201
|
Abstract
Primary brain tumors occur in around 250,000 people per year globally. Survival rates in primary brain tumors depend on the type of tumor, patient's age, the extent of surgical tumor removal, and other factors. Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma and meningiomas, whereas clinical application of photodynamic therapy (PDT) to brain tumor therapy has just recently started. Both PDD and PDT are achieved by a photon-induced physicochemical reaction, which is induced by the excitation of porphyrins exposed to light. In fluorescence-guided gross-total resection, PDD can be achieved by the administration of 5-aminolevulinic acid (5-ALA) as the precursor of protoporphyrin IX (PpIX). Exogenously administered ALA induces biosynthesis and accumulation of PpIX, a natural photosensitizer, in cancer cells. However, ATP-binding cassette transporter ABCG2 plays a critical role in regulating the cellular accumulation of porphyrins in cancer cells and thereby its expression and function can affect the efficacy of PDD and PDT. In response to the photoreaction of porphyrins leading to oxidative stress, the nuclear factor erythroid-derived 2-related transcription factor can transcriptionally upregulate ABCG2, which may reduce the efficacy of PDD and PDT. On the other hand, certain protein kinase inhibitors potentially enhance the efficacy of PDD and PDT by blocking ABCG2-mediated porphyrin efflux from cancer cells. In this context, it is of great interest to develop ABCG2 inhibitors that can be applied to PDD or PDT for the therapy of brain tumor and other tumors.
Collapse
|
202
|
Weis S, Bielow T, Sommerer I, Iovanna J, Malicet C, Mössner J, Hoffmeister A. P8 deficiency increases cellular ROS and induces HO-1. Arch Biochem Biophys 2014; 565:89-94. [PMID: 25475530 DOI: 10.1016/j.abb.2014.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The gene p8 encodes for a small cytoprotective protein with no apparent enzymatic activity being proposed to act as co-transcription factor whose expression is increased during inflammation. Recent data from astrocytes demonstrates that p8 suppression leads to induction of heme oxygenase 1 (HO-1). Here, we assessed the cross-talk between p8 and HO-1 in mouse embryonic fibroblasts (MEF) observing an increased expression of HO-1 in p8-deficient (p8(-/-)) MEFs in non-treated and treated conditions. This effect was independent of the cell cycle. Our findings revealed that generation of reactive oxygen species (ROS) was higher in p8(-/-) MEFs. Mitochondria and NADPH oxidases were not the origin of ROS. This observation was not restricted to MEF as suppression of p8 gene transcription in MiaPaCa-2 cells also led to increased intracellular ROS. Additionally, p8 deficiency did not affect the Rac1 dependant NADPH oxidase complex. Our data shows that p8 deficiency increases ROS and subsequently the expression of anti-oxidative enzymes, such as HO-1, suggesting an involvement in the anti-oxidative defense. Moreover, we suggest that the severity of AP observed in p8(-/-) mice is induced by an impaired anti oxidative capacity of the pancreas, which is caused by increased generation of ROS.
Collapse
Affiliation(s)
- Sebastian Weis
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany; Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany; Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.
| | - Tobias Bielow
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| | - Ines Sommerer
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Joachim Mössner
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| | - Albrecht Hoffmeister
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| |
Collapse
|
203
|
Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: involvement of Nrf2 pathway. Neurochem Res 2014; 40:186-94. [PMID: 25424966 DOI: 10.1007/s11064-014-1483-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/16/2014] [Accepted: 11/19/2014] [Indexed: 01/01/2023]
Abstract
Oxidative stress and blood-brain barrier (BBB) disruption play important roles in cerebral ischemic pathogenesis and may represent targets for treatment. Earlier studies have shown that osthole, a main active constituent isolated from Cnidium monnieri (L.) Cusson, could be considered as an attractive therapeutic agent in the treatment of ischemic stroke. However, the mechanism underlying the protective effect remains vague. In this study we aimed to investigate the effect of osthole on transient cerebral ischemia as well as its mechanism(s) in C57 BL/6 J mice. Mice were subjected to transient global cerebral ischemia induced by bilateral common carotid artery occlusion for 25 min. Behavioral test was performed at 4 days after ischemia, followed by assessment of neuronal loss in hippocampal CA1 region. Osthole significantly improved the cognitive ability and enhanced the survival of pyramidal neurons in the CA1 region of mice after lesion. Further studies showed that osthole attenuated the permeation of BBB, which may contribute to antioxidative effect by increasing the superoxide dismutase activity and decreasing the malondialdehyde level in model mice. Further studies revealed that osthole obviously up-regulated the protein levels of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 in HT22 cells. In conclusion, our findings indicated that osthole exerts neuroprotective effects against global cerebral ischemia injury by reducing oxidative stress injury and reserving the disruption of BBB, which may be attributed to elevating the protein levels of Nrf2 and HO-1.
Collapse
|
204
|
Roy Chowdhury S, Sengupta S, Biswas S, Sinha TK, Sen R, Basak RK, Adhikari B, Bhattacharyya A. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells. Methods Enzymol 2014; 528:27-48. [PMID: 25412177 DOI: 10.1016/b978-0-12-405881-1.00002-1] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.
Collapse
Affiliation(s)
- Sougata Roy Chowdhury
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India; Immunology lab, Department of Zoology, University of Calcutta, West Bengal, India
| | - Suman Sengupta
- Immunology lab, Department of Zoology, University of Calcutta, West Bengal, India
| | - Subir Biswas
- Immunology lab, Department of Zoology, University of Calcutta, West Bengal, India
| | - Tridib Kumar Sinha
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ratan Kumar Basak
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Basudam Adhikari
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | | |
Collapse
|
205
|
Maruyama A, Mimura J, Itoh K. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding. Nucleic Acids Res 2014; 42:13599-614. [PMID: 25404134 PMCID: PMC4267629 DOI: 10.1093/nar/gku1169] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have disclosed the function of enhancer RNAs (eRNAs), which are long non-coding RNAs transcribed from gene enhancer regions, in transcriptional regulation. However, it remains unclear whether eRNAs are involved in the regulation of human heme oxygenase-1 gene (HO-1) induction. Here, we report that multiple nuclear-enriched eRNAs are transcribed from the regions adjacent to two human HO-1 enhancers (i.e. the distal E2 and proximal E1 enhancers), and some of these eRNAs are induced by the oxidative stress-causing reagent diethyl maleate (DEM). We demonstrated that the expression of one forward direction (5′ to 3′) eRNA transcribed from the human HO-1 E2 enhancer region (named human HO-1enhancer RNA E2-3; hereafter called eRNA E2-3) was induced by DEM in an NRF2-dependent manner in HeLa cells. Conversely, knockdown of BACH1, a repressor of HO-1 transcription, further increased DEM-inducible eRNA E2-3 transcription as well as HO-1 expression. In addition, we showed that knockdown of eRNA E2-3 selectively down-regulated DEM-induced HO-1 expression. Furthermore, eRNA E2-3 knockdown attenuated DEM-induced Pol II binding to the promoter and E2 enhancer regions of HO-1 without affecting NRF2 recruitment to the E2 enhancer. These findings indicate that eRNAE2-3 is functional and is required for HO-1 induction.
Collapse
Affiliation(s)
- Atsushi Maruyama
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
206
|
Nisar MF, Parsons KSG, Bian CX, Zhong JL. UVA irradiation induced heme oxygenase-1: a novel phototherapy for morphea. Photochem Photobiol 2014; 91:210-20. [PMID: 25207998 DOI: 10.1111/php.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
Abstract
Long wave UVA radiation (340-400 nm) causes detrimental as well as beneficial effects on human skin. Studies of human skin fibroblasts irradiated with UVA demonstrate increased expression of both antifibrotic heme oxygenase-1 (HO-1) and matrix metalloproteinase 1 (MMP-1). The use of UVA-induced MMP-1 is well-studied in treating skin fibrotic conditions such as localized scleroderma, now called morphea. However, the role that UVA-induced HO-1 plays in phototherapy of morphea has not been characterized. In the present manuscript, we have illustrated and reviewed the biological function of HO-1 and the use of UVA1 wavebands (340-400 nm) for phototherapy; the potential use of HO-1 induction in UVA therapy of morphea is also discussed.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
207
|
Chowdhury SR, Sengupta S, Biswas S, Sen R, Sinha TK, Basak RK, Adhikari B, Bhattacharyya A. Low fucose containing bacterial polysaccharide facilitate mitochondria-dependent ROS-induced apoptosis of human lung epithelial carcinoma via controlled regulation of MAPKs-mediated Nrf2/Keap1 homeostasis signaling. Mol Carcinog 2014; 54:1636-55. [DOI: 10.1002/mc.22236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/19/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Sougata Roy Chowdhury
- Materials Science Centre; Indian Institute of Technology Kharagpur; Kharagpur WB India
- Department of Zoology; Immunology Lab; University of Calcutta; Kolkata WB India
| | - Suman Sengupta
- Department of Zoology; Immunology Lab; University of Calcutta; Kolkata WB India
| | - Subir Biswas
- Department of Zoology; Immunology Lab; University of Calcutta; Kolkata WB India
| | - Ramkrishna Sen
- Department of Biotechnology; Indian Institute of Technology Kharagpur; Kharagpur WB India
| | - Tridib Kumar Sinha
- Materials Science Centre; Indian Institute of Technology Kharagpur; Kharagpur WB India
| | - Ratan Kumar Basak
- Materials Science Centre; Indian Institute of Technology Kharagpur; Kharagpur WB India
| | - Basudam Adhikari
- Materials Science Centre; Indian Institute of Technology Kharagpur; Kharagpur WB India
| | | |
Collapse
|
208
|
Huang J, Shen XD, Yue S, Zhu J, Gao F, Zhai Y, Busuttil RW, Ke B, Kupiec-Weglinski JW. Adoptive transfer of heme oxygenase-1 (HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury. Mol Med 2014; 20:448-55. [PMID: 25014792 DOI: 10.2119/molmed.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/07/2014] [Indexed: 01/07/2023] Open
Abstract
Macrophages are instrumental in the pathophysiology of liver ischemia/reperfusion injury (IRI). Although Nrf2 regulates macrophage-specific heme oxygenase-1 (HO-1) antioxidant defense, it remains unknown whether HO-1 induction might rescue macrophage Nrf2-dependent antiinflammatory functions. This study explores the mechanisms by which the Nrf2-HO-1 axis regulates sterile hepatic inflammation responses after adoptive transfer of ex vivo modified HO-1 overexpressing bone marrow-derived macrophages (BMMs). Livers in Nrf2-deficient mice preconditioned with Ad-HO-1 BMMs, but not Ad-β-Gal-BMMs, ameliorated liver IRI (at 6 h of reperfusion after 90 min of warm ischemia), evidenced by improved hepatocellular function (serum alanine aminotransferase [sALT] levels) and preserved hepatic architecture (Suzuki histological score). Treatment with Ad-HO-1 BMMs decreased neutrophil accumulation, proinflammatory mediators and hepatocellular necrosis/apoptosis in ischemic livers. Moreover, Ad-HO-1 transfection of Nrf2-deficient BMMs suppressed M1 (Nos2(+)) while promoting the M2 (Mrc-1/Arg-1(+)) phenotype. Unlike in controls, Ad-HO-1 BMMs increased the expression of Notch1, Hes1, phosphorylation of Stat3 and Akt in IR-stressed Nrf2-deficient livers as well as in lipopolysaccharide (LPS)-stimulated BMMs. Thus, adoptive transfer of ex vivo generated Ad-HO-1 BMMs rescued Nrf2-dependent antiinflammatory phenotype by promoting Notch1/Hes1/Stat3 signaling and reprogramming macrophages toward the M2 phenotype. These findings provide the rationale for a novel clinically attractive strategy to manage IR liver inflammation/damage.
Collapse
Affiliation(s)
- Jing Huang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Xiu-Da Shen
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shi Yue
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jianjun Zhu
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Feng Gao
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ronald W Busuttil
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
209
|
Comparison of the molecular topologies of stress-activated transcription factors HSF1, AP-1, NRF2, and NF-κB in their induction kinetics of HMOX1. Biosystems 2014; 124:75-85. [DOI: 10.1016/j.biosystems.2014.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022]
|
210
|
Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Toxicol Lett 2014; 229:73-84. [DOI: 10.1016/j.toxlet.2014.05.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
|
211
|
Induction of heme oxygenase I (HMOX1) by HPP-4382: a novel modulator of Bach1 activity. PLoS One 2014; 9:e101044. [PMID: 25019514 PMCID: PMC4096395 DOI: 10.1371/journal.pone.0101044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/02/2014] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress is generated by reactive oxygen species (ROS) produced in response to metabolic activity and environmental factors. Increased oxidative stress is associated with the pathophysiology of a broad spectrum of inflammatory diseases. Cellular response to excess ROS involves the induction of antioxidant response element (ARE) genes under control of the transcriptional activator Nrf2 and the transcriptional repressor Bach1. The development of synthetic small molecules that activate the protective anti-oxidant response network is of major therapeutic interest. Traditional small molecules targeting ARE-regulated gene activation (e.g., bardoxolone, dimethyl fumarate) function by alkylating numerous proteins including Keap1, the controlling protein of Nrf2. An alternative is to target the repressor Bach1. Bach1 has an endogenous ligand, heme, that inhibits Bach1 binding to ARE, thus allowing Nrf2-mediated gene expression including that of heme-oxygenase-1 (HMOX1), a well described target of Bach1 repression. In this report, normal human lung fibroblasts were used to screen a collection of synthetic small molecules for their ability to induce HMOX1. A class of HMOX1-inducing compounds, represented by HPP-4382, was discovered. These compounds are not reactive electrophiles, are not suppressed by N-acetyl cysteine, and do not perturb either ROS or cellular glutathione. Using RNAi, we further demonstrate that HPP-4382 induces HMOX1 in an Nrf2-dependent manner. Chromatin immunoprecipitation verified that HPP-4382 treatment of NHLF cells reciprocally coordinated a decrease in binding of Bach1 and an increase of Nrf2 binding to the HMOX1 E2 enhancer. Finally we show that HPP-4382 can inhibit Bach1 activity in a reporter assay that measures transcription driven by the human HMOX1 E2 enhancer. Our results suggest that HPP-4382 is a novel activator of the antioxidant response through the modulation of Bach1 binding to the ARE binding site of target genes.
Collapse
|
212
|
Chao XJ, Chen ZW, Liu AM, He XX, Wang SG, Wang YT, Liu PQ, Ramassamy C, Mak SH, Cui W, Kong AN, Yu ZL, Han YF, Pi RB. Effect of tacrine-3-caffeic acid, a novel multifunctional anti-Alzheimer's dimer, against oxidative-stress-induced cell death in HT22 hippocampal neurons: involvement of Nrf2/HO-1 pathway. CNS Neurosci Ther 2014; 20:840-50. [PMID: 24922524 DOI: 10.1111/cns.12286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/27/2022] Open
Abstract
AIMS Oxidative stress (OS) plays an important role in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). This study was designed to uncover the cellular and biochemical mechanisms underlying the neuroprotective effects of tacrine-3-caffeic acid (T3CA), a novel promising multifunctional anti-Alzheimer's dimer, against OS-induced neuronal death. METHODS AND RESULTS T3CA protected HT22 cells against high-concentration-glutamate-induced cell death in time- and concentration-dependent manners and potently attenuated glutamate-induced intracellular reactive oxygen species (ROS) production as well as mitochondrial membrane-potential (ΔΨ) disruption. Besides, T3CA significantly induced nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and increased its transcriptional activity, which were demonstrated by Western blotting, immunofluorescence, and antioxidant response element (ARE)-luciferase reporter gene assay. Further studies showed that T3CA potently up-regulated heme oxygenase-1 (HO-1), an endogenous antioxidative enzyme and a downstream effector of Nrf2, at both mRNA and protein levels. The neuroprotective effects of T3CA were partially reversed by brusatol, which reduced protein level of Nrf2, or by inhibiting HO-1 with siRNA or ZnPP-IX, a specific inhibitor of HO-1. CONCLUSIONS Taken together, these results clearly demonstrate that T3CA protects neurons against OS-induced cell death partially through Nrf2/ARE/HO-1 signaling pathway, which further supports that T3CA might be a promising novel therapeutic agent for OS-associated diseases.
Collapse
Affiliation(s)
- Xiao-Juan Chao
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Rico-Bautista E, Zhu W, Kitada S, Ganapathy S, Lau E, Krajewski S, Ramirez J, Bush JA, Yuan Z, Wolf DA. Small molecule-induced mitochondrial disruption directs prostate cancer inhibition via UPR signaling. Oncotarget 2014; 4:1212-29. [PMID: 23902736 PMCID: PMC3787152 DOI: 10.18632/oncotarget.1130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously identified SMIP004 (N-(4-butyl-2-methyl-phenyl) acetamide) as a novel inducer of cancer-cell selective apoptosis of human prostate cancer cells. SMIP004 decreased the levels of positive cell cycle regulators, upregulated cyclin-dependent kinase inhibitors, and resulted in G1 arrest, inhibition of colony formation in soft agar, and cell death. However, the mechanism of SMIP004-induced cancer cell selective apoptosis remained unknown. Here, we used chemical genomic and proteomic profiling to unravel a SMIP004-induced pro-apoptotic pathway, which initiates with disruption of mitochondrial respiration leading to oxidative stress. This, in turn, activates two pathways, one eliciting cell cycle arrest by rapidly targeting cyclin D1 for proteasomal degradation and driving the transcriptional downregulation of the androgen receptor, and a second pathway that activates pro-apoptotic signaling through MAPK activation downstream of the unfolded protein response (UPR). SMIP004 potently inhibits the growth of prostate and breast cancer xenografts in mice. Our data suggest that SMIP004, by inducing mitochondrial ROS formation, targets specific sensitivities of prostate cancer cells to redox and bioenergetic imbalances that can be exploited in cancer therapy.
Collapse
|
214
|
Kong WN, Lei YH, Chang YZ. The regulation of iron metabolism in the mononuclear phagocyte system. Expert Rev Hematol 2014; 6:411-8. [PMID: 23991927 DOI: 10.1586/17474086.2013.814840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The daily iron absorption and loss are small and iron metabolism in human is characterized by a limited external exchange and by an efficient reutilization of iron from internal sources. The mononuclear phagocyte system (MPS) plays a key role in recycling iron from hemoglobin of senescent or damaged erythrocytes, which is important in maintaining iron homeostasis. Many iron-related proteins are expressed in the MPS, including heme oxygenase (HO) for heme degradation, the iron importer transferrin receptor 1 (TfR1) and divalent metal transport 1 (DMT1), the iron exporter ferroportin 1 (FPN1) and the iron regulatory hormone hepcidin. Insights into the regulatory mechanisms that control the regulation of iron metabolism proteins in the MPS will deepen our understanding about the molecular mechanism of iron homeostasis and iron-related diseases.
Collapse
Affiliation(s)
- Wei-Na Kong
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, P. R. China
| | | | | |
Collapse
|
215
|
Sturchio E, Colombo T, Boccia P, Carucci N, Meconi C, Minoia C, Macino G. Arsenic exposure triggers a shift in microRNA expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:672-80. [PMID: 24317173 DOI: 10.1016/j.scitotenv.2013.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 05/24/2023]
Abstract
Exposure to inorganic Arsenic (iAs) through drinking water is a major public health problem affecting most countries. iAs has been classified by the International Agency for Research on Cancer as Group 1: "Carcinogenic to humans". Although numerous studies have shown the related adverse effects of iAs, sensitive appropriate biomarkers for studies of environmental epidemiology are still required. The present work aims at investigate the role of microRNAs (miRNAs), powerful negative regulators of gene expression, playing a key role in many physiological and pathological cellular processes, in iAs exposure. To this end, we analyzed miRNA changes in expression profile triggered by iAs exposure in Jurkat cell line. We used microarray technology to profile the expression of miRNAs following 2 μmol/L sodium arsenite treatment at different time points. Moreover, we performed phenotypic analysis of iAs treated cells. Real Time Polymerase Chain Reaction (RT-PCR) was used to validate miRNA microarray data and to assay expression modulation of selected relevant mRNAs. Finally, bioinformatics techniques were applied to reconstruct iAs-relevant molecular pathways and miRNA regulatory networks from the expression data. We report miRNAs modulated after iAs treatment in Jurkat cells. In particular, we highlight 36 miRNAs exhibiting consistent dysregulation and particularly a panel of 8 miRNAs which we also validated by RT-PCR analysis. Computational analysis of lists of putative target genes for these 8 miRNAs points to an involvement in arsenic-response pathways, for a subset of them, that were analyzed by RT-PCR. Furthermore, iAs exposure reveals induction of cell cycle progression and the failure of apoptosis, supporting the idea of iAs carcinogenic activity. Our study provides a list of miRNAs whose expression levels are affected by iAs treatment, corroborating the importance of proceeding with the hunt for specific subset of miRNAs, which can serve as potential biomarkers of iAs effects with useful diagnostic value.
Collapse
Affiliation(s)
- Elena Sturchio
- Italian Workers' Compensation Authority (INAIL), Department of Production Plants and Anthropic Settlements (DIPIA) Via Alessandria, 220/E, 00198 Rome, Italy.
| | - Teresa Colombo
- University of Rome "La Sapienza"-BCE, Viale del Policlinico 155, 00161, Rome, Italy
| | - Priscilla Boccia
- Italian Workers' Compensation Authority (INAIL), Department of Production Plants and Anthropic Settlements (DIPIA) Via Alessandria, 220/E, 00198 Rome, Italy
| | - Nicoletta Carucci
- University of Rome "La Sapienza"-BCE, Viale del Policlinico 155, 00161, Rome, Italy
| | - Claudia Meconi
- Italian Workers' Compensation Authority (INAIL), Department of Production Plants and Anthropic Settlements (DIPIA) Via Alessandria, 220/E, 00198 Rome, Italy
| | - Claudio Minoia
- Laboratory for Environmental and Toxicological Measurements, IRCCS Pavia, S. Maugeri Foundation, Via S. Maugeri, 8, 27100, Pavia, Italy
| | - Giuseppe Macino
- University of Rome "La Sapienza"-BCE, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
216
|
Ho CK, Siu-wai C, Siu PM, Benzie IF. Genoprotection and genotoxicity of green tea (Camellia sinensis): Are they two sides of the same redox coin? Redox Rep 2014; 18:150-4. [PMID: 23849339 DOI: 10.1179/1351000213y.0000000051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Regular intake of green tea associates with lower DNA damage and increased resistance of DNA to oxidant challenge. However, in vitro pro-oxidant effects of green tea have been reported. Both effects could be mediated by hydrogen peroxide (H2O2) which is generated by autoxidation of tea catechins. In large amounts, H2O2 is genotoxic, but low concentrations could activate the redox-sensitive antioxidant response element (ARE) via the Keap-1/Nrf2 redox switch, inducing genoprotective adaptations. Our objective was to test this hypothesis. METHODS Peripheral lymphocytes from healthy volunteers were incubated for 30 minutes at 37°C in freshly prepared tea solutions (0.005, 0.01, 0.05%w/v (7, 14, 71 µmol/l total catechins) in phosphate buffered saline (PBS), with PBS as control) in the presence and absence of catalase (CAT). H2O2 in tea was measured colorimetrically. Oxidation-induced DNA lesions were measured by the Fpg-assisted comet assay. RESULTS H2O2 concentrations in 0.005, 0.01, and 0.05% green tea after 30 minutes at 37°C were, respectively, ∼3, ∼7, and ∼52 µmol/l. Cells incubated in 0.005 and 0.01% tea showed less (P < 0.001) DNA damage compared to control cells. Cells treated with 0.05% green tea showed ∼50% (P < 0.001) more DNA damage. The presence of CAT prevented this damage, but did not remove the genoprotective effects of low-dose tea. No significant changes in expression of ARE-associated genes (HMOX1, NRF2, KEAP1, BACH1, and hOGG1) were seen in cells treated with tea or tea + CAT. CONCLUSION Genoprotection by low-dose green tea could be due to direct antioxidant protection by green tea polyphenols, or to H2O2-independent signalling pathways.
Collapse
Affiliation(s)
- Cyrus K Ho
- The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
217
|
Abstract
Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and 1H/13C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.
Collapse
|
218
|
Limonciel A, Jennings P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel) 2014; 6:371-9. [PMID: 24448208 PMCID: PMC3920267 DOI: 10.3390/toxins6010371] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/14/2023] Open
Abstract
Several studies have demonstrated that ochratoxin A (OTA) inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. At the cellular level this would attenuate (i) glutathione synthesis; (ii) recycling of oxidised glutathione; (iii) activity of oxidoreductases; and (iv) phase II metabolism inducibility. The effects combined would render the cell and tissue more vulnerable to oxidative stress. Indeed, Nrf2 knock out animals exhibit increased susceptibility to various types of chemical-induced injury. Several studies have shown that OTA exposure can inhibit Nrf2 responses. Such an action would initially lead to increased susceptibility to both physiological and chemical-induced cell stress. However, chronic exposure to OTA may also act as a selective pressure for somatic mutations in Nrf2 or its inhibitor Keap-1, leading to constitutive Nrf2 activation. Nrf2 overexpression confers a survival advantage and is often associated with cancer cell survival. Here we review the evidence for OTA’s role as an Nrf2 inhibitor and discuss the implications of this mechanism in nephrotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| | - Paul Jennings
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| |
Collapse
|
219
|
Leonard MO, Limonciel A, Jennings P. Stress Response Pathways. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
220
|
Sánchez-Martín FJ, Fan Y, Lindquist DM, Xia Y, Puga A. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells. PLoS One 2013; 8:e80558. [PMID: 24260418 PMCID: PMC3834098 DOI: 10.1371/journal.pone.0080558] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/15/2013] [Indexed: 12/22/2022] Open
Abstract
Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb), an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD). Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC) into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons), and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.
Collapse
Affiliation(s)
- Francisco Javier Sánchez-Martín
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Diana M. Lindquist
- Cincinnati Children's Hospital Medical Center, Department of Radiology, Cincinnati, Ohio, United States of America
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
221
|
Alternative 5' untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS One 2013; 8:e77224. [PMID: 24098580 PMCID: PMC3788786 DOI: 10.1371/journal.pone.0077224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
The single nucleotide polymorphism rs2071746 and a (GT)n microsatellite within the human gene encoding heme oxygenase-1 (HMOX1) are associated with incidence or outcome in a variety of diseases. Most of these associations involve either release of heme or oxidative stress. Both polymorphisms are localized in the promoter region, but previously reported correlations with heme oxygenase-1 expression remain not coherent. This ambiguity suggests a more complex organization of the 5’ gene region which we sought to investigate more fully. We evaluated the 5‘ end of HMOX1 and found a novel first exon 1a placing the two previously reported polymorphisms in intronic or exonic positions within the 5’ untranslated region respectively. Expression of exon 1a can be induced in HepG2 hepatoma cells by hemin and is a repressor of heme oxygenase-1 translation as shown by luciferase reporter assays. Moreover, minigene approaches revealed that the quantitative outcome of alternative splicing within the 5’ untranslated region is affected by the (GT)n microsatellite. This data supporting an extended HMOX1 gene model and provide further insights into expression regulation of heme oxygenase-1. Alternative splicing within the HMOX1 5' untranslated region contributes to translational regulation and is a mechanistic feature involved in the interplay between genetic variations, heme oxygenase-1 expression and disease outcome.
Collapse
|
222
|
Emter R, van der Veen JW, Adamson G, Ezendam J, van Loveren H, Natsch A. Gene expression changes induced by skin sensitizers in the KeratinoSens™ cell line: Discriminating Nrf2-dependent and Nrf2-independent events. Toxicol In Vitro 2013; 27:2225-32. [PMID: 24055896 DOI: 10.1016/j.tiv.2013.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/19/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022]
Abstract
The KeratinoSens™ assay is an in vitro screen for the skin sensitization potential of chemicals. It is based on a luciferase reporter gene under the control of the antioxidant response element of the aldoketoreductase gene AKR1C2. The transferability, reproducibility, and predictivity of the KeratinoSens™ assay have been investigated in detail and it is currently under assessment at the European Center for Validation of Alternatives to animal testing (ECVAM). Here we investigate the sensitizer-induced gene expression in the KeratinoSens™ cell line at the mRNA level and discriminate Nrf2-dependent and Nrf2-independent events by using siRNA to better characterize this test system at the molecular level. The results show that (i) the sensitizer-induced luciferase signal in KeratinoSens™ cells is completely dependent on Nrf2. The same holds true for the luciferase induction observed for the false positive chemical Tween80, indicating that the false positive result is not due to recruitment of an alternative transcription factor. (ii) Luciferase induction parallels the induction of endogenous Nrf2-dependent genes, indicating that the luciferase signal is representative for the sensitizer-induced Nrf2-response. (iii) The induction by sensitizers of additional genetic markers related to heat shock proteins and cellular stress could be reproduced in the KeratinoSens™ cell line and they were shown to be Nrf2-independent. These results confirm that the KeratinoSens™ cell line is a rapid and adequate screening tool to assess the sensitizer-induced Nrf2-response in keratinocytes.
Collapse
Affiliation(s)
- Roger Emter
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
223
|
Cheng X, Ku CH, Siow RCM. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic Biol Med 2013; 64:4-11. [PMID: 23880293 DOI: 10.1016/j.freeradbiomed.2013.07.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023]
Abstract
MicroRNAs are now thought to play a central role in the regulation of many diverse aspects of cell biology; however, it remains to be fully elucidated how microRNAs can orchestrate cellular redox homeostasis, which plays a central role in a multitude of physiological and pathophysiological processes. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a "master regulator" of cell survival through the coordinated induction of phase II and antioxidant defense enzymes to counteract oxidative stress and modulate redox signaling events. MicroRNAs are able to "fine-tune" the regulation of processes including those directly interacting with the Nrf2 pathway and the generation of reactive oxygen species (ROS). This review highlights that cellular redox homeostasis can be regulated by microRNAs through their modulation of Nrf2-driven antioxidant gene expression as well as key enzymes that generate ROS, which in turn can alter the biogenesis and processing of microRNAs. Therefore redox sensitive microRNAs or "redoximiRs" add an important regulatory mechanism for redox signaling beyond the well-characterized actions of Nrf2. The potential exists for microRNA-based therapies where diminished antioxidant defenses and dysregulated redox signaling can lead to cardiovascular diseases, cancers, neurodegeneration, and accelerated aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, British Heart Foundation Centre for Research Excellence, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
224
|
Chiapella G, Flores-Martín J, Ridano M, Reyna L, Magnarelli de Potas G, Panzetta-Dutari G, Genti-Raimondi S. The organophosphate chlorpyrifos disturbs redox balance and triggers antioxidant defense mechanisms in JEG-3 cells. Placenta 2013; 34:792-8. [DOI: 10.1016/j.placenta.2013.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/05/2013] [Accepted: 06/08/2013] [Indexed: 01/07/2023]
|
225
|
Ishikawa T, Kajimoto Y, Sun W, Nakagawa H, Inoue Y, Ikegami Y, Miyatake SI, Kuroiwa T. Role of Nrf2 in Cancer Photodynamic Therapy: Regulation of Human ABC Transporter ABCG2. J Pharm Sci 2013; 102:3058-69. [DOI: 10.1002/jps.23563] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/30/2022]
|
226
|
MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice. Blood 2013; 122:2757-64. [PMID: 23908468 DOI: 10.1182/blood-2013-02-486282] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transgenic sickle mice expressing β(S) hemoglobin have activated vascular endothelium in multiple organs that exhibits enhanced expression of NF-ĸB and adhesion molecules and promotes microvascular stasis in sickle, but not normal, mice in response to hypoxia/reoxygenation (H/R), or heme. Induction of heme oxygenase-1 (HO-1) or administration of its products, carbon monoxide (CO) or biliverdin, inhibits microvascular stasis in sickle mice. Infusion of human hemoglobin conjugated with polyethylene glycol and saturated with CO (MP4CO) markedly induced hepatic HO-1 activity and inhibited NF-ĸB activation and H/R-induced microvascular stasis in sickle mice. These effects were mediated by CO; saline or MP4 saturated with O2 (MP4OX) had little to no effect on H/R-induced stasis, though unmodified oxyhemoglobin exacerbated stasis. The HO-1 inhibitor, tin protoporphyrin, blocked MP4CO protection, consistent with HO-1 involvement in the protection afforded by MP4CO. MP4CO also induced nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), an important transcriptional regulator of HO-1 and other antioxidant genes. In a heterozygous (hemoglobin-AS) sickle mouse model, intravenous hemin induced cardiovascular collapse and mortality within 120 minutes, which was significantly reduced by MP4CO, but not MP4OX. These data demonstrate that MP4CO induces cytoprotective Nrf2 and HO-1 and decreases NF-ĸB activation, microvascular stasis, and mortality in transgenic sickle mouse models.
Collapse
|
227
|
Wilson AJ, Kerns JK, Callahan JF, Moody CJ. Keap Calm, and Carry on Covalently. J Med Chem 2013; 56:7463-76. [DOI: 10.1021/jm400224q] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anthony J. Wilson
- School of
Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Jeffrey K. Kerns
- GlaxoSmithKline, 709 Swedeland Road, King
of Prussia, Pennsylvania 19406, United States
| | - James F. Callahan
- GlaxoSmithKline, 709 Swedeland Road, King
of Prussia, Pennsylvania 19406, United States
| | - Christopher J. Moody
- School of
Chemistry, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
228
|
Horvathova M, Ponka P, Divoky V. Molecular basis of hereditary iron homeostasis defects. Hematology 2013; 15:96-111. [DOI: 10.1179/102453310x12583347009810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Monika Horvathova
- Department of BiologyPalacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Prem Ponka
- Lady Davis Institute for Medical ResearchJewish General Hospital, and Departments of Physiology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Vladimir Divoky
- Department of BiologyFaculty of Medicine Palacky University, Olomouc, Czech Republic, Department of Hemato-oncology, Faculty of Medicine Palacky University, Olomouc, Czech Republic
| |
Collapse
|
229
|
Iwasaki K, Ray PD, Huang BW, Sakamoto K, Kobayashi T, Tsuji Y. Role of AMP-activated protein kinase in ferritin H gene expression by resveratrol in human T cells. Biochemistry 2013; 52:5075-83. [PMID: 23829535 DOI: 10.1021/bi400399f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resveratrol, a natural polyphenol, increases cellular antioxidant capacity by inducing the expression of a battery of cytoprotective genes through an antioxidant responsive element (ARE). However, upstream signaling events initiated by resveratrol leading to the activation of an ARE enhancer, particularly in immune cells, have not been fully elucidated. In this study, ARE-dependent transcriptional activation of the ferritin heavy chain (ferritin H) gene by resveratrol was further investigated in Jurkat T cells and human peripheral blood mononuclear cells. We found that AMP-activated protein kinase (AMPK) plays a key role in the activation of nuclear factor E2-related factor (Nrf2) and subsequent ARE-dependent ferritin H gene transcription by resveratrol. A chromatin immunoprecipitation assay for Nrf2 after AMPKα knockdown with siRNA revealed that Nrf2 nuclear accumulation and subsequent binding to the ferritin H ARE induced by resveratrol were dependent on activation of AMPKα, but not PI3K/AKT. Furthermore, AMPKα knockdown blocked resveratrol-induced phosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser9 as well as ARE-dependent transcriptional activation of the ferritin H and HO-1 genes, suggesting that AMPKα is an upstream kinase for GSK3β phosphorylation and activation of the Nrf2-ARE pathway. Consistently, GSK3β knockdown by siRNA enhanced resveratrol-mediated ferritin H mRNA induction, and the inhibition of AMPKα by compound C or siRNA weakened the protective effect of resveratrol against oxidative stress-induced cytotoxicity in CD3+ T cells. Collectively, these results suggest that AMPKα plays a significant role in ARE-dependent transcription of ferritin H genes by resveratrol and may influence the redox status in immune cells.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Transplant Immunology, Nagoya University School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
230
|
The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells. Toxicol Appl Pharmacol 2013; 270:139-48. [DOI: 10.1016/j.taap.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/15/2022]
|
231
|
Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013; 48:883-903. [PMID: 23761046 DOI: 10.1007/s12035-013-8477-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson's disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson's disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.
Collapse
|
232
|
Thompson JW, Narayanan SV, Perez-Pinzon MA. Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 2013; 10:354-69. [PMID: 23730259 PMCID: PMC3520045 DOI: 10.2174/157015912804143577] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 12/28/2022] Open
Abstract
There is extensive evidence that the restoration of blood flow following cerebral ischemia contributes greatly to the pathophysiology of ischemia mediated brain injury. The initiating stimulus of reperfusion injury is believed to be the excessive production of reactive oxygen (ROS) and nitrogen (RNS) species by the mitochondria. ROS and RNS generation leads to mitochondrial protein, lipid and DNA oxidation which impedes normal mitochondrial physiology and initiates cellular death pathways. However not all ROS and RNS production is detrimental. It has been demonstrated that low levels of ROS production are protective and may serve as a trigger for activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sublethal ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Numerous proteins and signaling pathways have been implicated in the ischemic preconditioning neuroprotective response. In this review we examine the origin and mechanisms of ROS and RNS production following ischemic/reperfusion and the role of free radicals in modulating proteins associated with ischemic preconditioning neuroprotection.
Collapse
Affiliation(s)
- John W Thompson
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136
| | | | | |
Collapse
|
233
|
Huang BW, Ray PD, Iwasaki K, Tsuji Y. Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J 2013; 27:3763-74. [PMID: 23699174 DOI: 10.1096/fj.12-226043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antioxidant genes such as ferritin are transcriptionally activated in oxidative stress via the antioxidant responsive element (ARE), to which nuclear factor-E2-related factor 2 (Nrf2) binds and activates transcription. Histone modification plays a cooperative and essential role in transcriptional regulation; however, its role in antioxidant gene transcription remains elusive. Arsenic exposure activated ferritin transcription via the ARE concomitant with increased methylation of histones H4Arg3 (H4R3) and H3Arg17 (H3R17). To test our hypothesis that histone H4R3 and H3R17 methylation regulates ferritin transcription, H4R3 and H3R17 protein arginine (R) methyltransferases 1 and 4 (PRMT1 and PRMT4) were investigated. Arsenic exposure of human HaCaT keratinocytes induced nuclear accumulation of PRMT1 and PRMT4, histone H4R3 and H3R17 methylation proximal to the ARE, but not to the non-ARE regions of ferritin genes. PRMT1 or PRMT4 knockdown did not block Nrf2 nuclear accumulation but inhibited Nrf2 binding to the AREs by ∼40% (P<0.05), thus diminishing ferritin transcription in HaCaT and human primary keratinocytes and fibroblasts, causing enhanced cellular susceptibility to arsenic toxicity as evidenced by 2-fold caspase 3 activation. Focused microarray further characterized several oxidative stress response genes are subject to PRMT1 or PRMT4 regulation. Collectively, PRMT1 and PRMT4 regulate the ARE and cellular antioxidant response to arsenic.
Collapse
Affiliation(s)
- Bo-Wen Huang
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
234
|
Activation of the Nrf2 pathway by inorganic arsenic in human hepatocytes and the role of transcriptional repressor Bach1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:984546. [PMID: 23738048 PMCID: PMC3664501 DOI: 10.1155/2013/984546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/29/2023]
Abstract
Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE-) luciferase activity. Both the mRNA and protein levels of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1) from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals.
Collapse
|
235
|
Maruyama A, Mimura J, Harada N, Itoh K. Nrf2 activation is associated with Z-DNA formation in the human HO-1 promoter. Nucleic Acids Res 2013; 41:5223-34. [PMID: 23571756 PMCID: PMC3664823 DOI: 10.1093/nar/gkt243] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a luciferase reporter assay, we previously demonstrated that a Z-DNA-forming sequence of alternating thymine-guanine repeats in the human heme oxygenase-1 gene (HO-1) promoter is involved in nuclear factor erythroid-derived 2 (NF-E2)-related factor 2 (Nrf2)-mediated HO-1 promoter activation. However, the actual Z-DNA formation in this native genomic locus has not been experimentally demonstrated. To detect Z-DNA formation in vivo, we generated a construct containing the Z-DNA-binding domain of human adenosine deaminase acting on double-stranded RNA 1 fused with enhanced green fluorescence protein, designated as the Z-probe. A chromatin immunoprecipitation assay using an anti-GFP antibody showed that the Z-probe detects the well-characterized Z-DNA formation in the CSF1 promoter. Using this detection system, we demonstrated that the glutathione-depleting agent, diethyl maleate, induced Nrf2-dependent Z-DNA formation in the HO-1 promoter, but not in the thioredoxin reductase 1 gene promoter. Moreover, a time course analysis revealed that Z-DNA formation precedes HO-1 transcriptional activation. Concurrent with Z-DNA formation, nucleosome occupancy was reduced, and the recruitment of RNA polymerase II was enhanced in the HO-1 promoter region, suggesting that Z-DNA formation enhances HO-1 gene transcription. Furthermore, Nrf2-induced BRG1 recruitment to the HO-1 promoter temporarily occurred simultaneously with Z-DNA formation. Thus, these results implicate Nrf2-dependent Z-DNA formation in HO-1 transcriptional activation and suggest the involvement of BRG1 in Z-DNA formation.
Collapse
Affiliation(s)
- Atsushi Maruyama
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | |
Collapse
|
236
|
The novel arsenical Darinaparsin circumvents BRG1-dependent, HO-1-mediated cytoprotection in leukemic cells. Leukemia 2013; 27:2220-8. [PMID: 23426167 DOI: 10.1038/leu.2013.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
Abstract
Darinaparsin (Dar) is a more potent cytotoxic arsenical than arsenic trioxide (ATO). We hypothesized that the increased cytotoxicity of Dar may be because of a decreased cytoprotective response. We observed that, unlike ATO, Dar does not induce heme oxygenase-1 (HO-1), even though it induces expression of other nuclear factor (erythroid-derived 2)-like 2 (NRF2)-dependent detoxifying enzymes to a greater extent than ATO, in both cancer cell lines and patient-derived leukemic cells. This strengthens the emerging evidence, showing that response to reactive oxygen species (ROS) is stimuli specific. Dar treatment prevents recruitment of the transcriptional coregulator Brahma-related gene 1 (BRG1) to the HMOX1 promoter, which is required for HMOX1 expression. The inability of Dar to induce HO-1 correlates with arrest in G2/M cell cycle phase and BRG1 phosphorylation. Inhibition of HO-1 increases the toxicity of ATO, but has no effect on Dar-induced apoptosis. Accordingly, the lack of HO-1 induction is involved in Dar's enhanced antileukemic properties. Our data highlight cytoprotective responses mediated by HO-1 and BRG1 as a novel target for enhancing the therapeutic range of arsenicals.
Collapse
|
237
|
Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway. Int J Cell Biol 2013; 2013:162094. [PMID: 23476651 PMCID: PMC3586522 DOI: 10.1155/2013/162094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Zinc protoporphyrin IX (ZnPP), a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1). It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. Incubation of PC-3 cells with 10 μM ZnPP for 4 h showed only a slight induction of HO-1 mRNA and protein, but the induction was high after 16 h and was maintained through 48 h of incubation. Of all the known responsive elements in the HO-1 promoter, ZnPP activated mainly the stress response elements. Of the various protein kinase inhibitors and antioxidant tested, only Ro 31-8220 abrogated ZnPP-induced HO-1 expression, suggesting that activation of HO-1 gene by ZnPP may involve protein kinase C (PKC). The involvement of PKC α, β, δ, η, θ, and ζ isoforms was ruled out by the use of specific inhibitors. The isoform of PKC involved and participation of other transcription factors remain to be studied.
Collapse
|
238
|
Ooi A, Dykema K, Ansari A, Petillo D, Snider J, Kahnoski R, Anema J, Craig D, Carpten J, Teh BT, Furge KA. CUL3 and NRF2 Mutations Confer an NRF2 Activation Phenotype in a Sporadic Form of Papillary Renal Cell Carcinoma. Cancer Res 2013; 73:2044-51. [DOI: 10.1158/0008-5472.can-12-3227] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
239
|
Josey BJ, Inks ES, Wen X, Chou CJ. Structure-activity relationship study of vitamin k derivatives yields highly potent neuroprotective agents. J Med Chem 2013; 56:1007-22. [PMID: 23327468 DOI: 10.1021/jm301485d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Historically known for its role in blood coagulation and bone formation, vitamin K (VK) has begun to emerge as an important nutrient for brain function. While VK involvement in the brain has not been fully explored, it is well-known that oxidative stress plays a critical role in neurodegenerative diseases. It was recently reported that VK protects neurons and oligodendrocytes from oxidative injury and rescues Drosophila from mitochondrial defects associated with Parkinson's disease. In this study, we take a chemical approach to define the optimal and minimum pharmacophore responsible for the neuroprotective effects of VK. In doing so, we have developed a series of potent VK analogues with favorable drug characteristics that provide full protection at nanomolar concentrations in a well-defined model of neuronal oxidative stress. Additionally, we have characterized key cellular responses and biomarkers consistent with the compounds' ability to rescue cells from oxidative stress induced cell death.
Collapse
Affiliation(s)
- Benjamin J Josey
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
240
|
Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood 2012; 120:5188-98. [PMID: 23077289 DOI: 10.1182/blood-2012-04-422121] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor regulates a range of cytoprotective transcriptional responses, preventing further cellular injury by removing biochemical damage and renewing tissue. Here we show that acute myeloid leukemia (AML) cells possess greater constitutive nuclear levels of Nrf2 than normal control CD34(+) cells because of an imbalance between mRNA expression levels of Nrf2 and its inhibitor Keap1 but not through their somatic mutation. Elevated Nrf2 was reduced by NF-κB inhibitors. Using promoter assays, ChIP and siRNA knockdown, we demonstrated NF-κB subunits p50 and p65 induce transcription of Nrf2 in AML cells at a specific promoter κB-site and that long-term lentiviral miRNA-knockdown of Nrf2 significantly reduced clonogenicity of AML patient cells and improved their chemotherapeutic responsiveness. Normal physiologic Nrf2 protects cells from damage, but here we have exposed aberrant continuous nuclear activation of Nrf2 in AML that allows cell survival, even against cytotoxic chemotherapeutics. We show for the first time that Nrf2, an important regulator of several biologic processes involved in the progression of cancer, has abnormal NF-κB-driven constitutive expression in AML. Such a mechanism allows for a greater cytoprotective response in human AML cells and encourages their evasion of chemotherapy-induced cytotoxicity, which is necessary for improved clinical outcomes.
Collapse
Affiliation(s)
- Stuart A Rushworth
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | | | | | | | | |
Collapse
|
241
|
Intermittent Hypoxia-Induced NF-κB and HO-1 Regulation in Human Endothelial EA.hy926 Cells. Cell Biochem Biophys 2012; 66:431-41. [DOI: 10.1007/s12013-012-9491-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
242
|
Sridharan S, Layek R, Datta A, Venkatraj J. Boolean modeling and fault diagnosis in oxidative stress response. BMC Genomics 2012; 13 Suppl 6:S4. [PMID: 23134720 PMCID: PMC3481480 DOI: 10.1186/1471-2164-13-s6-s4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Oxidative stress is a consequence of normal and abnormal cellular metabolism and is linked to the development of human diseases. The effective functioning of the pathway responding to oxidative stress protects the cellular DNA against oxidative damage; conversely the failure of the oxidative stress response mechanism can induce aberrant cellular behavior leading to diseases such as neurodegenerative disorders and cancer. Thus, understanding the normal signaling present in oxidative stress response pathways and determining possible signaling alterations leading to disease could provide us with useful pointers for therapeutic purposes. Using knowledge of oxidative stress response pathways from the literature, we developed a Boolean network model whose simulated behavior is consistent with earlier experimental observations from the literature. Concatenating the oxidative stress response pathways with the PI3-Kinase-Akt pathway, the oxidative stress is linked to the phenotype of apoptosis, once again through a Boolean network model. Furthermore, we present an approach for pinpointing possible fault locations by using temporal variations in the oxidative stress input and observing the resulting deviations in the apoptotic signature from the normally predicted pathway. Such an approach could potentially form the basis for designing more effective combination therapies against complex diseases such as cancer. RESULTS In this paper, we have developed a Boolean network model for the oxidative stress response. This model was developed based on pathway information from the current literature pertaining to oxidative stress. Where applicable, the behaviour predicted by the model is in agreement with experimental observations from the published literature. We have also linked the oxidative stress response to the phenomenon of apoptosis via the PI3k/Akt pathway. CONCLUSIONS It is our hope that some of the additional predictions here, such as those pertaining to the oscillatory behaviour of certain genes in the presence of oxidative stress, will be experimentally validated in the near future. Of course, it should be pointed out that the theoretical procedure presented here for pinpointing fault locations in a biological network with feedback will need to be further simplified before it can be even considered for practical biological validation.
Collapse
Affiliation(s)
- Sriram Sridharan
- Texas A & M University, Electrical and Computer Engineering, College Station, TX 77843-3128, USA
| | | | | | | |
Collapse
|
243
|
miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 2012; 32:4284-93. [DOI: 10.1038/onc.2012.433] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/05/2012] [Accepted: 08/06/2012] [Indexed: 01/01/2023]
|
244
|
Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, Sandstrom R, Neph S, Sabo P, Kim JM, Liao W, Li MO, Leslie C, Stamatoyannopoulos JA, Rudensky AY. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 2012; 151:153-66. [PMID: 23021222 PMCID: PMC3493256 DOI: 10.1016/j.cell.2012.06.053] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/06/2012] [Accepted: 06/29/2012] [Indexed: 12/13/2022]
Abstract
Regulatory T (Treg) cells, whose identity and function are defined by the transcription factor Foxp3, are indispensable for immune homeostasis. It is unclear whether Foxp3 exerts its Treg lineage specification function through active modification of the chromatin landscape and establishment of new enhancers or by exploiting a pre-existing enhancer landscape. Analysis of the chromatin accessibility of Foxp3-bound enhancers in Treg and Foxp3-negative T cells showed that Foxp3 was bound overwhelmingly to preaccessible enhancers occupied by its cofactors in precursor cells or a structurally related predecessor. Furthermore, the bulk of Foxp3-bound Treg cell enhancers lacking in Foxp3(-) CD4(+) cells became accessible upon T cell receptor activation prior to Foxp3 expression, and only a small subset associated with several functionally important genes were exclusively Treg cell specific. Thus, in a late cellular differentiation process, Foxp3 defines Treg cell functionality in an "opportunistic" manner by largely exploiting the preformed enhancer network instead of establishing a new enhancer landscape.
Collapse
Affiliation(s)
- Robert M Samstein
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Wang H, Khor TO, Yang Q, Huang Y, Wu TY, Saw CLL, Lin W, Androulakis IP, Kong ANT. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes. Mol Pharm 2012; 9:2819-27. [PMID: 22931102 DOI: 10.1021/mp300130k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study assesses the pharmacokinetics (PK) and pharmacodynamics (PD) of Nrf2-mediated increased expression of phase II drug metabolizing enzymes (DME) and antioxidant enzymes which represents an important component of cancer chemoprevention in rat lymphocytes following intravenous (iv) administration of an anticancer phytochemical sulforaphane (SFN). SFN was administered intravenously to four groups of male Sprague-Dawley JVC rats each group comprising four animals. Blood samples were drawn at selected time points. Plasma were obtained from half of each of the blood samples and analyzed using a validated LC-MS/MS method. Lymphocytes were collected from the remaining blood samples using Ficoll-Paque Plus centrifuge medium. Lymphocyte RNAs were extracted and converted to cDNA, quantitative real-time PCR analyses were performed, and fold changes were calculated against those at time zero for the relative expression of Nrf2-target genes of phase II DME/antioxidant enzymes. PK-PD modeling was conducted based on Jusko's indirect response model (IDR) using GastroPlus and bootstrap method. SFN plasma concentration declined biexponentially and the pharmacokinetic parameters were generated. Rat lymphocyte mRNA expression levels showed no change for GSTM1, SOD, NF-κB, UGT1A1, or UGT1A6. Moderate increases (2-5-fold) over the time zero were seen for HO-1, Nrf2, and NQO1, and significant increases (>5-fold) for GSTT1, GPx1, and Maf. PK-PD analyses using GastroPlus and the bootstrap method provided reasonable fitting for the PK and PD profiles and parameter estimates. Our present study shows that SFN could induce Nrf2-mediated phase II DME/antioxidant mRNA expression for NQO1, GSTT1, Nrf2, GPx, Maf, and HO-1 in rat lymphocytes after iv administration, suggesting that Nrf2-mediated mRNA expression in lymphocytes may serve as surrogate biomarkers. The PK-PD IDR model simultaneously linking the plasma concentrations of SFN and the PD response of lymphocyte mRNA expression is valuable for quantitating Nrf2-mediated effects of SFN. This study may provide a conceptual framework for future clinical PK-PD studies of dietary cancer chemopreventive agents in human.
Collapse
Affiliation(s)
- Hu Wang
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev 2012; 64:1055-81. [PMID: 22966037 DOI: 10.1124/pr.110.004333] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Induction of drug-metabolizing enzymes through the antioxidant response element (ARE)-dependent transcription was initially implicated in chemoprevention against cancer by antioxidants. Recent progress in understanding the biology and mechanism of induction revealed a critical role of induction in cellular defense against electrophilic and oxidative stress. Induction is mediated through a novel signaling pathway via two regulatory proteins, the nuclear factor erythroid 2-related factor 2 (Nrf2) and the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1). Nrf2 binds to Keap1 at a two site-binding interface and is ubiquitinated by the Keap1/cullin 3/ring box protein-1-ubiquitin ligase, resulting in a rapid turnover of Nrf2 protein. Electrophiles and oxidants modify critical cysteine thiols of Keap1 and Nrf2 to inhibit Nrf2 ubiquitination, leading to Nrf2 activation and induction. Induction increases stress resistance critical for cell survival, because knockout of Nrf2 in mice increased susceptibility to a variety of toxicity and disease processes. Collateral to diverse functions of Nrf2, genome-wide search has led to the identification of a plethora of ARE-dependent genes regulated by Nrf2 in an inducer-, tissue-, and disease-dependent manner to control drug metabolism, antioxidant defense, stress response, proteasomal degradation, and cell proliferation. The protective nature of Nrf2 could also be hijacked in a number of pathological conditions by means of somatic mutation, epigenetic alteration, and accumulation of disruptor proteins, promoting drug resistance in cancer and pathologic liver features in autophagy deficiency. The repertoire of ARE inducers has expanded enormously; the therapeutic potential of the inducers has been examined beyond cancer prevention. Developing potent and specific ARE inducers and Nrf2 inhibitors holds certain new promise for the prevention and therapy against cancer, chronic disease, and toxicity.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute forOccupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia.
| | | |
Collapse
|
247
|
Jennings P, Limonciel A, Felice L, Leonard MO. An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 2012; 87:49-72. [DOI: 10.1007/s00204-012-0919-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 12/30/2022]
|
248
|
Lämsä V, Levonen AL, Sormunen R, Yamamoto M, Hakkola J. Heme and heme biosynthesis intermediates induce heme oxygenase-1 and cytochrome P450 2A5, enzymes with putative sequential roles in heme and bilirubin metabolism: different requirement for transcription factor nuclear factor erythroid- derived 2-like 2. Toxicol Sci 2012; 130:132-44. [PMID: 22859313 DOI: 10.1093/toxsci/kfs237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytochrome P450 2A5 (CYP2A5) oxidizes bilirubin to biliverdin and represents a putative candidate for maintaining bilirubin at safe but adequate antioxidant levels. Curiously, CYP2A5 is induced by both excessive heme and chemicals that inhibit heme synthesis. We hypothesized that heme homeostasis is a key modifier of Cyp2a5 expression via transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) and characterized the coordination of CYP2A5 and heme oxygenase-1 (HMOX1) responses using wild-type and Nrf2(-/-) primary mouse hepatocytes. HMOX1 was rapidly elevated by exogenous hemin, thereby limiting the transactivation of Cyp2a5 until high heme (> 5µM) exposure. Nrf2 was mandatory for CYP2A5 but not for HMOX1 induction by heme. CYP2A5 was intensively and HMOX1 moderately elevated in heme synthesis blockades by succinylacetone and N-methyl protoporphyrin IX, and Nrf2 partially mediated the induction of CYP2A5. Immunoelectron microscopy revealed that CYP2A5 is targeted Nrf2 dependently both to the endoplasmic reticulum (ER) and mitochondria. However, excessive heme increased CYP2A5 predominantly in the ER. Phenobarbital, dibutyryl-cAMP, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression stimulate heme biosynthesis and induce CYP2A5. Acute but not chronic CYP2A5 induction by phenobarbital required Nrf2, whereas CYP2A5 induction by dibutyryl-cAMP and PGC-1α was potentiated by Nrf2 knockout. Collectively, heme homeostasis is established as a crucial regulator of hepatic Cyp2a5 expression mediated via Nrf2 activation, whereas Nrf2 is redundant for Hmox1 induction by heme. Similar subcellular targeting and coordination of CYP2A5 and HMOX1 responses suggest favorable conditions for enhanced CYP2A5-mediated bilirubin maintenance in altered heme homeostasis that predisposes to oxidative stress.
Collapse
Affiliation(s)
- Virpi Lämsä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
249
|
Hama M, Kirino Y, Takeno M, Takase K, Miyazaki T, Yoshimi R, Ueda A, Itoh-Nakadai A, Muto A, Igarashi K, Ishigatsubo Y. Bach1 regulates osteoclastogenesis in a mouse model via both heme oxygenase 1-dependent and heme oxygenase 1-independent pathways. ACTA ACUST UNITED AC 2012; 64:1518-28. [PMID: 22127667 DOI: 10.1002/art.33497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Reducing inflammation and osteoclastogenesis by heme oxygenase 1 (HO-1) induction could be beneficial in the treatment of rheumatoid arthritis (RA). However, the function of HO-1 in bone metabolism remains unclear. This study was undertaken to clarify the effects of HO-1 and its repressor Bach1 in osteoclastogenesis. METHODS In vitro osteoclastogenesis was compared in Bach1-deficient and wild-type mice. Osteoclasts (OCs) were generated from bone marrow-derived macrophages by stimulation with macrophage colony-stimulating factor and RANKL. Osteoclastogenesis was assessed by tartrate-resistant acid phosphatase staining and expression of OC-related genes. Intracellular signal pathways in OC precursors were also assessed. HO-1 short hairpin RNA (shRNA) was transduced into Bach1(-/-) mouse bone marrow-derived macrophages to examine the role of HO-1 in osteoclastogenesis. In vivo inflammatory bone loss was evaluated by local injection of tumor necrosis factor α (TNFα) into calvaria. RESULTS Transcription of HO-1 was down-regulated by stimulation with RANKL in the early stage of OC differentiation. Bach1(-/-) mouse bone marrow-derived macrophages were partially resistant to the RANKL-dependent HO-1 reduction and showed impaired osteoclastogenesis, which was associated with reduced expression of RANK and components of the downstream TNF receptor-associated factor 6/c-Fos/NF-ATc1 pathway as well as reduced expression of Blimp1. Treatment with HO-1 shRNA increased the number of OCs and expression of OC-related genes except for the Blimp1 gene during in vitro osteoclastogenesis from Bach1(-/-) mouse bone marrow-derived macrophages. TNFα-induced bone destruction was reduced in Bach1(-/-) mice in vivo. CONCLUSION The present findings demonstrate that Bach1 regulates osteoclastogenesis under inflammatory conditions, via both HO-1-dependent and HO-1-independent mechanisms. Bach1 may be worthy of consideration as a target for treatment of inflammatory bone loss in diseases including RA.
Collapse
Affiliation(s)
- Maasa Hama
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Kurzawski M, Dziedziejko V, Urasińska E, Post M, Wójcicki M, Miętkiewski J, Droździk M. Nuclear factor erythroid 2-like 2 (Nrf2) expression in end-stage liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:87-95. [PMID: 22459801 DOI: 10.1016/j.etap.2012.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/24/2012] [Accepted: 03/03/2012] [Indexed: 05/31/2023]
Abstract
The transcription factor Nrf2, encoded by NFE2L2 gene is a key regulator of cellular defense against oxidative and electrophilic stress, also governing the expression of many phase II detoxification enzymes. Nrf2 is negatively regulated by KEAP1 protein. Recent studies have shown that Nrf2 might also constitute an important mediator of inflammatory processes. In the current study the expression of Nrf2 in livers from patients with end-stage liver disease has been investigated. Surgical specimens were obtained from explanted livers of 24 patients with end-stage liver disease of different etiology. Control samples were obtained from nontumoral liver tissue from 6 patients with metastatic liver tumors. Nrf2 expression was evaluated by means of qRT-PCR, Western-blot and immunohistochemical staining. KEAP1 gene expression was investigated at mRNA level. The expression of the NFE2L2 gene was decreased in all groups of end-stage liver disease samples as compared with the controls (mean 0.470±1.20 of the value observed in the control samples, p=0.003). Decreased values of NFE2L2/KEAP1 mRNA ratio were also observed in end-stage liver disease groups (0.60±0.24 of the value observed in the control samples, p=0.019). The results were generally confirmed in Western-blot and immunohistochemical analysis of Nrf2 protein. Different expression pattern of Nrf2 regulated genes in end-stage liver disease samples were observed: glutamate-cysteine ligase (GCLC) and glutathione-S-transferase A1 (GSTA1) were significantly down-regulated in most liver disease groups, whereas heme oxidase 1 (HMOX1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) were not significantly suppressed. Treatment of HepG2 cells with pro-inflammatory cytokines resulted in significant decrease of GSTA1, NFE2L2 and GCLC expression, while the exposure had no significant influence on KEAP1, HMOX1, and NQO1 mRNA levels. Nrf2 deficiency may be one of the factors underlying impaired liver function in detoxification processes. It remains to be established in further studies if the observed decrease of Nrf2 expression is just a result of liver cirrhosis or is primary, playing a role in disease pathogenesis.
Collapse
Affiliation(s)
- Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | | | |
Collapse
|