of stem cells to repair damage, either through direct application or in conjunction with scaffolding. We describe the current state of the art in terms of: (i) Molecular markers of tendon development, (ii) stem cell applicability to human tendon repair, (iii) scaffolding for in vitro tendon generation, and (iv) chemical/molecular approaches to both induce stem cell differentiation into tenocytes and maintain their proliferation in vitro.
Collapse
Affiliation(s)
- Richard Bullough
- Department of Trauma and Orthopaedic Surgery, Keele University Medical School, Keele, Stoke on Trent
| | | | | | | | | |
Collapse
|
207
|
Characterization of type I, III and V collagens in high-density cultured tenocytes by triple-immunofluorescence technique. Cytotechnology 2009; 58:145-52. [PMID: 19153816 DOI: 10.1007/s10616-009-9180-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022] Open
Abstract
The purpose of this study is to examine the intracellular distribution of collagen types I, III and V in tenocytes using triple-label immunofluorescence staining technique in high-density tenocyte culture on Filter Well Inserts (FWI). The tenocytes were incubated for 4 weeks under monolayer conditions and for 3 weeks on FWI. At the end of the third week of high-density culture, we observed tenocyte aggregation followed by macromass cluster formation. Immunofluorescence labeling with anti-collagen type I antibody revealed that the presence of collagen type I was mostly around the nucleus. Type III collagen was more diffused in the cytoplasm. Type V collagen was detected in fibrillar and vesicular forms in the cytoplasm. We conclude that, the high-density culture on FWI is an appropriate method for the production of tenocytes without loosing specialized processes such as the synthesis of different collagen molecules. We consider that the high-density culture system is suitable for in vitro applications which affect tendon biology and will improve our understanding of the biological behavior of tenocytes in view of adequate matrix structure synthesis. Such high-density cultures may serve as a model system to provide sufficient quantities of tenocytes to prepare tenocyte-polymer constructs for tissue engineering applications in tendon repair.
Collapse
|
208
|
Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 2009; 14:1615-27. [PMID: 18759661 DOI: 10.1089/ten.tea.2006.0415] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A mesenchymal stem cell (MSC)-seeded collagen gel under static or dynamic tension is a well-established model to study the potential of MSCs in regenerating a tendon- or ligament-like tissue. Using this model, upregulation of fibrillar collagen mRNA expression and protein production has been demonstrated in response to cyclic tensile mechanical stimulation. However, the mechanisms driving MSC tenogenesis (differentiation into tendon or ligament fibroblasts) have not been elucidated. This study investigated the mechanisms of tenogenesis of human bone marrow-derived MSCs in a dynamic, three-dimensional (3D) tissue-engineering model by investigating the effects of cyclic stretching on matrix production and gene expression of candidate tendon and ligament markers. The 3D MSC tenogenesis culture system upregulated scleraxis, but cyclic stretching was required to maintain expression of this putative tendon marker over time. Enhanced tendinous neo-tissue development demonstrated with extracellular matrix staining was largely due to changes in matrix deposition and remodeling activity under dynamic loading conditions, as evidenced by differential regulation of matrix metalloproteinases at a transcriptional level with minimal changes in collagen mRNA levels. Regulation of Wnt gene expression with cyclic stimulation suggested a similar role for Wnt4 versus Wnt5a in tenogenesis as in cartilage development. This first report of the potential involvement of matrix remodeling and Wnt signaling during tenogenesis of human MSCs in a dynamic, 3D tissue-engineering model provides insights into the mechanisms of tenogenesis in a mechanoactive environment and supports the therapeutic potential of adult stem cells.
Collapse
Affiliation(s)
- Catherine K Kuo
- Cartilage Biology and Orthopedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
209
|
Almarza AJ, Yang G, Woo SLY, Nguyen T, Abramowitch SD. Positive changes in bone marrow-derived cells in response to culture on an aligned bioscaffold. Tissue Eng Part A 2009; 14:1489-95. [PMID: 18694325 DOI: 10.1089/ten.tea.2007.0422] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that cultured cells align with the local topography of their substrate following a concept called "contact guidance." Additionally, if the topography is highly aligned, the cells produce newly synthesized matrix that is also aligned. The objective of this study was to elucidate the positive effect of cell seeding on an elongated porcine small intestinal submucosa (SIS), which has been shown to improve ligament and tendon healing, by measuring the cellular response as a result of the changes in alignment. Because elongation is known to align the fibers of SIS through recruitment along the direction of elongation, we hypothesized that rabbit bone marrow-derived cells (BMDCs) seeded on SIS with improved fiber alignment would increase the expression and production of collagen following the concept of contact guidance. Using the small-angle light-scattering technique, it was found that a 15% elongation together with BMDC seeding on SIS (elongated, seeded group) improved its alignment of collagen fibers up to 16 times more than no elongation and no BMDC seeding (non-elongated, non-seeded group). Furthermore, BMDCs were also aligned along the direction of elongation and showed 200% greater collagen type I gene expression in the elongated, seeded group than in Petri dish controls. More importantly, the production of collagen was also 24% greater. The results of this study demonstrate that alignment of a bioscaffold can result in positive changes in cellular response, making the bioscaffold more attractive for functional tissue engineering to potentially enhance healing of ligaments and tendons.
Collapse
Affiliation(s)
- Alejandro J Almarza
- Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
210
|
Nirmalanandhan VS, Shearn JT, Juncosa-Melvin N, Rao M, Gooch C, Jain A, Bradica G, Butler DL. Improving Linear Stiffness of the Cell-Seeded Collagen Sponge Constructs by Varying the Components of the Mechanical Stimulus. Tissue Eng Part A 2008; 14:1883-91. [DOI: 10.1089/ten.tea.2007.0125] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Victor S. Nirmalanandhan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
- Office of Therapeutics, Discovery & Development, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason T. Shearn
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | | | - Marepalli Rao
- Environmental Health-Genomics, University of Cincinnati, Cincinnati, Ohio
| | - Cynthia Gooch
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Abhishek Jain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | | | - David L. Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
211
|
Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol 2008; 36:1354-1369. [PMID: 18657893 DOI: 10.1016/j.exphem.2008.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/08/2008] [Accepted: 05/12/2008] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self-renewal and differentiation. We propose that specific intracellular signaling pathways modulate gene expression during differentiation by regulating microRNA expression. MATERIALS AND METHODS Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with platelet-derived growth factor (PDGF) signaling. RESULTS The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells, such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted toward specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signaling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signaling was experimentally confirmed by direct PDGF inhibition. CONCLUSION Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways.
Collapse
|
212
|
Yokoya S, Mochizuki Y, Nagata Y, Deie M, Ochi M. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model. Am J Sports Med 2008; 36:1298-309. [PMID: 18354143 DOI: 10.1177/0363546508314416] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The quality of tendons has considerable limitations regarding torn rotator cuff tendons. Tissue-engineering techniques using a biodegradable scaffold offer potential alternatives for recreating a valid tendon-to-bone interface. HYPOTHESIS A polyglycolic acid (PGA) sheet could facilitate the regeneration of the rotator cuff tendon insertion in vivo. STUDY DESIGN Controlled laboratory study. METHODS An implant consisting of a PGA sheet, a rapidly absorbable material, was used to replace a completely resected infra-spinatus tendon insertion in 33 adult Japanese white rabbits. The contralateral infraspinatus tendon was replaced by poly-L-lactate-epsilon-caprolactone (PLC), a slowly absorbable material, by the same methods based on the results of the pilot study. Histological comparisons were made at 4, 8, and 16 weeks, and mechanical evaluations were performed at 4 and 16 weeks in both groups. Unrepaired defects were created in a control group. RESULTS In the control group, the rotator cuff defects were covered with thin fibrous membranes with many fibroblasts arranged in an irregular pattern. In the PLC group, some chondrocytes were seen in the tendon insertion; however, these were not arranged along the long axis for a 16-week period. In the PGA group, a well-arranged fibrocartilage layer could be found in the regenerated tendon insertions; however, these tendon insertions were mainly regenerated by type III collagen. In mechanical examinations, the PGA group had significantly higher values in the maximum failure load, tensile strength, and Young's modulus for the 4-week and 16-week periods. These 3 categories statistically improved from 4 to 16 weeks postoperatively in both groups except for the Young's modulus in the PGA group (E = 5.66 at 4 weeks to 5.53 at 16 weeks). CONCLUSION The PGA sheet scaffold material allows for tendon insertion regeneration with a fibrocartilage layer but displays mechanical properties inferior to those of the normal tendon in an animal model. CLINICAL RELEVANCE The PGA sheet represent a possible alternative scaffold material for tendon regeneration in rotator cuff repair.
Collapse
Affiliation(s)
- Shin Yokoya
- Department of Orthopaedic Surgery, Programs for Applied Biomedicine, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
213
|
Characterization of EGFP-labeled mesenchymal stem cells and redistribution of allogeneic cells after subcutaneous implantation. Arch Orthop Trauma Surg 2008; 128:751-9. [PMID: 18265994 DOI: 10.1007/s00402-008-0585-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Bone marrow mesenchymal stem cells (MSCs) are ideal target cells for cell transplantation and tissue engineering. We investigated their biological characteristics and differentiation mediated by different methods. It is important to study the short-term fate of labeled allogeneic MSCs after subcutaneous implantation in rabbits in order to provide insights into the application of allogeneic MSCs for tissue regeneration. MATERIALS AND METHODS Mesenchymal stem cells were labeled by two different methods in vitro and then were incubated with gelatin sponge. Autologous MSCs-Gelatin constructs and allogeneic MSCs-Gelatin constructs were subcutaneously implanted into 32 rabbits. The constructs were analyzed for the survival and migration of labeled MSCs at day 3, week 1, 3, and 5 post-implantation. RESULTS EGFP was successfully expressed following transfection of MSCs with the retroviral vector pLEGFP-N1. In addition, EGFP-MSCs can be functionally induced into osteocytes, chondrocytes, and adipocytes in conditioned media. By weeks 3 after implantation, the labeled cells distributed extensively on the surface of gelatin sponge and gradually integrated into host tissues. EGFP-labeled MSCs were observed under fluorescence microscopy and BrdU-expressing cells were detected with immunohistochemical stain in allogeneic or autologous MSCs-Gelatin constructs during the initial five weeks after implantation. CONCLUSIONS It is a simple and reliable way to trace the changes of MSCs in vivo by EGFP in cell transplantation and gene therapy. Allogeneic rabbit MSCs can survive for at least 5 weeks after subcutaneous implantation and maintain a strong ability of migration, indicating that allogeneic MSCs are of certain value in clinical application for temporary replacement.
Collapse
|
214
|
Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 2008; 69:928-37. [DOI: 10.2460/ajvr.69.7.928] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
215
|
Ainslie KM, Kraning CM, Desai TA. Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. LAB ON A CHIP 2008; 8:1042-7. [PMID: 18584077 PMCID: PMC2969854 DOI: 10.1039/b800604k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The creation of an oral drug delivery platform to administer chemotherapeutic agents effectively can not only increase patient compliance, but also potentially diminish drug toxicity. A microfabricated device offers advantages over conventional drug delivery technology. Here we describe the development of a multi-layered polymeric drug-loaded microfabricated device (microdevice) for the oral delivery of therapeutics, which offers unidirectional release of multiple therapeutics. The imaging and release of therapeutics from the multi-layered device was performed with three different fluorescently labeled albumins. The release of insulin and chemotherapeutic camptothecin was also observed to be released in a controlled manner over the course of 180 min in vitro. Furthermore, asymmetric delivery was shown to concentrate drug at the device/cell interface, wherein 10 times more drug permeated an intestinal epithelial cell monolayer, compared to unprotected drug-loaded hydrogels. The bioactivity of the released chemotherapeutic was shown with cytostasis of colorectal adenocarcinoma cells. Cytostasis of drug loaded hydrogels was significantly higher than control empty hydrogel laden microdevices. Our results conclude that microfabrication of a hydrogel laden microdevice leads to a viable oral delivery platform for chemotherapeutics.
Collapse
Affiliation(s)
- Kristy M. Ainslie
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco; San Francisco, CA 64158-2330 (USA)
| | - Casey M. Kraning
- National Science Foundation Research Experience for Undergraduates; Summer Research Training Program; University of California, San Francisco; San Francisco, CA; 94158 (USA) Chemistry Department; Butler University; Indianapolis, IN; 46208 (USA)
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco; San Francisco, CA 64158-2330 (USA)
- Corresponding Author: Tejal A. Desai, Department of Physiology University of California, San Francisco, San Francisco, CA 64158-2330, Box 2520, Byers Hall Rm 203C,
| |
Collapse
|
216
|
Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 2008; 3:531-46. [DOI: 10.2217/17460751.3.4.531] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
217
|
Stem cells as potential novel therapeutic strategy for inflammatory bowel disease. J Crohns Colitis 2008; 2:99-106. [PMID: 21172199 DOI: 10.1016/j.crohns.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cell transplantation and mesenchymal stromal cell therapy are currently under investigation as novel therapies for inflammatory bowel diseases. Hematopoietic stem cells (HSC) are thought to repopulate the immune system and reset the immunological response to luminal antigens. Mesenchymal stromal cells (MSC) are cells that have the capacity to differentiate into wide variety of distinct cell lineages and suppress immune responses in vitro and in vivo. Recent results from animal models and early human experience in graft-versus-host disease but also Crohn's Disease suggest that ex vivo expanded MSCs may have clinically useful immunomodulatory effects.
Collapse
|
218
|
Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA. In vitro Differentiation Potential of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:228-238. [PMID: 21547120 DOI: 10.1159/000124281] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/07/2008] [Indexed: 12/19/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) represent a class of multipotent progenitor cells that have been isolated from multiple tissue sites. Of these, adipose tissue and bone marrow offer advantages in terms of access, abundance, and the extent of their documentation in the literature. This review focuses on the in vitro differentiation capability of cells derived from adult human tissue. Multiple, independent studies have demonstrated that MSCs can commit to mesodermal (adipocyte, chondrocyte, hematopoietic support, myocyte, osteoblast, tenocyte), ectodermal (epithelial, glial, neural), and endodermal (hepatocyte, islet cell) lineages. The limitations and promises of these studies in the context of tissue engineering are discussed.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
219
|
Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L, Nolta JA, Sands MS. Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 2008; 26:1713-22. [PMID: 18436861 DOI: 10.1634/stemcells.2008-0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are a promising platform for cell- and gene-based treatment of inherited and acquired disorders. We recently showed that human MSCs distribute widely in a murine xenotransplantation model. In the current study, we have determined the distribution, persistence, and ability of lentivirally transduced human MSCs to express therapeutic levels of enzyme in a xenotransplantation model of human disease (nonobese diabetic severe combined immunodeficient mucopolysaccharidosis type VII [NOD-SCID MPSVII]). Primary human bone marrow-derived MSCs were transduced ex vivo with a lentiviral vector expressing either enhanced green fluorescent protein or the lysosomal enzyme beta-glucuronidase (MSCs-GUSB). Lentiviral transduction did not affect any in vitro parameters of MSC function or potency. One million cells from each population were transplanted intraperitoneally into separate groups of neonatal NOD-SCID MPSVII mice. Transduced MSCs persisted in the animals that underwent transplantation, and comparable numbers of donor MSCs were detected at 2 and 4 months after transplantation in multiple organs. MSCs-GUSB expressed therapeutic levels of protein in the recipients, raising circulating serum levels of GUSB to nearly 40% of normal. This level of circulating enzyme was sufficient to normalize the secondary elevation of other lysosomal enzymes and reduce lysosomal distention in several tissues. In addition, at least one physiologic marker of disease, retinal function, was normalized following transplantation of MSCs-GUSB. These data provide evidence that transduced human MSCs retain their normal trafficking ability in vivo and persist for at least 4 months, delivering therapeutic levels of protein in an authentic xenotransplantation model of human disease.
Collapse
Affiliation(s)
- Todd E Meyerrose
- Washington University School of Medicine, Department of Internal Medicine, Box 8,007, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Wang B, Liu W, Zhang Y, Jiang Y, Zhang WJ, Zhou G, Cui L, Cao Y. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials 2008; 29:2954-61. [PMID: 18423583 DOI: 10.1016/j.biomaterials.2008.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
Engineering of extensor tendon complex remains an unexplored area in tendon engineering research. In addition, less is known about the mechanism of mechanical loading in human tendon development and maturation. In the current study, an ex vivo approach was developed to investigate these issues. Human fetal extensor tenocytes were isolated, expanded and seeded on polyglycolic acid (PGA) fibers that formed a scaffold with a shape mimicking human extensor tendon complex. After in vitro culture for 6 weeks, 7 cell-scaffold constructs were further in vitro cultured with dynamic mechanical loading for another 6 weeks in a bioreactor. The other 14 constructs were in vivo implanted subcutaneously to nude mice for another 14 weeks. Seven of them were implanted without loading, whereas the other 7 were sutured to mouse fascia and animal movement provided a natural dynamic loading in vivo. The results demonstrated that human fetal cells could form an extensor tendon complex structure in vitro and become further matured in vivo by mechanical stimulation. In contrast to in vitro loaded and in vivo non-loaded tendons, in vivo loaded tendons exhibited bigger tissue volume, better aligned collagen fibers, more mature collagen fibril structure with D-band periodicity, and stronger mechanical properties. These findings indicate that an extensor tendon complex like structure is possible to generate by an ex vivo approach and in vivo mechanical loading might be an optimal niche for engineering functional extensor tendon.
Collapse
Affiliation(s)
- Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Fortier LA, Smith RKW. Regenerative medicine for tendinous and ligamentous injuries of sport horses. Vet Clin North Am Equine Pract 2008; 24:191-201. [PMID: 18314043 DOI: 10.1016/j.cveq.2007.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After tendon injury, the scar tissue that replaces the damaged tendon results in a substantial risk for reinjury. The goal of regenerative therapies is to restore normal structural architecture and biomechanical function to an injured tissue. Successful restoration processes for any tissue are thought to recapitulate those of development, in which there are spatial and temporal interactions between scaffold, growth factors, and cell populations.
Collapse
Affiliation(s)
- Lisa A Fortier
- Department of Clinical Sciences, VMC C3-181, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
222
|
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are multipotent adult stem cells of mesodermal origin localized within the bone marrow compartment. MSC possess multilineage property making them useful for a number of potential therapeutic applications. MSC can be isolated from the bone marrow, expanded in culture and genetically modified to serve as cell carriers for local or systemic therapy. Despite their ability to differentiate into osteoblasts, chondrocytes, adipocytes, myocytes and neuronal cells under appropriate stimuli, distinct molecular signals that guide migration of MSC to specific targets largely remain unknown. The pluripotent nature of MSC makes them ideal resources for regenerative medicine, graft-versus-host disease and autoimmune diseases. Despite their therapeutic potential in a variety of diseases, certain issues need to be critically addressed both in in vitro expansion of these cells without losing their stem cell properties, and the long-term fate of the transplanted MSC in vivo following ex vivo modifications. Finally, understanding of complex, multistep and multifactorial differentiation pathways from pluripotent stem cells to functional tissues will allow us to manipulate MSC for the formation of competent composite tissues in situ. The present article will provide comprehensive account of the characteristics of MSC, their isolation and culturing, multilineage properties and potential therapeutic applications.
Collapse
|
223
|
Okamoto S, Tohyama H, Kondo E, Anaguchi Y, Onodera S, Hayashi K, Yasuda K. Ex vivo supplementation of TGF-beta1 enhances the fibrous tissue regeneration effect of synovium-derived fibroblast transplantation in a tendon defect: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 2008; 16:333-9. [PMID: 17805511 DOI: 10.1007/s00167-007-0400-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The present study was conducted to test a hypothesis that the ex vivo supplementation of TGF-beta1 into medium will significantly improve the mechanical properties of the fibrous tissue regenerated in the patellar tendon defect after transplantation of cultured autologous synovium-derived fibroblasts. Thirty rabbits were divided into the following three groups. In Group A, we applied phosphate buffered saline of 0.1 ml to the defect created in the patellar tendon. In Group B, we transplanted autologous fibroblasts, which had been cultured into the tendon defect. In Group C, we transplanted autologous fibroblasts, which had been cultured with supplementation of TGF-beta1, into the tendon defect. Animals were killed at 6 weeks, and the regenerated tissue was examined for biomechanics and histology. The tangent modulus and the tensile strength of Group C were significantly higher than that of Group B, while the tensile strength of Group C was significantly lower than that of Group A. Histologically, vascular formation was abundantly found in the regenerated tissue of Groups B and C as compared to the regenerated tissues in Group A. The present study showed that transplantation of cultured autologous synovium-derived fibroblasts enhanced vascular formation in the fibrous tissue regenerated in the patellar tendon defect, while cell transplantation deteriorated the mechanical properties of the regenerated fibrous tissue. However, the ex vivo supplementation of TGF-beta1 into the medium significantly decreased mechanical deterioration of the fibrous tissue regenerated in the tendon defect after transplantation of cultured autologous synovium-derived fibroblasts.
Collapse
Affiliation(s)
- Shoichi Okamoto
- Department of Sports Medicine, Hokkaido University School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro, MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro. On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, PR China
| | | |
Collapse
|
225
|
Time-related changes in expression of collagen types I and III and of tenascin-C in rat bone mesenchymal stem cells under co-culture with ligament fibroblasts or uniaxial stretching. Cell Tissue Res 2008; 332:101-9. [DOI: 10.1007/s00441-007-0564-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
226
|
Wu Y, Wang J, Scott PG, Tredget EE. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 2008; 15 Suppl 1:S18-26. [PMID: 17727462 DOI: 10.1111/j.1524-475x.2007.00221.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Optimum healing of a cutaneous wound requires a well-orchestrated integration of the complex biological and molecular events of cell migration and proliferation, and of extracellular matrix deposition and remodeling. Several studies in recent years suggest that bone marrow derived stem cells such as mesenchymal stem cells, progenitor cells such as endothelial progenitor cells and fibrocytes may be involved in these processes, contributing to skin cells or releasing regulatory cytokines. Stem/progenitor cells may be mobilized to leave the bone marrow, home to injured tissues and participate in the repair and regeneration. Direct injection of bone marrow derived mesenchymal stem cells or endothelial progenitor cells into injured tissues shows improved repair through mechanisms of differentiation and/or release of paracrine factors. Enhanced understanding of these cells may help develop novel therapies for difficult cutaneous conditions such as non-healing chronic wounds and hypertrophic scarring as well as engineering cutaneous substitutes.
Collapse
Affiliation(s)
- Yaojiong Wu
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
227
|
Rosenbaum AJ, Grande DA, Dines JS. The use of mesenchymal stem cells in tissue engineering: A global assessment. Organogenesis 2008; 4:23-7. [PMID: 19279711 PMCID: PMC2634175 DOI: 10.4161/org.6048] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/07/2008] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.
Collapse
Affiliation(s)
- Andrew J Rosenbaum
- Department Orthopedic Surgery Research; The Feinstein Institute; Manhasset, New York USA
| | | | | |
Collapse
|
228
|
Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van den Berg A. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. LAB ON A CHIP 2008; 8:62-7. [PMID: 18094762 DOI: 10.1039/b713420g] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is great interest in genetic modification of bone marrow-derived mesenchymal stem cells (MSC), not only for research purposes but also for use in (autologous) patient-derived-patient-used transplantations. A major drawback of bulk methods for genetic modifications of (stem) cells, like bulk-electroporation, is its limited yield of DNA transfection (typically then 10%). This is even more limited when cells are present at very low numbers, as is the case for stem cells. Here we present an alternative technology to transfect cells with high efficiency (>75%), based on single cell electroporation in a microfluidic device. In a first experiment we show that we can successfully transport propidium iodide (PI) into single mouse myoblastic C2C12 cells. Subsequently, we show the use of this microfluidic device to perform successful electroporation of single mouse myoblastic C2C12 cells and single human MSC with vector DNA encoding a green fluorescent-erk1 fusion protein (EGFP-ERK1 (MAPK3)). Finally, we performed electroporation in combination with live imaging of protein expression and dynamics in response to extracellular stimuli, by fibroblast growth factor (FGF-2). We observed nuclear translocation of EGFP-ERK1 in both cell types within 15 min after FGF-2 stimulation. Due to the successful and promising results, we predict that microfluidic devices can be used for highly efficient small-scale 'genetic modification' of cells, and biological experimentation, offering possibilities to study cellular processes at the single cell level. Future applications might be small-scale production of cells for therapeutic application under controlled conditions.
Collapse
Affiliation(s)
- A Valero
- BIOS/Lab-on-a-Chip group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
229
|
Ljungqvist A, Schwellnus MP, Bachl N, Collins M, Cook J, Khan K, Maffulli N, Pitsiladis Y, Riley G, Golspink G, Venter D, Derman E, Engebretsen L, Volpi P. International Olympic Committee Consensus Statement: Molecular Basis of Connective Tissue and Muscle Injuries in Sport. Clin Sports Med 2008; 27:231-9, x-xi. [DOI: 10.1016/j.csm.2007.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
230
|
Stiehler M, Duch M, Mygind T, Li H, Ulrich-Vinther M, Modin C, Baatrup A, Lind M, Pedersen FS, Bünger CE. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:31-48. [PMID: 17120775 DOI: 10.1007/978-0-387-34133-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors and cytokines can induce and maintain lineage-specific differentiation. Due to anatomical and physiological similarities to humans, porcine research models have been proven valuable for the preclinical testing of tissue engineering protocols in large animals. The aim of this study was to evaluate optimized viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno-associated virus (rAAV)-mediated and retroviral gene delivery. Each method for gene delivery was optimized. Gene transfer efficiency was compared on the basis of eGFP expression as assessed by fluorescence microscopy and fluorescence-activated flow cytometry. BMP-2 gene expression and osteogenic differentiation were evaluated by realtime quantitative RT-PCR and histochemical detection of alkaline phosphatase activity, respectively. RESULTS Non-viral gene delivery methods resulted in transient eGFP expression by less than 2% of the cells. Using high titer rAAV-based vector up to 90% of the cells were transiently transduced. The efficiency of rAAV-mediated gene delivery was proportional to the rAAV vector titer applied. Retroviral gene delivery resulted in long-term transgene expression of porcine MSCs. A 26-fold increase in percentage of eGFP expressing cells (1.7%+/-0.2% versus 44.1% +/-5.0%, mean +/-SD) and a 68-fold increase in mean fluorescence intensity (327.4+/-56.6 versus 4.8+/-1.3) was observed by centrifugation of retroviral particles onto the target cell layer. Porcine MSCs that were BMP-2 transduced by optimized retroviral gene delivery demonstrated a significant increase in BMP-2 gene expression and showed increased osteogenic differentiation. Retrovirally transduced porcine MSCs were furthermore tested free of replication-competent viruses. DISCUSSION The non-viral gene transfer methods applied were significantly less efficient compared to the viral methods tested. However, due to advantages with respect to safety issues and ease of handling, improvement of non-viral gene delivery to primary MSCs deserves further attention. The high efficiency of rAAV-mediated gene delivery observed at high titers can be explained by the ability of rAAV vector to transduce nondividing cells and by its tropism towards porcine MSCs. rAAV-mediated gene delivery resulted in transient transgene expression due to lack of stable AAV genome integration. MLV-mediated retroviral gene delivery can be considered a safe method for long-term transgene expression by porcine MSCs, and is therefore particularly attractive for advanced tissue engineering strategies requiring extended transgene expression.
Collapse
Affiliation(s)
- Maik Stiehler
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery E, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Nirmalanandhan VS, Rao M, Shearn JT, Juncosa-Melvin N, Gooch C, Butler DL. Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech 2007; 41:822-8. [PMID: 18164020 DOI: 10.1016/j.jbiomech.2007.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 11/01/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
Abstract
Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.
Collapse
Affiliation(s)
- Victor S Nirmalanandhan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221-0048, USA.
| | | | | | | | | | | |
Collapse
|
232
|
Chamberlain JR, Deyle DR, Schwarze U, Wang P, Hirata RK, Li Y, Byers PH, Russell DW. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol Ther 2007; 16:187-93. [PMID: 17955022 DOI: 10.1038/sj.mt.6300339] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult cells with the capacity to differentiate into multiple cell types, including bone, fat, cartilage, and muscle cells. In order to effectively utilize autologous MSCs in cell-based therapies, precise genetic manipulations are required to eliminate the effects of disease-causing mutations. We previously used adeno-associated virus (AAV) vectors to target and inactivate mutant COL1A1 genes in MSCs from individuals with the brittle bone disorder, osteogenesis imperfecta (OI). Here we have used AAV vectors to inactivate mutant COL1A2 genes in OI MSCs, thereby demonstrating that both type I collagen genes responsible for OI can be successfully targeted. We incorporated improved vector designs so as to minimize the consequences of random integration, facilitate the removal of potential antigens, and avoid unwanted exon skipping. MSCs targeted at mutant COL1A2 alleles produced normal type I procollagen and formed bone, thereby demonstrating their therapeutic potential.
Collapse
Affiliation(s)
- Joel R Chamberlain
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Johns DE, Athanasiou KA. Design characteristics for temporomandibular joint disc tissue engineering: learning from tendon and articular cartilage. Proc Inst Mech Eng H 2007; 221:509-26. [PMID: 17822153 DOI: 10.1243/09544119jeim158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue engineering of chondrocytic or fibroblastic musculoskeletal tissues has been relatively well studied compared with that of the temporomandibular joint (TMJ) disc. Early attempts at tissue engineering the disc have been misguided owing to a lack of understanding of the composition and function of the TMJ disc. The objective of this review is to compare the TMJ disc with a chondrocytic tissue (hyaline articular cartilage) and a fibroblastic tissue (tendon) to understand better the properties of this fibrocartilaginous tissue. The TMJ disc has 25 times more glycosaminoglycan (GAG) per dry weight than tendon but half that of articular cartilage. The disc's tensile modulus is six times more than cartilage but orders less than tendon. The GAG content and tensile modulus suggest that the TMJ disc is characterized as a tissue between hyaline cartilage and tendon, but the disc appears more tendon like when considering its collagen make-up and cell content. Like tendon, the TMJ disc contains primarily collagen type I at 85 per cent per dry weight, while articular cartilage has 30 per cent less collagen, which is type II. Knowledge of quantitative comparisons between joint tissues can give extensive insight into how to improve tissue engineering of the TMJ disc.
Collapse
Affiliation(s)
- D E Johns
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
234
|
Hao W, Hu YY, Wei YY, Pang L, Lv R, Bai JP, Xiong Z, Jiang M. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Cells Tissues Organs 2007; 187:89-102. [PMID: 17938566 DOI: 10.1159/000109946] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2007] [Indexed: 01/22/2023] Open
Abstract
Cell-based tissue engineering is thought to be a new therapy for treatment of bone defects and nonunions after trauma and tumor resection. In this study, we explore the in vitro and in vivo osteogenesis of a novel biomimetic construct fabricated by using collagen I gel to suspend rabbit adipose-derived stem cells (rASCs) into a porous poly(lactic-co-glycolic)acid-beta-tricalcium phosphate (PLGA-beta-TCP) scaffold (rASCs-COL/PLGA-beta-TCP). In vitro and in vivo studies of the rASCs-COL/PLGA-beta-TCP composite (group A) were carried out compared with the single combination of rASCs and PLGA-beta-TCP (rASCs/PLGA-beta-TCP; group B), the combination of acellular collagen I gel and PLGA-beta-TCP (COL/PLGA-beta-TCP; group C), and the PLGA-beta-TCP scaffold (group D). Composites of different groups were cultured in vitro for 2 weeks in osteogenic medium and then implanted into the autologous muscular intervals for 8 weeks. After 2 weeks of in vitro culture, alkaline phosphatase activity and extracellular matrix mineralization in group A were significantly higher than in group B (p < 0.01, n = 4). In vivo osteogenesis was evaluated by radiographic and histological analyses. The calcification level was radiographically evident in group A, whereas no apparent calcification was observed in groups B, C and D (n = 4). In group A, woven bone with a trabecular structure was formed, while in group B, only osteoid tissue was observed. Meanwhile, the bone-forming area in group A was significantly higher than in group B (p < 0.01, n = 4). No bone formation was observed in groups C or D (n = 4). In conclusion, by using collagen I gel to suspend rASCs into porous PLGA-beta-TCP scaffold, osteogenic differentiation of rASCs can be improved and homogeneous bone tissue can be successfully formed in vivo.
Collapse
Affiliation(s)
- Wei Hao
- Institute of Orthopaedics, Xijing Hospital,Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc 2007; 15:1219-27. [PMID: 17687543 DOI: 10.1007/s00167-007-0385-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/26/2007] [Indexed: 12/23/2022]
Abstract
The present study was conducted to develop a new strategy to accelerate reconstruction of the anterior cruciate ligament (ACL) by modifying the Achilles allograft with autogenous mesenchymal stem cells (MSCs) or PDGF-B transfected MSCs in a rabbit model. The allografts were first irradiated with Co60, stored at -80 degrees C, and then seeded with cells for implantation. Bilateral ACL reconstructions were performed. On the left, the allograft was either seeded with MSCs or PDGF-B transfected MSCs and acted as the experimental group. On the right, the graft without any cells seeded acted as control. At 3, 6 and 12 weeks after surgery, histological observation found that implantation of MSCs or PDGF-B transfected MSCs accelerated cellular infiltration into the ACL and enhanced collagen deposition in the wound. PDGF-B transfected MSCs could also lead to an initial promotion of angiogenesis. This gene transfer technique or cell implantation may be a potentially useful tool for improving ligament remodeling.
Collapse
Affiliation(s)
- Feng Li
- Institute of Sports Medicine, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100083, People's Republic of China
| | | | | |
Collapse
|
236
|
Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 2007; 13:1219-27. [PMID: 17828274 DOI: 10.1038/nm1630] [Citation(s) in RCA: 994] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 07/10/2007] [Indexed: 12/11/2022]
Abstract
The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.
Collapse
Affiliation(s)
- Yanming Bi
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, US National Institutes of Health, 30 Convent Dr. 30/225 MSC 4320, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Richardson LE, Dudhia J, Clegg PD, Smith R. Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury. Trends Biotechnol 2007; 25:409-16. [PMID: 17692415 DOI: 10.1016/j.tibtech.2007.07.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/04/2007] [Accepted: 07/26/2007] [Indexed: 01/29/2023]
Abstract
Stem cells have evoked considerable excitement in the animal-owning public because of the promise that stem cell technology could deliver tissue regeneration for injuries for which natural repair mechanisms do not deliver functional recovery and for which current therapeutic strategies have minimal effectiveness. This review focuses on the current use of stem cells within veterinary medicine, whose practitioners have used mesenchymal stem cells (MSCs), recovered from either bone marrow or adipose tissue, in clinical cases primarily to treat strain-induced tendon injury in the horse. The background on why this treatment has been advocated, the data supporting its use and the current encouraging outcome from clinical use in horses treated with bone-marrow-derived cells are presented together with the future challenges of stem-cell therapy for the veterinary community.
Collapse
Affiliation(s)
- Lucy E Richardson
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | | | | | | |
Collapse
|
238
|
Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJA. Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing. ACTA ACUST UNITED AC 2007; 13:1905-25. [PMID: 17518748 DOI: 10.1089/ten.2006.0175] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organ printing, a novel approach in tissue engineering, applies layered computer-driven deposition of cells and gels to create complex 3-dimensional cell-laden structures. It shows great promise in regenerative medicine, because it may help to solve the problem of limited donor grafts for tissue and organ repair. The technique enables anatomical cell arrangement using incorporation of cells and growth factors at predefined locations in the printed hydrogel scaffolds. This way, 3-dimensional biological structures, such as blood vessels, are already constructed. Organ printing is developing fast, and there are exciting new possibilities in this area. Hydrogels are highly hydrated polymer networks used as scaffolding materials in organ printing. These hydrogel matrices are natural or synthetic polymers that provide a supportive environment for cells to attach to and proliferate and differentiate in. Successful cell embedding requires hydrogels that are complemented with biomimetic and extracellular matrix components, to provide biological cues to elicit specific cellular responses and direct new tissue formation. This review surveys the use of hydrogels in organ printing and provides an evaluation of the recent advances in the development of hydrogels that are promising for use in skeletal regenerative medicine. Special emphasis is put on survival, proliferation and differentiation of skeletal connective tissue cells inside various hydrogel matrices.
Collapse
Affiliation(s)
- Natalja E Fedorovich
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
239
|
Funakoshi Y, Hariu M, Tapper JE, Marchuk LL, Shrive NG, Kanaya F, Rattner JB, Hart DA, Frank CB. Periarticular ligament changes following ACL/MCL transection in an ovine stifle joint model of osteoarthritis. J Orthop Res 2007; 25:997-1006. [PMID: 17436314 DOI: 10.1002/jor.20370] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries often lead to significant functional impairment, and are associated with increased risk for induction of degenerative joint disease. However, few studies have described the effect of ligament transection on the remaining intact knee ligaments. This study sought to determine specifically what impact combined ACL/medial collateral ligament (MCL) transection had on the remaining intact knee ligaments, particularly from the histological, biochemical, and molecular perspectives. Twenty weeks post-ACL/MCL transection, the cut ends of sheep MCLs were bridged by scar, while the posterior cruciate ligaments (PCLs) and lateral collateral ligaments (LCLs) seemed gross morphologically normal. Water content and cell density increased significantly in the MCL scars and the intact PCLs but were unchanged in the LCLs. Collagen fibril diameter distribution was significantly altered in both MCL scar tissue and uninjured PCLs from transected joints. MMP-13 mRNA levels in MCL scars and PCLs from ligament transected joints were increased, while TIMP-1 mRNA levels were significantly decreased in the PCLs only. This study has shown that some intact ligaments in injured joints are impacted by the injury. The joint appears to behave like an integrated organ system, with injury to one component affecting the other components as the "organ" attempts to adapt to the loss of integrity.
Collapse
Affiliation(s)
- Yusei Funakoshi
- McCaig Centre for Joint Injury & Arthritis Research, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Hoffmann A, Gross G. Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. INTERNATIONAL ORTHOPAEDICS 2007; 31:791-7. [PMID: 17634943 PMCID: PMC2266662 DOI: 10.1007/s00264-007-0395-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/30/2023]
Abstract
Tendons and ligaments are elastic collagenous tissues with similar composition and hierarchical structure, contributing to motion. Their strength is related to the number and size of the collagen fibrils. Collagen fibrils increase in size during development and in response to increased physical demands or training. Tendon disorders are commonly seen in clinical practice and give rise to significant morbidity. Treatment is difficult and patients often suffer from the symptoms for quite a long time. Despite remodelling, the biochemical and mechanical properties of healed tendon tissue never match those of intact tendon. The prerequisite for focussed treatment strategies in the future will be an improved understanding of the molecular events both in the embryo and contributing to regeneration in the adult organism. Novel approaches include the local delivery of growth factors, stem- and tendon-cell-derived therapy, the application of mechanical load and gene-therapeutic approaches based on vehicles encoding selected factors, or combinations of these. Important factors are proteins of the extracellular matrix like the metalloproteinases, growth factors like the bone morphogenetic proteins but also intracellular signalling mediator proteins, such as the Smads and transcription factors from the helix-loop-helix and other families. In this review, we focus specifically on such molecular approaches based on mesenchymal stem cells.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Molecular Biotechnology, Signalling and Gene Regulation, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Gerhard Gross
- Department of Molecular Biotechnology, Signalling and Gene Regulation, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| |
Collapse
|
241
|
Johns DE, Athanasiou KA. Improving culture conditions for temporomandibular joint disc tissue engineering. Cells Tissues Organs 2007; 185:246-57. [PMID: 17587799 DOI: 10.1159/000102173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) is extremely important for activities like eating and talking, which can become painful and difficult for patients with TMJ dysfunction. Tissue engineering is a potential alternative to current surgical interventions through replacement of diseased or injured tissue with a functional construct. Since research with TMJ disc cells began relatively recently, optimal culturing conditions must be determined. METHODS Metabolic additives, L-glutamine, L-alanyl-L-glutamine, sodium pyruvate, and insulin, were examined for their effects on TMJ disc cells in monolayer. Effects of L-proline were examined in three-dimensional (3-D) culture at concentrations of 0, 25 and 100 mg/l. RESULTS The combination of L-glutamine, sodium pyruvate, and insulin improved cell proliferation rates without affecting collagen production or gene expression. No differences were observed in mechanical properties of the engineered constructs; however, collagen and glycosaminoglycan quantities normalized to cell number decreased at the highest concentration of L-proline. CONCLUSION This work identified supplements for 2-D monolayer expansion. Other supplements or culture conditions still need to be investigated for 3-D tissue production. This work improves upon porcine TMJ disc cell culturing conditions, taking us closer to being able to engineer the TMJ disc.
Collapse
Affiliation(s)
- D E Johns
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
242
|
Whitlock PW, Smith TL, Poehling GG, Shilt JS, Van Dyke M. A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomaterials 2007; 28:4321-9. [PMID: 17610948 DOI: 10.1016/j.biomaterials.2007.05.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 05/17/2007] [Indexed: 11/23/2022]
Abstract
Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from-fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76-78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.
Collapse
Affiliation(s)
- Patrick W Whitlock
- Department of Orthopaedic Surgery, Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
243
|
Gornostaeva SN, Rzhaninova AA, Gol'dstein DV. Myogenesis in hemopoietic tissue mesenchymal stem cell culture. Bull Exp Biol Med 2007; 141:493-9. [PMID: 17152380 DOI: 10.1007/s10517-006-0208-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The myogenic differentiation capacity of prenatal mesenchymal stem cells from the main sites of hemopoiesis (bone marrow, thymus, liver, and spleen) was studied. Myogenesis was observed in all studied cell cultures except splenic mesenchymal stem cells. Differentiating cells from the thymus, bone marrow, and liver were positively stained for skeletal muscle markers (myogenin and MyoD). Autonomously contracting structures positively stained for cardiotroponin I and slow muscle myosin, were detected in the same cultures. Our experiments revealed differences in differentiation of mesenchymal stem cells from hemopoietic organs depending on the source of cells.
Collapse
|
244
|
Bagnaninchi PO, Yang Y, Zghoul N, Maffulli N, Wang RK, Haj AJE. Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. ACTA ACUST UNITED AC 2007; 13:323-31. [PMID: 17518566 DOI: 10.1089/ten.2006.0168] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tendon tissue engineering requires the generation of a uniaxially orientated collagen type I matrix with several organization scales that confer mechanical functionality upon the tendon. A combination of factors in a dose- and time-dependent manner, such as growth factors and mechanical environment, may be the key to an in vitro-engineered tendon. To define the progress of tissue development within a scaffold, on-line systems need to be applied to monitor the newly generated matrix. To address this challenge, we designed a new porous chitosan scaffold with microchannels (diameter: 250 microm), which allows primary porcine tenocytes to proliferate in a bundle-like structure. The cell proliferation and extracellular matrix (ECM) production within the microchannels were successfully assessed under sterile conditions using optical coherence tomography (OCT). A semi-quantitative method that calculated the microchannel occupation ratio (the degree of cell proliferation and tissue turnover based on the total backscattered intensity in the microchannels) was developed. We further investigated the effect of different culture conditions on tendon cell matrix formation. Using a perfusion bioreactor, we demonstrated how fluid flow can increase (p < 1e(3)) ECM production within the microchannels significantly more than static culture. Our study illustrates how using a guiding scaffold in combination with the fast and non-destructive assessment of the microstructure using OCT allows discrimination between the parameters affecting the production and the organization of the ECM.
Collapse
Affiliation(s)
- P O Bagnaninchi
- Institute of Science and Technology in Medicine, Keele University, Stoke-On-Trent, United Kingdom
| | | | | | | | | | | |
Collapse
|
245
|
Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg 2007; 42:974-9; discussion 979-80. [PMID: 17560205 DOI: 10.1016/j.jpedsurg.2007.01.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The surgical treatment of congenital anomalies using tissues engineered from amniotic fluid-derived mesenchymal cells has been validated experimentally. As a prerequisite for testing the clinical feasibility of this therapeutic concept, this study was aimed to expand human mesenchymal amniocytes in the absence of animal products. METHODS Human mesenchymal cells were isolated from amniotic fluid samples (n = 12) obtained at 20 to 37 weeks' gestation. Their phenotypic profiles and cell proliferation rates were compared during expansion under 2 different media, containing either fetal bovine serum or allogeneic human AB serum. Statistical analyses were by the 2-sided Wilcoxon signed rank test and linear regression (P < .05). RESULTS Mesenchymal cells could be isolated and expanded at any gestational age. There was a greater than 9-fold logarithmic expansion of mesenchymal cells, with no significant differences in the overall proliferation rates based on serum type (P = .94), or gestational age (P = .14). At any passage, cells expanded for up to 50 days remained positive for markers consistent with a multipotent mesenchymal progenitor lineage, regardless of the medium used. CONCLUSIONS Human mesenchymal amniocytes retain their progenitor phenotype and can be dependably expanded ex vivo in the absence of animal serum. Clinical trials of amniotic fluid-based tissue engineering are feasible within preferred regulatory guidelines.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
246
|
Abstract
The progression of rheumatoid pathologies, degenerative diseases, traumatologies, and their cortege of increasing medical, social and economical needs, has mandated the development of tissue repair and engineering technologies in orthopedic medicine. Mesenchymal stem cells (MSCs) are multipotent cells that can be extracted from large and relatively easily accessible compartments of the body, especially the bone marrow, and such cells are able to differentiate into adipogenic, chondrogenic and osteogenic precursors. The concept of using MSCs to repair tissues has progressively evolved, and the goal of cell-mediated therapy is to prolong the natural physiological abilities of healing, or substitute them, when these are lacking, failing or progressing too slowly. In recent years, the first clinical trials on the utility of MSCs, with or without scaffolds and/or growth factors, have been initiated. In this review, the authors focus on findings from preclinical research, clinical trials and case reports involving bone and cartilage repairs. New perspectives are considered regarding uses of cell types, cell delivery approaches and growth factors. They also consider the stringent conditions, constraints and considerations necessary to take cell-mediated therapy from bench to bedside.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Groupe Hospitalier Pitié-Salpêtrière, Inserm U582, Association Institut de Myologie, IFR14, 47 Boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
247
|
Abstract
Tendons and ligaments are related connective tissues that join muscle to bone and bone to bone, respectively. Tendon and ligament injuries are widely distributed clinical problems in society and while healing of such disorders can occur, the original biological properties of the tissue do not return to normal. In this review, recent work on tendon and ligament development and the use of growth factors for successful cellular therapy of tendon and ligament disorders are discussed. In addition, anti-inflammatory concepts for the treatment of tendon and ligament injuries and recent developments in stem cell engineering for tendon and ligament tissues are examined. Lastly, gene transfer strategies for therapeutic applications to heal tendon and ligament disorders are reviewed.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Signalling and Gene Regulation, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | |
Collapse
|
248
|
Mountford D. VetCell Bioscience Ltd--regenerative medicine for the world of animal health. Regen Med 2007; 1:393-6. [PMID: 17465796 DOI: 10.2217/17460751.1.3.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
VetCell Bioscience is a UK-based company focused on pioneering the use of regenerative medicine in the animal health market. VetCell was formed in partnership with the Royal Veterinary College and the Institute for Orthopaedic and Musculoskeletal Science to develop the use of cellular therapies to treat athletic injuries in horses. This ground-breaking work has been the springboard from which the Company has expanded into other areas of veterinary regenerative medicine.
Collapse
|
249
|
Nirmalanandhan VS, Dressler MR, Shearn JT, Juncosa-Melvin N, Rao M, Gooch C, Bradica G, Butler DL. Mechanical Stimulation of Tissue Engineered Tendon Constructs: Effect of Scaffold Materials. J Biomech Eng 2007; 129:919-23. [DOI: 10.1115/1.2800828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)–collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5min to a peak strain of 2.4%, for 8h∕day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048±0.009 versus 0.015±0.004; mean±SEM (standard error of the mean ) N/mm) and linear modulus (0.016±0.004 versus 0.005±0.001; mean±SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.
Collapse
Affiliation(s)
- Victor S. Nirmalanandhan
- Department of Biomedical Engineering, University of Cincinnati, 2901 Campus Drive, 837 Engineering Research Center, Cincinnati, OH 45221-0048
| | - Matthew R. Dressler
- Department of Engineering, Dordt College, 498 4th Avenue, Northeast Sioux Center, IA 51250
| | - Jason T. Shearn
- Department of Biomedical Engineering, University of Cincinnati, Mail Location 0048, Cincinnati, OH 45221-0048
| | - Natalia Juncosa-Melvin
- Department of Biomedical Engineering, University of Cincinnati, 2901 Campus Drive, 860 Engineering Research Center, Cincinnati, OH 45221-0048
| | - Marepalli Rao
- Environmental Health-Genomics, University of Cincinnati, Kettering 106, P.O. Box 670056, Cincinnati, OH 45267
| | - Cynthia Gooch
- Department of Biomedical Engineering, University of Cincinnati, 2901 Campus Drive, 893 Engineering Research Center, Cincinnati, OH 45221-0048
| | - Gino Bradica
- Kensey Nash Corporation, 55 East Uwchlan Avenue, Exton, PA 19341
| | - David L. Butler
- Director, Tissue Engineering and Biomechanics Laboratories, 840 Engineering Research Center, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221-0048
| |
Collapse
|
250
|
Hachisuka H, Mochizuki Y, Yasunaga Y, Natsu K, Sharman P, Shinomiya R, Ochi M. Flow cytometric discrimination of mesenchymal progenitor cells from bone marrow-adherent cell populations using CD34/44/45(-) and Sca-1(+) markers. J Orthop Sci 2007; 12:161-9. [PMID: 17393272 DOI: 10.1007/s00776-006-1098-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 11/14/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cultured bone marrow adherent cells (BMACs) have been commonly used as stem cells in bone and cartilage regeneration therapy. However, BMACs are actually a heterogeneous cell population, and clinicians might have previously transplanted more fibroblasts or other cells than actual stem cells. The purposes of this study were to (1) isolate immature mesenchymal stem cells with CD34/44/45 and Sca-1 surface-antigen patterns from BMACs using flow-activated cell sorting and (2) investigate their differentiation potential. METHODS Bone marrow cells were extracted from the mouse femur and cultured. Adherent cells could be identified approximately 3 days after seeding, and nonadherent cells were removed with the medium when it was changed. BMAC samples were cultured for 3, 7, 10, 14, 21, 28, 35, and 42 days after the first seeding. We directly isolated CD34/44/45(-)Sca-1(+) mesenchymal progenitor cells (MPC1) and CD34/45(-)/44(+) Sca-1(+) mesenchymal progenitor cells (MPC2) from BMACs based on their cell surface marker patterns using a fluorescence-activated cell sorter. These subgroups - MPC1, MPC2, and the residual cells in BMACs (non-MPC population: RCs) - were then induced to differentiate into bone, cartilage, and fat using a plate culture. The cultures were examined after histochemical staining on day 14. RESULTS In a plate culture, the MPC1 population had higher potential to differentiate into osteoblasts, chondrocytes, and lipocytes; whereas MPC2 and RCs differentiated into only two lineages: osteoblasts and lipocytes. The incidence of these multipotential cells was less than 5% among the cultured BMACs. MPC1 proliferated up to 17-fold within 3-4 weeks after separation from floating cells and did not increase thereafter. CONCLUSIONS BMACs are conventionally thought to differentiate into cartilage only in pellet culture, but we showed that MPC1 produced cartilage-like extracellular matrix in plate culture. MPC1, which are more immature cells than MPC2 and RCs, were multipotential progenitors that showed unique cartilage-differentiation potential. MPC1 had less ability to proliferate in BMAC culture, but they might have higher potential for chondrogenic differentiation.
Collapse
Affiliation(s)
- Hiroki Hachisuka
- Department of Orthopedic Surgery, Programs for Applied Biomedicine, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|