201
|
Mechanical Model of Nuclei Ordering in Drosophila Embryos Reveals Dilution of Stochastic Forces. Biophys J 2019; 114:1730-1740. [PMID: 29642041 DOI: 10.1016/j.bpj.2018.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/16/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
During the initial development of syncytial embryos, nuclei go through cycles of nuclear division and spatial rearrangement. The arising spatial pattern of nuclei is important for subsequent cellularization and morphing of the embryo. Although nuclei are contained within a common cytoplasm, cytoskeletal proteins are nonuniformly packaged into regions around every nucleus. In fact, cytoskeletal elements like microtubules and their associated motor proteins exert stochastic forces between nuclei, actively driving their rearrangement. Yet, it is unknown how the stochastic forces are balanced to maintain nuclear order in light of increased nuclear density upon every round of divisions. Here, we investigate the nuclear arrangements in Drosophila melanogaster over the course of several nuclear divisions starting from interphase 11. We develop a theoretical model in which we distinguish long-ranged passive forces due to the nuclei as inclusions in the elastic matrix, namely the cytoplasm, and active, stochastic forces arising from the cytoskeletal dynamics mediated by motor proteins. We perform computer simulations and quantify the observed degree of orientational and spatial order of nuclei. Solely doubling the nuclear density upon nuclear division, the model predicts a decrease in nuclear order. Comparing results to experimental recordings of tracked nuclei, we make contradictory observations, finding an increase in nuclear order upon nuclear divisions. Our analysis of model parameters resulting from this comparison suggests that overall motor protein density as well as relative active-force amplitude has to decrease by a factor of about two upon nuclear division to match experimental observations. We therefore expect a dilution of cytoskeletal motors during the rapid nuclear division to account for the increase in nuclear order during syncytial embryo development. Experimental measurements of kinesin-5 cluster lifetimes support this theoretical finding.
Collapse
|
202
|
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 2019; 14:e0214794. [PMID: 30943246 PMCID: PMC6447187 DOI: 10.1371/journal.pone.0214794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the "missing" elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Guarneri
- Instituto René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
203
|
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10:1523. [PMID: 30944313 PMCID: PMC6447622 DOI: 10.1038/s41467-019-09234-6] [Citation(s) in RCA: 8495] [Impact Index Per Article: 1415.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets. Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era. With the increasing obtainability of multi-OMICs data comes the need for easy to use data analysis tools. Here, the authors introduce Metascape, a biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets.
Collapse
Affiliation(s)
- Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA.
| | - Bin Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Max Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alireza Hadj Khodabakhshi
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Olga Tanaseichuk
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
204
|
Kalkatawi M, Magana-Mora A, Jankovic B, Bajic VB. DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions. Bioinformatics 2019; 35:1125-1132. [PMID: 30184052 PMCID: PMC6449759 DOI: 10.1093/bioinformatics/bty752] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/15/2018] [Accepted: 08/31/2018] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Recognition of different genomic signals and regions (GSRs) in DNA is crucial for understanding genome organization, gene regulation, and gene function, which in turn generate better genome and gene annotations. Although many methods have been developed to recognize GSRs, their pure computational identification remains challenging. Moreover, various GSRs usually require a specialized set of features for developing robust recognition models. Recently, deep-learning (DL) methods have been shown to generate more accurate prediction models than 'shallow' methods without the need to develop specialized features for the problems in question. Here, we explore the potential use of DL for the recognition of GSRs. RESULTS We developed DeepGSR, an optimized DL architecture for the prediction of different types of GSRs. The performance of the DeepGSR structure is evaluated on the recognition of polyadenylation signals (PAS) and translation initiation sites (TIS) of different organisms: human, mouse, bovine and fruit fly. The results show that DeepGSR outperformed the state-of-the-art methods, reducing the classification error rate of the PAS and TIS prediction in the human genome by up to 29% and 86%, respectively. Moreover, the cross-organisms and genome-wide analyses we performed, confirmed the robustness of DeepGSR and provided new insights into the conservation of examined GSRs across species. AVAILABILITY AND IMPLEMENTATION DeepGSR is implemented in Python using Keras API; it is available as open-source software and can be obtained at https://doi.org/10.5281/zenodo.1117159. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Manal Kalkatawi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arturo Magana-Mora
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Drilling Technology Team, EXPEC-ARC, Saudi Aramco, Dhahran, Saudi Arabia
| | - Boris Jankovic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
205
|
Dudzic JP, Hanson MA, Iatsenko I, Kondo S, Lemaitre B. More Than Black or White: Melanization and Toll Share Regulatory Serine Proteases in Drosophila. Cell Rep 2019; 27:1050-1061.e3. [DOI: 10.1016/j.celrep.2019.03.101] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
|
206
|
Andreyeva EN, Ogienko AA, Yushkova AA, Popova JV, Pavlova GA, Kozhevnikova EN, Ivankin AV, Gatti M, Pindyurin AV. Non3 is an essential Drosophila gene required for proper nucleolus assembly. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nucleolus is a dynamic non-membrane-bound nuclear organelle, which plays key roles not only in ribosome biogenesis but also in many other cellular processes. Consistent with its multiple functions, the nucleolus has been implicated in many human diseases, including cancer and degenerative pathologies of the nervous system and heart. Here, we report the characterization of the Drosophila Non3 (Novel nucleolar protein 3) gene, which encodes a protein homologous to the human Brix domain-containing Rpf2 that has been shown to control ribosomal RNA (rRNA) processing. We used imprecise P-element excision to generate four new mutant alleles in the Non3 gene. Complementation and phenotypic analyses showed that these Non3 mutations can be arranged in an allelic series that includes both viable and lethal alleles. The strongest lethal allele (Non3∆600) is a genetically null allele that carries a large deletion of the gene and exhibits early lethality when homozygous. Flies heterozygous for Non3∆600 occasionally exhibit a mild reduction in the bristle size, but develop normally and are fertile. However, heteroallelic combinations of viable Non3 mutations (Non3197, Non3310 and Non3259) display a Minute-like phenotype, consisting in delayed development and short and thin bristles, suggesting that they are defective in ribosome biogenesis. We also demonstrate that the Non3 protein localizes to the nucleolus of larval brain cells and it is required for proper nucleolar localization of Fibrillarin, a protein important for post-translational modification and processing of rRNAs. In summary, we generated a number of genetic and biochemical tools that were exploited for an initial characterization of Non3, and will be instrumental for future functional studies on this gene and its protein product.
Collapse
Affiliation(s)
| | - A. A. Ogienko
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University
| | - A. A. Yushkova
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University
| | - J. V. Popova
- Institute of Molecular and Cellular Biology, SB RAS; Institute of Cytology and Genetics, SB RAS
| | | | - E. N. Kozhevnikova
- Institute of Molecular and Cellular Biology, SB RAS; Institute of Cytology and Genetics, SB RAS
| | | | - M. Gatti
- Institute of Molecular and Cellular Biology, SB RAS; IBPM CNR and Department of Biology and Biotechnology, Sapienza University of Rome
| | - A. V. Pindyurin
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University; Institute of Cytology and Genetics, SB RAS
| |
Collapse
|
207
|
CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect. Genetics 2019; 212:333-341. [PMID: 30918006 DOI: 10.1534/genetics.119.302037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
Gene drives could allow for control of vector-borne diseases by directly suppressing vector populations or spreading genetic payloads designed to reduce pathogen transmission. Clustered regularly interspaced short palindromic repeat (CRISPR) homing gene drives work by cleaving wild-type alleles, which are then converted to drive alleles by homology-directed repair, increasing the frequency of the drive in a population over time. However, resistance alleles can form when end-joining repair takes place in lieu of homology-directed repair. Such alleles cannot be converted to drive alleles, which would eventually halt the spread of a drive through a population. To investigate the effects of natural genetic variation on resistance formation, we developed a CRISPR homing gene drive in Drosophila melanogaster and crossed it into the genetically diverse Drosophila Genetic Reference Panel (DGRP) lines, measuring several performance parameters. Most strikingly, resistance allele formation postfertilization in the early embryo ranged from 7 to 79% among lines and averaged 42 ± 18%. We performed a genome-wide association study using our results in the DGRP lines, and found that the resistance and conversion rates were not explained by common alleles of large effect, but instead there were several genetic polymorphisms showing weak association. RNA interference knockdown of several genes containing these polymorphisms confirmed their effect, but the small effect sizes imply that their manipulation would likely yield only modest improvements to the efficacy of gene drives.
Collapse
|
208
|
Andreyeva EN, Ogienko AA, Dubatolova TD, Oshchepkova AL, Kozhevnikova EN, Ivankin AV, Pavlova GA, Kopyl SA, Pindyurin AV. A toolset to study functions of Cytosolic non-specific dipeptidase 2 (CNDP2) using Drosophila as a model organism. BMC Genet 2019; 20:31. [PMID: 30885138 PMCID: PMC6421639 DOI: 10.1186/s12863-019-0726-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood. Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce. In particular, the function of the D. melanogaster ortholog of CNDP2, encoded by the CG17337 gene (hereafter referred to as dCNDP2), is still unknown. Results This study was aimed at developing a set of genetic and molecular tools to study the roles of dCNDP2. We generated a dCNDP2 null mutation (hereafter ∆dCNDP2) using CRISPR/Cas9-mediated homologous recombination (HR) and found that the ∆dCNDP2 mutants are homozygous viable, morphologically normal and fertile. We also generated transgenic fly lines expressing eGFP-tagged and non-tagged dCNDP2 protein, all under the control of the UAS promoter, as well as polyclonal antibodies specific to dCNDP2. Using these tools, we demonstrate that only one of the two predicted dCNDP2 isoforms is expressed throughout the different tissues tested. dCNDP2 was detected in both the cytoplasm and the nucleus, and was found to be associated with multiple sites in the salivary gland polytene chromosomes. Conclusions The dCNDP2 gene is not essential for fly viability under standard laboratory conditions. The subcellular localization pattern of dCNDP2 suggests that this protein might have roles in both the cytoplasm and the nucleus. The genetic and molecular tools developed in this study will allow further functional characterization of the conserved CNDP2 protein using D. melanogaster as a model system. Electronic supplementary material The online version of this article (10.1186/s12863-019-0726-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Anna A Ogienko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Tatiana D Dubatolova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anastasiya L Oshchepkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena N Kozhevnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anton V Ivankin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Gera A Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Sergei A Kopyl
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
209
|
Karageorgiou C, Gámez-Visairas V, Tarrío R, Rodríguez-Trelles F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 2019; 20:223. [PMID: 30885123 PMCID: PMC6423853 DOI: 10.1186/s12864-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Drosophila subobscura has long been a central model in evolutionary genetics. Presently, its use is hindered by the lack of a reference genome. To bridge this gap, here we used PacBio long-read technology, together with the available wealth of genetic marker information, to assemble and annotate a high-quality nuclear and complete mitochondrial genome for the species. With the obtained assembly, we performed the first synteny analysis of genome structure evolution in the subobscura subgroup. RESULTS We generated a highly-contiguous ~ 129 Mb-long nuclear genome, consisting of six pseudochromosomes corresponding to the six chromosomes of a female haploid set, and a complete 15,764 bp-long mitogenome, and provide an account of their numbers and distributions of codifying and repetitive content. All 12 identified paracentric inversion differences in the subobscura subgroup would have originated by chromosomal breakage and repair, with some associated duplications, but no evidence of direct gene disruptions by the breakpoints. Between lineages, inversion fixation rates were 10 times higher in continental D. subobscura than in the two small oceanic-island endemics D. guanche and D. madeirensis. Within D. subobscura, we found contrasting ratios of chromosomal divergence to polymorphism between the A sex chromosome and the autosomes. CONCLUSIONS We present the first high-quality, long-read sequencing of a D. subobscura genome. Our findings generally support genome structure evolution in this species being driven indirectly, through the inversions' recombination-suppression effects in maintaining sets of adaptive alleles together in the face of gene flow. The resources developed will serve to further establish the subobscura subgroup as model for comparative genomics and evolutionary indicator of global change.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Víctor Gámez-Visairas
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Rosa Tarrío
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco Rodríguez-Trelles
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
210
|
Liu B, Winkler F, Herde M, Witte CP, Großhans J. A Link between Deoxyribonucleotide Metabolites and Embryonic Cell-Cycle Control. Curr Biol 2019; 29:1187-1192.e3. [PMID: 30880011 DOI: 10.1016/j.cub.2019.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
The egg contains maternal RNAs and proteins, which have instrumental functions in patterning and morphogenesis. Besides these, the egg also contains metabolites, whose developmental functions have been little investigated. For example, the rapid increase of DNA content during the fast embryonic cell cycles poses high demands on the supply of deoxyribonucleotides (dNTPs), which may be synthesized in the embryo or maternally provided [1, 2]. Here, we analyze the role of dNTP in early Drosophila embryos. We found that dNTP levels initially decreased about 2-fold before reaching stable levels at the transition from syncytial to cellular blastoderm. Employing a mutant of the metabolic enzyme serine hydroxymethyl transferase (SHMT), which is impaired in the embryonic synthesis of deoxythymidine triphosphate (dTTP), we found that the maternal supply of dTTP was specifically depleted by interphase 13. SHMT mutants showed persistent S phase, replication stress, and a checkpoint-dependent cell-cycle arrest in NC13, depending on the loss of dTTP. The cell-cycle arrest in SHMT mutants was suppressed by reduced zygotic transcription. Consistent with the requirement of dTTP for cell-cycle progression, increased dNTP levels accelerated the cell cycle in embryos lacking zygotic transcription. We propose a model that both a limiting dNTP supply and interference of zygotic transcription with DNA replication [3] elicit DNA replication stress and checkpoint activation. Our study reveals a specific mechanism of how dNTP metabolites contribute to the embryonic cell-cycle control.
Collapse
Affiliation(s)
- Boyang Liu
- Institute for Developmental Biochemistry, Medical School, Georg August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Franziska Winkler
- Institute for Developmental Biochemistry, Medical School, Georg August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Marco Herde
- Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Medical School, Georg August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
211
|
Merenciano M, Iacometti C, González J. A unique cluster of roo insertions in the promoter region of a stress response gene in Drosophila melanogaster. Mob DNA 2019; 10:10. [PMID: 30911338 PMCID: PMC6415491 DOI: 10.1186/s13100-019-0152-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Transposable elements (TEs) are not randomly distributed in the genome. A genome-wide analysis of the D. melanogaster genome found that differences in TE density across 50 kb genomic regions was due both to transposition and duplication. At smaller genomic scales, promoter regions of hsp genes and the promoter region of CG18446 have been shown to accumulate TE insertions. In this work, we have further analyzed the promoter region of CG18446. We screened 218 strains collected in 15 natural populations, and we found that the CG18446 promoter region contains 20 independent roo insertions. Based on phylogenetic analysis, we suggest that the presence of multiple roo insertions in this region is likely to be the result of several bursts of transposition. Moreover, we found that the roo insertional cluster in the CG18446 promoter region is unique: no other promoter region in the genome contains a similar number of roo insertions. We found that, similar to hsp gene promoters, chromatin accessibility could be one of the factors explaining the recurrent insertions of roo elements in CG18446 promoter region.
Collapse
Affiliation(s)
- Miriam Merenciano
- 1Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37,49, 08003 Barcelona, Spain
| | - Camillo Iacometti
- 1Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37,49, 08003 Barcelona, Spain.,2Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Josefa González
- 1Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37,49, 08003 Barcelona, Spain
| |
Collapse
|
212
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
213
|
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:262-282. [PMID: 30974344 DOI: 10.1016/j.cbd.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Collapse
|
214
|
The Caspase-3 homolog DrICE regulates endocytic trafficking during Drosophila tracheal morphogenesis. Nat Commun 2019; 10:1031. [PMID: 30833576 PMCID: PMC6399233 DOI: 10.1038/s41467-019-09009-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Although well known for its role in apoptosis, the executioner caspase DrICE has a non-apoptotic function that is required for elongation of the epithelial tubes of the Drosophila tracheal system. Here, we show that DrICE acts downstream of the Hippo Network to regulate endocytic trafficking of at least four cell polarity, cell junction and apical extracellular matrix proteins involved in tracheal tube size control: Crumbs, Uninflatable, Kune-Kune and Serpentine. We further show that tracheal cells are competent to undergo apoptosis, even though developmentally-regulated DrICE function rarely kills tracheal cells. Our results reveal a developmental role for caspases, a pool of DrICE that co-localizes with Clathrin, and a mechanism by which the Hippo Network controls endocytic trafficking. Given reports of in vitro regulation of endocytosis by mammalian caspases during apoptosis, we propose that caspase-mediated regulation of endocytic trafficking is an evolutionarily conserved function of caspases that can be deployed during morphogenesis. Caspases are well-known drivers of apoptosis, although recent studies suggest potential non-apoptotic functions. Here, McSharry and Beitel show that the Drosophila executioner caspase DrICE regulates endocytic trafficking of key proteins downstream of Hippo during tracheal morphogenesis.
Collapse
|
215
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
216
|
A Multivariate Genome-Wide Association Study of Wing Shape in Drosophila melanogaster. Genetics 2019; 211:1429-1447. [PMID: 30792267 DOI: 10.1534/genetics.118.301342] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/03/2019] [Indexed: 02/02/2023] Open
Abstract
Due to the complexity of genotype-phenotype relationships, simultaneous analyses of genomic associations with multiple traits will be more powerful and informative than a series of univariate analyses. However, in most cases, studies of genotype-phenotype relationships have been analyzed only one trait at a time. Here, we report the results of a fully integrated multivariate genome-wide association analysis of the shape of the Drosophila melanogaster wing in the Drosophila Genetic Reference Panel. Genotypic effects on wing shape were highly correlated between two different laboratories. We found 2396 significant SNPs using a 5% false discovery rate cutoff in the multivariate analyses, but just four significant SNPs in univariate analyses of scores on the first 20 principal component axes. One quarter of these initially significant SNPs retain their effects in regularized models that take into account population structure and linkage disequilibrium. A key advantage of multivariate analysis is that the direction of the estimated phenotypic effect is much more informative than a univariate one. We exploit this fact to show that the effects of knockdowns of genes implicated in the initial screen were on average more similar than expected under a null model. A subset of SNP effects were replicable in an unrelated panel of inbred lines. Association studies that take a phenomic approach, considering many traits simultaneously, are an important complement to the power of genomics.
Collapse
|
217
|
Whittle CA, Extavour CG. Selection shapes turnover and magnitude of sex-biased expression in Drosophila gonads. BMC Evol Biol 2019; 19:60. [PMID: 30786879 PMCID: PMC6383255 DOI: 10.1186/s12862-019-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sex-biased gene expression is thought to drive the phenotypic differences in males and females in metazoans. Drosophila has served as a primary model for studying male-female differences in gene expression, and its effects on protein sequence divergence. However, the forces shaping evolution of sex-biased expression remain largely unresolved, including the roles of selection and pleiotropy. Research on sex organs in Drosophila, employing original approaches and multiple-species contrasts, provides a means to gain insights into factors shaping the turnover and magnitude (fold-bias) of sex-biased expression. RESULTS Here, using recent RNA-seq data, we studied sex-biased gonadal expression in 10,740 protein coding sequences in four species of Drosophila, D. melanogaster, D. simulans, D. yakuba and D. ananassae (5 to 44 My divergence). Using an approach wherein we identified genes with lineage-specific transitions (LSTs) in sex-biased status (amongst testis-biased, ovary-biased and unbiased; thus, six transition types) standardized to the number of genes with the ancestral state (S-LSTs), and those with clade-wide expression bias status, we reveal several key findings. First, the six categorical types of S-LSTs in sex-bias showed disparate rates of turnover, consistent with differential selection pressures. Second, the turnover in sex-biased status was largely unrelated to cross-tissue expression breadth, suggesting pleiotropy does not restrict evolution of sex-biased expression. Third, the fold-sex-biased expression, for both testis-biased and ovary-biased genes, evolved directionally over time toward higher values, a crucial finding that could be interpreted as a selective advantage of greater sex-bias, and sexual antagonism. Fourth, in terms of protein divergence, genes with LSTs to testis-biased expression exhibited weak signals of elevated rates of evolution (than ovary-biased) in as little as 5 My, which strengthened over time. Moreover, genes with clade-wide testis-specific expression (44 My), a status not observed for any ovary-biased genes, exhibited striking acceleration of protein divergence, which was linked to low pleiotropy. CONCLUSIONS By studying LSTs and clade-wide sex-biased gonadal expression in a multi-species clade of Drosophila, we describe evidence that interspecies turnover and magnitude of sex-biased expression have been influenced by selection. Further, whilst pleiotropy was not connected to turnover in sex-biased gonadal expression, it likely explains protein sequence divergence.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
218
|
Whittle CA, Extavour CG. Contrasting patterns of molecular evolution in metazoan germ line genes. BMC Evol Biol 2019; 19:53. [PMID: 30744572 PMCID: PMC6371493 DOI: 10.1186/s12862-019-1363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Germ lines are the cell lineages that give rise to the sperm and eggs in animals. The germ lines first arise from primordial germ cells (PGCs) during embryogenesis: these form from either a presumed derived mode of preformed germ plasm (inheritance) or from an ancestral mechanism of inductive cell-cell signalling (induction). Numerous genes involved in germ line specification and development have been identified and functionally studied. However, little is known about the molecular evolutionary dynamics of germ line genes in metazoan model systems. RESULTS Here, we studied the molecular evolution of germ line genes within three metazoan model systems. These include the genus Drosophila (N=34 genes, inheritance), the fellow insect Apis (N=30, induction), and their more distant relative Caenorhabditis (N=23, inheritance). Using multiple species and established phylogenies in each genus, we report that germ line genes exhibited marked variation in the constraint on protein sequence divergence (dN/dS) and codon usage bias (CUB) within each genus. Importantly, we found that de novo lineage-specific inheritance (LSI) genes in Drosophila (osk, pgc) and in Caenorhabditis (pie-1, pgl-1), which are essential to germ plasm functions under the derived inheritance mode, displayed rapid protein sequence divergence relative to the other germ line genes within each respective genus. We show this may reflect the evolution of specialized germ plasm functions and/or low pleiotropy of LSI genes, features not shared with other germ line genes. In addition, we observed that the relative ranking of dN/dS and of CUB between genera were each more strongly correlated between Drosophila and Caenorhabditis, from different phyla, than between Drosophila and its insect relative Apis, suggesting taxonomic differences in how germ line genes have evolved. CONCLUSIONS Taken together, the present results advance our understanding of the evolution of animal germ line genes within three well-known metazoan models. Further, the findings provide insights to the molecular evolution of germ line genes with respect to LSI status, pleiotropy, adaptive evolution as well as PGC-specification mode.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
219
|
Strassburger K, Kang E, Teleman AA. Drosophila ZDHHC8 palmitoylates scribble and Ras64B and controls growth and viability. PLoS One 2019; 14:e0198149. [PMID: 30735487 PMCID: PMC6368284 DOI: 10.1371/journal.pone.0198149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Palmitoylation is an important posttranslational modification regulating diverse cellular functions. Consequently, aberrant palmitoylation can lead to diseases such as neuronal disorders or cancer. In humans there are roughly one hundred times more palmitoylated proteins than enzymes catalyzing palmitoylation (palmitoyltransferases). Therefore, it is an important challenge to establish the links between palmitoyltransferases and their targets. From publicly available data, we find that expression of human ZDHHC8 correlates significantly with cancer survival. To elucidate the organismal function of ZDHHC8, we study the Drosophila ortholog of hZDHHC8, CG34449/dZDHHC8. Knockdown of dZDHHC8 causes tissue overgrowth while dZDHHC8 mutants are larval lethal. We provide a list of 159 palmitoylated proteins in Drosophila and present data suggesting that scribble and Ras64B are targets of dZDHHC8.
Collapse
Affiliation(s)
- Katrin Strassburger
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Evangeline Kang
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Aurelio A. Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
220
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
221
|
Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL, Horváth V, Fiston-Lavier AS, Luyten I, Venkataram S, Quesneville H, Petrov DA, González J. Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genet 2019; 15:e1007900. [PMID: 30753202 PMCID: PMC6372155 DOI: 10.1371/journal.pgen.1007900] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/16/2018] [Indexed: 11/30/2022] Open
Abstract
Most of the current knowledge on the genetic basis of adaptive evolution is based on the analysis of single nucleotide polymorphisms (SNPs). Despite increasing evidence for their causal role, the contribution of structural variants to adaptive evolution remains largely unexplored. In this work, we analyzed the population frequencies of 1,615 Transposable Element (TE) insertions annotated in the reference genome of Drosophila melanogaster, in 91 samples from 60 worldwide natural populations. We identified a set of 300 polymorphic TEs that are present at high population frequencies, and located in genomic regions with high recombination rate, where the efficiency of natural selection is high. The age and the length of these 300 TEs are consistent with relatively young and long insertions reaching high frequencies due to the action of positive selection. Besides, we identified a set of 21 fixed TEs also likely to be adaptive. Indeed, we, and others, found evidence of selection for 84 of these reference TE insertions. The analysis of the genes located nearby these 84 candidate adaptive insertions suggested that the functional response to selection is related with the GO categories of response to stimulus, behavior, and development. We further showed that a subset of the candidate adaptive TEs affects expression of nearby genes, and five of them have already been linked to an ecologically relevant phenotypic effect. Our results provide a more complete understanding of the genetic variation and the fitness-related traits relevant for adaptive evolution. Similar studies should help uncover the importance of TE-induced adaptive mutations in other species as well.
Collapse
Affiliation(s)
- Gabriel E. Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - María Bogaerts-Márquez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Maite G. Barrón
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Vivien Horváth
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna-Sophie Fiston-Lavier
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | | | - Sandeep Venkataram
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | | | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
222
|
Neuronal overexpression of Alzheimer's disease and Down's syndrome associated DYRK1A/minibrain gene alters motor decline, neurodegeneration and synaptic plasticity in Drosophila. Neurobiol Dis 2019; 125:107-114. [PMID: 30703437 PMCID: PMC6419573 DOI: 10.1016/j.nbd.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is characterised by abnormal cognitive and motor development, and later in life by progressive Alzheimer's disease (AD)-like dementia, neuropathology, declining motor function and shorter life expectancy. It is caused by trisomy of chromosome 21 (Hsa21), but how individual Hsa21 genes contribute to various aspects of the disorder is incompletely understood. Previous work has demonstrated a role for triplication of the Hsa21 gene DYRK1A in cognitive and motor deficits, as well as in altered neurogenesis and neurofibrillary degeneration in the DS brain, but its contribution to other DS phenotypes is unclear. Here we demonstrate that overexpression of minibrain (mnb), the Drosophila ortholog of DYRK1A, in the Drosophila nervous system accelerated age-dependent decline in motor performance and shortened lifespan. Overexpression of mnb in the eye was neurotoxic and overexpression in ellipsoid body neurons in the brain caused age-dependent neurodegeneration. At the larval neuromuscular junction, an established model for mammalian central glutamatergic synapses, neuronal mnb overexpression enhanced spontaneous vesicular transmitter release. It also slowed recovery from short-term depression of evoked transmitter release induced by high-frequency nerve stimulation and increased the number of boutons in one of the two glutamatergic motor neurons innervating the muscle. These results provide further insight into the roles of DYRK1A triplication in abnormal aging and synaptic dysfunction in DS. Overexpression of minibrain (DYRK1A) causes Down's relevant phenotypes including: Age-dependent degeneration of brain neurons Accelerated age-dependent decline in motor performance and shorted lifespan Modified presynaptic structure and enhanced spontaneous transmitter release Slowed recovery from short-term depression of synaptic transmission
Collapse
|
223
|
Li J, Jiang L, Wu CI, Lu X, Fang S, Ting CT. Small Segmental Duplications in Drosophila-High Rate of Emergence and Elimination. Genome Biol Evol 2019; 11:486-496. [PMID: 30689862 PMCID: PMC6380325 DOI: 10.1093/gbe/evz011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Segmental duplications are an important class of mutations. Because a large proportion of segmental duplications may often be strongly deleterious, high frequency or fixed segmental duplications may represent only a tiny fraction of the mutational input. To understand the emergence and elimination of segmental duplications, we survey polymorphic duplications, including tandem and interspersed duplications, in natural populations of Drosophila by haploid embryo genomes. As haploid embryos are not expected to be heterozygous, the genome, sites of heterozygosity (referred to as pseudoheterozygous sites [PHS]), may likely represent recent duplications that have acquired new mutations. Among the 29 genomes of Drosophila melanogaster, we identify 2,282 polymorphic PHS duplications (linked PHS regions) in total or 154 PHS duplications per genome. Most PHS duplications are small (83.4% < 500 bp), Drosophila melanogaster lineage specific, and strain specific (72.6% singletons). The excess of the observed singleton PHS duplications deviates significantly from the neutral expectation, suggesting that most PHS duplications are strongly deleterious. In addition, these small segmental duplications are not evenly distributed in genomic regions and less common in noncoding functional element regions. The underrepresentation in RNA polymerase II binding sites and regions with active histone modifications is correlated with ages of duplications. In conclusion, small segmental duplications occur frequently in Drosophila but rapidly eliminated by natural selection.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Lan Jiang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chung-I Wu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,Department of Ecology and Evolution, University of Chicago.,School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chau-Ti Ting
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Center for Biotechnology, Center for Developmental Biology and Regenerative Medicine, National Taiwan University.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
224
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
225
|
Li YH, Liu X, Vanselow JT, Zheng H, Schlosser A, Chiu JC. O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PLoS Genet 2019; 15:e1007953. [PMID: 30703153 PMCID: PMC6372208 DOI: 10.1371/journal.pgen.1007953] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks coordinate time-of-day-specific metabolic and physiological processes to maximize organismal performance and fitness. In addition to light and temperature, which are regarded as strong zeitgebers for circadian clock entrainment, metabolic input has now emerged as an important signal for clock entrainment and modulation. Circadian clock proteins have been identified to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs is now recognized as an important mechanism by which metabolic input regulates circadian physiology. To better understand the role of O-GlcNAcylation in modulating clock protein function within the molecular oscillator, we used mass spectrometry proteomics to identify O-GlcNAcylation sites of PERIOD (PER), a repressor of the circadian transcriptome and a critical biochemical timer of the Drosophila clock. In vivo functional characterization of PER O-GlcNAcylation sites indicates that O-GlcNAcylation at PER(S942) reduces interactions between PER and CLOCK (CLK), the key transcriptional activator of clock-controlled genes. Since we observe a correlation between clock-controlled daytime feeding activity and higher level of PER O-GlcNAcylation, we propose that PER(S942) O-GlcNAcylation during the day functions to prevent premature initiation of circadian repression phase. This is consistent with the period-shortening behavioral phenotype of per(S942A) flies. Taken together, our results support that clock-controlled feeding activity provides metabolic signals to reinforce light entrainment to regulate circadian physiology at the post-translational level. The interplay between O-GlcNAcylation and other PTMs to regulate circadian physiology is expected to be complex and extensive, and reach far beyond the molecular oscillator.
Collapse
Affiliation(s)
- Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
226
|
Promoter-proximal pausing mediated by the exon junction complex regulates splicing. Nat Commun 2019; 10:521. [PMID: 30705266 PMCID: PMC6355915 DOI: 10.1038/s41467-019-08381-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a widespread transcriptional regulatory step across metazoans. Here we find that the nuclear exon junction complex (pre-EJC) is a critical and conserved regulator of this process. Depletion of pre-EJC subunits leads to a global decrease in Pol II pausing and to premature entry into elongation. This effect occurs, at least in part, via non-canonical recruitment of pre-EJC components at promoters. Failure to recruit the pre-EJC at promoters results in increased binding of the positive transcription elongation complex (P-TEFb) and in enhanced Pol II release. Notably, restoring pausing is sufficient to rescue exon skipping and the photoreceptor differentiation defect associated with depletion of pre-EJC components in vivo. We propose that the pre-EJC serves as an early transcriptional checkpoint to prevent premature entry into elongation, ensuring proper recruitment of RNA processing components that are necessary for exon definition.
Collapse
|
227
|
Da Lage JL, Thomas GWC, Bonneau M, Courtier-Orgogozo V. Evolution of salivary glue genes in Drosophila species. BMC Evol Biol 2019; 19:36. [PMID: 30696414 PMCID: PMC6352337 DOI: 10.1186/s12862-019-1364-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 11/23/2022] Open
Abstract
Background At the very end of the larval stage Drosophila expectorate a glue secreted by their salivary glands to attach themselves to a substrate while pupariating. The glue is a mixture of apparently unrelated proteins, some of which are highly glycosylated and possess internal repeats. Because species adhere to distinct substrates (i.e. leaves, wood, rotten fruits), glue genes are expected to evolve rapidly. Results We used available genome sequences and PCR-sequencing of regions of interest to investigate the glue genes in 20 Drosophila species. We discovered a new gene in addition to the seven glue genes annotated in D. melanogaster. We also identified a phase 1 intron at a conserved position present in five of the eight glue genes of D. melanogaster, suggesting a common origin for those glue genes. A slightly significant rate of gene turnover was inferred. Both the number of repeats and the repeat sequence were found to diverge rapidly, even between closely related species. We also detected high repeat number variation at the intrapopulation level in D. melanogaster. Conclusion Most conspicuous signs of accelerated evolution are found in the repeat regions of several glue genes. Electronic supplementary material The online version of this article (10.1186/s12862-019-1364-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- UMR 9191 Évolution, Génomes, Comportement, Écologie. CNRS, IRD, Université Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France.
| | - Gregg W C Thomas
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Magalie Bonneau
- UMR 9191 Évolution, Génomes, Comportement, Écologie. CNRS, IRD, Université Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | | |
Collapse
|
228
|
Zhou Y, Popadowski SE, Deutschman E, Halfon MS. Distinct roles and requirements for Ras pathway signaling in visceral versus somatic muscle founder specification. Development 2019; 146:dev.169003. [PMID: 30630823 DOI: 10.1242/dev.169003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Pleiotropic signaling pathways must somehow engender specific cellular responses. In the Drosophila mesoderm, Ras pathway signaling specifies muscle founder cells from among the broader population of myoblasts. For somatic muscles, this is an inductive process mediated by the ETS-domain downstream Ras effectors Pointed and Aop (Yan). We demonstrate here that for the circular visceral muscles, despite superficial similarities, a significantly different specification mechanism is at work. Not only is visceral founder cell specification not dependent on Pointed or Aop, but Ras pathway signaling in its entirety can be bypassed. Our results show that de-repression, not activation, is the predominant role of Ras signaling in the visceral mesoderm and that, accordingly, Ras signaling is not required in the absence of repression. The key repressor acts downstream of the transcription factor Lame duck and is likely a member of the ETS transcription factor family. Our findings fit with a growing body of data that point to a complex interplay between the Ras pathway, ETS transcription factors, and enhancer binding as a crucial mechanism for determining unique responses to Ras signaling.
Collapse
Affiliation(s)
- Yiyun Zhou
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| | - Sarah E Popadowski
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| | - Emily Deutschman
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA .,Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA.,Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA.,NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.,Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
229
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
230
|
Accurate elimination of superfluous attachment cells is critical for the construction of functional multicellular proprioceptors in Drosophila. Cell Death Differ 2019; 26:1895-1904. [PMID: 30622305 DOI: 10.1038/s41418-018-0260-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/13/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Here, we show for the first time that developmental cell death plays a critical role in the morphogenesis of multicellular proprioceptors in Drosophila. The most prominent multicellular proprioceptive organ in the fly larva, the pentascolopidial (LCh5) organ, consists of a cluster of five stretch-responsive sensory organs that are anchored to the cuticle via specialized attachment cells. Stable attachment of the organ to the cuticle is critical for its ability to perceive mechanical stimuli arising from muscle contractions and the resulting displacement of its attachment sites. We now show that five attachment cells are born within the LCh5 lineage, but three of them are rapidly eliminated, normally, by apoptosis. Strong genetic evidence attests to the existence of an autophagic gene-dependent safeguard mechanism that guarantees elimination of the unwanted cells upon perturbation of the apoptotic pathway prior to caspase liberation. The removal of the three superfluous cells guarantees the right ratio between the number of sensory organs and the number of attachment cells that anchor them to the cuticle. This accurate matching seems imperative for the attachment of cell growth and functionality and is thus vital for normal morphogenesis and functionality of the sensory organ.
Collapse
|
231
|
Shih MFM, Davis FP, Henry GL, Dubnau J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 (BETHESDA, MD.) 2019; 9:81-94. [PMID: 30397017 PMCID: PMC6325895 DOI: 10.1534/g3.118.200726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The Drosophila melanogaster MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α'/β' and α/β) and 7 cell subtypes (γd, γm, α'/β'ap, α'/β'm, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity. These subtypes play distinct roles in memory processing, however the underlying transcriptional differences are unknown. Here, we used RNA sequencing (RNA-seq) to profile the nuclear transcriptomes of each MB neuronal cell subtypes. We identified 350 MB class- or subtype-specific genes, including the widely used α/β class marker Fas2 and the α'/β' class marker trio Immunostaining corroborates the RNA-seq measurements at the protein level for several cases. Importantly, our data provide a full accounting of the neurotransmitter receptors, transporters, neurotransmitter biosynthetic enzymes, neuropeptides, and neuropeptide receptors expressed within each of these cell types. This high-quality, cell type-level transcriptome catalog for the Drosophila MB provides a valuable resource for the fly neuroscience community.
Collapse
Affiliation(s)
| | - Fred Pejman Davis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Gilbert Lee Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Josh Dubnau
- Department of Anesthesiology, Stony Brook School of Medicine; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY
| |
Collapse
|
232
|
Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Res 2019; 47:D529-D541. [PMID: 30476227 PMCID: PMC6324058 DOI: 10.1093/nar/gky1079] [Citation(s) in RCA: 952] [Impact Index Per Article: 158.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the curation and archival storage of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2018 (build 3.4.164), BioGRID contains records for 1 598 688 biological interactions manually annotated from 55 809 publications for 71 species, as classified by an updated set of controlled vocabularies for experimental detection methods. BioGRID also houses records for >700 000 post-translational modification sites. BioGRID now captures chemical interaction data, including chemical-protein interactions for human drug targets drawn from the DrugBank database and manually curated bioactive compounds reported in the literature. A new dedicated aspect of BioGRID annotates genome-wide CRISPR/Cas9-based screens that report gene-phenotype and gene-gene relationships. An extension of the BioGRID resource called the Open Repository for CRISPR Screens (ORCS) database (https://orcs.thebiogrid.org) currently contains over 500 genome-wide screens carried out in human or mouse cell lines. All data in BioGRID is made freely available without restriction, is directly downloadable in standard formats and can be readily incorporated into existing applications via our web service platforms. BioGRID data are also freely distributed through partner model organism databases and meta-databases.
Collapse
Affiliation(s)
- Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Chris Stark
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Bobby-Joe Breitkreutz
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Lorrie Boucher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nadine Kolas
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Lara O’Donnell
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Genie Leung
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Rochelle McAdam
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Frederick Zhang
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Sonam Dolma
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Andrew Willems
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Andrew Chatr-aryamontri
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Mike Tyers
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
233
|
Drees L, Königsmann T, Jaspers MHJ, Pflanz R, Riedel D, Schuh R. Conserved function of the matriptase-prostasin proteolytic cascade during epithelial morphogenesis. PLoS Genet 2019; 15:e1007882. [PMID: 30601807 PMCID: PMC6331135 DOI: 10.1371/journal.pgen.1007882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/14/2019] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular matrix (ECM) assembly and remodelling is critical during development and organ morphogenesis. Dysregulation of ECM is implicated in many pathogenic conditions, including cancer. The type II transmembrane serine protease matriptase and the serine protease prostasin are key factors in a proteolytic cascade that regulates epithelial ECM differentiation during development in vertebrates. Here, we show by rescue experiments that the Drosophila proteases Notopleural (Np) and Tracheal-prostasin (Tpr) are functional homologues of matriptase and prostasin, respectively. Np mediates morphogenesis and remodelling of apical ECM during tracheal system development and is essential for maintenance of the transepithelial barrier function. Both Np and Tpr degrade the zona pellucida-domain (ZP-domain) protein Dumpy, a component of the transient tracheal apical ECM. Furthermore, we demonstrate that Tpr zymogen and the ZP domain of the ECM protein Piopio are cleaved by Np and matriptase in vitro. Our data indicate that the evolutionarily conserved ZP domain, present in many ECM proteins of vertebrates and invertebrates, is a novel target of the conserved matriptase-prostasin proteolytic cascade. Epithelial tissue covers the outside of the animal body and lines internal organs. Its disorganization is the source of approximately 90% of all human cancers. Elaboration of the basic epithelial characteristics has led to an understanding of how complex structures such as the branched tubular networks of vertebrate lung or invertebrate tracheal system are organized. Aside from obvious morphological differences, specific compositions of the epithelial extracellular matrix (ECM) have been noted. For example, while the flexible ECM of the vertebrate skin mainly consists of collagen and elastic fibers, the rigid ECM of invertebrates is chitin-based to serve as an inflexible exoskeleton. We show that a central regulator of ECM differentiation and epithelial development in vertebrates, the matriptase-prostasin proteolytic cascade (MPPC), is conserved and essential for both Drosophila ECM morphogenesis and physiology. The functionally conserved components of the MPPC mediate cleavage of zona pellucida-domain (ZP-domain) proteins, which play crucial roles in organizing apical structures of the ECM in both vertebrates and invertebrates. Our data indicate that ZP-proteins are molecular targets of the conserved MPPC and that cleavage within the ZP-domains is a conserved mechanism of ECM development and differentiation.
Collapse
Affiliation(s)
- Leonard Drees
- Research Group Molecular Organogenesis, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tatiana Königsmann
- Research Group Molecular Organogenesis, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin H. J. Jaspers
- Research Group Molecular Organogenesis, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Pflanz
- Research Group Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dietmar Riedel
- Electron Microscopy Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Schuh
- Research Group Molecular Organogenesis, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
234
|
Davies SA, Cabrero P, Marley R, Corrales GM, Ghimire S, Dornan AJ, Dow JAT. Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model. Methods Mol Biol 2019; 1926:203-221. [PMID: 30742274 DOI: 10.1007/978-1-4939-9021-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the 'omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.
Collapse
Affiliation(s)
- Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Guillermo Martinez Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
235
|
Garapati PV, Zhang J, Rey AJ, Marygold SJ. Towards comprehensive annotation of Drosophila melanogaster enzymes in FlyBase. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5298334. [PMID: 30689844 PMCID: PMC6343044 DOI: 10.1093/database/bay144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022]
Abstract
The catalytic activities of enzymes can be described using Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. These annotations are available from numerous biological databases and are routinely accessed by researchers and bioinformaticians to direct their work. However, enzyme data may not be congruent between different resources, while the origin, quality and genomic coverage of these data within any one resource are often unclear. GO/EC annotations are assigned either manually by expert curators or inferred computationally, and there is potential for errors in both types of annotation. If such errors remain unchecked, false positive annotations may be propagated across multiple resources, significantly degrading the quality and usefulness of these data. Similarly, the absence of annotations (false negatives) from any one resource can lead to incorrect inferences or conclusions. We are systematically reviewing and enhancing the functional annotation of the enzymes of Drosophila melanogaster, focusing on improvements within the FlyBase (www.flybase.org) database. We have reviewed four major enzyme groups to date: oxidoreductases, lyases, isomerases and ligases. Herein, we describe our review workflow, the improvement in the quality and coverage of enzyme annotations within FlyBase and the wider impact of our work on other related databases.
Collapse
Affiliation(s)
- Phani V Garapati
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Jingyao Zhang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Alix J Rey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Steven J Marygold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
236
|
Menzel P, McCorkindale AL, Stefanov SR, Zinzen RP, Meyer IM. Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biol 2019; 16:69-81. [PMID: 30582411 PMCID: PMC6380339 DOI: 10.1080/15476286.2018.1558907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
During Drosophila melanogaster embryogenesis, tight regulation of gene expression in time and space is required for the orderly emergence of specific cell types. While the general importance of microRNAs in regulating eukaryotic gene expression has been well-established, their role in early neurogenesis remains to be addressed. In this survey, we investigate the transcriptional dynamics of microRNAs and their target transcripts during neurogenesis of Drosophila melanogaster. To this end, we use the recently developed DIV-MARIS protocol, a method for enriching specific cell types from the Drosophila embryo in vivo, to sequence cell type-specific transcriptomes. We generate dedicated small and total RNA-seq libraries for neuroblasts, neurons and glia cells at early (6-8 h after egg laying (AEL)) and late (18-22 h AEL) stage. This allows us to directly compare these transcriptomes and investigate the potential functional roles of individual microRNAs with spatiotemporal resolution genome-wide, which is beyond the capabilities of existing in situ hybridization methods. Overall, we identify 74 microRNAs that are significantly differentially expressed between the three cell types and the two developmental stages. In all cell types, predicted target genes of down-regulated microRNAs show a significant enrichment of Gene Ontology terms related to neurogenesis. We also investigate how microRNAs regulate the transcriptome by targeting transcription factors and find many candidate microRNAs with putative roles in neurogenesis. Our survey highlights the roles of microRNAs as regulators of differentiation and glioneurognesis in the fruit fly and provides distinct starting points for dedicated functional follow-up studies.
Collapse
Affiliation(s)
- Peter Menzel
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra L. McCorkindale
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefan R. Stefanov
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| | - Robert P. Zinzen
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irmtraud M. Meyer
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
237
|
Abstract
Although the number of sequenced insect genomes numbers in the hundreds, little is known about gene regulatory sequences in any species other than the well-studied Drosophila melanogaster. We provide here a detailed protocol for using SCRMshaw, a computational method for predicting cis-regulatory modules (CRMs, also "enhancers") in sequenced insect genomes. SCRMshaw is effective for CRM discovery throughout the range of holometabolous insects and potentially in even more diverged species, with true-positive prediction rates of 75% or better. Minimal requirements for using SCRMshaw are a genome sequence and training data in the form of known Drosophila CRMs; a comprehensive set of the latter can be obtained from the SCRMshaw download site. For basic applications, a user with only modest computational know-how can run SCRMshaw on a desktop computer. SCRMshaw can be run with a single, narrow set of training data to predict CRMs regulating a specific pattern of gene expression, or with multiple sets of training data covering a broad range of CRM activities to provide an initial rough regulatory annotation of a complete, newly-sequenced genome.
Collapse
Affiliation(s)
- Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA.
| | - Marc S Halfon
- Departments of Biochemistry, Biomedical Informatics, and Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY, USA.
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
238
|
Santabárbara-Ruiz P, Esteban-Collado J, Pérez L, Viola G, Abril JF, Milán M, Corominas M, Serras F. Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 2019; 15:e1007926. [PMID: 30677014 PMCID: PMC6363233 DOI: 10.1371/journal.pgen.1007926] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 01/01/2019] [Indexed: 12/30/2022] Open
Abstract
How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Giacomo Viola
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
239
|
Lehmann M, Knust E, Hebbar S. Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa. Methods Mol Biol 2019; 1834:221-249. [PMID: 30324448 DOI: 10.1007/978-1-4939-8669-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a complex inherited disease. It is associated with mutations in a wide variety of genes with many different functions. These mutations impact the integrity of rod photoreceptors and ultimately result in the progressive degeneration of rods and cone photoreceptors in the retina, leading to complete blindness. A hallmark of this disease is the variable degree to which symptoms are manifest in patients. This is indicative of the influence of the environment, and/or of the distinct genetic makeup of the individual.The fruit fly, Drosophila melanogaster, has effectively proven to be a great model system to better understand interconnected genetic networks. Unraveling genetic interactions and thereby different cellular processes is relatively easy because more than a century of research on flies has enabled the creation of sophisticated genetic tools to perturb gene function. A remarkable conservation of disease genes across evolution and the similarity of the general organization of the fly and vertebrate photoreceptor cell had prompted research on fly retinal degeneration. To date six fly models for RP, including RP4, RP11, RP12, RP14, RP25, and RP26, have been established, and have provided useful information on RP disease biology. In this chapter, an outline of approaches and experimental specifications are described to enable utilizing or developing new fly models of RP.
Collapse
Affiliation(s)
- Malte Lehmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
240
|
Abstract
Variably expressive copy-number variants (CNVs) are characterized by extensive phenotypic heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative genes for these phenotypes within each CNV have not been successful. Here, we posit using multiple lines of evidence, including pathogenicity metrics, functional assays of model organisms, and gene expression data, that multiple genes within each CNV region are likely responsible for the observed phenotypes. We propose that candidate genes within each region likely interact with each other through shared pathways to modulate the individual gene phenotypes, emphasizing the genetic complexity of CNV-associated neuropsychiatric features.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
241
|
Jiang X, Ringwald M, Blake JA, Arighi C, Zhang G, Shatkay H. An effective biomedical document classification scheme in support of biocuration: addressing class imbalance. Database (Oxford) 2019; 2019:baz045. [PMID: 31032839 PMCID: PMC6482935 DOI: 10.1093/database/baz045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023]
Abstract
Published literature is an important source of knowledge supporting biomedical research. Given the large and increasing number of publications, automated document classification plays an important role in biomedical research. Effective biomedical document classifiers are especially needed for bio-databases, in which the information stems from many thousands of biomedical publications that curators must read in detail and annotate. In addition, biomedical document classification often amounts to identifying a small subset of relevant publications within a much larger collection of available documents. As such, addressing class imbalance is essential to a practical classifier. We present here an effective classification scheme for automatically identifying papers among a large pool of biomedical publications that contain information relevant to a specific topic, which the curators are interested in annotating. The proposed scheme is based on a meta-classification framework using cluster-based under-sampling combined with named-entity recognition and statistical feature selection strategies. We examined the performance of our method over a large imbalanced data set that was originally manually curated by the Jackson Laboratory's Gene Expression Database (GXD). The set consists of more than 90 000 PubMed abstracts, of which about 13 000 documents are labeled as relevant to GXD while the others are not relevant. Our results, 0.72 precision, 0.80 recall and 0.75 f-measure, demonstrate that our proposed classification scheme effectively categorizes such a large data set in the face of data imbalance.
Collapse
Affiliation(s)
- Xiangying Jiang
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | | | - Judith A Blake
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME, USA
| | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
- Center of Bioinformatics and Computational Biology, Delaware Biotechnology Institute, Newark, DE, USA
| | - Gongbo Zhang
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Hagit Shatkay
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
- Center of Bioinformatics and Computational Biology, Delaware Biotechnology Institute, Newark, DE, USA
| |
Collapse
|
242
|
Bonatto Paese CL, Leite DJ, Schönauer A, McGregor AP, Russell S. Duplication and expression of Sox genes in spiders. BMC Evol Biol 2018; 18:205. [PMID: 30587109 PMCID: PMC6307133 DOI: 10.1186/s12862-018-1337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
243
|
Yang H, Jaime M, Polihronakis M, Kanegawa K, Markow T, Kaneshiro K, Oliver B. Re-annotation of eight Drosophila genomes. Life Sci Alliance 2018; 1:e201800156. [PMID: 30599046 PMCID: PMC6305970 DOI: 10.26508/lsa.201800156] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
The sequenced genomes of the Drosophila phylogeny are a central resource for comparative work supporting the understanding of the Drosophila melanogaster non-mammalian model system. These have also facilitated evolutionary studies on the selected and random differences that distinguish the thousands of extant species of Drosophila. However, full utility has been hampered by uneven genome annotation. We have generated a large expression profile dataset for nine species of Drosophila and trained a transcriptome assembly approach on D. melanogaster that best matched the extensively curated annotation. We then applied this to the other species to add more than 10000 transcript models per species. We also developed new orthologs to facilitate cross-species comparisons. We validated the new annotation of the distantly related Drosophila grimshawi with an extensive collection of newly sequenced cDNAs. This re-annotation will facilitate understanding both the core commonalities and the species differences in this important group of model organisms, and suggests a strategy for annotating the many forthcoming genomes covering the tree of life.
Collapse
Affiliation(s)
- Haiwang Yang
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Jaime
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maxi Polihronakis
- Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kelvin Kanegawa
- Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Therese Markow
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Irapuato, Guanajuato, Mexico.,Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Kaneshiro
- Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
244
|
Scarpa E, Finet C, Blanchard GB, Sanson B. Actomyosin-Driven Tension at Compartmental Boundaries Orients Cell Division Independently of Cell Geometry In Vivo. Dev Cell 2018; 47:727-740.e6. [PMID: 30503752 PMCID: PMC6302072 DOI: 10.1016/j.devcel.2018.10.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022]
Abstract
Cell shape is known to influence the plane of cell division. In vitro, mechanical constraints can also orient mitoses; however, in vivo it is not clear whether tension can orient the mitotic spindle directly, because tissue-scale forces can change cell shape. During segmentation of the Drosophila embryo, actomyosin is enriched along compartment boundaries forming supracellular cables that keep cells segregated into distinct compartments. Here, we show that these actomyosin cables orient the planar division of boundary cells perpendicular to the boundaries. This bias overrides the influence of cell shape, when cells are mildly elongated. By decreasing actomyosin cable tension with laser ablation or, conversely, ectopically increasing tension with laser wounding, we demonstrate that local tension is necessary and sufficient to orient mitoses in vivo. This involves capture of the spindle pole by the actomyosin cortex. These findings highlight the importance of actomyosin-mediated tension in spindle orientation in vivo.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Cédric Finet
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
245
|
Bieser K, Stamm J, Aldo A, Bhaskara S, Clairborne M, Coronel Gómez J, Dean R, Dowell A, Dowell E, Eissa M, Fawaz A, Fouad-Meshriky M, Godoy D, Gonzalez K, Hachem M, Hammoud M, Huffman A, Ingram H, Jackman A, Karki B, Khalil N, Khalil H, Ha TK, Kharel A, Kobylarz I, Lomprey H, Lonnberg A, Mahbuba S, Massarani H, Minster M, Molina K, Molitor L, Murray T, Patel P, Pechulis S, Raja A, Rastegari G, Reeves S, Sabu N, Salazar R, Schulert D, Senopole M, Sportiello K, Torres C, Villalobos J, Wu J, Zeigler S, Kagey J. The mapping of Drosophila melanogaster mutant A.4.4. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550366 PMCID: PMC7252270 DOI: 10.17912/micropub.biology.000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kayla Bieser
- Department of Physical and Life Sciences, Nevada State College
| | - Joyce Stamm
- Department of Biology, University of Evansville
| | - Ayala Aldo
- Department of Physical and Life Sciences, Nevada State College
| | | | | | | | - Ron Dean
- Department of Physical and Life Sciences, Nevada State College
| | | | - Evan Dowell
- Department of Biology, University of Evansville
| | - Mathew Eissa
- Department of Physical and Life Sciences, Nevada State College
| | - Ahmad Fawaz
- Biology Department, University of Detroit Mercy
| | | | - Dustin Godoy
- Department of Physical and Life Sciences, Nevada State College
| | - Krista Gonzalez
- Department of Physical and Life Sciences, Nevada State College
| | | | | | | | | | | | - Bibek Karki
- Department of Biology, University of Evansville
| | | | | | - Tran Khanh Ha
- Department of Physical and Life Sciences, Nevada State College
| | | | | | - Hunter Lomprey
- Department of Physical and Life Sciences, Nevada State College
| | - Adam Lonnberg
- Department of Physical and Life Sciences, Nevada State College
| | | | | | | | - Krystina Molina
- Department of Physical and Life Sciences, Nevada State College
| | - Lynette Molitor
- Department of Physical and Life Sciences, Nevada State College
| | - Taylor Murray
- Department of Physical and Life Sciences, Nevada State College
| | - Payal Patel
- Biology Department, University of Detroit Mercy
| | - Sydney Pechulis
- Department of Physical and Life Sciences, Nevada State College
| | - Architha Raja
- Department of Physical and Life Sciences, Nevada State College
| | | | | | - Niveda Sabu
- Department of Physical and Life Sciences, Nevada State College
| | - Rafael Salazar
- Department of Physical and Life Sciences, Nevada State College
| | | | | | | | - Claudia Torres
- Department of Physical and Life Sciences, Nevada State College
| | - Jade Villalobos
- Department of Physical and Life Sciences, Nevada State College
| | - Joseph Wu
- Biology Department, University of Detroit Mercy
| | - Stacy Zeigler
- Department of Physical and Life Sciences, Nevada State College
| | - Jacob Kagey
- Biology Department, University of Detroit Mercy
| |
Collapse
|
246
|
Evolution of maternal and zygotic mRNA complements in the early Drosophila embryo. PLoS Genet 2018; 14:e1007838. [PMID: 30557299 PMCID: PMC6312346 DOI: 10.1371/journal.pgen.1007838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/31/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023] Open
Abstract
The earliest stages of animal development are controlled by maternally deposited mRNA transcripts and proteins. Once the zygote is able to transcribe its own genome, maternal transcripts are degraded, in a tightly regulated process known as the maternal to zygotic transition (MZT). While this process has been well-studied within model species, we have little knowledge of how the pools of maternal and zygotic transcripts evolve. To characterize the evolutionary dynamics and functional constraints on early embryonic expression, we created a transcriptomic dataset for 14 Drosophila species spanning over 50 million years of evolution, at developmental stages before and after the MZT, and compared our results with a previously published Aedes aegypti developmental time course. We found deep conservation over 250 million years of a core set of genes transcribed only by the zygote. This select group is highly enriched in transcription factors that play critical roles in early development. However, we also identify a surprisingly high level of change in the transcripts represented at both stages over the phylogeny. While mRNA levels of genes with maternally deposited transcripts are more highly conserved than zygotic genes, those maternal transcripts that are completely degraded at the MZT vary dramatically between species. We also show that hundreds of genes have different isoform usage between the maternal and zygotic genomes. Our work suggests that maternal transcript deposition and early zygotic transcription are remarkably dynamic over evolutionary time, despite the widespread conservation of early developmental processes.
Collapse
|
247
|
Halfon MS. Studying Transcriptional Enhancers: The Founder Fallacy, Validation Creep, and Other Biases. Trends Genet 2018; 35:93-103. [PMID: 30553552 DOI: 10.1016/j.tig.2018.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Transcriptional enhancers play a major role in regulating metazoan gene expression. Recent developments in genomics and next-generation sequencing have accelerated and revitalized the study of this important class of sequence elements. Increased interest and attention, however, has also led to troubling trends in the enhancer literature. In this Opinion, I describe some of these issues and show how they arise from shifting and nonuniform enhancer definitions, and genome-era biases. I discuss how they can lead to interpretative errors and an unduly narrow focus on certain aspects of enhancer biology to the potential exclusion of others.
Collapse
Affiliation(s)
- Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, USA; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA; Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY, USA; Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY, USA; Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
248
|
Königer A, Grath S. Transcriptome Analysis Reveals Candidate Genes for Cold Tolerance in Drosophila ananassae. Genes (Basel) 2018; 9:genes9120624. [PMID: 30545157 PMCID: PMC6315829 DOI: 10.3390/genes9120624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
Coping with daily and seasonal temperature fluctuations is a key adaptive process for species to colonize temperate regions all over the globe. Over the past 18,000 years, the tropical species Drosophila ananassae expanded its home range from tropical regions in Southeast Asia to more temperate regions. Phenotypic assays of chill coma recovery time (CCRT) together with previously published population genetic data suggest that only a small number of genes underlie improved cold hardiness in the cold-adapted populations. We used high-throughput RNA sequencing to analyze differential gene expression before and after exposure to a cold shock in cold-tolerant lines (those with fast chill coma recovery, CCR) and cold-sensitive lines (slow CCR) from a population originating from Bangkok, Thailand (the ancestral species range). We identified two candidate genes with a significant interaction between cold tolerance and cold shock treatment: GF14647 and GF15058. Further, our data suggest that selection for increased cold tolerance did not operate through the increased activity of heat shock proteins, but more likely through the stabilization of the actin cytoskeleton and a delayed onset of apoptosis.
Collapse
Affiliation(s)
- Annabella Königer
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
249
|
Snoeck S, Wybouw N, Van Leeuwen T, Dermauw W. Transcriptomic Plasticity in the Arthropod Generalist Tetranychus urticae Upon Long-Term Acclimation to Different Host Plants. G3 (BETHESDA, MD.) 2018; 8:3865-3879. [PMID: 30333191 PMCID: PMC6288829 DOI: 10.1534/g3.118.200585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites.
Collapse
Affiliation(s)
- Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 Amsterdam, Noord-Holland, the Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| |
Collapse
|
250
|
Korunes KL, Noor MAF. Pervasive gene conversion in chromosomal inversion heterozygotes. Mol Ecol 2018; 28:1302-1315. [PMID: 30387889 DOI: 10.1111/mec.14921] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Chromosomal inversions shape recombination landscapes, and species differing by inversions may exhibit reduced gene flow in these regions of the genome. Though single crossovers within inversions are not usually recovered from inversion heterozygotes, the recombination barrier imposed by inversions is nuanced by noncrossover gene conversion. Here, we provide a genomewide empirical analysis of gene conversion rates both within species and in species hybrids. We estimate that gene conversion occurs at a rate of 1 × 10-5 to 2.5 × 10-5 converted sites per bp per generation in experimental crosses within Drosophila pseudoobscura and between D. pseudoobscura and its naturally hybridizing sister species D. persimilis. This analysis is the first direct empirical assessment of gene conversion rates within inversions of a species hybrid. Our data show that gene conversion rates in interspecies hybrids are at least as high as within-species estimates of gene conversion rates, and gene conversion occurs regularly within and around inverted regions of species hybrids, even near inversion breakpoints. We also found that several gene conversion events appeared to be mitotic rather than meiotic in origin. Finally, we observed that gene conversion rates are higher in regions of lower local sequence divergence, yet our observed gene conversion rates in more divergent inverted regions were at least as high as in less divergent collinear regions. Given our observed high rates of gene conversion despite the sequence differentiation between species, especially in inverted regions, gene conversion has the potential to reduce the efficacy of inversions as barriers to recombination over evolutionary time.
Collapse
|