201
|
Taylor MJ, Robertson A, Keller AE, Sato J, Urbain C, Pang EW. Inhibition in the face of emotion: Characterization of the spatial-temporal dynamics that facilitate automatic emotion regulation. Hum Brain Mapp 2018; 39:2907-2916. [PMID: 29573366 DOI: 10.1002/hbm.24048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/16/2018] [Accepted: 03/07/2018] [Indexed: 01/23/2023] Open
Abstract
Emotion regulation mediates socio-cognitive functions and is essential for interactions with others. The capacity to automatically inhibit responses to emotional stimuli is an important aspect of emotion regulation; the underlying neural mechanisms of this ability have been rarely investigated. Forty adults completed a Go/No-go task during magnetoencephalographic (MEG) recordings, where they responded rapidly to either a blue or purple frame which contained angry or happy faces. Subjects responded to the target color in an inhibition (75% Go trials) and a vigilance condition (25% Go trials). As expected, inhibition processes showed early, sustained activation (200-450 ms) in the right inferior frontal gyrus (IFG). Emotion-related inhibition processes showed greater activity with angry faces bilaterally in the orbital-frontal gyri (OFG) starting at 225 ms and temporal poles from 250 ms, with right hemisphere dominance. The presence of happy faces elicited earlier activity in the right OFG. This study demonstrates that the timing of inhibition processes varies with the emotional context and that there is much greater activation in the presence of angry faces. It underscores the importance of the right IFG for inhibition processes, but the OFG in automatic emotion regulation.
Collapse
Affiliation(s)
- Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Amanda Robertson
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Anne E Keller
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Charline Urbain
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Elizabeth W Pang
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
202
|
Affiliation(s)
- David M. Amodio
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychology, New York University, New York, New York
| | - Jeffrey J. Berg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
203
|
Abstract
Body shape cues inferences regarding personality and health, but the neural processes underpinning such inferences remain poorly understood. Across two fMRI experiments, we test the extent to which neural networks associated with body perception and theory-of-mind (ToM) support social inferences based on body shape. Participants observed obese, muscular, and slim bodies that cued distinct social inferences as revealed in behavioural pilot experiments. To investigate judgment intentionality, the first fMRI experiment required participants to detect repeat presentations of bodies, whereas in fMRI Experiment 2 participants intentionally formed an impression. Body and ToM networks were localized using independent functional localisers. Experiment 1 revealed no differential network engagement for muscular or obese compared to slim bodies. By contrast, in Experiment 2, compared to slim bodies, forming impressions of muscular bodies engaged the body-network more, whereas the ToM-network was engaged more when forming impressions of obese bodies. These results demonstrate that social judgments based on body shape do not rely on a single neural mechanism, but rather on multiple mechanisms that are separately sensitive to body fat and muscularity. Moreover, dissociable responses are only apparent when intentionally forming an impression. Thus, these experiments show how segregated networks operate to extract socially-relevant information cued by body shape.
Collapse
Affiliation(s)
- Inez M Greven
- a Wales Institute for Cognitive Neuroscience, School of Psychology , Bangor University , Bangor , Gwynedd , Wales, UK
| | - Paul E Downing
- a Wales Institute for Cognitive Neuroscience, School of Psychology , Bangor University , Bangor , Gwynedd , Wales, UK
| | - Richard Ramsey
- a Wales Institute for Cognitive Neuroscience, School of Psychology , Bangor University , Bangor , Gwynedd , Wales, UK
| |
Collapse
|
204
|
Meijboom R, Steketee RME, Ham LS, van der Lugt A, van Swieten JC, Smits M. Differential Hemispheric Predilection of Microstructural White Matter and Functional Connectivity Abnormalities between Respectively Semantic and Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2018; 56:789-804. [PMID: 28059782 DOI: 10.3233/jad-160564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD), subtypes of frontotemporal dementia, are characterized by distinct clinical symptoms and neuroimaging features, with predominant left temporal grey matter (GM) atrophy in SD and bilateral or right frontal GM atrophy in bvFTD. Such differential hemispheric predilection may also be reflected by other neuroimaging features, such as brain connectivity. This study investigated white matter (WM) microstructure and functional connectivity differences between SD and bvFTD, focusing on the hemispheric predilection of these differences. Eight SD and 12 bvFTD patients, and 17 controls underwent diffusion tensor imaging and resting state functional MRI at 3T. Whole-brain WM microstructure was assessed to determine distinct WM tracts affected in SD and bvFTD. For these tracts, diffusivity measures and lateralization indices were calculated. Functional connectivity was established for GM regions affected in early stage SD or bvFTD. Results of a direct comparison between SD and bvFTD are reported. Whole-brain WM microstructure abnormalities were more pronounced in the left hemisphere in SD and bilaterally- with a slight predilection for the right- in bvFTD. Lateralization of tract-specific abnormalities was seen in SD only, toward the left hemisphere. Functional connectivity of disease-specific regions was mainly decreased bilaterally in SD and in the right hemisphere in bvFTD. SD and bvFTD show WM microstructure and functional connectivity abnormalities in different regions, that are respectively more pronounced in the left hemisphere in SD and in the right hemisphere in bvFTD. This indicates differential hemispheric predilection of brain connectivity abnormalities between SD and bvFTD.
Collapse
Affiliation(s)
- Rozanna Meijboom
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Leontine S Ham
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| |
Collapse
|
205
|
Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:554-576. [PMID: 28168598 PMCID: PMC5403860 DOI: 10.3758/s13415-017-0497-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of teenagers’ key developmental tasks is to engage in new and meaningful relationships with peers and adults outside the family context. Attachment-derived expectations about the self and others in terms of internal attachment working models have the potential to shape such social reorientation processes critically and thereby influence adolescents’ social-emotional development and social integration. Because the neural underpinnings of this developmental task remain largely unknown, we sought to investigate them by functional magnetic resonance imaging. We asked n = 44 adolescents (ages 12.01–18.84 years) to evaluate positive and negative adjectives regarding either themselves or a close other during an adapted version of the well-established self-other trait-evaluation task. As measures of attachment, we obtained scores reflecting participants’ positive versus negative attachment-derived self- and other-models by means of the Relationship Questionnaire. We controlled for possible confounding factors by also obtaining scores reflecting internalizing/externalizing problems, schizotypy, and borderline symptomatology. Our results revealed that participants with a more negative attachment-derived self-model showed increased brain activity during positive and negative adjective evaluation regarding the self, but decreased brain activity during negative adjective evaluation regarding a close other, in bilateral amygdala/parahippocampus, bilateral anterior temporal pole/anterior superior temporal gyrus, and left dorsolateral prefrontal cortex. These findings suggest that a low positivity of the self-concept characteristic for the attachment anxiety dimension may influence neural information processing, but in opposite directions when it comes to self- versus (close) other-representations. We discuss our results in the framework of attachment theory and regarding their implications especially for adolescent social-emotional development and social integration.
Collapse
|
206
|
Neural correlates of three cognitive processes involved in theory of mind and discourse comprehension. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:273-283. [DOI: 10.3758/s13415-018-0568-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
207
|
Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The Temporal Pole Top-Down Modulates the Ventral Visual Stream During Social Cognition. Cereb Cortex 2018; 27:777-792. [PMID: 26604273 DOI: 10.1093/cercor/bhv226] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The temporal pole (TP) has been associated with diverse functions of social cognition and emotion processing. Although the underlying mechanism remains elusive, one possibility is that TP acts as domain-general hub integrating socioemotional information. To test this, 26 participants were presented with 60 empathy-evoking film clips during fMRI scanning. The film clips were preceded by a linguistic sad or neutral context and half of the clips were accompanied by sad music. In line with its hypothesized role, TP was involved in the processing of sad context and furthermore tracked participants' empathic concern. To examine the neuromodulatory impact of TP, we applied nonlinear dynamic causal modeling to a multisensory integration network from previous work consisting of superior temporal gyrus (STG), fusiform gyrus (FG), and amygdala, which was extended by an additional node in the TP. Bayesian model comparison revealed a gating of STG and TP on fusiform-amygdalar coupling and an increase of TP to FG connectivity during the integration of contextual information. Moreover, these backward projections were strengthened by emotional music. The findings indicate that during social cognition, TP integrates information from different modalities and top-down modulates lower-level perceptual areas in the ventral visual stream as a function of integration demands.
Collapse
Affiliation(s)
- Corinna Pehrs
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany
| | - Jamil Zaki
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Lorna H Schlochtermeier
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany
| | - Arthur M Jacobs
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany
| | - Lars Kuchinke
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany.,Department of Psychology, Experimental Psychology and Methods, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
208
|
Brooks JA, Freeman JB. Neuroimaging of person perception: A social-visual interface. Neurosci Lett 2017; 693:40-43. [PMID: 29275186 DOI: 10.1016/j.neulet.2017.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
The visual system is able to extract an enormous amount of socially relevant information from the face, including social categories, personality traits, and emotion. While facial features may be directly tied to certain perceptions, emerging research suggests that top-down social cognitive factors (e.g., stereotypes, social-conceptual knowledge, prejudice) considerably influence and shape the perceptual process. The rapid integration of higher-order social cognitive processes into visual perception can give rise to systematic biases in face perception and may potentially act as a mediating factor for intergroup behavioral and evaluative biases. Drawing on neuroimaging evidence, we review the ways that top-down social cognitive factors shape visual perception of facial features. This emerging work in social and affective neuroscience builds upon work on predictive coding and perceptual priors in cognitive neuroscience and visual cognition, suggesting domain-general mechanisms that underlie a social-visual interface through which social cognition affects visual perception.
Collapse
Affiliation(s)
- Jeffrey A Brooks
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, United States.
| | - Jonathan B Freeman
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, United States.
| |
Collapse
|
209
|
Matsunaga M, Kawamichi H, Umemura T, Hori R, Shibata E, Kobayashi F, Suzuki K, Ishii K, Ohtsubo Y, Noguchi Y, Ochi M, Yamasue H, Ohira H. Neural and Genetic Correlates of the Social Sharing of Happiness. Front Neurosci 2017; 11:718. [PMID: 29311795 PMCID: PMC5742108 DOI: 10.3389/fnins.2017.00718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/08/2017] [Indexed: 01/18/2023] Open
Abstract
Happiness is regarded as one of the most fundamental human goals. Given recent reports that positive feelings are contagious (e.g., the presence of a happy person enhances others' happiness) because of the human ability to empathize (i.e., sharing emotions), empathic ability may be a key factor in increasing one's own subjective level of happiness. Based on previous studies indicating that a single nucleotide polymorphism in the serotonin 2A receptor gene [HTR2A rs6311 guanine (G) vs. adenine (A)] is associated with sensitivity to emotional stimuli and several mental disorders such as depression, we predicted that the polymorphism might be associated with the effect of sharing happiness. To elucidate the neural and genetic correlates of the effect of sharing happiness, we first performed functional magnetic resonance imaging (fMRI) during a “happy feelings” evocation task (emotional event imagination task), during which we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend experiencing a positive-valence event (presence or absence). We recruited young adult women for this fMRI study because empathic ability may be higher in women than in men. Participants felt happier (p < 0.01) and the mentalizing/theory-of-mind network, which spans the medial prefrontal cortex, temporoparietal junction, temporal poles, and precuneus, was significantly more active (p < 0.05) in the presence condition than in the absence condition regardless of event valence. Moreover, participants with the GG (p < 0.01) and AG (p < 0.05) genotypes of HTR2A experienced happier feelings as well as greater activation of a part of the mentalizing/theory-of-mind network (p < 0.05) during empathy for happiness (neutral/presence condition) than those with the AA genotype. In a follow-up study with a vignette-based questionnaire conducted in a relatively large sample, male and female participants were presented with the same imagined events wherein their valence and the presence of a friend were manipulated. Results showed genetic differences in happiness-related empathy regardless of sex (p < 0.05). Findings suggest that HTR2A polymorphisms are associated with the effect of sharing happiness by modulating the activity of the mentalizing/theory-of-mind network.
Collapse
Affiliation(s)
- Masahiro Matsunaga
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroaki Kawamichi
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomohiro Umemura
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Reiko Hori
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Eiji Shibata
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Fumio Kobayashi
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kohta Suzuki
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Keiko Ishii
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Yohsuke Ohtsubo
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Misaki Ochi
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Ohira
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
210
|
Dolcos F, Katsumi Y, Weymar M, Moore M, Tsukiura T, Dolcos S. Emerging Directions in Emotional Episodic Memory. Front Psychol 2017; 8:1867. [PMID: 29255432 PMCID: PMC5723010 DOI: 10.3389/fpsyg.2017.01867] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Building upon the existing literature on emotional memory, the present review examines emerging evidence from brain imaging investigations regarding four research directions: (1) Social Emotional Memory, (2) The Role of Emotion Regulation in the Impact of Emotion on Memory, (3) The Impact of Emotion on Associative or Relational Memory, and (4) The Role of Individual Differences in Emotional Memory. Across these four domains, available evidence demonstrates that emotion- and memory-related medial temporal lobe brain regions (amygdala and hippocampus, respectively), together with prefrontal cortical regions, play a pivotal role during both encoding and retrieval of emotional episodic memories. This evidence sheds light on the neural mechanisms of emotional memories in healthy functioning, and has important implications for understanding clinical conditions that are associated with negative affective biases in encoding and retrieving emotional memories.
Collapse
Affiliation(s)
- Florin Dolcos
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Neuroscience Program, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Yuta Katsumi
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Mathias Weymar
- Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Matthew Moore
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Takashi Tsukiura
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Sanda Dolcos
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| |
Collapse
|
211
|
Reilly M, Desai RH. Effects of semantic neighborhood density in abstract and concrete words. Cognition 2017; 169:46-53. [PMID: 28818790 PMCID: PMC5612894 DOI: 10.1016/j.cognition.2017.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/15/2022]
Abstract
Concrete and abstract words are thought to differ along several psycholinguistic variables, such as frequency and emotional content. Here, we consider another variable, semantic neighborhood density, which has received much less attention, likely because semantic neighborhoods of abstract words are difficult to measure. Using a corpus-based method that creates representations of words that emphasize featural information, the current investigation explores the relationship between neighborhood density and concreteness in a large set of English nouns. Two important observations emerge. First, semantic neighborhood density is higher for concrete than for abstract words, even when other variables are accounted for, especially for smaller neighborhood sizes. Second, the effects of semantic neighborhood density on behavior are different for concrete and abstract words. Lexical decision reaction times are fastest for words with sparse neighborhoods; however, this effect is stronger for concrete words than for abstract words. These results suggest that semantic neighborhood density plays a role in the cognitive and psycholinguistic differences between concrete and abstract words, and should be taken into account in studies involving lexical semantics. Furthermore, the pattern of results with the current feature-based neighborhood measure is very different from that with associatively defined neighborhoods, suggesting that these two methods should be treated as separate measures rather than two interchangeable measures of semantic neighborhoods.
Collapse
Affiliation(s)
- Megan Reilly
- University of South Carolina, 220 Discovery I, 915 Greene St., Columbia, SC 29208, United States
| | - Rutvik H Desai
- University of South Carolina, 220 Discovery I, 915 Greene St., Columbia, SC 29208, United States.
| |
Collapse
|
212
|
Belfi AM, Kasdan A, Tranel D. Anomia for musical entities. APHASIOLOGY 2017; 33:382-404. [PMID: 31031508 PMCID: PMC6481654 DOI: 10.1080/02687038.2017.1409871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/21/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Previous work has investigated extensively the neuroanatomical correlates of lexical retrieval for words for concrete entities. Musical entities, such as musical instruments, are often included in studies of category-specific naming deficits, but have rarely been the focus of such work. AIMS This article reviews a program of research investigating the neuroanatomical basis for lexical retrieval of words for unique (i.e., melodies) and non-unique (i.e., musical instruments) musical entities. MAIN CONTRIBUTION We begin by reporting findings on the retrieval of words for unique musical entities, including musical melodies. We then consider work focusing on retrieval of words for non-unique musical entities, specifically musical instruments. We highlight similarities between the two lines of work, and then report results from new analyses including direct comparisons between the two. These comparisons suggest that impairments in naming musical melodies and in naming musical instruments are both associated with damage to the left temporal pole (LTP). However, musical instrument naming appears to rely on a more distributed set of brain regions, possibly including those relating to sensorimotor interactions with such instruments, whereas melody naming relies more exclusively on the left temporal pole. CONCLUSIONS Retrieval of names for musical melodies appears to rely on similar neuroanatomical correlates as for other proper nouns, namely the LTP. Musical instrument naming seems to rely on a broader network of regions, including the LTP and sensorimotor areas. Overall, melody naming seems to coincide with naming of other proper nouns, while musical instrument naming appears distinct from other categories of non-unique items.
Collapse
Affiliation(s)
- Amy M Belfi
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003
| | - Anna Kasdan
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003
| | - Daniel Tranel
- Department of Neurology, University of Iowa Carver College of Medicine, 2155 RCP, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, W311 Seashore Hall, Iowa City, Iowa, USA
| |
Collapse
|
213
|
Akimoto Y, Takahashi H, Gunji A, Kaneko Y, Asano M, Matsuo J, Ota M, Kunugi H, Hanakawa T, Mazuka R, Kamio Y. Alpha band event-related desynchronization underlying social situational context processing during irony comprehension: A magnetoencephalography source localization study. BRAIN AND LANGUAGE 2017; 175:42-46. [PMID: 28963910 DOI: 10.1016/j.bandl.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Irony comprehension requires integration of social contextual information. Previous studies have investigated temporal aspects of irony processing and its neural substrates using psychological/electroencephalogram or functional magnetic resonance imaging methods, but have not clarified the temporospatial neural mechanisms of irony comprehension. Therefore, we used magnetoencephalography to investigate the neural generators of alpha-band (8-13Hz) event-related desynchronization (ERD) occurring from 600 to 900ms following the onset of a critical sentence at which social situational contexts activated ironic representation. We found that the right anterior temporal lobe, which is involved in processing social knowledge and evaluating others' intentions, exhibited stronger alpha ERD following an ironic statement than following a literal statement. We also found that alpha power in the left anterior temporal lobe correlated with the participants' communication abilities. These results elucidate the temporospatial neural mechanisms of language comprehension in social contexts, including non-literal processing.
Collapse
Affiliation(s)
- Yoritaka Akimoto
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Hidetoshi Takahashi
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan
| | - Atsuko Gunji
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan; College of Education and Human Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8502, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan
| | - Michiko Asano
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8502, Japan
| | - Miho Ota
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8502, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan
| | - Reiko Mazuka
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yoko Kamio
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan
| |
Collapse
|
214
|
Coad BM, Postans M, Hodgetts CJ, Muhlert N, Graham KS, Lawrence AD. Structural connections support emotional connections: Uncinate Fasciculus microstructure is related to the ability to decode facial emotion expressions. Neuropsychologia 2017; 145:106562. [PMID: 29122609 PMCID: PMC7534036 DOI: 10.1016/j.neuropsychologia.2017.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/22/2017] [Accepted: 11/04/2017] [Indexed: 12/19/2022]
Abstract
The Uncinate Fasciculus (UF) is an association fibre tract connecting regions in the frontal and anterior temporal lobes. UF disruption is seen in several disorders associated with impaired social behaviour, but its functional role is unclear. Here we set out to test the hypothesis that the UF is important for facial expression processing, an ability fundamental to adaptive social behaviour. In two separate experiments in healthy adults, we used high-angular resolution diffusion-weighted imaging (HARDI) and constrained spherical deconvolution (CSD) tractography to virtually dissect the UF, plus a control tract (the corticospinal tract (CST)), and quantify, via fractional anisotropy (FA), individual differences in tract microstructure. In Experiment 1, participants completed the Reading the Mind in the Eyes Task (RMET), a well-validated assay of facial expression decoding. In Experiment 2, a different set of participants completed the RMET, plus an odd-emotion-out task of facial emotion discrimination. In both experiments, participants also completed a control odd-identity-out facial identity discrimination task. In Experiment 1, FA of the right-, but not the left-hemisphere, UF was significantly correlated with performance on the RMET task, specifically for emotional, but not neutral expressions. UF FA was not significantly correlated with facial identity discrimination performance. In Experiment 2, FA of the right-, but not left-hemisphere, UF was again significantly correlated with performance on emotional items from the RMET, together with performance on the facial emotion discrimination task. Again, no significant association was found between UF FA and facial identity discrimination performance. Our findings highlight the contribution of right-hemisphere UF microstructure to inter-individual variability in the ability to decode facial emotion expressions, and may explain why disruption of this pathway affects social behaviour. We studied white matter microstructure correlates of facial emotion decoding skills. Focused on the role of a key limbic tract, the Uncinate Fasciculus (UF). Right UF microstructure linked to facial expression decoding skills. UF microstructure not related to facial identity discrimination skills. Right UF has a distinct role in the processing of facial expressions of emotion.
Collapse
Affiliation(s)
- Bethany M Coad
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Nils Muhlert
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK.
| |
Collapse
|
215
|
van der Cruijsen R, Peters S, Crone E. Neural correlates of evaluating self and close-other in physical, academic and prosocial domains. Brain Cogn 2017; 118:45-53. [DOI: 10.1016/j.bandc.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
|
216
|
Rubin DC, Li D, Hall SA, Kragel PA, Berntsen D. Taking tests in the magnet: Brain mapping standardized tests. Hum Brain Mapp 2017; 38:5706-5725. [PMID: 28833940 PMCID: PMC5779860 DOI: 10.1002/hbm.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
Standardized psychometric tests are sophisticated, well-developed, and consequential instruments; test outcomes are taken as facts about people that impact their lives in important ways. As part of an initial demonstration that human brain mapping techniques can add converging neural-level evidence to understanding standardized tests, our participants completed items from standardized tests during an fMRI scan. We compared tests for diagnosing posttraumatic stress disorder (PTSD) and the correlated measures of Neuroticism, Attachment, and Centrality of Event to a general-knowledge baseline test. Twenty-three trauma-exposed participants answered 20 items for each of our five tests in each of the three runs for a total of 60 items per test. The tests engaged different neural processes; which test a participant was taking was accurately predicted from other participants' brain activity. The novelty of the application precluded specific anatomical predictions; however, the interpretation of activated regions using meta-analyses produced encouraging results. For instance, items on the Attachment test engaged regions shown to be more active for tasks involving judgments of others than judgments of the self. The results are an initial demonstration of a theoretically and practically important test-taking neuroimaging paradigm and suggest specific neural processes in answering PTSD-related tests. Hum Brain Mapp 38:5706-5725, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David C. Rubin
- Department of Psychology & NeuroscienceDuke UniversityDurhamNorth Carolina
- Center on Autobiographical Memory ResearchAarhus UniversityDenmark
| | - Dawei Li
- Department of Psychology & NeuroscienceDuke UniversityDurhamNorth Carolina
| | - Shana A. Hall
- Department of Psychology & NeuroscienceDuke UniversityDurhamNorth Carolina
| | - Philip A. Kragel
- Institute of Cognitive Science, University of Colorado BoulderBoulderColorado
| | - Dorthe Berntsen
- Center on Autobiographical Memory ResearchAarhus UniversityDenmark
| |
Collapse
|
217
|
Greven IM, Ramsey R. Neural network integration during the perception of in-group and out-group members. Neuropsychologia 2017; 106:225-235. [DOI: 10.1016/j.neuropsychologia.2017.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023]
|
218
|
Geng X, Hu Y, Gu H, Salmeron BJ, Adinoff B, Stein EA, Yang Y. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome. Brain 2017; 140:1513-1524. [PMID: 28334915 DOI: 10.1093/brain/awx036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
Abstract
While chronic cocaine use is associated with abnormalities in both brain structure and function within and interactions between regions, previous studies have been limited to interrogating structure and function independently, and the detected neural differences have not been applied to independent samples to assess the clinical relevance of results. We investigated consequences of structural differences on resting-state functional connectivity in cocaine addiction and tested whether resting-state functional connectivity of the identified circuits predict relapse in an independent cohort. Subjects included 64 non-treatment-seeking cocaine users (NTSCUs) and 67 healthy control subjects and an independent treatment-completed cohort (n = 45) of cocaine-dependent individuals scanned at the end of a 30-day residential treatment programme. Differences in cortical thickness and related resting-state functional connectivity between NTSCUs and healthy control subjects were identified. Survival analysis, applying cortical thickness of the identified regions, resting-state functional connectivity of the identified circuits and clinical characteristics to the treatment cohort, was used to predict relapse. Lower cortical thickness in bilateral insula and higher thickness in bilateral temporal pole were found in NTSCUs versus healthy control subjects. Whole brain resting-state functional connectivity analyses with these four different anatomical regions as seeds revealed eight weaker circuits including within the salience network (insula seeds) and between temporal pole and elements of the default mode network in NTSCUs. Applying these circuits and clinical characteristics to the independent cocaine-dependent treatment cohort, functional connectivity between right temporal pole and medial prefrontal cortex, combined with years of education, predicted relapse status at 150 days with 88% accuracy. Deficits in the salience network suggest an impaired ability to process physiologically salient events, while abnormalities in a temporal pole-medial prefrontal cortex circuit might speak to the social-emotional functional alterations in cocaine addiction. The involvement of the temporal pole-medial prefrontal cortex circuit in a model highly predictive of relapse highlights the importance of social-emotional functions in cocaine dependence, and provides a potential underlying neural target for therapeutic interventions, and for identifying those at high risk of relapse.
Collapse
Affiliation(s)
- Xiujuan Geng
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.,Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective Neuroscience, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Yuzheng Hu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Bryon Adinoff
- VA North Texas Health Care System, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
219
|
Mundy P. A review of joint attention and social-cognitive brain systems in typical development and autism spectrum disorder. Eur J Neurosci 2017; 47:497-514. [DOI: 10.1111/ejn.13720] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Peter Mundy
- Lisa Capps Professor of Neurodevelopmental Disorders and Education; School of Education & MIND Institute; University of California at Davis; One Shields Ave. Davis CA 95616 USA
| |
Collapse
|
220
|
Brédart S. The cognitive psychology and neuroscience of naming people. Neurosci Biobehav Rev 2017; 83:145-154. [PMID: 29038031 DOI: 10.1016/j.neubiorev.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
The use of proper names enables us to designate entities, including people, at a very specific level of categorization: the unique entity or the individual. The paper presents a general overview of psychological/cognitive and neuroscientific studies that have compared the production of proper names, in particular people's names, with the production of common nouns during the last thirty years. The search for specific brain correlates of proper naming included single-case and group studies of patients with brain lesions, and studies utilizing functional neuroimaging or brain electrical stimulation with healthy participants. These studies have led neuroscientists to hypothesize that the recall of proper names involves a rather complex network including mainly left frontal and temporal regions. Behavioural evidence supports the view that proper names are more difficult to recall than common names, and scientists have proposed different explanations for this relative difficulty. Finally, several new directions for future research are proposed to improve our understanding of both cognitive processes and their brain correlates involved during proper name recall.
Collapse
Affiliation(s)
- Serge Brédart
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
221
|
The female advantage: sex as a possible protective factor against emotion recognition impairment following traumatic brain injury. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 16:866-75. [PMID: 27245826 DOI: 10.3758/s13415-016-0437-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although moderate to severe traumatic brain injury (TBI) leads to facial affect recognition impairments in up to 39% of individuals, protective and risk factors for these deficits are unknown. The aim of the current study was to examine the effect of sex on emotion recognition abilities following TBI. We administered two separate emotion recognition tests (one static and one dynamic) to 53 individuals with moderate to severe TBI (females = 28) and 49 demographically matched comparisons (females = 22). We then investigated the presence of a sex-by-group interaction in emotion recognition accuracy. In the comparison group, there were no sex differences. In the TBI group, however, females significantly outperformed males in the dynamic (but not the static) task. Moreover, males (but not females) with TBI performed significantly worse than comparison participants in the dynamic task. Further analysis revealed that sex differences in emotion recognition abilities within the TBI group could not be explained by lesion location, TBI severity, or other neuropsychological variables. These findings suggest that sex may serve as a protective factor for social impairment following TBI and inform clinicians working with TBI as well as research on the neurophysiological correlates of sex differences in social functioning.
Collapse
|
222
|
Subbaraju V, Sundaram S, Narasimhan S. Identification of lateralized compensatory neural activities within the social brain due to autism spectrum disorder in adolescent males. Eur J Neurosci 2017; 47:631-642. [PMID: 28661076 DOI: 10.1111/ejn.13634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022]
Abstract
Socio-behavioral impairments are important characteristics of autism spectrum disorders (ASD) and MRI-based studies are pursued to identify a neurobiological basis behind these conditions. This paper presents an MRI-based study undertaken to (i) identify the differences in brain activities due to ASD, (ii) verify whether such differences exist within the 'social brain' circuit which is hypothesized to be responsible for social functions, and (iii) uncover potential compensatory mechanisms within the identified differences in brain activities. In this study, a whole-brain voxel-wise analysis is performed using resting-state fMRI data from 598 adolescent males, that is openly available from the ABIDE consortium. A new method is developed, which can (i) extract the discriminative brain activities, that provide high separability between the blood oxygenation time-series signals from ASD and neurotypical populations, (ii) select the activities that are relevant to ASD by evaluating the correlation between the separability and traditional severity scores, and (iii) map the spatial pattern of regions responsible for generating the discriminative activities. The results show that the most discriminative brain activities occur within a subset of the social brain that is involved with affective aspects of social processing, thereby supporting the idea of the social brain and also its fractionalization in ASD. Further, it has also been found that the diminished activities in the posterior cingulate area are potentially compensated by enhanced activities in the ventromedial prefrontal and anterior temporal areas within the social brain. Hemispherical lateralization is also observed on such compensatory activities.
Collapse
Affiliation(s)
- Vigneshwaran Subbaraju
- Computational Intelligence Laboratory, School of Computer Science and Engineering, Nanyang Technological University, Blk N4, #B1a-02, Nanyang Avenue, Singapore, 639798, Singapore
| | - Suresh Sundaram
- Computational Intelligence Laboratory, School of Computer Science and Engineering, Nanyang Technological University, Blk N4, #B1a-02, Nanyang Avenue, Singapore, 639798, Singapore
| | - Sundararajan Narasimhan
- Computational Intelligence Laboratory, School of Computer Science and Engineering, Nanyang Technological University, Blk N4, #B1a-02, Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
223
|
Mossad SI, Smith ML, Pang EW, Taylor MJ. Neural correlates of "Theory of Mind" in very preterm born children. Hum Brain Mapp 2017; 38:5577-5589. [PMID: 28766907 DOI: 10.1002/hbm.23750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 11/11/2022] Open
Abstract
Very preterm (VPT) birth (<32 weeks' gestational age) has been implicated in social-cognitive deficits including Theory of Mind (ToM); the ability to attribute mental states to others and understand that those beliefs can differ from one's own or reality. The neural bases for ToM deficits in VPT born children have not been examined. We used magnetoencephalography (MEG) for its excellent spatial and temporal resolution to determine the neural underpinnings of ToM in 24 VPT and 24 full-term born (FT) children (7-13 years). VPT children performed more poorly on neuropsychological measures of ToM but not inhibition. In the MEG task, both FT children and VPT children recruited regions involved in false belief processing such as the rIFG (VPT: 275-350 ms, FT: 250-375 ms) and left inferior temporal gyrus (VPT: 375-450 ms, FT: 325-375 ms) and right fusiform gyrus (VPT: 150-200 ms, FT: 175-250 ms). The rIPL (included in the temporal-parietal junction) was recruited in FT children (475-575 ms) and the lTPJ in VPT children (500-575 ms). However, activations in all regions were reduced in the VPT compared to the FT group. We suggest that with increasing social-cognitive demands such as varying the type of scenarios in the standardized measure of ToM, reduced activations in the rIFG and TPJ in the VPT group may reflect the decreased performance. With access to both spatial and temporal information, we discuss the role of domain general and specific regions of the ToM network in both groups. Hum Brain Mapp 38:5577-5589, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth W Pang
- Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
224
|
Moessnang C, Otto K, Bilek E, Schäfer A, Baumeister S, Hohmann S, Poustka L, Brandeis D, Banaschewski T, Tost H, Meyer-Lindenberg A. Differential responses of the dorsomedial prefrontal cortex and right posterior superior temporal sulcus to spontaneous mentalizing. Hum Brain Mapp 2017; 38:3791-3803. [PMID: 28556306 DOI: 10.1002/hbm.23626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/04/2023] Open
Abstract
Previous research suggests a role of the dorsomedial prefrontal cortex (dmPFC) in metacognitive representation of social information, while the right posterior superior temporal sulcus (pSTS) has been linked to social perception. This study targeted these functional roles in the context of spontaneous mentalizing. An animated shapes task was presented to 46 subjects during functional magnetic resonance imaging. Stimuli consisted of video clips depicting animated shapes whose movement patterns prompt spontaneous mentalizing or simple intention attribution. Based on their differential response during spontaneous mentalizing, both regions were characterized with respect to their task-dependent connectivity profiles and their associations with autistic traits. Functional network analyses revealed highly localized coupling of the right pSTS with visual areas in the lateral occipital cortex, while the dmPFC showed extensive coupling with instances of large-scale control networks and temporal areas including the right pSTS. Autistic traits were related to mentalizing-specific activation of the dmPFC and to the strength of connectivity between the dmPFC and posterior temporal regions. These results are in good agreement with the hypothesized roles of the dmPFC and right pSTS for metacognitive representation and perception-based processing of social information, respectively, and further inform their implication in social behavior linked to autism. Hum Brain Mapp 38:3791-3803, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Kristina Otto
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Edda Bilek
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Axel Schäfer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH and University of Zurich, Zurich, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
225
|
Urbain C, Sato J, Pang EW, Taylor MJ. The temporal and spatial brain dynamics of automatic emotion regulation in children. Dev Cogn Neurosci 2017; 26:62-68. [PMID: 28527986 PMCID: PMC6987902 DOI: 10.1016/j.dcn.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/01/2022] Open
Abstract
Mechanisms for automatic emotion regulation (AER) are essential during childhood as they offset the impact of unwanted or negative emotional responses without drawing on limited attentional resources. Despite the importance of AER in improving the efficiency and flexibility of self-regulation, few research studies have investigated the underlying neurophysiological mechanisms. To fill this gap, we used magnetoencephalography (MEG) to investigate AER-related brain processes in 25 children (∼10 years old) who performed a go/no–go task that included an incidental exposure to faces containing socio-emotional cues. Whole brain results revealed that the inhibition of angry faces (compared with happy faces) was associated with a stronger recruitment of several brain regions from 100 to 425 ms. These activations involved the right angular and occipital gyri from 100 to175 ms, the right orbito-frontal gyrus (OFG) from 250 to 325 ms (pcorr < 0.05), and finally, the left anterior temporal lobe (ATL) from 325 to 425 ms. Our results suggest a specific involvement of these regions in the automatic regulation of negative emotional stimuli in children. In the future, this knowledge may help understand developmental conditions where inhibition impairments are exacerbated by an emotional context.
Collapse
Affiliation(s)
- Charline Urbain
- UR2NF-Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Elizabeth W Pang
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
226
|
Liu ZX, Grady C, Moscovitch M. Effects of Prior-Knowledge on Brain Activation and Connectivity During Associative Memory Encoding. Cereb Cortex 2017; 27:1991-2009. [PMID: 26941384 DOI: 10.1093/cercor/bhw047] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forming new associations is a fundamental process of building our knowledge system. At the brain level, how prior-knowledge influences acquisition of novel associations has not been thoroughly investigated. Based on recent cognitive neuroscience literature on multiple-component memory processing, we hypothesize that prior-knowledge triggers additional evaluative, semantic, or episodic-binding processes, mainly supported by the ventromedial prefrontal cortex (vmPFC), anterior temporal pole (aTPL), and hippocampus (HPC), to facilitate new memory encoding. To test this hypothesis, we scanned 20 human participants with functional magnetic resonance imaging (fMRI) while they associated novel houses with famous or nonfamous faces. Behaviorally, we found beneficial effects of prior-knowledge on associative memory. At the brain level, we found that the vmPFC and HPC, as well as the parahippocampal place area (PPA) and fusiform face area, showed stronger activation when famous faces were involved. The vmPFC, aTPL, HPC, and PPA also exhibited stronger activation when famous faces elicited stronger emotions and memories, and when associations were later recollected. Connectivity analyses also suggested that HPC connectivity with the vmPFC plays a more important role in the famous than nonfamous condition. Taken together, our results suggest that prior-knowledge facilitates new associative encoding by recruiting additional perceptual, evaluative, or associative binding processes.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Rotman Research Institute, Baycrest Center.,Applied Psychology and Human Development, OISE
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Center.,Department of Psychology.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Center.,Department of Psychology
| |
Collapse
|
227
|
Abstract
Social behavior is often shaped by the rich storehouse of biographical information that we hold for other people. In our daily life, we rapidly and flexibly retrieve a host of biographical details about individuals in our social network, which often guide our decisions as we navigate complex social interactions. Even abstract traits associated with an individual, such as their political affiliation, can cue a rich cascade of person-specific knowledge. Here, we asked whether the anterior temporal lobe (ATL) serves as a hub for a distributed neural circuit that represents person knowledge. Fifty participants across two studies learned biographical information about fictitious people in a 2-d training paradigm. On day 3, they retrieved this biographical information while undergoing an fMRI scan. A series of multivariate and connectivity analyses suggest that the ATL stores abstract person identity representations. Moreover, this region coordinates interactions with a distributed network to support the flexible retrieval of person attributes. Together, our results suggest that the ATL is a central hub for representing and retrieving person knowledge.
Collapse
|
228
|
Mennella R, Leung RC, Taylor MJ, Dunkley BT. Disconnection from others in autism is more than just a feeling: whole-brain neural synchrony in adults during implicit processing of emotional faces. Mol Autism 2017; 8:7. [PMID: 28316771 PMCID: PMC5351200 DOI: 10.1186/s13229-017-0123-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/16/2017] [Indexed: 01/01/2023] Open
Abstract
Background Socio-emotional difficulties in autism spectrum disorder (ASD) are thought to reflect impaired functional connectivity within the “social brain”. Nonetheless, a whole-brain characterization of the fast responses in functional connectivity during implicit processing of emotional faces in adults with ASD is lacking. Methods The present study used magnetoencephalography to investigate early responses in functional connectivity, as measured by interregional phase synchronization, during implicit processing of angry, neutral and happy faces. The sample (n = 44) consisted of 22 young adults with ASD and 22 age- and sex-matched typically developed (TD) controls. Results Reduced phase-synchrony in the beta band around 300 ms emerged during processing of angry faces in the ASD compared to TD group, involving key areas of the social brain. In the same time window, de-synchronization in the beta band in the amygdala was reduced in the ASD group across conditions. Conclusions This is the first demonstration of atypical global and local synchrony patterns in the social brain in adults with ASD during implicit processing of emotional faces. The present results replicate and substantially extend previous findings on adolescents, highlighting that atypical brain synchrony during processing of socio-emotional stimuli is a hallmark of clinical sequelae in autism. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rocco Mennella
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada.,Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Rachel C Leung
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada.,Department of Psychology, University of Toronto, 100 St. George Street, 4th Floor, Sidney Smith Hall, Toronto, Ontario M5S 3G3 Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada.,Neurosciences & Mental Health, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada.,Department of Medical Imaging, Faculty of Medicine, University of Toronto, 263 McCaul Street - 4th Floor, Toronto, Ontario M5T 1W7 Canada.,Department of Psychology, University of Toronto, 100 St. George Street, 4th Floor, Sidney Smith Hall, Toronto, Ontario M5S 3G3 Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada.,Neurosciences & Mental Health, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada.,Department of Medical Imaging, Faculty of Medicine, University of Toronto, 263 McCaul Street - 4th Floor, Toronto, Ontario M5T 1W7 Canada
| |
Collapse
|
229
|
Reduced White Matter Integrity in Antisocial Personality Disorder: A Diffusion Tensor Imaging Study. Sci Rep 2017; 7:43002. [PMID: 28223713 PMCID: PMC5320449 DOI: 10.1038/srep43002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Emerging neuroimaging research suggests that antisocial personality disorder (ASPD) may be linked to abnormal brain anatomy, but little is known about possible impairments of white matter microstructure in ASPD, as well as their relationship with impulsivity or risky behaviors. In this study, we systematically investigated white matter abnormalities of ASPD using diffusion tensor imaging (DTI) measures: fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). Then, we further investigated their correlations with the scores of impulsivity or risky behaviors. ASPD patients showed decreased FA in multiple major white matter fiber bundles, which connect the fronto-parietal control network and the fronto-temporal network. We also found AD/RD deficits in some additional white matter tracts that were not detected by FA. More interestingly, several regions were found correlated with impulsivity or risky behaviors in AD and RD values, although not in FA values, including the splenium of corpus callosum, left posterior corona radiate/posterior thalamic radiate, right superior longitudinal fasciculus, and left inferior longitudinal fasciculus. These regions can be the potential biomarkers, which would be of great interest in further understanding the pathomechanism of ASPD.
Collapse
|
230
|
Person perception involves functional integration between the extrastriate body area and temporal pole. Neuropsychologia 2017; 96:52-60. [DOI: 10.1016/j.neuropsychologia.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 11/17/2022]
|
231
|
Collins JA, Montal V, Hochberg D, Quimby M, Mandelli ML, Makris N, Seeley WW, Gorno-Tempini ML, Dickerson BC. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain 2017; 140:457-471. [PMID: 28040670 PMCID: PMC5278308 DOI: 10.1093/brain/aww313] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/10/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region's strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Victor Montal
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daisy Hochberg
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Megan Quimby
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Nikos Makris
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - William W Seeley
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
232
|
|
233
|
Likova LT. Addressing long-standing controversies in conceptual knowledge representation in the temporal pole: A cross-modal paradigm. IS&T INTERNATIONAL SYMPOSIUM ON ELECTRONIC IMAGING 2017; 2017:268-272. [PMID: 31423471 PMCID: PMC6697259 DOI: 10.2352/issn.2470-1173.2017.14.hvei-155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Conceptual knowledge allows us to comprehend the multisensory stimulation impinging on our senses. Its representation in the anterior temporal lobe is a subject of considerable debate, with the "enigmatic" temporal pole (TP) being at the center of that debate. The controversial models of the organization of knowledge representation in TP range from unilateral to fully unified bilateral representational systems. To address the multitude of mutually exclusive options, we developed a novel cross-modal approach in a multifactorial brain imaging study of the blind, manipulating the modality (verbal vs pictorial) of both the reception source (reading text/verbal vs images/pictorial) and the expression (writing text/verbal vs drawing/pictorial) of conceptual knowledge. Furthermore, we also varied the level of familiarity. This study is the first to investigate the functional organization of (amodal) conceptual knowledge in TP in the blind, as well as, the first study of drawing based on the conceptual knowledge from memory of sentences delivered through Braille reading. Through this paradigm, we were able to functionally identify two novel subdivisions of the temporal pole - the TPa, at the apex, and the TPdm - dorso-medially. Their response characteristics revealed a complex interplay of non-visual specializations within the temporal pole, with a diversity of excitatory/inhibitory inversions as a function of hemisphere, task-domain and familiarity, which motivate an expanded neurocognitive analysis of conceptual knowledge. The interplay of inter-hemispheric specializations found here accounts for the variety of seemingly conflicting models in previous research for conceptual knowledge representation, reconciling them through the set of factors we have investigated: the two main knowledge domains (verbal and pictorial/sensory-motor) and the two main knowledge processing modes (receptive and expressive), including the level of familiarity as a modifier. Furthermore, the interplay of these factors allowed us to also reveal for the first time a system of complementary symmetries, asymmetries and unexpected anti-symmetries in the TP organization. Thus, taken together these results constitute a unifying explanation of the conflicting models in previous research on conceptual knowledge representation.
Collapse
Affiliation(s)
- Lora T Likova
- Smith-Kettlewell Eye Research Institute, San Francisco, CA USA
| |
Collapse
|
234
|
Spiers HJ, Love BC, Le Pelley ME, Gibb CE, Murphy RA. Anterior Temporal Lobe Tracks the Formation of Prejudice. J Cogn Neurosci 2016; 29:530-544. [PMID: 27800703 DOI: 10.1162/jocn_a_01056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral PFC, dorsomedial PFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial PFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group.
Collapse
Affiliation(s)
| | - Bradley C Love
- University College London.,Allan Turing Institute, London
| | | | | | | |
Collapse
|
235
|
Santillo AF, Lundblad K, Nilsson M, Landqvist Waldö M, van Westen D, Lätt J, Blennow Nordström E, Vestberg S, Lindberg O, Nilsson C. Grey and White Matter Clinico-Anatomical Correlates of Disinhibition in Neurodegenerative Disease. PLoS One 2016; 11:e0164122. [PMID: 27723823 PMCID: PMC5056728 DOI: 10.1371/journal.pone.0164122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/20/2016] [Indexed: 11/30/2022] Open
Abstract
Disinhibition is an important symptom in neurodegenerative diseases. However, the clinico-anatomical underpinnings remain controversial. We explored the anatomical correlates of disinhibition in neurodegenerative disease using the perspective of grey and white matter imaging. Disinhibition was assessed with a neuropsychological test and a caregiver information-based clinical rating scale in 21 patients with prefrontal syndromes due to behavioural variant frontotemporal dementia (n = 12) or progressive supranuclear palsy (n = 9), and healthy controls (n = 25). Cortical thickness was assessed using the Freesurfer software on 3T MRI data. The integrity of selected white matter tracts was determined by the fractional anisotropy (FA) from Diffusion Tensor Imaging. Disinhibition correlated with the cortical thickness of the right parahippocampal gyrus, right orbitofrontal cortex and right insula and the FA of the right uncinate fasciculus and right anterior cingulum. Notably, no relationship was seen with the thickness of ventromedial prefrontal cortex. Our results support an associative model of inhibitory control, distributed in a medial temporal lobe-insular-orbitofrontal network, connected by the intercommunicating white matter tracts. This reconciles some of the divergences among previous studies, but also questions the current conceptualisation of the “prefrontal” syndrome and the central role attributed to the ventromedial prefrontal cortex in inhibitory control.
Collapse
Affiliation(s)
| | - Karl Lundblad
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Markus Nilsson
- Lund University Bioimaging Centre (LBIC), Lund University, Lund, Sweden
| | - Maria Landqvist Waldö
- Geriatric Psychiatry Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Danielle van Westen
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Erik Blennow Nordström
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Susanna Vestberg
- Geriatric Psychiatry Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Psychology, Lund University, Lund, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Christer Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
236
|
Jung J, Cloutman LL, Binney RJ, Lambon Ralph MA. The structural connectivity of higher order association cortices reflects human functional brain networks. Cortex 2016; 97:221-239. [PMID: 27692846 PMCID: PMC5726605 DOI: 10.1016/j.cortex.2016.08.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/24/2016] [Accepted: 08/19/2016] [Indexed: 11/06/2022]
Abstract
Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.
Collapse
Affiliation(s)
- JeYoung Jung
- Neuroscience and Aphasia Research Unit (NARU), School of Biological Sciences, University of Manchester, UK.
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), School of Biological Sciences, University of Manchester, UK
| | - Richard J Binney
- Neuroscience and Aphasia Research Unit (NARU), School of Biological Sciences, University of Manchester, UK; Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Biological Sciences, University of Manchester, UK.
| |
Collapse
|
237
|
The development of social cognition in adolescence: An integrated perspective. Neurosci Biobehav Rev 2016; 70:106-120. [PMID: 27545755 DOI: 10.1016/j.neubiorev.2016.08.016] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
Social cognitive processes are critical in navigating complex social interactions and are associated with a network of brain areas termed the 'social brain'. Here, we describe the development of social cognition, and the structural and functional changes in the social brain during adolescence, a period of life characterised by extensive changes in social behaviour and environments. Neuroimaging and behavioural studies have demonstrated that the social brain and social cognition undergo significant development in human adolescence. Development of social cognition and the social brain are discussed in the context of developments in other neural systems, such as those implicated in motivational-affective and cognitive control processes. Successful transition to adulthood requires the rapid refinement and integration of these processes and many adolescent-typical behaviours, such as peer influence and sensitivity to social exclusion, involve dynamic interactions between these systems. Considering these interactions, and how they vary between individuals and across development, could increase our understanding of adolescent brain and behavioural development.
Collapse
|
238
|
Martin A. GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychon Bull Rev 2016; 23:979-90. [PMID: 25968087 PMCID: PMC5111803 DOI: 10.3758/s13423-015-0842-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed.
Collapse
Affiliation(s)
- Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, Building 10, Room 4C-104, 10 Center Drive MSC 1366, Bethesda, MD, 20892-1366, USA.
| |
Collapse
|
239
|
Moessnang C, Schäfer A, Bilek E, Roux P, Otto K, Baumeister S, Hohmann S, Poustka L, Brandeis D, Banaschewski T, Meyer-Lindenberg A, Tost H. Specificity, reliability and sensitivity of social brain responses during spontaneous mentalizing. Soc Cogn Affect Neurosci 2016; 11:1687-1697. [PMID: 27445211 DOI: 10.1093/scan/nsw098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
The debilitating effects of social dysfunction in many psychiatric disorders prompt the need for systems-level biomarkers of social abilities that can be applied in clinical populations and longitudinal studies. A promising neuroimaging approach is the animated shapes paradigm based on so-called Frith-Happé animations (FHAs) which trigger spontaneous mentalizing with minimal cognitive demands. Here, we presented FHAs during functional magnetic resonance imaging to 46 subjects and examined the specificity and sensitivity of the elicited social brain responses. Test-retest reliability was additionally assessed in 28 subjects within a two-week interval. Specific responses to spontaneous mentalizing were observed in key areas of the social brain with high sensitivity and independently from the variant low-level kinematics of the FHAs. Mentalizing-specific responses were well replicable on the group level, suggesting good-to-excellent cross-sectional reliability [intraclass correlation coefficients (ICCs): 0.40-0.99; dice overlap at Puncorr<0.001: 0.26-1.0]. Longitudinal reliability on the single-subject level was more heterogeneous (ICCs of 0.40-0.79; dice overlap at Puncorr<0.001: 0.05-0.43). Posterior temporal sulcus activation was most reliable, including a robust differentiation between subjects across sessions (72% of voxels with ICC>0.40). These findings encourage the use of FHAs in neuroimaging research across developmental stages and psychiatric conditions, including the identification of biomarkers and pharmacological interventions.
Collapse
Affiliation(s)
- Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Axel Schäfer
- Department of Psychiatry and Psychotherapy, Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Edda Bilek
- Department of Psychiatry and Psychotherapy, Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Paul Roux
- Laboratoire de Sciences Cognitives et Psycholinguistique, UMR 8554, CNRS-ENS-EHESS, Institut d'Étude de la Cognition, Ecole Normale Supérieure, Paris, France.,Service Universitaire de Psychiatrie d'adultes, Centre Hospitalier de Versailles, Le Chesnay, France.,Laboratoire HandiRESP EA4047, Université Versailles Saint Quentin En Yvelines, Versailles, France.,Fondation FondaMental, Créteil, France
| | - Kristina Otto
- Department of Psychiatry and Psychotherapy, Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH and University of Zurich, Zurich, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
240
|
Mellem MS, Jasmin KM, Peng C, Martin A. Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia 2016; 89:217-224. [PMID: 27329686 DOI: 10.1016/j.neuropsychologia.2016.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/17/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
Abstract
The anterior region of the left superior temporal gyrus/superior temporal sulcus (aSTG/STS) has been implicated in two very different cognitive functions: sentence processing and social-emotional processing. However, the vast majority of the sentence stimuli in previous reports have been of a social or social-emotional nature suggesting that sentence processing may be confounded with semantic content. To evaluate this possibility we had subjects read word lists that differed in phrase/constituent size (single words, 3-word phrases, 6-word sentences) and semantic content (social-emotional, social, and inanimate objects) while scanned in a 7T environment. This allowed us to investigate if the aSTG/STS responded to increasing constituent structure (with increased activity as a function of constituent size) with or without regard to a specific domain of concepts, i.e., social and/or social-emotional content. Activity in the left aSTG/STS was found to increase with constituent size. This region was also modulated by content, however, such that social-emotional concepts were preferred over social and object stimuli. Reading also induced content type effects in domain-specific semantic regions. Those preferring social-emotional content included aSTG/STS, inferior frontal gyrus, posterior STS, lateral fusiform, ventromedial prefrontal cortex, and amygdala, regions included in the "social brain", while those preferring object content included parahippocampal gyrus, retrosplenial cortex, and caudate, regions involved in object processing. These results suggest that semantic content affects higher-level linguistic processing and should be taken into account in future studies.
Collapse
Affiliation(s)
- Monika S Mellem
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Kyle M Jasmin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States; Institute of Cognitive Neuroscience, University College London, WC1N 3AR, England
| | - Cynthia Peng
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
241
|
Binder JR, Conant LL, Humphries CJ, Fernandino L, Simons SB, Aguilar M, Desai RH. Toward a brain-based componential semantic representation. Cogn Neuropsychol 2016; 33:130-74. [DOI: 10.1080/02643294.2016.1147426] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
242
|
Panchal H, Paholpak P, Lee G, Carr A, Barsuglia JP, Mather M, Jimenez E, Mendez MF. Neuropsychological and Neuroanatomical Correlates of the Social Norms Questionnaire in Frontotemporal Dementia Versus Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2016; 31:326-32. [PMID: 26646114 PMCID: PMC10852706 DOI: 10.1177/1533317515617722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional neuropsychological batteries may not distinguish early behavioral variant frontotemporal dementia (bvFTD) from Alzheimer's disease (AD) without the inclusion of a social behavioral measure. We compared 33 participants, 15 bvFTD, and 18 matched patients with early-onset AD (eAD), on the Social Norms Questionnaire (SNQ), neuropsychological tests and 3-dimensional T1-weighted magnetic resonance imaging (MRI). The analyses included correlations of SNQ results (total score, overendorsement or "overadhere" errors, and violations or "break" errors) with neuropsychological results and tensor-based morphometry regions of interest. Patients with BvFTD had significantly lower SNQ total scores and higher overadhere errors than patients with eAD. On neuropsychological measures, the SNQ total scores correlated significantly with semantic knowledge and the overadhere subscores with executive dysfunction. On MRI analysis, the break subscores significantly correlated with lower volume of lateral anterior temporal lobes (aTL). The results also suggest that endorsement of social norm violations corresponds to the role of the right aTL in social semantic knowledge.
Collapse
Affiliation(s)
- Hemali Panchal
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Department of Neurology, Los Angeles, CA, USA
| | - Pongsatorn Paholpak
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Department of Neurology, Los Angeles, CA, USA Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA, USA Department of Psychiatry, Khon Kaen University, Khon Khaen, Thailand
| | - Grace Lee
- Department of Psychology, School of Behavioral Health, Loma Linda, CA, USA
| | - Andrew Carr
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | | - Michelle Mather
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Department of Neurology, Los Angeles, CA, USA
| | - Elvira Jimenez
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Department of Neurology, Los Angeles, CA, USA Department of Psychiatry & Biobehavioral Sciences, Los Angeles, CA, USA
| | - Mario F Mendez
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Department of Neurology, Los Angeles, CA, USA Department of Psychiatry & Biobehavioral Sciences, Los Angeles, CA, USA
| |
Collapse
|
243
|
Freeman JB, Johnson KL. More Than Meets the Eye: Split-Second Social Perception. Trends Cogn Sci 2016; 20:362-374. [PMID: 27050834 PMCID: PMC5538856 DOI: 10.1016/j.tics.2016.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022]
Abstract
Recent research suggests that visual perception of social categories is shaped not only by facial features but also by higher-order social cognitive processes (e.g., stereotypes, attitudes, goals). Building on neural computational models of social perception, we outline a perspective of how multiple bottom-up visual cues are flexibly integrated with a range of top-down processes to form perceptions, and we identify a set of key brain regions involved. During this integration, 'hidden' social category activations are often triggered which temporarily impact perception without manifesting in explicit perceptual judgments. Importantly, these hidden impacts and other aspects of the perceptual process predict downstream social consequences - from politicians' electoral success to several evaluative biases - independently of the outcomes of that process.
Collapse
Affiliation(s)
| | - Kerri L Johnson
- Department of Communication Studies and Psychology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
244
|
Schneider-Hassloff H, Straube B, Jansen A, Nuscheler B, Wemken G, Witt SH, Rietschel M, Kircher T. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. Neuroimage 2016; 134:671-684. [PMID: 27109357 DOI: 10.1016/j.neuroimage.2016.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION The oxytocin system is involved in human social behavior and social cognition such as attachment, emotion recognition and mentalizing (i.e. the ability to represent mental states of oneself and others). It is shaped by social experiences in early life, especially by parent-infant interactions. The single nucleotid polymorphism rs53576 in the oxytocin receptor (OXTR) gene has been linked to social behavioral phenotypes. METHOD In 195 adult healthy subjects we investigated the interaction of OXTR rs53576 and childhood attachment security (CAS) on the personality traits "adult attachment style" and "alexithymia" (i.e. emotional self-awareness), on brain structure (voxel-based morphometry) and neural activation (fMRI) during an interactive mentalizing paradigm (prisoner's dilemma game; subgroup: n=163). RESULTS We found that in GG-homozygotes, but not in A-allele carriers, insecure childhood attachment is - in adulthood - associated with a) higher attachment-related anxiety and alexithymia, b) higher brain gray matter volume of left amygdala and lower volumes in right superior parietal lobule (SPL), left temporal pole (TP), and bilateral frontal regions, and c) higher mentalizing-related neural activity in bilateral TP and precunei, and right middle and superior frontal gyri. Interaction effects of genotype and CAS on brain volume and/or function were associated with individual differences in alexithymia and attachment-related anxiety. Interactive effects were in part sexually dimorphic. CONCLUSION The interaction of OXTR genotype and CAS modulates adult personality as well as brain structure and function of areas implicated in salience processing and mentalizing. Rs53576 GG-homozygotes are partially more susceptible to childhood attachment experiences than A-allele carriers.
Collapse
Affiliation(s)
- H Schneider-Hassloff
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany.
| | - B Straube
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
| | - A Jansen
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
| | - B Nuscheler
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
| | - G Wemken
- Institute of Psychology, Social Psychology, Philipps University Marburg, Germany
| | - S H Witt
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - M Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Germany
| |
Collapse
|
245
|
Solso S, Xu R, Proudfoot J, Hagler DJ, Campbell K, Venkatraman V, Barnes CC, Ahrens-Barbeau C, Pierce K, Dale A, Eyler L, Courchesne E. Diffusion Tensor Imaging Provides Evidence of Possible Axonal Overconnectivity in Frontal Lobes in Autism Spectrum Disorder Toddlers. Biol Psychiatry 2016; 79:676-84. [PMID: 26300272 PMCID: PMC4699869 DOI: 10.1016/j.biopsych.2015.06.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Theories of brain abnormality in autism spectrum disorder (ASD) have focused on underconnectivity as an explanation for social, language, and behavioral deficits but are based mainly on studies of older autistic children and adults. METHODS In 94 ASD and typical toddlers ages 1 to 4 years, we examined the microstructure (indexed by fractional anisotropy) and volume of axon pathways using in vivo diffusion tensor imaging of fronto-frontal, fronto-temporal, fronto-striatal, and fronto-amygdala axon pathways, as well as posterior contrast tracts. Differences between ASD and typical toddlers in the nature of the relationship of age to these measures were tested. RESULTS Frontal tracts in ASD toddlers displayed abnormal age-related changes with greater fractional anisotropy and volume than normal at younger ages but an overall slower than typical apparent rate of continued development across the span of years. Posterior cortical contrast tracts had few significant abnormalities. CONCLUSIONS Frontal fiber tracts displayed deviant early development and age-related changes that could underlie impaired brain functioning and impact social and communication behaviors in ASD.
Collapse
Affiliation(s)
- Stephanie Solso
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Ronghui Xu
- CTRI, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - James Proudfoot
- CTRI, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Donald J. Hagler
- Department of Radiology, Multimodal Imaging Laboratory, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kathleen Campbell
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Vijay Venkatraman
- Department of Radiology, Multimodal Imaging Laboratory, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cynthia Carter Barnes
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Clelia Ahrens-Barbeau
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Karen Pierce
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Anders Dale
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093,Department of Radiology, Multimodal Imaging Laboratory, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lisa Eyler
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093,Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093,Desert-Pacific Mental Illness Research, Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92161
| | - Eric Courchesne
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla.
| |
Collapse
|
246
|
Bejanin A, Chételat G, Laisney M, Pélerin A, Landeau B, Merck C, Belliard S, de La Sayette V, Eustache F, Desgranges B. Distinct neural substrates of affective and cognitive theory of mind impairment in semantic dementia. Soc Neurosci 2016; 12:287-302. [DOI: 10.1080/17470919.2016.1168314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
247
|
Lewis GJ, Cox SR, Booth T, Muñoz Maniega S, Royle NA, Valdés Hernández M, Wardlaw JM, Bastin ME, Deary IJ. Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure. Soc Cogn Affect Neurosci 2016; 11:1255-61. [PMID: 27013101 PMCID: PMC4967799 DOI: 10.1093/scan/nsw037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023] Open
Abstract
Establishing the neural bases of individual differences in personality has been an enduring topic of interest. However, while a growing literature has sought to characterize grey matter correlates of personality traits, little attention to date has been focused on regional white matter correlates of personality, especially for the personality traits agreeableness, conscientiousness and openness. To rectify this gap in knowledge we used a large sample (n > 550) of older adults who provided data on both personality (International Personality Item Pool) and white matter tract-specific fractional anisotropy (FA) from diffusion tensor MRI. Results indicated that conscientiousness was associated with greater FA in the left uncinate fasciculus (β = 0.17, P < 0.001). We also examined links between FA and the personality meta-trait ‘stability’, which is defined as the common variance underlying agreeableness, conscientiousness, and neuroticism/emotional stability. We observed an association between left uncinate fasciculus FA and stability (β = 0.27, P < 0.001), which fully accounted for the link between left uncinate fasciculus FA and conscientiousness. In sum, these results provide novel evidence for links between regional white matter microstructure and key traits of human personality, specifically conscientiousness and the meta-trait, stability. Future research is recommended to replicate and address the causal directions of these associations.
Collapse
Affiliation(s)
- Gary J Lewis
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Simon R Cox
- Department of Psychology Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Tom Booth
- Department of Psychology Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Natalie A Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Maria Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ian J Deary
- Department of Psychology Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| |
Collapse
|
248
|
Gong M, Yang F, Li S. Reward association facilitates distractor suppression in human visual search. Eur J Neurosci 2016; 43:942-53. [DOI: 10.1111/ejn.13174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/31/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Mengyuan Gong
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health; Peking University; 5 Yiheyuan Road Haidian Beijing 10087 China
- PKU-IDG/McGovern Institute for Brain Research; Peking University; Beijing China
- Key Laboratory of Machine Perception (Ministry of Education); Peking University; Beijing China
| | - Feitong Yang
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health; Peking University; 5 Yiheyuan Road Haidian Beijing 10087 China
- Department of Psychological and Brain Sciences; Johns Hopkins University; Baltimore MD USA
| | - Sheng Li
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health; Peking University; 5 Yiheyuan Road Haidian Beijing 10087 China
- PKU-IDG/McGovern Institute for Brain Research; Peking University; Beijing China
- Key Laboratory of Machine Perception (Ministry of Education); Peking University; Beijing China
| |
Collapse
|
249
|
Kumfor F, Landin-Romero R, Devenney E, Hutchings R, Grasso R, Hodges JR, Piguet O. On the right side? A longitudinal study of left- versus right-lateralized semantic dementia. Brain 2016; 139:986-98. [DOI: 10.1093/brain/awv387] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 01/29/2023] Open
|
250
|
Stewart E, Catroppa C, Lah S. Theory of Mind in Patients with Epilepsy: a Systematic Review and Meta-analysis. Neuropsychol Rev 2016; 26:3-24. [DOI: 10.1007/s11065-015-9313-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
|