201
|
Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van Gemert S, Wang N, Welch CL, Reilly MP, Stroes ES, Moore KJ, Tall AR. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation 2018; 138:898-912. [PMID: 29588315 PMCID: PMC6160368 DOI: 10.1161/circulationaha.117.032636] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) showed that antagonism of interleukin (IL)-1β reduces coronary heart disease in patients with a previous myocardial infarction and evidence of systemic inflammation, indicating that pathways required for IL-1β secretion increase cardiovascular risk. IL-1β and IL-18 are produced via the NLRP3 inflammasome in myeloid cells in response to cholesterol accumulation, but mechanisms linking NLRP3 inflammasome activation to atherogenesis are unclear. The cholesterol transporters ATP binding cassette A1 and G1 (ABCA1/G1) mediate cholesterol efflux to high-density lipoprotein, and Abca1/g1 deficiency in myeloid cells leads to cholesterol accumulation. METHODS To interrogate mechanisms connecting inflammasome activation with atherogenesis, we used mice with myeloid Abca1/g1 deficiency and concomitant deficiency of the inflammasome components Nlrp3 or Caspase-1/11. Bone marrow from these mice was transplanted into Ldlr-/- recipients, which were fed a Western-type diet. RESULTS Myeloid Abca1/g1 deficiency increased plasma IL-18 levels in Ldlr-/- mice and induced IL-1β and IL-18 secretion in splenocytes, which was reversed by Nlrp3 or Caspase-1/11 deficiency, indicating activation of the NLRP3 inflammasome. Nlrp3 or Caspase-1/11 deficiency decreased atherosclerotic lesion size in myeloid Abca1/g1-deficient Ldlr-/- mice. Myeloid Abca1/g1 deficiency enhanced caspase-1 cleavage not only in splenic monocytes and macrophages, but also in neutrophils, and dramatically enhanced neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques, with reversal by Nlrp3 or Caspase-1/11 deficiency, suggesting that inflammasome activation promotes neutrophil recruitment and neutrophil extracellular trap formation in atherosclerotic plaques. These effects appeared to be indirectly mediated by systemic inflammation leading to activation and accumulation of neutrophils in plaques. Myeloid Abca1/g1 deficiency also activated the noncanonical inflammasome, causing increased susceptibility to lipopolysaccharide-induced mortality. Patients with Tangier disease, who carry loss-of-function mutations in ABCA1 and have increased myeloid cholesterol content, showed a marked increase in plasma IL-1β and IL-18 levels. CONCLUSIONS Cholesterol accumulation in myeloid cells activates the NLRP3 inflammasome, which enhances neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques. Patients with Tangier disease, who have increased myeloid cholesterol content, showed markers of inflammasome activation, suggesting human relevance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/deficiency
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Case-Control Studies
- Caspase 1/genetics
- Caspase 1/metabolism
- Caspases/genetics
- Caspases/metabolism
- Caspases, Initiator
- Cholesterol/metabolism
- Cytokines/blood
- Disease Models, Animal
- Extracellular Traps/metabolism
- Humans
- Inflammasomes/deficiency
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Mice, Knockout
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Spleen/metabolism
- Tangier Disease/blood
- Tangier Disease/genetics
Collapse
Affiliation(s)
- Marit Westerterp
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
- Department of Pediatrics, Section Molecular Genetics, University of
Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Panagiotis Fotakis
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Mireille Ouimet
- Department of Medicine, Division of Cardiology, New York University
Medical Center, New York NY
- University of Ottawa Heart Institute, Ontario, Canada &
Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine,
University of Ottawa, Ontario, Canada
| | - Andrea E. Bochem
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
- Department of Vascular Medicine, Academic Medical Center, University
of Amsterdam, Amsterdam, The Netherlands
| | - Hanrui Zhang
- Department of Medicine, Division of Cardiology, Columbia University,
New York NY
| | - Matthew M. Molusky
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Wei Wang
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Sandra Abramowicz
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University
Medical Center Groningen, Groningen, The Netherlands
| | - Nan Wang
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Carrie L. Welch
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Muredach P. Reilly
- Department of Medicine, Division of Cardiology, Columbia University,
New York NY
| | - Erik S. Stroes
- Department of Vascular Medicine, Academic Medical Center, University
of Amsterdam, Amsterdam, The Netherlands
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, New York University
Medical Center, New York NY
| | | |
Collapse
|
202
|
Theodorou K, Boon RA. Endothelial Cell Metabolism in Atherosclerosis. Front Cell Dev Biol 2018; 6:82. [PMID: 30131957 PMCID: PMC6090045 DOI: 10.3389/fcell.2018.00082] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis and its sequelae, such as myocardial infarction and stroke, are the leading cause of death worldwide. Vascular endothelial cells (EC) play a critical role in vascular homeostasis and disease. Atherosclerosis as well as its independent risk factors including diabetes, obesity, and aging, are hallmarked by endothelial activation and dysfunction. Metabolic pathways have emerged as key regulators of many EC functions, including angiogenesis, inflammation, and barrier function, processes which are deregulated during atherogenesis. In this review, we highlight the role of glucose, fatty acid, and amino acid metabolism in EC functions during physiological and pathological states, specifically atherosclerosis, diabetes, obesity and aging.
Collapse
Affiliation(s)
- Kosta Theodorou
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany
| | - Reinier A Boon
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Rhine-Main, Berlin, Germany.,Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
203
|
Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38:1901-1912. [PMID: 29976772 PMCID: PMC6202190 DOI: 10.1161/atvbaha.118.311150] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1β-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.
Collapse
Affiliation(s)
- Eduardo J Folco
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Thomas L Mawson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Amélie Vromman
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Breno Bernardes-Souza
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Grégory Franck
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Oscar Persson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Momotaro Nakamura
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Gail Newton
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francis W Luscinskas
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| |
Collapse
|
204
|
Liu Y, Carmona-Rivera C, Moore E, Seto NL, Knight JS, Pryor M, Yang ZH, Hemmers S, Remaley AT, Mowen KA, Kaplan MJ. Myeloid-Specific Deletion of Peptidylarginine Deiminase 4 Mitigates Atherosclerosis. Front Immunol 2018; 9:1680. [PMID: 30140264 PMCID: PMC6094966 DOI: 10.3389/fimmu.2018.01680] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that neutrophil extracellular traps (NETs) may play a role in promoting atherosclerotic plaque lesions in humans and in murine models. The exact pathways involved in NET-driven atherogenesis remain to be systematically characterized. To assess the extent to which myeloid-specific peptidylarginine deiminase 4 (PAD4) and PAD4-dependent NET formation contribute to atherosclerosis, mice with myeloid-specific deletion of PAD4 were generated and backcrossed to Apoe-/- mice. The kinetics of atherosclerosis development were determined. NETs, but not macrophage extracellular traps, were present in atherosclerotic lesions as early as 3 weeks after initiating high-fat chow. The presence of NETs was associated with the development of atherosclerosis and with inflammatory responses in the aorta. Specific deletion of PAD4 in the myeloid lineage significantly reduced atherosclerosis burden in association with diminished NET formation and reduced inflammatory responses in the aorta. NETs stimulated macrophages to synthesize inflammatory mediators, including IL-1β, CCL2, CXCL1, and CXCL2. Our data support the notion that NETs promote atherosclerosis and that the use of specific PAD4 inhibitors may have therapeutic benefits in this potentially devastating condition.
Collapse
Affiliation(s)
- Yudong Liu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Erica Moore
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nickie L Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Milton Pryor
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Saskia Hemmers
- The Scripps Research Institute, La Jolla, CA, United States
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Kerri A Mowen
- The Scripps Research Institute, La Jolla, CA, United States
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
205
|
Scalone G, Niccoli G, Refaat H, Vergallo R, Porto I, Leone AM, Burzotta F, D'Amario D, Liuzzo G, Fracassi F, Trani C, Crea F. Not all plaque ruptures are born equal: an optical coherence tomography study. Eur Heart J Cardiovasc Imaging 2018; 18:1271-1277. [PMID: 28013285 DOI: 10.1093/ehjci/jew208] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/11/2016] [Indexed: 11/12/2022] Open
Abstract
Aims Plaque rupture (PR) represents the most common substrate of coronary thrombosis, in at least 50% of cases. Chronic low grade inflammation is a common background for atherosclerosis development; however, increased plaque inflammation may predispose by itself to PR. In the last decade, studies performed by optical coherence tomography (OCT) have allowed to establish the severity of plaque inflammation by assessing macrophage infiltration (MØI). Our retrospective study aimed at assessing the role of plaque inflammation in PR among patients with acute coronary syndrome (ACS) using OCT. Methods and results We enrolled 56 patients with ACS exhibiting PR at the site of the culprit stenosis identified by OCT. Patients were divided into two cohorts according to the presence of MØI at OCT analysis, defined as signal-rich, distinct, or confluent punctate regions that exceed the intensity of background speckle noise. Serum high-sensitivity C-reactive protein (CRP) was measured on admission by latex-enhanced immunophelometric assay. Thirty-seven (66%) patients had MØI at the site of PR, whereas 19 (34%) patients had no evidence of MØI. Patients with MØI showed a higher rate of CRP values >3 mg/dL as compared with those without MØI (92% vs. 47%, P = 0.004). In contrast, patients without MØI had a higher prevalence of hypertension compared with those with MØI (89% vs. 59%, P = 0.021). Furthermore, the group with MØI exhibited a significantly higher rate of lipid-rich plaques (86% vs. 50%, P = 0.008), a higher rate of multifocal disease (59% vs. 10%, P < 0.001), and an MØI in both culprit and remote lesions (97% vs. 0%, P < 0.001) compared with those without MØI. At multivariate analysis, CRP value >3 mg/dL was the only independent predictor of MØI in the culprit plaque (OR 8.72, 95% CI 1.78-41.67, P= 0.007). Conclusions In conclusion, PR can be caused by predominant inflammatory or non-inflammatory mechanisms, over a common low-grade chronic inflammatory background well known from pathology observations.
Collapse
Affiliation(s)
- Giancarla Scalone
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Giampaolo Niccoli
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Hesham Refaat
- Institute of Cardiology, Zagazig University, 44519, Ismailia - El-Zakazik Rd, Zagazig, Egypt
| | - Rocco Vergallo
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Italo Porto
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Antonio Maria Leone
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Domenico D'Amario
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Giovanna Liuzzo
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Francesco Fracassi
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Carlo Trani
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Filippo Crea
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
206
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
207
|
Sajja AP, Joshi AA, Teague HL, Dey AK, Mehta NN. Potential Immunological Links Between Psoriasis and Cardiovascular Disease. Front Immunol 2018; 9:1234. [PMID: 29910818 PMCID: PMC5992299 DOI: 10.3389/fimmu.2018.01234] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Preclinical and clinical research provide strong evidence that chronic, systemic inflammation plays a key role in development and progression of atherosclerosis. Indeed, chronic inflammatory diseases, such as psoriasis, are associated with accelerated atherosclerosis and increased risk of cardiovascular events. Contemporary research has demonstrated plausible mechanistic links between immune cell dysfunction and cardiometabolic disease in psoriasis. In this review, we describe the role of potential common immunological mechanisms underlying both psoriasis and atherogenesis. We primarily discuss innate and adaptive immune cell subsets and their contributions to psoriatic disease and cardiovascular morbidity. Emerging efforts should focus on understanding the interplay among immune cells, adipose tissue, and various biomarkers of immune dysfunction to provide direction for future targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | - Nehal N. Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
208
|
Gordts PLSM, Esko JD. The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. Matrix Biol 2018; 71-72:262-282. [PMID: 29803939 DOI: 10.1016/j.matbio.2018.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk factors such as hyperlipidemia and inflammation that drive the initiation and progression of atherosclerotic plaques to their clinical critical endpoint.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA.
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
209
|
Ghavampour S, Kleefeldt F, Bömmel H, Volland J, Paus A, Horst A, Pfeiffer V, Hübner S, Wagner N, Rueckschloss U, Ergün S. Endothelial barrier function is differentially regulated by CEACAM1-mediated signaling. FASEB J 2018; 32:5612-5625. [PMID: 29746166 DOI: 10.1096/fj.201800331r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is known to be crucial to vasculogenesis and angiogenesis. Recently, CEACAM1 deficiency was shown to result in the formation of aortic plaque-like lesions, indicating a role for CEACAM1 in adult vessels as well. The underlying mechanisms remained largely elusive. Therefore, we aimed to elucidate the role of CEACAM1 in endothelial homeostasis. Here, we show that CEACAM1 deficiency causes subcellular eNOS redistribution in endothelial cells ( i.e., by eNOS depalmitoylation) and alters endothelial glycocalyx that confers antiadhesive properties to the endothelium ( i.e., by repression of glycocalyx-degrading enzymes). Accordingly, our analysis revealed an increased leukocyte-endothelial interaction in CEACAM1-deficient endothelium. In addition, CEACAM1 age dependently modulated basal and TNF-α-mediated endothelial barrier (EB) leakiness. In younger mice, CEACAM1 was protective for EB, whereas in aged mice it promoted EB leakiness. EB function depends on interendothelial adherence junctions formed by β-catenin/vascular endothelial-cadherin complexes. We show here that CEACAM1 influenced basal and TNF-α-mediated phosphorylation of β-catenin and caveolin-1, which are essential players in EB modulation. Both increased adhesiveness to leukocytes and EB modulation due to CEACAM1 deficiency may facilitate inflammatory cell transmigration into the vascular wall and subsequent plaque formation. Collectively, these results identify a crucial role for CEACAM1 in endothelial homeostasis of adult blood vessels.-Ghavampour, S., Kleefeldt, F., Bömmel, H., Volland, J., Paus, A., Horst, A., Pfeiffer, V., Hübner, S., Wagner, N., Rueckschloss, U., Ergün, S. Endothelial barrier function is differentially regulated by CEACAM1-mediated signaling.
Collapse
Affiliation(s)
- Sharang Ghavampour
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Heike Bömmel
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Julian Volland
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alexander Paus
- Institute of Anatomy, University Hospital Essen, Essen, Germany; and
| | - Andrea Horst
- Department of Clinical Chemistry, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Stefan Hübner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
210
|
Schumski A, Winter C, Döring Y, Soehnlein O. The Ins and Outs of Myeloid Cells in Atherosclerosis. J Innate Immun 2018; 10:479-486. [PMID: 29669334 DOI: 10.1159/000488091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a chronic inflammation of the arterial vessel wall that arises from an imbalanced lipid metabolism. A growing body of literature describes leukocyte recruitment as a critical step in the initiation and progression of lesion development. By contrast, the role of leukocytes during plaque regression has been described in less detail. Leukocyte egress might be an important step to resolving chronic inflammation and therefore it may be a promising target for limiting advanced lesion development. This review aims to summarize our current knowledge of leukocyte recruitment to the arterial vessel wall. We will discuss mechanisms of leukocyte egress from the lesion site, as well as potential therapeutic strategies to promote atherosclerotic regression.
Collapse
Affiliation(s)
- Ariane Schumski
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Carla Winter
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, .,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, .,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich,
| |
Collapse
|
211
|
Geovanini GR, Wang R, Weng J, Tracy R, Jenny NS, Goldberger AL, Costa MD, Liu Y, Libby P, Redline S. Elevations in neutrophils with obstructive sleep apnea: The Multi-Ethnic Study of Atherosclerosis (MESA). Int J Cardiol 2018; 257:318-323. [PMID: 29506719 PMCID: PMC5842816 DOI: 10.1016/j.ijcard.2017.10.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) associates with increased risk of cardiovascular diseases (CVD). Immune abnormalities and surges in sympathetic activity accompany OSA and CVD. We hypothesized that OSA associates with leukocytosis partially by abnormalities in autonomic nervous system (ANS) function that would suggest a pathway linking OSA and CVD. METHODS Participants from the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective cohort of individuals initially without overt CVD, underwent polysomnography and assays for white blood cells (WBC) and subsets. Heart rate (HR) and heart rate variability (HRV), indirect measurements of ANS, were obtained from overnight electrocardiography. A formal statistical mediation analysis tested the indirect effect that mean HR and HRV measures contribute to associations between OSA and leukocytosis. RESULTS The analytical sample consisted of 1298 participants (54% female), ages 54-93years, 14% with severe OSA (apnea-hypopnea-index, AHI≥30). Severe OSA associated with a higher prevalence of obesity, diabetes, and increased levels of WBC total and subsets. Neutrophil count associated with severe OSA after adjusting for confounders (p=0.017). Mean HR positively associated with OSA indices and neutrophils. A mediation analysis revealed an "indirect" effect of mean HR that explained an estimated 11% of the association between AHI and neutrophils. Overnight hypoxia also associated with neutrophil count (p=0.009), and mean HR explained 14% of the association between neutrophils and hypoxia. CONCLUSIONS In the MESA cohort, OSA measures associate with elevated neutrophil counts and increases in overnight mean HR. These data link innate immune dysregulation with OSA and provide a potential pathophysiologic pathway between CVD and OSA.
Collapse
Affiliation(s)
- Glaucylara Reis Geovanini
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Wang
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Weng
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Russell Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Nancy S Jenny
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Ary L Goldberger
- Margret and H.A. Rey Institute for Nonlinear Dynamics in Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Madalena D Costa
- Margret and H.A. Rey Institute for Nonlinear Dynamics in Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Yongmei Liu
- Wake Forest University School of Medicine, Department of Epidemiology and Prevention, Division of Public Health Sciences, Winston-Salem, NC, USA.
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Susan Redline
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
212
|
Choi DH, Kobayashi Y, Nishi T, Kim HK, Ki YJ, Kim SS, Park KH, Song H, Fearon WF. Combination of Mean Platelet Volume and Neutrophil to Lymphocyte Ratio Predicts Long-Term Major Adverse Cardiovascular Events After Percutaneous Coronary Intervention. Angiology 2018; 70:345-351. [DOI: 10.1177/0003319718768658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We hypothesized that the combination of a high neutrophil to lymphocyte ratio (NLR) and mean platelet volume (MPV) would be a stronger predictor of future cardiovascular events after percutaneous coronary intervention (PCI). Both NLR and MPV were measured in 364 consecutive patients undergoing PCI. The primary end point was the incidence of major adverse cardiovascular events (MACEs), including cardiac death, nonfatal myocardial infarction, and stent thrombosis. The median values of NLR and MPV were 2.8 and 8.2 fL, respectively. There were 26 MACEs during a median follow-up duration of 29.3 months. Kaplan-Meier analysis revealed that the higher NLR group had a significantly higher MACE rate than the lower NLR group and that the higher MPV group had a significantly higher MACE rate than the lower MPV group (log-rank: P = .0064 and P = .0004, respectively). The cumulative MACE-free survival can be further stratified by the combination of NLR and MPV. This value was especially useful in patients with acute coronary syndrome (ACS). By multivariate Cox proportional hazards model, the combination of high NLR and high MPV was independently associated with MACE ( P = .026). The combination of a high NLR and high MPV is an independent predictor of MACE after PCI, especially in patients with ACS.
Collapse
Affiliation(s)
- Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Yuhei Kobayashi
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Takeshi Nishi
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hyun Kuk Kim
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sung Soo Kim
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Keun-Ho Park
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - William F. Fearon
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
213
|
Franck G, Mawson TL, Folco EJ, Molinaro R, Ruvkun V, Engelbertsen D, Liu X, Tesmenitsky Y, Shvartz E, Sukhova GK, Michel JB, Nicoletti A, Lichtman A, Wagner D, Croce KJ, Libby P. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion. Circ Res 2018; 123:33-42. [PMID: 29572206 DOI: 10.1161/circresaha.117.312494] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
RATIONALE Neutrophils likely contribute to the thrombotic complications of human atheromata. In particular, neutrophil extracellular traps (NETs) could exacerbate local inflammation and amplify and propagate arterial intimal injury and thrombosis. PAD4 (peptidyl arginine deiminase 4) participates in NET formation, but an understanding of this enzyme's role in atherothrombosis remains scant. OBJECTIVE This study tested the hypothesis that PAD4 and NETs influence experimental atherogenesis and in processes implicated in superficial erosion, a form of plaque complication we previously associated with NETs. METHODS AND RESULTS Bone marrow chimeric Ldlr deficient mice reconstituted with either wild-type or PAD4-deficient cells underwent studies that assessed atheroma formation or procedures designed to probe mechanisms related to superficial erosion. PAD4 deficiency neither retarded fatty streak formation nor reduced plaque size or inflammation in bone marrow chimeric mice that consumed an atherogenic diet. In contrast, either a PAD4 deficiency in bone marrow-derived cells or administration of DNaseI to disrupt NETs decreased the extent of arterial intimal injury in mice with arterial lesions tailored to recapitulate characteristics of human atheroma complicated by erosion. CONCLUSIONS These results indicate that PAD4 from bone marrow-derived cells and NETs do not influence chronic experimental atherogenesis, but participate causally in acute thrombotic complications of intimal lesions that recapitulate features of superficial erosion.
Collapse
Affiliation(s)
- Grégory Franck
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.).,Brigham and Women's Hospital, Harvard Medical School, Boston, MA; INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Paris, France (G.F., J.-B.M., A.N.)
| | - Thomas L Mawson
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Eduardo J Folco
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Roberto Molinaro
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Victoria Ruvkun
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | | | - Xin Liu
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Yevgenia Tesmenitsky
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Eugenia Shvartz
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Galina K Sukhova
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Jean-Baptiste Michel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA; INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Paris, France (G.F., J.-B.M., A.N.)
| | - Antonino Nicoletti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA; INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Paris, France (G.F., J.-B.M., A.N.)
| | | | - Denisa Wagner
- Division of Hematology/Oncology, Boston Children's Hospital, MA (D.W.)
| | - Kevin J Croce
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| | - Peter Libby
- From the Department of Cardiovascular Medicine (G.F., T.L.M., E.J.F., R.M., V.R., X.L., Y.T., E.S., G.K.S., K.J.C., P.L.)
| |
Collapse
|
214
|
Affiliation(s)
| | - Peter Libby
- Cardiovascular Medicine, Brigham and Women's Hospital, USA
| |
Collapse
|
215
|
Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN. The role of monocytosis and neutrophilia in atherosclerosis. J Cell Mol Med 2018; 22:1366-1382. [PMID: 29364567 PMCID: PMC5824421 DOI: 10.1111/jcmm.13462] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cell Differentiation
- Cell Proliferation
- Cholesterol/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/immunology
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/immunology
- Mice
- Monocytes/immunology
- Monocytes/pathology
- Multipotent Stem Cells/immunology
- Multipotent Stem Cells/pathology
- Neutrophils/immunology
- Neutrophils/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of NeurochemistryDivision of Basic and Applied NeurobiologySerbsky Federal Medical Research Center of Psychiatry and NarcologyMoscowRussia
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and RehabilitationMoscowRussia
| | - Veronika A. Myasoedova
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexandra A. Melnichenko
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexander N. Orekhov
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| |
Collapse
|
216
|
van Haelst ST, Haitjema S, Derksen W, van Koeverden I, de Vries JPP, Moll FL, den Ruijter HM, Pasterkamp G, de Borst GJ. Atherosclerotic plaque characteristics are not associated with future cardiovascular events in patients undergoing iliofemoral endarterectomy. J Vasc Surg 2018; 67:809-816.e1. [DOI: 10.1016/j.jvs.2017.07.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/12/2017] [Indexed: 10/18/2022]
|
217
|
Sugiyama T, Yamamoto E, Bryniarski K, Xing L, Lee H, Isobe M, Libby P, Jang IK. Nonculprit Plaque Characteristics in Patients With Acute Coronary Syndrome Caused by Plaque Erosion vs Plaque Rupture: A 3-Vessel Optical Coherence Tomography Study. JAMA Cardiol 2018; 3:207-214. [PMID: 29417141 PMCID: PMC5885886 DOI: 10.1001/jamacardio.2017.5234] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 01/12/2023]
Abstract
Importance Patients with culprit plaque rupture are known to have pancoronary plaque vulnerability. However, the characteristics of nonculprit plaques in patients with acute coronary syndromes caused by plaque erosion are unknown. Objective To investigate the nonculprit plaque phenotype in patients with acute coronary syndrome according to culprit plaque pathology (erosion vs rupture) by 3-vessel optical coherence tomography imaging. Design, Setting, and Participants In this observational cohort study, between August 2010 and May 2014, 82 patients with acute coronary syndrome who underwent preintervention optical coherence tomography imaging of all 3 major epicardial coronary arteries were enrolled at the Massachusetts General Hospital Optical Coherence Tomography Registry database. Analysis of the data was conducted between November 2016 and July 2017. Patients were classified into 2 groups based on the culprit lesion pathology: 17 patients with culprit plaque erosion and 34 patients with culprit plaque rupture. Thirty-one patients with the absence of culprit rupture or erosion were excluded from further analysis. Exposures Preintervention 3-vessel optical coherence tomography imaging. Main Outcomes and Measures Plaque characteristics at the culprit and nonculprit lesions evaluated by optical coherence tomography. Results In 51 patients (37 men; mean age, 58.7 years), the characteristics of 51 culprit plaques and 216 nonculprit plaques were analyzed. In patients with culprit erosion, the mean (SD) number of nonculprit plaques per patient was smaller (3.4 [1.9] in erosion vs 4.7 [2.1] in rupture, P = .05). Patient-based analysis showed that none of 17 patients with culprit plaque erosion had nonculprit plaque rupture, whereas 26% of the patients (9 of 34) with culprit plaque rupture had nonculprit plaque rupture (P = .02). Plaque-based analysis showed that, compared with the culprit rupture group (n = 158), the culprit erosion group (n = 58) had lower prevalence of plaque rupture (0% vs 8%; P < .001), macrophage accumulation (29% vs 53%; P = .01), microvessels (21% vs 42%; P = .003), and spotty calcium (5% vs 22%; P = .006) in the nonculprit lesions. The prevalence of lipid-rich plaque, thin-cap fibroatheroma, and thrombus did not differ between the groups. Conclusions and Relevance Compared with those with culprit plaque rupture, patients with acute coronary syndrome caused by culprit plaque erosion had a smaller number of nonculprit plaques and the lower levels of panvascular instability, affirming that distinct pathophysiologic mechanisms operate in plaque erosion and plaque rupture.
Collapse
Affiliation(s)
- Tomoyo Sugiyama
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erika Yamamoto
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Krzysztof Bryniarski
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lei Xing
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
218
|
Woodside DG, Tanifum EA, Ghaghada KB, Biediger RJ, Caivano AR, Starosolski ZA, Khounlo S, Bhayana S, Abbasi S, Craft JW, Maxwell DS, Patel C, Stupin IV, Bakthavatsalam D, Market RV, Willerson JT, Dixon RAF, Vanderslice P, Annapragada AV. Magnetic Resonance Imaging of Atherosclerotic Plaque at Clinically Relevant Field Strengths (1T) by Targeting the Integrin α4β1. Sci Rep 2018; 8:3733. [PMID: 29487319 PMCID: PMC5829217 DOI: 10.1038/s41598-018-21893-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation drives the degradation of atherosclerotic plaque, yet there are no non-invasive techniques available for imaging overall inflammation in atherosclerotic plaques, especially in the coronary arteries. To address this, we have developed a clinically relevant system to image overall inflammatory cell burden in plaque. Here, we describe a targeted contrast agent (THI0567-targeted liposomal-Gd) that is suitable for magnetic resonance (MR) imaging and binds with high affinity and selectivity to the integrin α4β1(very late antigen-4, VLA-4), a key integrin involved in recruiting inflammatory cells to atherosclerotic plaques. This liposomal contrast agent has a high T1 relaxivity (~2 × 105 mM-1s-1 on a particle basis) resulting in the ability to image liposomes at a clinically relevant MR field strength. We were able to visualize atherosclerotic plaques in various regions of the aorta in atherosclerosis-prone ApoE-/- mice on a 1 Tesla small animal MRI scanner. These enhanced signals corresponded to the accumulation of monocyte/macrophages in the subendothelial layer of atherosclerotic plaques in vivo, whereas non-targeted liposomal nanoparticles did not demonstrate comparable signal enhancement. An inflammatory cell-targeted method that has the specificity and sensitivity to measure the inflammatory burden of a plaque could be used to noninvasively identify patients at risk of an acute ischemic event.
Collapse
Affiliation(s)
- Darren G Woodside
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA.
| | - Eric A Tanifum
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Ketan B Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Ronald J Biediger
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Amy R Caivano
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Zbigniew A Starosolski
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Sayadeth Khounlo
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Saakshi Bhayana
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Shahrzad Abbasi
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - John W Craft
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA.,Department of Biology and Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas, 77004, USA
| | - David S Maxwell
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA.,Department of Institutional Analytics and Informatics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chandreshkumar Patel
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Igor V Stupin
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | | | - Robert V Market
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - James T Willerson
- Division of Cardiology Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Richard A F Dixon
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Ananth V Annapragada
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA.
| |
Collapse
|
219
|
Jia H, Dai J, Hou J, Xing L, Ma L, Liu H, Xu M, Yao Y, Hu S, Yamamoto E, Lee H, Zhang S, Yu B, Jang IK. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur Heart J 2018; 38:792-800. [PMID: 27578806 DOI: 10.1093/eurheartj/ehw381] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Aims Plaque erosion, compared with plaque rupture, has distinctly different underlying pathology and therefore may merit tailored therapy. In this study, we aimed to assess whether patients with acute coronary syndrome (ACS) caused by plaque erosion might be stabilized by anti-thrombotic therapy without stent implantation. Methods and results This was a single-centre, uncontrolled, prospective, proof-of concept study. Patients with ACS including ST-segment elevation myocardial infarction were prospectively enrolled. If needed, aspiration thrombectomy was performed. Patients diagnosed with plaque erosion by optical coherence tomography (OCT) and residual diameter stenosis <70% on coronary angiogram were treated with anti-thrombotic therapy without stenting. OCT was repeated at 1 month and thrombus volume was measured. The primary endpoint was >50% reduction of thrombus volume at 1 month compared with baseline. The secondary endpoint was a composite of cardiac death, recurrent ischaemia requiring revascularization, stroke, and major bleeding. Among 405 ACS patients with analysable OCT images, plaque erosion was identified in 103 (25.4%) patients. Sixty patients enrolled and 55 patients completed the 1-month follow-up. Forty-seven patients (47/60, 78.3%; 95% confidence interval: 65.8-87.9%) met the primary endpoint, and 22 patients had no visible thrombus at 1 month. Thrombus volume decreased from 3.7 (1.3, 10.9) mm3 to 0.2 (0.0, 2.0) mm3. Minimal flow area increased from 1.7 (1.4, 2.4) mm2 to 2.1 (1.5, 3.8) mm2. One patient died of gastrointestinal bleeding, and another patient required repeat percutaneous coronary intervention. The rest of the patients remained asymptomatic. Conclusion For patients with ACS caused by plaque erosion, conservative treatment with anti-thrombotic therapy without stenting may be an option.
Collapse
Affiliation(s)
- Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Jiannan Dai
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., GRB 800, Boston, MA 02114, USA
| | - Jingbo Hou
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Lei Xing
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., GRB 800, Boston, MA 02114, USA
| | - Lijia Ma
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Huimin Liu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Maoen Xu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Yuan Yao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Sining Hu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Erika Yamamoto
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., GRB 800, Boston, MA 02114, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, 50 Staniford St. Suite 560, Boston, MA 02114, USA
| | - Shaosong Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, P.R. China
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., GRB 800, Boston, MA 02114, USA
| |
Collapse
|
220
|
Langseth MS, Opstad TB, Bratseth V, Solheim S, Arnesen H, Pettersen AÅ, Seljeflot I, Helseth R. Markers of neutrophil extracellular traps are associated with adverse clinical outcome in stable coronary artery disease. Eur J Prev Cardiol 2018; 25:762-769. [PMID: 29473463 DOI: 10.1177/2047487318760618] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Neutrophil extracellular traps, comprising chromatin and granule proteins, have been implicated in atherothrombosis. Design and methods We investigated whether the circulating neutrophil extracellular traps markers, double-stranded DNA and myeloperoxidase-DNA were associated with clinical outcome and hypercoagulability in patients with stable coronary artery disease. Patients with angiographically verified stable coronary artery disease ( n = 1001) were included. Follow-up was 2 years, recording 106 clinical endpoints (unstable angina, non-haemorrhagic stroke, myocardial infarction or death). Serum collected at baseline was used to determine double-stranded DNA and myeloperoxidase-DNA levels. Results The neutrophil extracellular traps markers were weakly intercorrelated ( r = 0.103, P = 0.001). Patients with the highest quartile of double-stranded DNA had weakly but significantly elevated hypercoagulability markers (prothrombin fragment 1+2, D-dimer, free and total tissue factor pathway inhibitor ( P < 0.001 for all)). Men, smokers, patients with metabolic syndrome and patients with a previous myocardial infarction had significantly elevated double-stranded DNA levels ( P ≤ 0.002 for all). Significantly higher double-stranded DNA levels were observed in the group experiencing a clinical endpoint compared to the group without ( P = 0.019). When categorising double-stranded DNA into quartiles, a distinct cut-off between the lowest and upper three quartiles was observed. Adjusting for relevant covariates, patients in the upper three quartiles had an odds ratio of 2.01 (95% confidence interval 1.12, 3.58, P = 0.019) for experiencing a clinical endpoint. Myeloperoxidase-DNA was not significantly associated with clinical outcome or hypercoagulability. Conclusions Double-stranded DNA levels were significantly related to adverse clinical outcome after 2 years, but only weakly associated with hypercoagulability. These observations suggest that the detrimental effects of neutrophil extracellular traps in coronary artery disease might extend beyond those related to hypercoagulability.
Collapse
Affiliation(s)
- Miriam Sjåstad Langseth
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Trine Baur Opstad
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Vibeke Bratseth
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Svein Solheim
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,3 Department of Cardiology, Oslo University Hospital Ullevål, Norway
| | - Harald Arnesen
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| | - Alf Åge Pettersen
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,4 Department of Cardiology, Ringerike Hospital, Norway
| | - Ingebjørg Seljeflot
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway.,3 Department of Cardiology, Oslo University Hospital Ullevål, Norway
| | - Ragnhild Helseth
- 1 Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway.,2 Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
221
|
Haw TJ, Starkey MR, Pavlidis S, Fricker M, Arthurs AL, Nair PM, Liu G, Hanish I, Kim RY, Foster PS, Horvat JC, Adcock IM, Hansbro PM. Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2018; 314:L298-L317. [PMID: 29025711 PMCID: PMC5866502 DOI: 10.1152/ajplung.00154.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death and imposes major socioeconomic burdens globally. It is a progressive and disabling condition that severely impairs breathing and lung function. There is a lack of effective treatments for COPD, which is a direct consequence of the poor understanding of the underlying mechanisms involved in driving the pathogenesis of the disease. Toll-like receptor (TLR)2 and TLR4 are implicated in chronic respiratory diseases, including COPD, asthma and pulmonary fibrosis. However, their roles in the pathogenesis of COPD are controversial and conflicting evidence exists. In the current study, we investigated the role of TLR2 and TLR4 using a model of cigarette smoke (CS)-induced experimental COPD that recapitulates the hallmark features of human disease. TLR2, TLR4, and associated coreceptor mRNA expression was increased in the airways in both experimental and human COPD. Compared with wild-type (WT) mice, CS-induced pulmonary inflammation was unaltered in TLR2-deficient ( Tlr2-/-) and TLR4-deficient ( Tlr4-/-) mice. CS-induced airway fibrosis, characterized by increased collagen deposition around small airways, was not altered in Tlr2-/- mice but was attenuated in Tlr4-/- mice compared with CS-exposed WT controls. However, Tlr2-/- mice had increased CS-induced emphysema-like alveolar enlargement, apoptosis, and impaired lung function, while these features were reduced in Tlr4-/- mice compared with CS-exposed WT controls. Taken together, these data highlight the complex roles of TLRs in the pathogenesis of COPD and suggest that activation of TLR2 and/or inhibition of TLR4 may be novel therapeutic strategies for the treatment of COPD.
Collapse
Affiliation(s)
- Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
- Priority Research Centre for Grow Up Well, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Anya L Arthurs
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Irwan Hanish
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor , Malaysia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| |
Collapse
|
222
|
|
223
|
Zhang FK, Hou JL, Guo AJ, Tian AL, Sheng ZA, Zheng WB, Huang WY, Elsheikha HM, Zhu XQ. Expression profiles of genes involved in TLRs and NLRs signaling pathways of water buffaloes infected with Fasciola gigantica. Mol Immunol 2017; 94:18-26. [PMID: 29241030 DOI: 10.1016/j.molimm.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/02/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023]
Abstract
Infection of ruminants and humans with Fasciola gigantica is attracting increasing attention due to its economic impact and public health significance. However, little is known of innate immune responses during F. gigantica infection. Here, we investigated the expression profiles of genes involved in Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways in buffaloes infected with 500F. gigantica metacercariae. Serum, liver and peripheral blood mononuclear cell (PBMC) samples were collected from infected and control buffaloes at 3, 10, 28, and 70days post infection (dpi). Then, the levels of 12 cytokines in serum samples were evaluated by ELISA. Also, the levels of expression of 42 genes, related to TLRs and NLRs signaling, in liver and PBMCs were determined using custom RT2 Profiler PCR Arrays. At 3 dpi, modest activation of TLR4 and TLR8 and the adaptor protein (TICAM1) was detected. At 10 dpi, NF-κB1 and Interferon Regulatory Factor signaling pathways were upregulated along with activation of TLR1, TLR2, TLR6, TLR10, TRAF6, IRF3, TBK1, CASP1, CD80, and IFNA1 in the liver, and inflammatory response with activated TLR4, TLR9, TICAM1, NF-κB1, NLRP3, CD86, IL-1B, IL-6, and IL-8 in PBMCs. At 28 dpi, there was increase in the levels of cytokines along with induction of NLRP1 and NLRP3 inflammasomes-dependent immune responses in the liver and PBMCs. At 70 dpi, F. gigantica activated TLRs and NLRs, and their downstream interacting molecules. The activation of TLR7/9 signaling (perhaps due to increased B-cell maturation and activation) and upregulation of NLRP3 gene were also detected. These findings indicate that F. gigantica alters the expression of TLRs and NLRs genes to evade host immune defenses. Elucidation of the roles of the downstream effectors interacting with these genes may aid in the development of new interventions to control disease caused by F. gigantica infection.
Collapse
Affiliation(s)
- Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ai-Jiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region 530005, PR China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region 530005, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
224
|
Döring Y, Weber C, Soehnlein O, Ortega-Gómez A. Neutrophil-macrophage interplay in atherosclerosis: protease-mediated cytokine processing versus NET release. Thromb Haemost 2017; 114:866-7. [DOI: 10.1160/th15-08-0623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
|
225
|
Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb Haemost 2017; 117:437-444. [DOI: 10.1160/th16-08-0620] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/20/2016] [Indexed: 11/05/2022]
Abstract
SummaryThe heparins, well-known for their anticoagulant properties, may also have anti-inflammatory effects that could contribute to their effectiveness in the treatment of venous thromboembolism and other vascular diseases. This review focuses on the inflammatory pathophysiology that underlies the development of thrombosis and the putative effects of heparin on these pathways. We present evidence supporting the use of heparin for other indications, including autoimmune disease, malignancy, and disseminated intravascular coagulation. These considerations highlight the need for further research to elucidate the mechanisms of the possible pleiotropic effects of the heparins, with a view to advancing treatments based upon heparin derivatives.
Collapse
|
226
|
Sanda GE, Belur AD, Teague HL, Mehta NN. Emerging Associations Between Neutrophils, Atherosclerosis, and Psoriasis. Curr Atheroscler Rep 2017; 19:53. [DOI: 10.1007/s11883-017-0692-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
227
|
The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases-A Review. Int J Mol Sci 2017; 18:ijms18112252. [PMID: 29077004 PMCID: PMC5713222 DOI: 10.3390/ijms18112252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Therefore, a better understanding of their pathomechanisms and the subsequent implementation of optimal prophylactic and therapeutic strategies are of utmost importance. A growing body of evidence states that low-grade inflammation is a common feature for most of the cardiovascular diseases in which the contributing factors are the activation of toll-like receptors (TLRs) and vitamin D deficiency. In this article, available data concerning the association of cardiovascular diseases with TLRs and vitamin D status are reviewed, followed by a discussion of new possible approaches to cardiovascular disease management.
Collapse
|
228
|
Abstract
Well into the 21st century, we still triage acute myocardial infarction on the basis of the presence or absence of ST-segment elevation, a century-old technology. Meanwhile, we have learned a great deal about the pathophysiology and mechanisms of acute coronary syndromes (ACS) at the clinical, pathological, cellular, and molecular levels. Contemporary imaging studies have shed new light on the mechanisms of ACS. This review discusses these advances and their implications for clinical management of the ACS for the future. Plaque rupture has dominated our thinking about ACS pathophysiology for decades. However, current evidence suggests that a sole focus on plaque rupture vastly oversimplifies this complex collection of diseases and obscures other mechanisms that may mandate different management strategies. We propose segmenting coronary artery thrombosis caused by plaque rupture into cases with or without signs of concomitant inflammation. This distinction may have substantial therapeutic implications as direct anti-inflammatory interventions for atherosclerosis emerge. Coronary artery thrombosis caused by plaque erosion may be on the rise in an era of intense lipid lowering. Identification of patients with of ACS resulting from erosion may permit a less invasive approach to management than the current standard of care. We also now recognize ACS that occur without apparent epicardial coronary artery thrombus or stenosis. Such events may arise from spasm, microvascular disease, or other pathways. Emerging management strategies may likewise apply selectively to this category of ACS. We advocate this more mechanistic approach to the categorization of ACS to provide a framework for future tailoring, triage, and therapy for patients in a more personalized and precise manner.
Collapse
Affiliation(s)
- Filippo Crea
- From Department of Cardiovascular and Thoracic Sciences, Catholic University, Rome, Italy (F.C.); and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.)
| | - Peter Libby
- From Department of Cardiovascular and Thoracic Sciences, Catholic University, Rome, Italy (F.C.); and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.).
| |
Collapse
|
229
|
Abstract
PURPOSE OF REVIEW The present review explores the mechanisms of superficial intimal erosion, a common cause of thrombotic complications of atherosclerosis. RECENT FINDINGS Human coronary artery atheroma that give rise to thrombosis because of erosion differ diametrically from those associated with fibrous cap rupture. Eroded lesions characteristically contain few inflammatory cells, abundant extracellular matrix, and neutrophil extracellular traps (NETs). Innate immune mechanisms such as engagement of Toll-like receptor 2 (TLR2) on cultured endothelial cells can impair their viability, attachment, and ability to recover a wound. Hyaluronan fragments may serve as endogenous TLR2 ligands. Mouse experiments demonstrate that flow disturbance in arteries with neointimas tailored to resemble features of human eroded plaques disturbs endothelial cell barrier function, impairs endothelial cell viability, recruits neutrophils, and provokes endothelial cells desquamation, NET formation, and thrombosis in a TLR2-dependent manner. SUMMARY Mechanisms of erosion have received much less attention than those that provoke plaque rupture. Intensive statin treatment changes the characteristic of plaques that render them less susceptible to rupture. Thus, erosion may contribute importantly to the current residual burden of risk. Understanding the mechanisms of erosion may inform the development and deployment of novel therapies to combat the remaining atherothrombotic risk in the statin era.
Collapse
Affiliation(s)
- Thibaut Quillard
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Grégory Franck
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas Mawson
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eduardo Folco
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter Libby
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
230
|
Abstract
Inflammation furnishes a series of pathogenic pathways that couple the risk factors for atherosclerosis with altered behavior of the intrinsic cells of the arterial wall, endothelium, and smooth muscle and promote the disease and its complications. Myeloid cells participate critically in all phases of atherosclerosis from initiation through progression, and ultimately the thrombotic consequences of this disease. Foam cells, lipid-laden macrophages, constitute the hallmark of atheromata. Much of the recent expansion in knowledge of the roles of myeloid cells in atherosclerosis revolves around the functional contributions of subsets of monocytes, precursors of macrophages, the most abundant myeloid cells in the atheroma. Proinflammatory monocytes preferentially accumulate in nascent atherosclerotic plaques. The most dramatic manifestations of atherosclerosis result from blood clot formation. Myocardial infarction, ischemic stroke, and abrupt limb ischemia all arise primarily from thrombi that complicate atherosclerotic plaques. Myeloid cells contribute pivotally to triggering thrombosis, for example, by elaborating enzymes that degrade the plaque's protective extracellular matrix, rendering it fragile, and by producing the potent procoagulant tissue factor. While most attention has focused on mononuclear phagocytes, the participation of polymorphonuclear leukocytes may aggravate local thrombus formation. Existing therapies such as statins may exert some of their protective effects by altering the functions of myeloid cells. The pathways of innate immunity that involve myeloid cells provide a myriad of potential targets for modifying atherosclerosis and its complications, and provide a fertile field for future attempts to address the residual burden of this disease, whose global prevalence is on the rise.
Collapse
|
231
|
van Koeverden ID, van Haelst STW, Haitjema S, de Vries JPPM, Moll FL, den Ruijter HM, Hoefer IE, Dalmeijer GW, de Borst GJ, Pasterkamp G. Time-dependent trends in cardiovascular adverse events during follow-up after carotid or iliofemoral endarterectomy. Br J Surg 2017. [PMID: 28650577 DOI: 10.1002/bjs.10576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent observations have suggested a decline in vulnerable carotid artery and iliofemoral atherosclerotic plaque characteristics over the past decade. The aim of this study was to determine whether, in the presence of clinically manifest carotid or peripheral artery disease, secondary adverse cardiovascular events decreased over this period. METHODS Patients included in the Athero-Express biobank between 2003 and 2012 were analysed. During 3-year follow-up, composite cardiovascular endpoints were documented yearly, including: myocardial infarction, coronary interventions, stroke, peripheral interventions and cardiovascular death. The major cardiovascular endpoint consisted of myocardial infarction, stroke and cardiovascular death. RESULTS Some 1684 patients who underwent carotid endarterectomy (CEA) and another 530 who had iliofemoral endarterectomy (IFE) were analysed. In total, 405 (25·2 per cent) and 236 (45·9 per cent) patients had a composite cardiovascular endpoint within 3 years after CEA and IFE respectively. Corrected for possible confounders, the percentage of patients with a secondary cardiovascular event after CEA did not change over time (hazard ratio (HR) 0·91, 95 per cent c.i. 0·65 to 1·28; P = 0·590, for 2011-2012 versus 2003-2004). In patients who had IFE, the incidence of secondary cardiovascular events significantly decreased only in the last 2 years (HR 0·62, 0·41 to 0·94; P = 0·024), owing to a decrease in peripheral (re)interventions in 2011-2012 (HR 0·59, 0·37 to 0·94; P = 0·028). No decrease in major cardiovascular events was observed in either group. CONCLUSION In patients who had undergone either CEA or IFE there was no evidence of a decrease in all secondary cardiovascular events. There were no differences in major cardiovascular events.
Collapse
Affiliation(s)
- I D van Koeverden
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - S T W van Haelst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - S Haitjema
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J-P P M de Vries
- Department of Vascular Surgery, St Antonius Hospital, Nieuwegein, The Netherlands
| | - F L Moll
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - H M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - I E Hoefer
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - G W Dalmeijer
- Julius Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - G J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - G Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
232
|
Döring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res 2017; 120:736-743. [PMID: 28209798 DOI: 10.1161/circresaha.116.309692] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
Neutrophil extracellular traps expelled from suicidal neutrophils comprise a complex structure of nuclear chromatin and proteins of nuclear, granular, and cytosolic origin. These net-like structures have also been detected in atherosclerotic lesions and arterial thrombi in humans and mice. Functionally, neutrophil extracellular traps have been shown to induce activation of endothelial cells, antigen-presenting cells, and platelets, resulting in a proinflammatory immune response. Overall, this suggests that they are not only present in plaques and thrombi but also they may play a causative role in triggering atherosclerotic plaque formation and arterial thrombosis. This review will focus on current findings of the involvement of neutrophil extracellular traps in atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.).
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.).
| |
Collapse
|
233
|
Chandran S, Watkins J, Abdul-Aziz A, Shafat M, Calvert PA, Bowles KM, Flather MD, Rushworth SA, Ryding AD. Inflammatory Differences in Plaque Erosion and Rupture in Patients With ST-Segment Elevation Myocardial Infarction. J Am Heart Assoc 2017; 6:JAHA.117.005868. [PMID: 28468787 PMCID: PMC5524113 DOI: 10.1161/jaha.117.005868] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Plaque erosion causes 30% of ST‐segment elevation myocardial infarctions, but the underlying cause is unknown. Inflammatory infiltrates are less abundant in erosion compared with rupture in autopsy studies. We hypothesized that erosion and rupture are associated with significant differences in intracoronary cytokines in vivo. Methods and Results Forty ST‐segment elevation myocardial infarction patients with <6 hours of chest pain were classified as ruptured fibrous cap (RFC) or intact fibrous cap (IFC) using optical coherence tomography. Plasma samples from the infarct‐related artery and a peripheral artery were analyzed for expression of 102 cytokines using arrays; results were confirmed with ELISA. Thrombectomy samples were analyzed for differential mRNA expression using quantitative real‐time polymerase chain reaction. Twenty‐three lesions were classified as RFC (58%), 15 as IFC (38%), and 2 were undefined (4%). In addition, 12% (12 of 102) of cytokines were differentially expressed in both coronary and peripheral plasma. I‐TAC was preferentially expressed in RFC (significance analysis of microarrays adjusted P<0.001; ELISA IFC 10.2 versus RFC 10.8 log2 pg/mL; P=0.042). IFC was associated with preferential expression of epidermal growth factor (significance analysis of microarrays adjusted P<0.001; ELISA IFC 7.42 versus RFC 6.63 log2 pg/mL, P=0.036) and thrombospondin 1 (significance analysis of microarrays adjusted P=0.03; ELISA IFC 10.4 versus RFC 8.65 log2 ng/mL, P=0.0041). Thrombectomy mRNA showed elevated I‐TAC in RFC (P=0.0007) epidermal growth factor expression in IFC (P=0.0264) but no differences in expression of thrombospondin 1. Conclusions These results demonstrate differential intracoronary cytokine expression in RFC and IFC. Elevated thrombospondin 1 and epidermal growth factor may play an etiological role in erosion.
Collapse
Affiliation(s)
- Sujay Chandran
- Norfolk and Norwich University Hospital, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Amina Abdul-Aziz
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Manar Shafat
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Patrick A Calvert
- Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom
| | - Kristian M Bowles
- Norfolk and Norwich University Hospital, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Marcus D Flather
- Norfolk and Norwich University Hospital, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
234
|
Franck G, Mawson T, Sausen G, Salinas M, Masson GS, Cole A, Beltrami-Moreira M, Chatzizisis Y, Quillard T, Tesmenitsky Y, Shvartz E, Sukhova GK, Swirski FK, Nahrendorf M, Aikawa E, Croce KJ, Libby P. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion. Circ Res 2017; 121:31-42. [PMID: 28428204 DOI: 10.1161/circresaha.117.310694] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/25/2023]
Abstract
RATIONALE Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. OBJECTIVE This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. METHODS AND RESULTS In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis (P<0.05). CONCLUSIONS These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era.
Collapse
Affiliation(s)
- Grégory Franck
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Thomas Mawson
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Grasiele Sausen
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Manuel Salinas
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Gustavo Santos Masson
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Andrew Cole
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Marina Beltrami-Moreira
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Yiannis Chatzizisis
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Thibault Quillard
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Yevgenia Tesmenitsky
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Eugenia Shvartz
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Galina K Sukhova
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Filip K Swirski
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Matthias Nahrendorf
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Elena Aikawa
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Kevin J Croce
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Peter Libby
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.).
| |
Collapse
|
235
|
Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc 2017; 6:JAHA.117.005543. [PMID: 28314799 PMCID: PMC5524044 DOI: 10.1161/jaha.117.005543] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Dimitrios Tsiachris
- National and Kapodistrian University of Athens and Athens Heart Center, Athens, Greece
| | - Panagiota Pietri
- National and Kapodistrian University of Athens and Athens Heart Center, Athens, Greece
| |
Collapse
|
236
|
Lüscher TF. Improving outcome in acute coronary syndromes: ischaemic conditioning, antithrombosis and bleeding, and inflammasome antagonism. Eur Heart J 2017; 38:763-766. [DOI: 10.1093/eurheartj/ehx085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
237
|
Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17:248-261. [PMID: 28287106 DOI: 10.1038/nri.2017.10] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Department of Physiology and Pharmacology, Karolinksa Institutet, von Eulers Väg 8, 17177 Stockholm, Sweden
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,Fundación Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
238
|
Lüscher TF. From conventional to molecular imaging: delineating mechanisms, diagnosis, and outcomes. Eur Heart J 2017; 38:377-380. [DOI: 10.1093/eurheartj/ehx010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
239
|
Tabas I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular-Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:183-189. [PMID: 27979856 PMCID: PMC5269511 DOI: 10.1161/atvbaha.116.308036] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is initiated by the subendothelial accumulation of apoB-lipoproteins, which initiates a sterile inflammatory response dominated by monocyte-macrophages but including all classes of innate and adaptive immune cells. These inflammatory cells, together with proliferating smooth muscle cells and extracellular matrix, promote the formation of subendothelial lesions or plaques. In the vast majority of cases, these lesions do not cause serious clinical symptoms, which is due in part to a resolution-repair response that limits tissue damage. However, a deadly minority of lesions progress to the point where they can trigger acute lumenal thrombosis, which may then cause unstable angina, myocardial infarction, sudden cardiac death, or stroke. Many of these clinically dangerous lesions have hallmarks of defective inflammation resolution, including defective clearance of dead cells (efferocytosis), necrosis, a defective scar response, and decreased levels of lipid mediators of the resolution response. Efferocytosis is both an effector arm of the resolution response and an inducer of resolution mediators, and thus its defect in advanced atherosclerosis amplifies plaque progression. Preclinical causation/treatment studies have demonstrated that replacement therapy with exogenously administered resolving mediators can improve lesional efferocytosis and prevent plaque progression. Work in this area has the potential to potentiate the cardiovascular benefits of apoB-lipoprotein-lowering therapy.
Collapse
Affiliation(s)
- Ira Tabas
- From the Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York.
| |
Collapse
|
240
|
Afolabi A, Hu S, Wang C, Zhu Y, Mustafina I, Lin L, Zheng G, Zhe C, Jia H, Hou J, Yu B. Role of Optical Coherence Tomography in Diagnosis and Treatment of Patients with Acute Coronary Syndrome. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2017. [DOI: 10.15212/cvia.2016.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
241
|
Lüscher TF. Outcomes of acute coronary syndromes: clinical presentation, gender, inflammation, and cell therapy. Eur Heart J 2017; 38:125-129. [PMID: 28158616 DOI: 10.1093/eurheartj/ehw676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Editor-in-Chief, Zurich Heart House, Careum Campus, Moussonstrasse 4, 8091 Zurich, Switzerland
| |
Collapse
|
242
|
Martinod K, Witsch T, Erpenbeck L, Savchenko A, Hayashi H, Cherpokova D, Gallant M, Mauler M, Cifuni SM, Wagner DD. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med 2016; 214:439-458. [PMID: 28031479 PMCID: PMC5294849 DOI: 10.1084/jem.20160530] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) citrullinates proteins. In neutrophils, it causes chromatin decondensation and release of NETs, which are injurious. Martinod et al. show in this study that NETs promote fibrosis in a cardiac model and that PAD4-deficient mice have reduced age-related organ fibrosis. Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4−/− mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4−/− mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4−/− myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction.
Collapse
Affiliation(s)
- Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Thilo Witsch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Luise Erpenbeck
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Alexander Savchenko
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hideki Hayashi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Maximilian Mauler
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, 79106 Freiburg, Germany
| | - Stephen M Cifuni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 .,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
243
|
Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hellenic J Cardiol 2016; 57:389-400. [PMID: 27894949 DOI: 10.1016/j.hjc.2016.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Intracoronary hemodynamics play a pivotal role in the initiation and progression of the atherosclerotic process. Low pro-inflammatory endothelial shear stress impacts vascular physiology and leads to the occurrence of coronary artery disease and its implications.
Collapse
|
244
|
Karadimou G, Folkersen L, Berg M, Perisic L, Discacciati A, Roy J, Hansson GK, Persson J, Paulsson-Berne G. Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events. Cardiovasc Res 2016; 113:30-39. [PMID: 27864310 PMCID: PMC5220676 DOI: 10.1093/cvr/cvw231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023] Open
Abstract
AIMS Processes in the development of atherosclerotic lesions can lead to plaque rupture or erosion, which can in turn elicit myocardial infarction or ischaemic stroke. The aims of this study were to determine whether Toll-like receptor 7 (TLR7) gene expression levels influence patient outcome and to explore the mechanisms linked to TLR7 expression in atherosclerosis. METHODS AND RESULTS Atherosclerotic plaques were removed by carotid endarterectomy (CEA) and subjected to gene array expression analysis (n = 123). Increased levels of TLR7 transcript in the plaques were associated with better outcome in a follow-up study over a maximum of 8 years. Patients with higher TLR7 transcript levels had a lower risk of experiencing major cardiovascular and cerebrovascular events (MACCE) during the follow-up period after CEA (hazard ratio: 2.38, P = 0.012, 95% CI 1.21-4.67). TLR7 was expressed in all plaques by T cells, macrophages and endothelial cells in capillaries, as shown by immunohistochemistry. In short-term tissue cultures, ex vivo treatment of plaques with the TLR7 ligand imiquimod elicited dose-dependent secretion of IL-10, TNF-α, GM-CSF, and IL-12/IL-23p40. This secretion was blocked with a TLR7 inhibitor. Immunofluorescent tissue analysis after TLR7 stimulation showed IL-10 expression in T cells, macrophages and vascular smooth muscle cells. TLR7 mRNA levels in the plaques were correlated with IL-10 receptor (r = 0.4031, P < 0.0001) and GM-CSF receptor A (r = 0.4354, P < 0.0001) transcripts. CONCLUSION These findings demonstrate that TLR7 is abundantly expressed in human atherosclerotic plaques. TLR7 ligation elicits the secretion of pro-inflammatory and anti-inflammatory cytokines, and high TLR7 expression in plaques is associated with better patient outcome, suggesting that TLR7 is a potential therapeutic target for prevention of complications of atherosclerosis.
Collapse
Affiliation(s)
- Glykeria Karadimou
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Lasse Folkersen
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden.,Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| | - Martin Berg
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Discacciati
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Göran K Hansson
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Persson
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden.,Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Gabrielle Paulsson-Berne
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden;
| |
Collapse
|
245
|
Pasterkamp G, den Ruijter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol 2016; 14:21-29. [DOI: 10.1038/nrcardio.2016.166] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
246
|
Ziganshina EE, Sharifullina DM, Lozhkin AP, Khayrullin RN, Ignatyev IM, Ziganshin AM. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis. PLoS One 2016; 11:e0164836. [PMID: 27736997 PMCID: PMC5063344 DOI: 10.1371/journal.pone.0164836] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is considered a chronic disease of the arterial wall and is the major cause of severe disease and death among individuals all over the world. Some recent studies have established the presence of bacteria in atherosclerotic plaque samples and suggested their possible contribution to the development of cardiovascular disease. The main objective of this preliminary pilot study was to better understand the bacterial diversity and abundance in human atherosclerotic plaques derived from common carotid arteries of individuals with atherosclerosis (Russian nationwide group) and contribute towards the further identification of a main group of atherosclerotic plaque bacteria by 454 pyrosequencing their 16S ribosomal RNA (16S rRNA) genes. The applied approach enabled the detection of bacterial DNA in all atherosclerotic plaques. We found that distinct members of the order Burkholderiales were present at high levels in all atherosclerotic plaques obtained from patients with atherosclerosis with the genus Curvibacter being predominant in all plaque samples. Moreover, unclassified Burkholderiales as well as members of the genera Propionibacterium and Ralstonia were typically the most significant taxa for all atherosclerotic plaques. Other genera such as Burkholderia, Corynebacterium and Sediminibacterium as well as unclassified Comamonadaceae, Oxalobacteraceae, Rhodospirillaceae, Bradyrhizobiaceae and Burkholderiaceae were always found but at low relative abundances of the total 16S rRNA gene population derived from all samples. Also, we found that some bacteria found in plaque samples correlated with some clinical parameters, including total cholesterol, alanine aminotransferase and fibrinogen levels. Finally, our study indicates that some bacterial agents at least partially may be involved in affecting the development of cardiovascular disease through different mechanisms.
Collapse
Affiliation(s)
- Elvira E. Ziganshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
| | - Dilyara M. Sharifullina
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Andrey P. Lozhkin
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Rustem N. Khayrullin
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Igor M. Ignatyev
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Ayrat M. Ziganshin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
- * E-mail:
| |
Collapse
|
247
|
Mason JC. Cytoprotective pathways in the vascular endothelium. Do they represent a viable therapeutic target? Vascul Pharmacol 2016; 86:41-52. [PMID: 27520362 DOI: 10.1016/j.vph.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The vascular endothelium is a critical interface, which separates the organs from the blood and its contents. The endothelium has a wide variety of functions and maintenance of endothelial homeostasis is a multi-dimensional active process, disruption of which has potentially deleterious consequences if not reversed. Vascular injury predisposes to endothelial apoptosis, dysfunction and development of atherosclerosis. Endothelial dysfunction is an end-point, a central feature of which is increased ROS generation, a reduction in endothelial nitric oxide synthase and increased nitric oxide consumption. A dysfunctional endothelium is a common feature of diseases including rheumatoid arthritis, systemic lupus erythematosus, diabetes mellitus and chronic renal impairment. The endothelium is endowed with a variety of constitutive and inducible mechanisms that act to minimise injury and facilitate repair. Endothelial cytoprotection can be enhanced by exogenous factors such as vascular endothelial growth factor, prostacyclin and laminar shear stress. Target genes include endothelial nitric oxide synthase, heme oxygenase-1, A20 and anti-apoptotic members of the B cell lymphoma protein-2 family. In light of the importance of endothelial function, and the link between its disruption and the risk of atherothrombosis, interest has focused on therapeutic conditioning and reversal of endothelial dysfunction. A detailed understanding of cytoprotective signalling pathways, their regulation and target genes is now required to identify novel therapeutic targets. The ultimate aim is to add vasculoprotection to current therapeutic strategies for systemic inflammatory diseases, in an attempt to reduce vascular injury and prevent or retard atherogenesis.
Collapse
Affiliation(s)
- Justin C Mason
- Vascular Science, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
248
|
Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G246-51. [PMID: 27288423 PMCID: PMC5007289 DOI: 10.1152/ajpgi.00118.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
The capillary network irrigating the liver is important not only for nutrient and oxygen delivery, but also for the signals distributed to other hepatic cell types necessary to maintain liver homeostasis. During development, endothelial cells are a key component in liver zonation. In adulthood, they maintain hepatic stellate cells and hepatocytes in quiescence. Their importance in pathobiology is highlighted in liver regeneration and chronic liver diseases, where they coordinate paracrine cell behavior. During regeneration, liver sinusoidal endothelial cells induce hepatocyte proliferation and angiogenesis. During fibrogenesis, they undergo morphological and functional changes, which are reflected by their role in hepatic stellate cell activation, inflammation, and distorted sinusoidal structure. Therapeutic strategies to target angiocrine signaling are in progress but are in the early stages. Here, we offer a short synthesis of recent studies on angiocrine signaling in liver homeostasis, regeneration, and fibrogenesis.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
249
|
Abstract
Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
Collapse
Affiliation(s)
- Michael A Gimbrone
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Guillermo García-Cardeña
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
250
|
Murphy AJ, Tall AR. Disordered haematopoiesis and athero-thrombosis. Eur Heart J 2016; 37:1113-21. [PMID: 26869607 PMCID: PMC4823636 DOI: 10.1093/eurheartj/ehv718] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis, the major underlying cause of cardiovascular disease, is characterized by a lipid-driven infiltration of inflammatory cells in large and medium arteries. Increased production and activation of monocytes, neutrophils, and platelets, driven by hypercholesterolaemia and defective high-density lipoproteins-mediated cholesterol efflux, tissue necrosis and cytokine production after myocardial infarction, or metabolic abnormalities associated with diabetes, contribute to atherogenesis and athero-thrombosis. This suggests that in addition to traditional approaches of low-density lipoproteins lowering and anti-platelet drugs, therapies directed at abnormal haematopoiesis, including anti-inflammatory agents, drugs that suppress myelopoiesis, and excessive platelet production, rHDL infusions and anti-obesity and anti-diabetic agents, may help to prevent athero-thrombosis.
Collapse
Affiliation(s)
- Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia Department of Immunology, Monash University, Melbourne, Victoria 3165, Australia
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|