201
|
Ton TGN, Jain S, Biggs ML, Thacker EL, Strotmeyer ES, Boudreau R, Newman AB, Longstreth WT, Checkoway H. Markers of inflammation in prevalent and incident Parkinson's disease in the Cardiovascular Health Study. Parkinsonism Relat Disord 2012; 18:274-8. [PMID: 22119505 PMCID: PMC3288759 DOI: 10.1016/j.parkreldis.2011.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Studies demonstrate existence of inflammation in prevalent Parkinson's disease (PD). We assessed associations of baseline levels of inflammatory markers with prevalent PD at baseline (1989) and incident PD identified over 13 years of follow-up of the Cardiovascular Health Study. METHODS Blood samples at baseline were measured for fibrinogen, interleukin-6, tumor necrosis factor-α, C-reactive protein, albumin, and white blood cells. The analysis included 60 prevalent and 154 incident PD cases. RESULTS Risk of prevalent PD was significantly higher per doubling of IL-6 among women (odds ratio [OR]=1.5, 95% confidence interval [CI]: 1.0, 2.4) and WBC among men (OR: 2.4, 95% CI: 1.2, 4.9) in multivariate models. Risk of incident PD was not associated with higher levels of any biomarker after adjusting for age, smoking, African American race, and history of diabetes. Inverse associations with incident PD were observed per doubling of C-reactive protein (OR=0.9; 95% CI: 0.8, 1.0) and of fibrinogen among women (OR=0.4; 95% CI: 0.2, 0.8). CONCLUSIONS Although inflammation exists in PD, it may not represent an etiologic factor. Our findings suggest the need for larger studies that measure inflammatory markers before PD onset.
Collapse
Affiliation(s)
- Thanh G N Ton
- Department of Neurology, School of Medicine, University of Washington, Box 359775, Harborview Medical Center, 325 Ninth Ave, Seattle, WA 98125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
203
|
Donev RM, Howell OW. Polymorphisms in neuropsychiatric and neuroinflammatory disorders and the role of next generation sequencing in early diagnosis and treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 89:85-116. [PMID: 23046883 DOI: 10.1016/b978-0-12-394287-6.00004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A number of polymorphisms have been implicated in different neuropsychiatric and neurological disorders. Polymorphisms in neurological disorders with a central immune component are well described, mainly due to their role in increasing neurodegeneration. For example, the role of polymorphisms in Alzheimer's disease in accumulation of amyloid plaques is now well established. In contrast, polymorphisms resulting in or affecting psychiatric disorders are less well studied and frequently are not replicated by meta-analysis. Furthermore, even if a significant association has been confirmed, the role of the identified polymorphism in causing and/or augmenting the disorder is often difficult to rationalize. Here, we review polymorphisms found associated with different neuroinflammatory and neuropsychiatric disorders and discuss the role of next generation sequencing in early diagnosis and treatment and as a tool in studying their functional consequences.
Collapse
Affiliation(s)
- Rossen M Donev
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK.
| | | |
Collapse
|
204
|
Gerlach M, Maetzler W, Broich K, Hampel H, Rems L, Reum T, Riederer P, Stöffler A, Streffer J, Berg D. Biomarker candidates of neurodegeneration in Parkinson's disease for the evaluation of disease-modifying therapeutics. J Neural Transm (Vienna) 2012; 119:39-52. [PMID: 21755462 PMCID: PMC3250615 DOI: 10.1007/s00702-011-0682-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/21/2011] [Indexed: 12/16/2022]
Abstract
Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson's disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies.
Collapse
Affiliation(s)
- Manfred Gerlach
- Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstrasse 15, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Bachurin SO, Shelkovnikova TA, Ustyugov AA, Peters O, Khritankova I, Afanasieva MA, Tarasova TV, Alentov II, Buchman VL, Ninkina NN. Dimebon slows progression of proteinopathy in γ-synuclein transgenic mice. Neurotox Res 2011; 22:33-42. [PMID: 22179976 PMCID: PMC3351599 DOI: 10.1007/s12640-011-9299-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/06/2023]
Abstract
Intermediates and final products of protein aggregation play crucial role in the development of degenerative changes in a number of neurological diseases. Pathological protein aggregation is currently regarded as one of the most promising therapeutic targets for treatment of these diseases. Transgenic mouse models of proteinopathies are an effective tool for screening and validation of compounds, which can selectively affect metabolism of aggregate-prone proteins. In this study, we assessed effects of dimebon, a compound with known neuroprotective properties, on a recently established transgenic mouse model recapitulating key pathological features of amyotrophic lateral sclerosis (ALS) as the consequence of neuron-specific overexpression of γ-synuclein. Cohorts of experimental transgenic mice received dimebon in drinking water with this chronic treatment starting either before or after the onset of clinical signs of pathology. We detected statistically significant improvement of motor performance in a rotarod test in both dimebon-treated animal groups, with more pronounced effect in a group that received dimebon from an earlier age. We also revealed substantially reduced number of amyloid inclusions, decreased amount of insoluble γ-synuclein species and a notable amelioration of astrogliosis in the spinal cord of dimebon-treated compared with control transgenic animals. However, dimebon did not prevent the loss of spinal motor neurons in this model. Our results demonstrated that chronic dimebon administration is able to slow down but not halt progression of γ-synucleinopathy and resulting signs of pathology in transgenic animals, suggesting potential therapeutic use of this drug for treatment of this currently incurable disease.
Collapse
Affiliation(s)
- Sergey O Bachurin
- Institute of Physiologically Active Compounds of RAS, 1 Severniy Proezd, Chernogolovka, 142432, Moscow Region, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Oberländer U, Pletinckx K, Döhler A, Müller N, Lutz MB, Arzberger T, Riederer P, Gerlach M, Koutsilieri E, Scheller C. Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci 2011; 12:116. [PMID: 22085464 PMCID: PMC3225309 DOI: 10.1186/1471-2202-12-116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/15/2011] [Indexed: 12/25/2022] Open
Abstract
Background Parkinson's disease (PD) is characterized at the cellular level by a destruction of neuromelanin (NM)-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs), the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN) from human subjects or with synthetic dopamine melanin (DAM). DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh). NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.
Collapse
Affiliation(s)
- Uwe Oberländer
- University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WST, Jones SM. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 2011; 8:129. [PMID: 21975039 PMCID: PMC3198931 DOI: 10.1186/1742-2094-8-129] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/05/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS), superoxide and hydrogen peroxide (H2O2), are necessary for appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss, suggesting that Parkinson's disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons, suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons themselves, thus providing an early therapeutic target. METHODS NADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-PCR. Superoxide was measured by flow cytometric detection of H2O2-induced carboxy-H2-DCFDA fluorescence. Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22phox, or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II type 1 receptor-induced NADPH oxidase activation. RESULTS Nigral dopaminergic neurons in situ expressed three subunits necessary for NADPH oxidase activation, and these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22phox, or losartan. A two-wave ROS cascade was identified: 1) as a first wave, mitochondrial H2O2 production was first noted at three hours of MPP+ treatment; and 2) as a second wave, H2O2 levels were further increased by 24 hours. This second wave was eliminated by pharmacological inhibitors and a blocker of protein synthesis. CONCLUSIONS A two-wave cascade of ROS production is active in nigral dopaminergic neurons in response to neurotoxicity-induced superoxide. Our findings allow us to conclude that superoxide generated by NADPH oxidase present in nigral neurons contributes to the loss of such neurons in PD. Losartan suppression of nigral-cell superoxide production suggests that angiotensin receptor blockers have potential as PD preventatives.
Collapse
Affiliation(s)
- W Michael Zawada
- Donald W, Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Guo Y, Deng X, Zheng W, Xu H, Song Z, Liang H, Lei J, Jiang X, Luo Z, Deng H. HLA rs3129882 variant in Chinese Han patients with late-onset sporadic Parkinson disease. Neurosci Lett 2011; 501:185-7. [PMID: 21791235 DOI: 10.1016/j.neulet.2011.05.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/18/2011] [Accepted: 05/22/2011] [Indexed: 11/16/2022]
Abstract
Recently, the rs3129882 variant in intron 1 of HLA-DRA was found to be associated with late-onset sporadic Parkinson disease (PD) in Americans of European ancestry. To evaluate whether the same variant is related to PD in Chinese population, we investigated late-onset sporadic PD patients of Chinese Han ethanicity in Mainland China. We found significant difference in genotypic and allele distribution between patients and control subjects (χ²)=6.446, p=0.040 for genotypic distribution; χ²=5.762, p=0.016 for allele distribution), suggesting this variant is associated with late-onset sporadic PD in Chinese Han population.
Collapse
Affiliation(s)
- Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Lira A, Kulczycki J, Slack R, Anisman H, Park DS. Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss. J Biol Chem 2011; 286:28783-28793. [PMID: 21693708 DOI: 10.1074/jbc.m111.244830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although there is growing evidence for a role of the innate immune response in Parkinson's disease, the nature of any humoral response in dopaminergic degeneration is uncertain. Here we report on a protracted N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of dopaminergic death that potentially allows a more full adaptive humoral response to develop. Rag2 mutant mice that lack the full adaptive response (deficient in both T and B cells) are resistant to dopaminergic death and behavioral deficiencies in this model. These mice are resensitized after reconstitution with WT splenocytes. To more directly provide evidence for humoral/IgG involvement, we show that deficiency of Fcγ receptors, which are critical for activation of macrophages/microglia by binding to IgGs, is also protective in this protracted model. FcγR-deficient mice display improved behavior and impaired microglial activation. Interestingly, however, Rag2 mutant but not FcγR-deficient mice are resistant to a more standard N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine paradigm where death is more rapid. Taken together, these data indicate that, provided sufficient time, the humoral arm of the adaptive immune system can play a critical functional role in modulating the microglial response to dopaminergic degeneration and suggest that this humoral component may participate in degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Arman Lira
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jerzy Kulczycki
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada, and
| | - Ruth Slack
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada, and
| | - David S Park
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada,; Department of Cogno-Mechatronics Engineering, Pusan National University, Korea.
| |
Collapse
|
210
|
Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson's disease. Mov Disord 2011; 26:6-17. [PMID: 21322014 DOI: 10.1002/mds.23455] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Glia are traditionally known as support cells for neurons, and their role in neurodegeneration has been largely considered secondary to neuronal dysfunction. We review newer concepts on glial function and assess glial changes in Parkinson's disease (PD) at the time of disease initiation when α-synuclein is accumulating in brain tissue but there is limited neuronal loss, and also as the disease progresses and neuronal loss is evident. RESULTS Of the two main types of astrocytes, only protoplasmic astrocytes are involved in PD, where they become nonreactive and accumulate α-synuclein. Experimental evidence has shown that astrocytic α-synuclein deposition initiates the noncell autonomous killing of neurons through microglial signaling. As the disease progresses, more protoplasmic astrocytes are affected by the disease with an increasing microglial response. Although there is still controversy on the role microglia play in neurodegeneration, there is evidence that microglia are activated early in PD and possibly assist with the clearance of extracellular α-synuclein at this time. Microglia transform to phagocytes and target neurons as the disease progresses but appear to become dysfunctional with increasing amounts of ingested debris. Only nonmyelinating oligodendroglial cells are affected in PD, and only late in the disease process. CONCLUSIONS Glial cells are responsible for the progression of PD and play an important role in initiating the early tissue response. In particular, early dysfunction and α-synuclein accumulation in astrocytes causes recruitment of phagocytic microglia that attack selected neurons in restricted brain regions causing the clinical symptoms of PD.
Collapse
|
211
|
Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathol 2011; 121:675-93. [PMID: 21562886 DOI: 10.1007/s00401-011-0833-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) are adult onset neurodegenerative disorders characterised by prominent intracellular α-synuclein aggregates (α-synucleinopathies). The glial contribution to neurodegeneration in α-synucleinopathies was largely underestimated until recently. However, brains of PD and DLB patients exhibit not only neuronal inclusions such as Lewy bodies or Lewy neurites but also glial α-synuclein aggregates. Accumulating experimental evidence in PD models suggests that astrogliosis and microgliosis act as important mediators of neurodegeneration playing a pivotal role in both disease initiation and progression. In MSA, oligodendrocytes are intriguingly affected by aberrant cytoplasmic accumulation of α-synuclein (glial cytoplasmic inclusions, Papp-Lantos bodies). Converging evidence from human postmortem studies and transgenic MSA models suggests that oligodendroglial dysfunction both triggers and exacerbates neuronal degeneration. This review summarises the wide range of responsibilities of astroglia, microglia and oligodendroglia in the healthy brain and the changes in glial function associated with ageing. We then provide a critical analysis of the role of glia in α-synucleinopathies including putative mechanisms promoting a chronically diseased glial microenvironment which can lead to detrimental neuronal changes, including cell loss. Finally, major therapeutic strategies targeting glial pathology in α-synucleinopathies as well as current pitfalls for disease-modification in clinical trials are discussed.
Collapse
|
212
|
Schulte C, Gasser T. Genetic basis of Parkinson's disease: inheritance, penetrance, and expression. APPLICATION OF CLINICAL GENETICS 2011; 4:67-80. [PMID: 23776368 PMCID: PMC3681179 DOI: 10.2147/tacg.s11639] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease can be caused by rare familial genetic mutations, but in most cases it is likely to result from an interaction between multiple genetic and environmental risk factors. Over recent years, many variants in a growing number of genes involved in the pathogenesis of Parkinson’s disease have been identified. Mutations in several genes have been shown to cause familial parkinsonism. In this review, we discuss 12 of them (SNCA, LRRK2, Parkin, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, UCHL1, GIGYF2, HTRA2, and EIF4G1). Additionally, six genes have been shown conclusively to be risk factors for sporadic Parkinson’s disease, and are also discussed (GBA, MAPT, BST1, PARK16, GAK, and HLA). Many more genes and genetic loci have been suggested, but need confirmation. There is evidence that pathways involved in the rare familial forms also play a role in the sporadic form, and that the respective genes might also be risk factors for sporadic Parkinson’s disease. The identification of genes involved in the development of Parkinson’s disease will improve our understanding of the underlying molecular mechanisms, and will hopefully lead to new drug targets and treatment strategies.
Collapse
Affiliation(s)
- Claudia Schulte
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | |
Collapse
|
213
|
Walter U, Witt R, Wolters A, Wittstock M, Benecke R. Substantia nigra echogenicity in Parkinson's disease: relation to serum iron and C-reactive protein. J Neural Transm (Vienna) 2011; 119:53-7. [PMID: 21626410 DOI: 10.1007/s00702-011-0664-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/20/2011] [Indexed: 01/11/2023]
Abstract
In Parkinson's disease (PD), substantia nigra hyperechogenicity (SN-h) has been related to both, local iron accumulation and microglia activation. We analysed its relationship in PD patients with serum iron (n = 31) and C-reactive protein (CRP; n = 193). SN-h correlated with lower CRP and iron levels. Also, patients with a first-degree relative with PD had lower iron levels. Microglia activation, if reflected by SN-h, may be therefore unrelated to serum CRP. Findings support the idea that SN-h indicates inherited alteration of iron metabolism.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | | | | | | | | |
Collapse
|
214
|
Rohn TT, Catlin LW. Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain. PLoS One 2011; 6:e20495. [PMID: 21655265 PMCID: PMC3105060 DOI: 10.1371/journal.pone.0020495] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022] Open
Abstract
Although much is known regarding the molecular mechanisms leading to neuronal cell loss in Parkinson's disease (PD), the initiating event has not been identified. Prevailing theories including a chemical insult or infectious agent have been postulated as possible triggers, leading to neuroinflammation. We present immunohistochemical data indicating the presence of influenza A virus within the substantia nigra pars compacta (SNpc) from postmortem PD brain sections. Influenza A virus labeling was identified within neuromelanin granules as well as on tissue macrophages in the SNpc. Further supporting a role for neuroinflammation in PD was the identification of T-lymphocytes that colocalized with an antibody to caspase-cleaved Beclin-1 within the SNpc. The presence of influenza A virus together with macrophages and T-lymphocytes may contribute to the neuroinflammation associated with this disease.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biology, Boise State University, Boise, Idaho, United States of America.
| | | |
Collapse
|
215
|
Liu M, Bing G. Lipopolysaccharide animal models for Parkinson's disease. PARKINSONS DISEASE 2011; 2011:327089. [PMID: 21603177 PMCID: PMC3096023 DOI: 10.4061/2011/327089] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/28/2011] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria, acts as a potent stimulator of microglia and has been used to study the inflammatory process in the pathogenesis of Parkinson's disease (PD) and anti-inflammatory therapy for PD treatment. Here, we review the growing body of literature on both in vitro and in vivo LPS PD models. Primary cell cultures from mesencephalic tissue were exposed to LPS in vitro; LPS was stereotaxically injected into the substantia nigra, striatum, or globus pallidus of brain or injected into the peritoneal cavity of the animal in vivo. In conclusion, the LPS PD models are summarized as (1) local and direct LPS treatment and (2) systemic LPS treatment. Mechanisms underlying the PD models are investigated and indicated that LPS induces microglial activation to release a variety of neurotoxic factors, and damaged neurons may trigger reactive microgliosis, which lead to progressive dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Mei Liu
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
216
|
α-synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson's disease patients. PLoS One 2011; 6:e18513. [PMID: 21541339 PMCID: PMC3081826 DOI: 10.1371/journal.pone.0018513] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/07/2011] [Indexed: 11/22/2022] Open
Abstract
Background Auto-antibodies with specificity to self-antigens have been implicated in a wide variety of neurological diseases, including Parkinson's (PD) and Alzheimer's diseases, being sensitive indicators of neurodegeneration and focus for disease prevention. Of particular interest are the studies focused on the auto-immune responses to amyloidogenic proteins associated with diseases and their applications in therapeutic treatments such as vaccination with amyloid antigens and antibodies in PD, Alzheimer's disease and potentially other neurodegeneration ailments. Methodology/Principal Findings Generated auto-antibodies towards the major amyloidogenic protein involved in PD Lewy bodies – α-synuclein and its amyloid oligomers and fibrils were measured in the blood sera of early and late PD patients and controls by using ELISA, Western blot and Biacore surface plasmon resonance. We found significantly higher antibody levels towards monomeric α-synuclein in the blood sera of PD patients compared to controls, though the responses decreased with PD progression (P<0.0001). This indicates potential protective role of autoimmunity in maintaining the body homeostasis and clearing protein species whose disbalance may lead to amyloid assembly. There were no noticeable immune responses towards amyloid oligomers, but substantially increased levels of IgGs towards α-synuclein amyloid fibrils both in PD patients and controls, which subsided with the disease progression (P<0.0001). Pooled IgGs from PD patients and controls interacted also with the amyloid fibrils of Aβ (1–40) and hen lysozyme, however the latter were recognized with lower affinity. This suggests that IgGs bind to the generic amyloid conformational epitope, displaying higher specificity towards human amyloid species associated with neurodegeneration. Conclusions/Significance Our findings may suggest the protective role of autoimmunity in PD and therefore immune reactions towards PD major amyloid protein – α-synuclein can be of value in the development of treatment and diagnostic strategies, especially during the early disease stages.
Collapse
|
217
|
Immunoprotection against toxic biomarkers is retained during Parkinson's disease progression. J Neuroimmunol 2011; 233:221-7. [DOI: 10.1016/j.jneuroim.2010.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/05/2023]
|
218
|
Carta AR, Pisanu A, Carboni E. Do PPAR-Gamma Agonists Have a Future in Parkinson's Disease Therapy? PARKINSON'S DISEASE 2011; 2011:689181. [PMID: 21603186 PMCID: PMC3096077 DOI: 10.4061/2011/689181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/27/2011] [Indexed: 12/24/2022]
Abstract
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor (PPAR)-γ agonists commonly used as insulin-sensitizing drugs for the treatment of type 2 diabetes. In the last decade, PPAR-γ agonists have received increasing attention for their neuroprotective properties displayed in a variety of neurodegenerative diseases, including Parkinson's disease (PD), likely related to the anti-infammatory activity of these compounds. Recent studies indicate that neuroinflammation, specifically reactive microglia, plays important roles in PD pathogenesis. Moreover, after the discovery of infiltrating activated Limphocytes in the substantia nigra (SN) of PD patients, most recent research supports a role of immune-mediated mechanisms in the pathological process leading to chronic neuroinflammation and dopaminergic degeneration. PPAR-γ are highly expressed in cells of both central and peripheral immune systems, playing a pivotal role in microglial activation as well as in monocytes and T cells differentiation, in which they act as key regulators of immune responses. Here, we review preclinical evidences of PPAR-γ-induced neuroprotection in experimental PD models and highlight relative anti-inflammatory mechanisms involving either central or peripheral immunomodulatory activity. Specific targeting of immune functions contributing to neuroinflammation either directly (central) or indirectly (peripheral) may represent a novel therapeutic approach for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Anna R. Carta
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Augusta Pisanu
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Ezio Carboni
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
219
|
Morales-Garcia JA, Redondo M, Alonso-Gil S, Gil C, Perez C, Martinez A, Santos A, Perez-Castillo A. Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS One 2011; 6:e17240. [PMID: 21390306 PMCID: PMC3044733 DOI: 10.1371/journal.pone.0017240] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/24/2011] [Indexed: 01/01/2023] Open
Abstract
Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease.
Collapse
Affiliation(s)
- Jose A. Morales-Garcia
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas CSIC-UAM, Arturo Duperier, 4 and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miriam Redondo
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas CSIC-UAM, Arturo Duperier, 4 and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmen Gil
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - Concepción Perez
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - Ana Martinez
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - Angel Santos
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas CSIC-UAM, Arturo Duperier, 4 and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail:
| |
Collapse
|
220
|
Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 2011; 118:939-57. [DOI: 10.1111/j.1471-4159.2010.07132.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
221
|
McArthur S, Gillies GE. Peripheral vs. Central Sex Steroid Hormones in Experimental Parkinson's Disease. Front Endocrinol (Lausanne) 2011; 2:82. [PMID: 22649388 PMCID: PMC3355917 DOI: 10.3389/fendo.2011.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023] Open
Abstract
The nigrostriatal dopaminergic (NSDA) pathway degenerates in Parkinson's disease (PD), which occurs with approximately twice the incidence in men than women. Studies of the influence of systemic estrogens in females suggest sex hormones contribute to these differences. In this review we analyze the evidence revealing great complexity in the response of the healthy and injured NSDA system to hormonal influences, and emphasize the importance of centrally generated estrogens. At physiological levels, circulating estrogen (in females) or estrogen precursors (testosterone in males, aromatized to estrogen centrally) have negligible effects on dopaminergic neuron survival in experimental PD, but can modify striatal dopamine levels via actions on the activity or adaptive responses of surviving cells. However, these effects are sexually dimorphic. In females, estradiol promotes adaptive responses in the partially injured NSDA pathway, preserving striatal dopamine, whereas in males gonadal steroids and exogenous estradiol have a negligible or even suppressive effect, effectively exacerbating dopamine loss. On balance, the different effects of gonadal factors in males and females contribute to sex differences in experimental PD. Fundamental sex differences in brain organization, including the sexually dimorphic networks regulating NSDA activity are likely to underpin these responses. In contrast, estrogen generated locally appears to preserve striatal dopamine in both sexes. The available data therefore highlight the need to understand the biological basis of sex-specific responses of the NSDA system to peripheral hormones, so as to realize the potential for sex-specific, hormone-based therapies in PD. Furthermore, they suggest that targeting central steroid generation could be equally effective in preserving striatal dopamine in both sexes. Clarification of the relative roles of peripheral and central sex steroid hormones is thus an important challenge for future studies.
Collapse
Affiliation(s)
- Simon McArthur
- Department of Medicine, Centre for Neuroscience, Imperial College LondonLondon, UK
- *Correspondence: Simon McArthur, Department of Medicine, Centre for Neuroscience, Imperial College London, London SW7 2AZ, UK. e-mail:
| | - Glenda E. Gillies
- Department of Medicine, Centre for Neuroscience, Imperial College LondonLondon, UK
| |
Collapse
|
222
|
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder. In most instances, PD is thought to result from a complex interaction between multiple genetic and environmental factors, though rare monogenic forms of the disease do exist. Mutations in 6 genes (SNCA, LRRK2, PRKN, DJ1, PINK1, and ATP13A2) have conclusively been shown to cause familial parkinsonism. In addition, common variation in 3 genes (MAPT, LRRK2, and SNCA) and loss-of-function mutations in GBA have been well-validated as susceptibility factors for PD. The function of these genes and their contribution to PD pathogenesis remain to be fully elucidated. The prevalence, incidence, clinical manifestations, and genetic components of PD are discussed in this review.
Collapse
Affiliation(s)
- Lynn M Bekris
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | |
Collapse
|
223
|
Cao S, Theodore S, Standaert DG. Fcγ receptors are required for NF-κB signaling, microglial activation and dopaminergic neurodegeneration in an AAV-synuclein mouse model of Parkinson's disease. Mol Neurodegener 2010; 5:42. [PMID: 20977765 PMCID: PMC2975641 DOI: 10.1186/1750-1326-5-42] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/26/2010] [Indexed: 12/23/2022] Open
Abstract
Overexpression of alpha-synuclein (α-SYN), a protein which plays an important role in the pathogenesis of Parkinson's disease (PD), triggers microglial activation and adaptive immune responses, and leads to neurodegeneration of dopaminergic (DA) neurons. We hypothesized a link between the humoral adaptive immune response and microglial activation in α-SYN induced neurodegeneration. To test this hypothesis, we employed adeno-associated virus serotype 2 (AAV2) to selectively over-express human α-SYN in the substantia nigra (SN) of wild-type mice and FcγR-/- mice, which lack high-affinity receptors for IgG. We found that in wild-type mice, α-SYN induced the expression of NF-κB p65 and pro-inflammatory molecules. In FcγR-/- mice, NF-κB activation was blocked and pro-inflammatory signaling was reduced. Microglial activation was examined using immunohistochemistry for gp91PHOX. At four weeks, microglia were strongly activated in wild-type mice, while microglial activation was attenuated in FcγR-/- mice. Dopaminergic neurodegeneration was examined using immunohistochemistry for tyrosine hydroxylase (TH) and unbiased stereology. α-SYN overexpression led to the appearance of dysmorphic neurites, and a loss of DA neurons in the SN in wild-type animals, while FcγR-/- mice did not exhibit neuritic change and were protected from α-SYN-induced neurodegeneration 24 weeks after injection. Our results suggest that the humoral adaptive immune response triggered by excess α-SYN plays a causative role in microglial activation through IgG-FcγR interaction. This involves NF-κB signaling, and leads to DA neurodegeneration. Therefore, blocking either FcγR signaling or specific intracellular signal transduction events downstream of FcγR-IgG interaction, such as NF-κB activation, may be viable therapeutic strategies in PD.
Collapse
Affiliation(s)
- Shuwen Cao
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, USA.
| | | | | |
Collapse
|
224
|
Hurelbrink CB, Lewis SJG. Pathological considerations in the treatment of Parkinson's disease: more than just a wiring diagram. Clin Neurol Neurosurg 2010; 113:1-6. [PMID: 20828923 DOI: 10.1016/j.clineuro.2010.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 08/08/2010] [Accepted: 08/15/2010] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) represents a common but challenging condition in which an increasing number of therapeutic options have evolved over the course of the last 50 years. The introduction of dopaminergic therapies has dramatically improved outcomes but life expectancies remain significantly curtailed. Currently, all available treatment options are directed towards the amelioration of symptoms. However, it is hoped that a greater understanding of the distinctive pathology underlying PD might offer some novel therapeutic approaches. The identification of degeneration within the nigrostriatal tract as the most prominent pathological process in PD has led to the development of a number of therapies. However, despite initially good symptomatic control it has become clear that the longer-term use of these medications is associated with a number of debilitating motor complications. The management of these drug-related issues has necessitated a further tier of therapeutic options based largely on a greater understanding of the basal ganglia circuitry involved. Indeed, surgical interventions targeting these neural circuits have provided increased control of motor symptoms in patients with advanced disease, however, such techniques still fail to slow or reverse the disease. To this end, a number of novel approaches focussed on restoration or repair of the diseased brain have received increasing attention. Nevertheless, there are multiple symptoms that are unresponsive to any of these therapies, highlighting the involvement of other neurotransmitter systems and the complexities of the disease beyond the basal ganglia circuitry. An appreciation of the ongoing neurodegenerative processes at the core of PD and the burden of disease associated with them, emphasises the need for increased research into more effective and comprehensive treatment methodologies.
Collapse
Affiliation(s)
- Carrie Brienne Hurelbrink
- Department of Neurology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, Sydney, NSW 2050, Australia.
| | | |
Collapse
|
225
|
Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat Genet 2010; 42:781-5. [PMID: 20711177 PMCID: PMC2930111 DOI: 10.1038/ng.642] [Citation(s) in RCA: 605] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/15/2010] [Indexed: 01/17/2023]
Abstract
Parkinson's disease is a common disorder that leads to motor and cognitive disability. We performed a genome-wide association study of 2,000 individuals with Parkinson's disease (cases) and 1,986 unaffected controls from the NeuroGenetics Research Consortium (NGRC). We confirmed associations with SNCA and MAPT, replicated an association with GAK (using data from the NGRC and a previous study, P = 3.2 x 10(-9)) and detected a new association with the HLA region (using data from the NGRC only, P = 2.9 x 10(-8)), which replicated in two datasets (meta-analysis P = 1.9 x 10(-10)). The HLA association was uniform across all genetic and environmental risk strata and was strong in sporadic (P = 5.5 x 10(-10)) and late-onset (P = 2.4 x 10(-8)) disease. The association peak we found was at rs3129882, a noncoding variant in HLA-DRA. Two studies have previously suggested that rs3129882 influences expression of HLA-DR and HLA-DQ. The brains of individuals with Parkinson's disease show upregulation of DR antigens and the presence of DR-positive reactive microglia, and nonsteroidal anti-inflammatory drugs reduce Parkinson's disease risk. The genetic association with HLA supports the involvement of the immune system in Parkinson's disease and offers new targets for drug development.
Collapse
Affiliation(s)
- Taye H Hamza
- New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - Cyrus P Zabetian
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - Albert Tenesa
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland
| | - Alain Laederach
- New York State Department of Health Wadsworth Center, Albany, NY, USA
| | | | - Dora Yearout
- New York State Department of Health Wadsworth Center, Albany, NY, USA
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - Denise M Kay
- New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Paschall
- NCBI, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria I Kusel
- New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - Randall Collura
- New York State Department of Health Wadsworth Center, Albany, NY, USA
| | | | - Alida Griffith
- Booth Gardner Parkinson’s Care Center, Evergreen Hospital Medical Center, Kirkland, WA, USA
| | - Ali Samii
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - William K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, FL, USA
| | - John Nutt
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydeh Payami
- New York State Department of Health Wadsworth Center, Albany, NY, USA
| |
Collapse
|
226
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
227
|
Association between high-sensitivity C-reactive protein and risk of early idiopathic Parkinson's disease. Neurol Sci 2010; 32:31-4. [PMID: 20532580 DOI: 10.1007/s10072-010-0335-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Although neuroinflammation is known to play an important role in the pathogeneses of neurodegenerative diseases, few studies have been conducted on the association between Parkinson's disease (PD) and high-sensitivity C-reactive protein (hs-CRP), which is the most studied biomarker of systemic inflammation. Therefore, we conducted this study to determine the clinical correlates of hs-CRP levels in early PD patients by comparing findings with those of normal controls. Sixty-three drug-naïve patients with early PD and 117 healthy subjects were recruited, and hs-CRP level differences were investigated in these two groups. It was found that hs-CRP levels in the early PD group were higher than those of healthy controls. Furthermore, when compared with normal controls, the odds ratio for PD based on hs-CRP level cut-off of 0.5 was 2.094 (95% CI = 1.017-4.311, P = 0.045). In this study, our findings support the hypothesis that neuroinflammatory reactions play an important role in the pathogenesis of PD.
Collapse
|
228
|
Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab 2010; 30:1121-36. [PMID: 20051973 PMCID: PMC2949198 DOI: 10.1038/jcbfm.2009.277] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient compression of rat somatosensory cortex has been reported to affect cerebral microvasculature and sensory function simultaneously. However, the effects of long-term cortical compression remain unknown. Here, we investigated whether and to what extent sustained but moderate epidural compression of rat somatosensory cortex impairs somatic sensation and/or cortical microvasculature. Electrophysiological and behavioral tests revealed that sustained compression caused only short-term sensory deficit, particularly at 1 day after injury. Although the diameter of cortical microvessels was coincidentally reduced, no ischemic insult was observed. By measuring Evans Blue and immunoglobulin G extravasation, the blood-brain barrier (BBB) permeability was found to dramatically increase during 1 to 3 days, but this did not lead to brain edema. Furthermore, immunoblotting showed that the BBB component proteins occludin, claudin-5, type IV collagen, and glial fibrillary acidic protein were markedly upregulated in the injured cortex during 1 to 2 weeks when BBB regained integrity. Conversely, treatment of ascorbic acid prevented compression-induced BBB disruption and sensory impairment. Together, these data suggest that sustained compression of the somatosensory cortex compromises BBB integrity and somatic sensation only in the early period. Ascorbic acid may be used therapeutically to modulate cortical compression and/or BBB dysfunction.
Collapse
Affiliation(s)
- Jia-Li Lin
- Institute of Neuroscience, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
229
|
Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S. The immunoregulatory role of dopamine: an update. Brain Behav Immun 2010; 24:525-8. [PMID: 19896530 PMCID: PMC2856781 DOI: 10.1016/j.bbi.2009.10.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/17/2009] [Accepted: 10/27/2009] [Indexed: 12/20/2022] Open
Abstract
The neurotransmitter dopamine (DA) is an important molecule bridging the nervous and immune systems. DA through autocrine/paracrine manner modulates the functions of immune effector cells by acting through its receptors present in these cells. DA also has unique and opposite effects on T cell functions. Although DA activates naïve or resting T cells, but it inhibits activated T cells. In addition, changes in the expression of DA receptors and their signaling pathways especially in T cells are associated with altered immune functions in disorders like schizophrenia and Parkinson's disease. These results suggest an immunoregulatory role of DA. Therefore, targeting DA receptors and their signaling pathways in these cells by using DA receptor agonists and antagonists may be useful for the treatment of diseases where DA induced altered immunity play a pathogenic role.
Collapse
Affiliation(s)
- Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Biswarup Basu
- Signal Transduction and Biogenic Amines Department, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | - Partha Sarthi Dasgupta
- Signal Transduction and Biogenic Amines Department, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
230
|
Fan W, Li X, Wang W, Mo J, Kaplan H, Cooper N. Early Involvement of Immune/Inflammatory Response Genes in Retinal Degeneration in DBA/2J Mice. OPHTHALMOLOGY AND EYE DISEASES 2010. [DOI: 10.1177/117917211000200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose The DBA/2J (D2) mouse carries mutations in two of its genes, Tyrp1 and Gpnmb. These alterations result in the development of an immune response in the iris, leading to iris atrophy and pigment dispersion. The development of elevated intraocular pressure (IOP) in this model of glaucoma is considered to be a significant factor leading to the death of retinal ganglion cells (RGCs). Changes in gene expression in the retina have already been correlated with the appearance of elevated IOP in the D2 mouse. The purpose of the present study was to determine if any changes in gene expression occur prior to the development of IOP. Methods The IOP was measured monthly using a rebound tonometer in D2 and age-matched C57/BL6 (B6) mice (normal controls). D2 animals with normal IOP at 2 and 4 M were used. In addition, mice at the age of 6–7 M were included to look for any trends in gene expression that might develop during the progression of the disease. Separate RNA samples were prepared from each of three individual retinas for each age, and gene expression profiles were determined with the aid of mouse oligonucleotide arrays (Agilent). A subset of genes was examined with the aid of real-time PCR. Immunocytochemistry was used to visualize changes in the retina for some of the gene-products. Results Four hundred and thirteen oligonucleotide probes were differentially expressed in the retinas of 4 M versus 2 M old D2 mice. The most significantly up-regulated genes (181) were associated with immune responses including interferon signaling, the complement system and the antigen presentation pathway, whereas the down-regulated genes (232) were linked to pathways related to cell death and known neurological diseases/disorders. These particular changes were not revealed in the age-matched B6 mice. By 6 M, when IOP started to increase in many of the D2 mice, more robust changes of these same genes were observed. Changes in the levels of selected genes, representative of different functions/pathways, were validated with RT-PCR, and changes in glial responses were visualized in the retina with immunocytochemistry. Conclusions The results showed that the expression of genes related to the immune response and acute stress were altered independently of the development of elevated IOP, and indicated early involvement of the immune system in the onset of the disease. The later development of elevated IOP, observed in this animal model, was coincident with continued changes in expression of genes observed at earlier time points. Further studies are warranted to identify the roles of specific genes identified here with respect to the death of the RGCs.
Collapse
Affiliation(s)
- W. Fan
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - X. Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| | - W. Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville, School of Medicine, Louisville, KY USA
| | - J.S. Mo
- Department of Ophthalmology and Visual Sciences, University of Louisville, School of Medicine, Louisville, KY USA
| | - H. Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, School of Medicine, Louisville, KY USA
| | - N.G.F. Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| |
Collapse
|
231
|
Fan W, Li X, Wang W, Mo JS, Kaplan H, Cooper NGF. Early Involvement of Immune/Inflammatory Response Genes in Retinal Degeneration in DBA/2J Mice. OPHTHALMOLOGY AND EYE DISEASES 2010; 1:23-41. [PMID: 20352036 PMCID: PMC2845995 DOI: 10.4137/oed.s2854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose The DBA/2J (D2) mouse carries mutations in two of its genes, Tyrp1 and Gpnmb. These alterations result in the development of an immune response in the iris, leading to iris atrophy and pigment dispersion. The development of elevated intraocular pressure (IOP) in this model of glaucoma is considered to be a significant factor leading to the death of retinal ganglion cells (RGCs). Changes in gene expression in the retina have already been correlated with the appearance of elevated IOP in the D2 mouse. The purpose of the present study was to determine if any changes in gene expression occur prior to the development of IOP. Methods The IOP was measured monthly using a rebound tonometer in D2 and age-matched C57/BL6 (B6) mice (normal controls). D2 animals with normal IOP at 2 and 4 M were used. In addition, mice at the age of 6–7 M were included to look for any trends in gene expression that might develop during the progression of the disease. Separate RNA samples were prepared from each of three individual retinas for each age, and gene expression profiles were determined with the aid of mouse oligonucleotide arrays (Agilent). A subset of genes was examined with the aid of real-time PCR. Immunocytochemistry was used to visualize changes in the retina for some of the gene-products. Results Four hundred and thirteen oligonucleotide probes were differentially expressed in the retinas of 4 M versus 2 M old D2 mice. The most significantly up-regulated genes (181) were associated with immune responses including interferon signaling, the complement system and the antigen presentation pathway, whereas the down-regulated genes (232) were linked to pathways related to cell death and known neurological diseases/disorders. These particular changes were not revealed in the age-matched B6 mice. By 6 M, when IOP started to increase in many of the D2 mice, more robust changes of these same genes were observed. Changes in the levels of selected genes, representative of different functions/pathways, were validated with RT-PCR, and changes in glial responses were visualized in the retina with immunocytochemistry. Conclusions The results showed that the expression of genes related to the immune response and acute stress were altered independently of the development of elevated IOP, and indicated early involvement of the immune system in the onset of the disease. The later development of elevated IOP, observed in this animal model, was coincident with continued changes in expression of genes observed at earlier time points. Further studies are warranted to identify the roles of specific genes identified here with respect to the death of the RGCs.
Collapse
Affiliation(s)
- W Fan
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| | | | | | | | | | | |
Collapse
|
232
|
Benkler M, Agmon-Levin N, Shoenfeld Y. Parkinson's disease, autoimmunity, and olfaction. Int J Neurosci 2010; 119:2133-43. [PMID: 19916845 DOI: 10.3109/00207450903178786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder, mainly classified as a movement disorder which manifests among others nonmotor symptoms such as olfactory dysfunction. The etiopathogenesis of this disease has yet to be elucidated, though it seems to be interconnected with a complex set of genetic, environmental, and immunological interactions. This review unfolds the immune alterations observed in PD patients by describing the increase in the innate immune components including complement and cytokines within their substantia nigra and cerebrospinal fluid (CSF). These alterations extended to the adaptive immune response with the elevation of T cells and autoantibodies (anti-alpha-synuclein and anti-GM1-ganglioside) in the peripheral blood and CSF of PD patients. Interestingly, another etiopathogenic triad has recently emerged linking PD to autoimmunity through olfactory dysfunction. Smell deficit is one of the earliest signs of PD and a unique observation suggesting olfactory declines to be a consequence of autoimmune mechanisms. Therefore, we considered several undisputed autoimmune diseases known for their olfactory consequences as template examples that may shed more light on the relationship between autoimmunity and PD. We hope that understanding the nature of this disease may lay the ground for successes in the quest to halt the progressive neurodegenerative process.
Collapse
Affiliation(s)
- Michal Benkler
- Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | | | | |
Collapse
|
233
|
Maekawa T, Kubo M, Yokoyama I, Ohta E, Obata F. Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem Biophys Res Commun 2010; 392:431-5. [PMID: 20079710 DOI: 10.1016/j.bbrc.2010.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson's disease (PD), but its true physiological function remains unknown. In the normal mouse, LRRK2 is expressed in kidney, spleen, and lung at much higher levels than in brain, suggesting that LRRK2 may play an important role in these organs. Analysis of age-related changes in LRRK2 expression demonstrated that expression in kidney, lung, and various brain regions was constant throughout adult life. On the other hand, expression of both LRRK2 mRNA and protein decreased markedly in spleen in an age-dependent manner. Analysis of purified spleen cells indicated that B lymphocytes were the major population expressing LRRK2, and that T lymphocytes showed no expression. Consistently, the B lymphocyte surface marker CD19 exhibited an age-dependent decrease of mRNA expression in spleen. These results suggest a possibly novel function of LRRK2 in the immune system, especially in B lymphocytes.
Collapse
Affiliation(s)
- Tatsunori Maekawa
- Division of Clinical Immunology, Kitasato University, 1-15-1 Kitasato, Kanagawa 228-8555, Japan
| | | | | | | | | |
Collapse
|
234
|
Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med 2009; 12:164-78. [PMID: 19844812 DOI: 10.1007/s12017-009-8099-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/07/2009] [Indexed: 01/09/2023]
Abstract
Immunoglobulins are proteins with a highly variable antigen-binding domain and a constant region (Fc domain) that binds to a cell surface receptor (FcR). Activation of FcRs in immune cells (lymphocytes, macrophages, and mast cells) triggers effector responses including cytokine production, phagocytosis, and degranulation. In addition to their roles in normal responses to infection or tissue injury, and in immune-related diseases, FcRs are increasingly recognized for their involvement in neurological disorders. One or more FcRs are expressed in microglia, astrocytes, oligodendrocytes, and neurons. Aberrant activation of FcRs in such neural cells may contribute to the pathogenesis of major neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, ischemic stroke, and multiple sclerosis. On the other hand, FcRs may play beneficial roles in counteracting pathological processes; for e.g., FcRs may facilitate removal of amyloid peptides from the brain and so protect against Alzheimer's disease. Knowledge of the functions of FcRs in the nervous system in health and disease is leading to novel preventative and therapeutic strategies for stroke, Alzheimer's disease, and other neurological disorders.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
235
|
Chao YX, He BP, Tay SSW. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease. J Neuroimmunol 2009; 216:39-50. [PMID: 19819031 DOI: 10.1016/j.jneuroim.2009.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 01/14/2023]
Abstract
Immunomodulatory effects of transplanted mesenchymal stem cells (MSCs) in the treatment of Parkinson's disease were studied in the MPTP-induced mouse model. MPTP treatment induced a significant loss of dopaminergic neurons, decreased expressions of claudin 1, claudin 5 and occludin in the substantia nigra compacta (SNc), and functional damage of the blood brain barrier (BBB). Our study further discovered that infiltration of MBLs into the brain to bind with microglia was detected in the SNc of MPTP-treated mice, suggesting that the BBB compromise and MBL infiltration might be involved in the pathogenesis of MPTP-induced PD. In addition, MPTP treatment also increased the expression of mannose-binding lectins (MBLs) in the liver tissue. Intravenous transplantation of MSCs into MPTP-treated mice led to recovery of BBB integrity, suppression of MBL infiltration at SNc and MBL expression in the liver, suppression of microglial activation and prevention of dopaminergic neuron death. No transplanted MSCs were observed to differentiate into dopaminergic neurons, while the MSCs migrated into the SNc and released TGF-beta1 there. Therefore, intravenous transplantation of MSCs which protect dopaminergic neurons from MPTP toxicity may be engaged in anyone or a combination of these mechanisms: repair of the BBB, reduction of MBL in the brain, inhibition of microglial cytotoxicity, and direct protection of dopaminergic neurons.
Collapse
Affiliation(s)
- Yin Xia Chao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
236
|
Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Proteomic studies of nitrated alpha-synuclein microglia regulation by CD4+CD25+ T cells. J Proteome Res 2009; 8:3497-511. [PMID: 19432400 DOI: 10.1021/pr9001614] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microglial inflammatory responses affect Parkinson's disease (PD) associated nigrostriatal degeneration. This is triggered, in measure, by misfolded, nitrated alpha-synuclein (N-alpha-syn) contained within Lewy bodies that are released from dying or dead dopaminergic neurons into the extravascular space. N-alpha-syn-stimulated microglial immunity is regulated by CD4+ T cell subset. Indeed, CD4+CD25+ regulatory T cells (Treg) induce neuroprotective immune responses. This is seen in rodent models of stroke, amyotrophic lateral sclerosis, human immunodeficiency virus associated neurocognitive disorders, and PD. To elucidate the mechanism for Treg-mediated microglial neuroregulatory responses, we used a proteomic platform integrating difference gel electrophoresis and tandem mass spectrometry peptide sequencing. These tests served to determine consequences of Treg on the N-alpha-syn stimulated microglia. The data demonstrated that Treg substantially alter the microglial proteome in response to N-alpha-syn. This is seen through Treg abilities to suppress microglial proteins linked to cell metabolism, migration, protein transport and degradation, redox biology, cytoskeletal, and bioenergetic activities. We conclude that Treg modulate the N-alpha-syn microglial proteome and, in this way, can slow the tempo and course of PD.
Collapse
Affiliation(s)
- Ashley D Reynolds
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA
| | | | | | | |
Collapse
|
237
|
Stone DK, Reynolds AD, Mosley RL, Gendelman HE. Innate and adaptive immunity for the pathobiology of Parkinson's disease. Antioxid Redox Signal 2009; 11:2151-66. [PMID: 19243239 PMCID: PMC2788126 DOI: 10.1089/ars.2009.2460] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Innate and adaptive immunity affect the pathogenesis of Parkinson's disease (PD). In particular, activation of microglia influences degeneration of dopaminergic neurons. Cell-to-cell interactions and immune regulation critical for neuronal homeostasis also influence immune responses. The links between T cell immunity and nigrostriatal degeneration are supported by laboratory, animal model, and human pathologic investigations. Immune-associated biomarkers in spinal fluids and brain tissue of patients with idiopathic or familial forms of PD provide means to improve diagnosis and therapeutic monitoring. Relationships between oxidative stress, inflammation, and immune-mediated cell death pathways are examined in this review as they are linked to PD pathogenesis. Harnessing the immune system by drugs or by vaccination remain promising future therapeutic options.
Collapse
Affiliation(s)
- David K Stone
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | |
Collapse
|
238
|
Kusbeci T, Kusbeci ÖY, Aktepe OC, Yavas G, Ermis SS. Conjunctival Flora in Patients with Parkinson's Disease. Curr Eye Res 2009; 34:251-6. [DOI: 10.1080/02713680902725970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
239
|
Yacoubian TA, Standaert DG. Targets for neuroprotection in Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:676-87. [PMID: 18930814 PMCID: PMC2740981 DOI: 10.1016/j.bbadis.2008.09.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 12/21/2022]
Abstract
Current therapies for Parkinson's disease significantly improve the quality of life for patients suffering from this neurodegenerative disease, yet none of the current therapies has been convincingly shown to slow or prevent the progression of disease. Much has been learned about the pathophysiology of Parkinson's disease in recent years, and these discoveries offer a variety of potential targets for protective therapy. Mechanisms implicated in the disease process include oxidative stress, mitochondrial dysfunction, protein aggregation and misfolding, inflammation, excitotoxicity, and apoptosis. At the same time, the involvement of these diverse processes makes modeling the disease and evaluation of potential treatments difficult. In addition, available clinical tools are limited in their ability to monitor the progression of the disease. In this review, we summarize the different pathogenic mechanisms implicated in Parkinson's disease and neuroprotective strategies targeting these mechanisms currently under clinical study or under preclinical development, with a view towards strategies that seem most promising.
Collapse
Affiliation(s)
- Talene A Yacoubian
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
240
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
241
|
Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DKY, Blackie J, Corbett A, Joffe R, Fung VS, Morris J, Riederer P, Gerlach M, Halliday GM. Anti-melanin antibodies are increased in sera in Parkinson's disease. Exp Neurol 2009; 217:297-301. [PMID: 19289120 DOI: 10.1016/j.expneurol.2009.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 02/22/2009] [Accepted: 03/05/2009] [Indexed: 01/01/2023]
Abstract
An increasing body of research suggests that a number of immune mechanisms play a role in degenerative pathways in Parkinson's disease (PD). In the current work we investigated a posited humoral immune response in this disorder. Sera from PD patients exhibited a significantly enhanced absorbance response on a novel ELISA for anti-melanin antibodies, compared to sera from age-matched control subjects. The enhanced ELISA absorbance response was specific for catecholamine-based melanins and was unrelated to antiparkinsonian dopaminergic medication. Further, the absorbance response was significantly and negatively correlated with disease duration. These data suggest that a specific humoral anti-melanin antibody response is present in PD and is more active in early disease. While the contribution of this novel immune response to the initiation and progression of this disorder is unclear, this finding supports the hypothesis that specific immune responses occurring in PD may respond to therapeutic interventions in this disorder.
Collapse
Affiliation(s)
- K L Double
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney, Barker St, Randwick, NSW, 2031, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
A nationwide population study of severe head injury and Parkinson's disease. Parkinsonism Relat Disord 2009; 15:12-4. [DOI: 10.1016/j.parkreldis.2008.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/21/2007] [Accepted: 02/06/2008] [Indexed: 11/17/2022]
|
243
|
1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Does Not Elicit Long-Lasting Increases in Cyclooxygenase-2 Expression in Dopaminergic Neurons of Monkeys. J Neuropathol Exp Neurol 2009; 68:26-36. [DOI: 10.1097/nen.0b013e3181919275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
244
|
Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: the olfactory and immune system interrelationship. Clin Immunol 2008; 130:235-43. [PMID: 19097945 DOI: 10.1016/j.clim.2008.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 12/12/2022]
Abstract
Smell has traditionally been considered a less important sense when compared to sight or hearing, but recent research has unraveled important features inherent to the sense of smell. Once considered just a chemical sensor for sampling the environment, data from animal models and human studies currently imply numerous and complex effects of smell on behavior, mood, and on the immune response. In this review we discuss a possible inter-relationship between olfactory impairment, autoimmunity and neurological/psychiatric symptoms in several diseases affecting the central nervous system (CNS) such as Parkinson, Alzheimer's disease, autism, schizophrenia, multiple sclerosis and neuropsychiatric lupus erythematosus. We suggest that common manifestations are not mere coincidences. Current data from animal models show that neuropsychiatric manifestations are intimately associated with smell impairment, and autoimmune dysregulation, via autoantibodies (anti-NMDAR, anti-ribosomal P) or other mechanisms. From clues of pathological manifestations, we propose a novel approach to the understanding of the interactions between the CNS, the smell and the immune system.
Collapse
|
245
|
Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 2008; 67:1149-58. [PMID: 19018246 PMCID: PMC2753200 DOI: 10.1097/nen.0b013e31818e5e99] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microglial activation and adaptive immunity have been implicated in the neurodegenerative processes in Parkinson disease. It has been proposed that these responses may be triggered by modified forms of alpha-synuclein (alpha-SYN), particularly nitrated species, which are released as a consequence of dopaminergic neurodegeneration. To examine the relationship between alpha-SYN, microglial activation, and adaptive immunity, we used a mouse model of Parkinson disease in which human alpha-SYN is overexpressed by a recombinant adeno-associated virus vector, serotype 2 (AAV2-SYN); this overexpression leads to slow degeneration of dopaminergic neurons. Microglial activation and components of the adaptive immune response were assessed using immunohistochemistry; quantitative polymerase chain reaction was used to examine cytokine expression. Four weeks after injection, there was a marked increase in CD68-positive microglia and greater infiltration of B and T lymphocytes in the substantia nigra pars compacta of the AAV2-SYN group than in controls. At 12 weeks, CD68 staining declined, but B- and T-cell infiltration persisted. Expression of proinflammatory cytokines was enhanced, whereas markers of alternative activation (i.e. arginase I and interleukins 4 and 13) were not altered. Increased immunoreactivity for mouse immunoglobulin was detected at all time points in the AAV2-SYN animals. These data show that overexpression of alpha-SYN alone, in the absence of overt neurodegeneration, is sufficient to trigger neuroinflammation with both microglial activation and stimulation of adaptive immunity.
Collapse
Affiliation(s)
- Shaji Theodore
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Alabama
| | - Shuwen Cao
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Alabama
| | - Pamela J. McLean
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts
| | - David G. Standaert
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Alabama
| |
Collapse
|
246
|
Dobbs RJ, Dobbs SM, Weller C, Charlett A, Bjarnason IT, Curry A, Ellis DS, Ibrahim MAA, McCrossan MV, O'Donohue J, Owen RJ, Oxlade NL, Price AB, Sanderson JD, Sudhanva M, Williams J. Helicobacter hypothesis for idiopathic parkinsonism: before and beyond. Helicobacter 2008; 13:309-22. [PMID: 19250506 PMCID: PMC7165675 DOI: 10.1111/j.1523-5378.2008.00622.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We challenge the concept of idiopathic parkinsonism (IP) as inevitably progressive neurodegeneration, proposing a natural history of sequential microbial insults with predisposing host response. Proof-of-principle that infection can contribute to IP was provided by case studies and a placebo-controlled efficacy study of Helicobacter eradication. "Malignant" IP appears converted to "benign", but marked deterioration accompanies failure. Similar benefit on brady/hypokinesia from eradicating "low-density" infection favors autoimmunity. Although a minority of UK probands are urea breath test positive for Helicobacter, the predicted probability of having the parkinsonian label depends on the serum H. pylori antibody profile, with clinically relevant gradients between this "discriminant index" and disease burden and progression. In IP, H. pylori antibodies discriminate for persistently abnormal bowel function, and specific abnormal duodenal enterocyte mitochondrial morphology is described in relation to H. pylori infection. Slow intestinal transit manifests as constipation from the prodrome. Diarrhea may flag secondary small-intestinal bacterial overgrowth. This, coupled with genetically determined intense inflammatory response, might explain evolution from brady/hypokinetic to rigidity-predominant parkinsonism.
Collapse
Affiliation(s)
- R John Dobbs
- Section of Clinical Neuropharmacology, Institute of Psychiatry, King's College London, London, UK. or
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Soreq L, Israel Z, Bergman H, Soreq H. Advanced microarray analysis highlights modified neuro-immune signaling in nucleated blood cells from Parkinson's disease patients. J Neuroimmunol 2008; 201-202:227-36. [PMID: 18692253 DOI: 10.1016/j.jneuroim.2008.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/08/2008] [Accepted: 06/09/2008] [Indexed: 01/09/2023]
Abstract
Laboratory tests for Parkinson's disease (PD) were recently extended to microarray analyses of nucleated blood cells. Here, we report the use of statistical and gene ontology tools to re-examine these microarray data. Distribution plots and PCA mapping enabled removal of several outliers out of the 105 analyzed PD and control samples, which improved the discriminative power for PD blood cells compared to healthy and neurological disease controls. Combined with gene ontology tests, our findings point at neuro-immune signaling-related transcripts as distinctly expressed early in PD progress and call for exploiting microarray tests also for follow-up of PD treatment efficacy.
Collapse
Affiliation(s)
- Lilach Soreq
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
248
|
Roodveldt C, Christodoulou J, Dobson CM. Immunological features of alpha-synuclein in Parkinson's disease. J Cell Mol Med 2008; 12:1820-9. [PMID: 18671754 PMCID: PMC4506153 DOI: 10.1111/j.1582-4934.2008.00450.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized pathologically by the presence, in the brain, of intra-cellular protein inclusions highly enriched in aggregated α-synuclein (αSyn), known as Lewy bodies. The onset of PD is accompanied by a local immune reaction in regions of the brain affected by the inclusions, although the mechanism that leads to pathogenesis is far from clear. It is, however, established that disease onset and progression are characterized by sustained activation of microglia, which is linked to significant dopaminergic neuron loss in the substantia nigra. A recent body of evidence indicates that aggregated or modified αSyn can indeed trigger the activation of microglia, inducing a lethal cascade of neuroinflammation and eventually, neuronal loss, pointing at aggregated and modified forms of αSyn as a primary cause of PD pathogenesis. By releasing toxic factors, or by phagocy-tosing neighbouring cells, activated microglia and astrocytes may form a self-perpetuating cycle for neuronal degeneration. Additional findings suggest a link between αSyn and humoural-mediated mechanisms in PD. In this review, we attempt to recapitulate our current understanding of PD physiopathology focused on αSyn and its links with the immune system, as well as of novel and promising therapeutic avenues for the treatment of PD and of other synucleinopathies.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
249
|
Abstract
Parkinson's disease (PD), the second most common age-related neurodegenerative disease, results in abnormalities in motor functioning. Many fundamental questions regarding its aetiology remain unanswered. Pathologically, it is not until 70-80% of the dopaminergic neurons from the substantia nigra pars compacta are lost before clinical symptoms are observed. Thus research into PD is complicated by this apparent paradox in that what appears to be the beginning of the disease at the clinical level is really the end point neurochemically. Consequently, we can only second guess when the disease started and what initiated it. The causation is probably complex, with contributions from both genetic and environmental factors. Intracellular proteinaceous inclusions, Lewy bodies and Lewy neurites, found in surviving dopaminergic neurons, are the key pathological characteristic of PD. Their presence points to an inability within these terminally differentiated cells to deal with aggregating proteins. Recent advances in our knowledge of the underlying disease process have come about from studies on models based on genes associated with rare hereditary forms of PD, and mitochondrial toxins that mimic the behavioural effects of PD. The reason that dopaminergic neurons are particularly sensitive may be due to the additional cellular stress caused by the breakdown of the inherently chemically unstable neurotransmitter, dopamine. In the present review, I discuss the proposal that in sporadic disease, interlinked problems of protein processing and inappropriate mitochondrial activity seed the foundation for age-related increased levels of protein damage, and a reduced ability to deal with the damage, leading to inclusion formation and, ultimately, cell toxicity.
Collapse
|
250
|
Hamacher M, Eisenacher M, Tribl F, Stephan C, Marcus K, Hardt T, Wiltfang J, Martens L, Desiderio D, Gutstein H, Park YM, Meyer HE. The HUPO Brain Proteome Project Wish List – Summary of the 9th HUPO BPP Workshop 9–10 January 2008, Barbados. Proteomics 2008; 8:2160-4. [DOI: 10.1002/pmic.200800090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|