201
|
The Regenerative Potential of Amniotic Fluid Stem Cell Extracellular Vesicles: Lessons Learned by Comparing Different Isolation Techniques. Sci Rep 2019; 9:1837. [PMID: 30755672 PMCID: PMC6372651 DOI: 10.1038/s41598-018-38320-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs) mediate anti-apoptotic, pro-angiogenic, and immune-modulatory effects in multiple disease models, such as skeletal muscle atrophy and Alport syndrome. A source of potential variability in EV biological functions is how EV are isolated from parent cells. Currently, a comparative study of different EV isolation strategies using conditioned medium from AFSCs is lacking. Herein, we examined different isolation strategies for AFSC-EVs, using common techniques based on differential sedimentation (ultracentrifugation), solubility (ExoQuick, Total Exosome Isolation Reagent, Exo-PREP), or size-exclusion chromatography (qEV). All techniques isolated AFSC-EVs with typical EV morphology and protein markers. In contrast, AFSC-EV size, protein content, and yield varied depending on the method of isolation. When equal volumes of the different AFSC-EV preparations were used as treatment in a model of lung epithelial injury, we observed a significant variation in how AFSC-EVs were able to protect against cell death. AFSC-EV enhancement of cell survival appeared to be dose dependent, and largely uninfluenced by variation in EV-size distributions, relative EV-purity, or their total protein content. The variation in EV-mediated cell survival obtained with different isolation strategies emphasizes the importance of testing alternative isolation techniques in order to maximize EV regenerative capacity.
Collapse
|
202
|
Visnovitz T, Osteikoetxea X, Sódar BW, Mihály J, Lőrincz P, Vukman KV, Tóth EÁ, Koncz A, Székács I, Horváth R, Varga Z, Buzás EI. An improved 96 well plate format lipid quantification assay for standardisation of experiments with extracellular vesicles. J Extracell Vesicles 2019; 8:1565263. [PMID: 30728922 PMCID: PMC6352952 DOI: 10.1080/20013078.2019.1565263] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023] Open
Abstract
The field of extracellular vesicles (EVs) is an exponentially growing segment of biomedical sciences. However, the problems of normalisation and quantification of EV samples have not been completely solved. Currently, EV samples are standardised on the basis of their protein content sometimes combined with determination of the particle number. However, even this combined approach may result in inaccuracy and overestimation of the EV concentration. Lipid bilayers are indispensable components of EVs. Therefore, a lipid-based quantification, in combination with the determination of particle count and/or protein content, appears to be a straightforward and logical approach for the EV field. In this study, we set the goal to improve the previously reported sulfo-phospho-vanillin (SPV) lipid assay. We introduced an aqueous phase liposome standard (DOPC) to replace the purified lipid standards in organic solvents (used commonly in previous studies). Furthermore, we optimised the concentration of the vanillin reagent in the assay. We found that elimination of organic solvents from the reaction mixture could abolish the background colour that interfered with the assay. Comparison of the optimised assay with a commercial lipid kit (based on the original SPV lipid assay) showed an increase of sensitivity by approximately one order of magnitude. Thus, here we report a quick, reliable and sensitive test that may fill an existing gap in EV standardisation. When using the optimised lipid assay reported here, EV lipid measurements can be more reliable than protein-based measurements. Furthermore, this novel assay is almost as sensitive and as easy as measuring proteins with a simple BCA test.
Collapse
Affiliation(s)
- Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eszter Ágnes Tóth
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Anna Koncz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory MTA-EK-MFA, Budapest, Hungary
| | - Robert Horváth
- Nanobiosensorics Laboratory MTA-EK-MFA, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| |
Collapse
|
203
|
Gualerzi A, Kooijmans SAA, Niada S, Picciolini S, Brini AT, Camussi G, Bedoni M. Raman spectroscopy as a quick tool to assess purity of extracellular vesicle preparations and predict their functionality. J Extracell Vesicles 2019; 8:1568780. [PMID: 30728924 PMCID: PMC6352930 DOI: 10.1080/20013078.2019.1568780] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerative capacity, which may be exploited for therapeutic purposes. Because of EV interaction with other soluble secreted factors, EV activity may depend on the employed purification method, which limits cross-study comparisons and therapeutic development. Raman spectroscopy (RS) is a quick and easy method to assess EV purity and composition, giving in-depth biochemical overview on EV preparation. Hereby, we show how this method can be used to characterise EVs isolated from human liver stem cells and bone marrow mesenchymal stem/stromal cells by means of conventional ultracentrifugation (UC) and size exclusion chromatography (SEC) protocols. The obtained EV preparations were demonstrated to be characterised by different degrees of purity and a specific Raman fingerprint that represents both the cell source and the isolation procedure used. Moreover, RS provided useful hints to explore the factors underlying the functional diversity of EV preparations from the same cell source, thus representing a valuable tool to assess EV quality prior to functional assays or therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy.,Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | |
Collapse
|
204
|
Kruglik SG, Royo F, Guigner JM, Palomo L, Seksek O, Turpin PY, Tatischeff I, Falcón-Pérez JM. Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles. NANOSCALE 2019; 11:1661-1679. [PMID: 30620023 DOI: 10.1039/c8nr04677h] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The technique of Raman tweezers microspectroscopy (RTM) for the global biomolecular content characterization of a single extracellular vesicle (EV) or a small number of EVs or other nanoscale bioparticles in an aqueous dispersion in the difficult-to-access size range of near 100 nm is described in detail. The particularities and potential of RTM are demonstrated using the examples of DOPC liposomes, exosomes from human urine and rat hepatocytes, and a mixed sample of the transfection reagent FuGENE in diluted DNA solution. The approach of biomolecular component analysis for the estimation of the main biomolecular contributions (proteins, lipids, nucleic acids, carotenoids, etc.) is proposed and discussed. Direct Raman evidence for strong intra-sample biomolecular heterogeneity of individual optically trapped EVs, due to variable contributions from nucleic acids and carotenoids in some preparations, is reported. On the basis of the results obtained, we are making an attempt to convince the scientific community that RTM is a promising method of single-EV research; to our knowledge, it is the only technique available at the moment that provides unique information about the global biomolecular composition of a single vesicle or a small number of vesicles, thus being capable of unravelling the high diversity of EV subpopulations, which is one of the most significant urgent challenges to overcome. Possible RTM applications include, among others, searching for DNA biomarkers, cancer diagnosis, and discrimination between different subpopulations of EVs, lipid bodies, protein aggregates and viruses.
Collapse
Affiliation(s)
- Sergei G Kruglik
- Laboratoire Jean Perrin, Sorbonne Université, CNRS UMR 8237, 4 place Jussieu, Paris, 75005, France.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Driedonks TAP, Nolte-'t Hoen ENM. Circulating Y-RNAs in Extracellular Vesicles and Ribonucleoprotein Complexes; Implications for the Immune System. Front Immunol 2019; 9:3164. [PMID: 30697216 PMCID: PMC6340977 DOI: 10.3389/fimmu.2018.03164] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20–200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
206
|
Pascua-Maestro R, González E, Lillo C, Ganfornina MD, Falcón-Pérez JM, Sanchez D. Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Front Cell Neurosci 2019; 12:526. [PMID: 30687015 PMCID: PMC6335244 DOI: 10.3389/fncel.2018.00526] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicle (EV)-mediated glia-to-neuron communication has been recognized in a growing number of physiological and pathological situations. They transport complex sets of molecules that can be beneficial or detrimental for the receiving cell. As in other areas of biology, their analysis is revolutionizing the field of neuroscience, since fundamental signaling processes are being re-evaluated, and applications for neurodegenerative disease therapies have emerged. Using human astrocytic and differentiated neuronal cell lines, we demonstrate that a classical neuroprotective protein, Apolipoprotein D (ApoD), expressed by glial cells and known to promote functional integrity and survival of neurons, is exclusively transported by EVs from astrocytes to neurons, where it gets internalized. Indeed, we demonstrate that conditioned media derived from ApoD-knock-out (KO) astrocytes exert only a partial autocrine protection from oxidative stress (OS) challenges, and that EVs are required for ApoD-positive astrocytic cell line derived medium to exert full neuroprotection. When subfractionation of EVs is performed, ApoD is revealed as a very specific marker of the exosome-containing fractions. These discoveries help us reframe our understanding of the neuroprotective role of this lipid binding protein and open up new research avenues to explore the use of systemically administered ApoD-loaded exosomes that can cross the blood-brain barrier to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Esperanza González
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
207
|
Gorgun C, Reverberi D, Rotta G, Villa F, Quarto R, Tasso R. Isolation and Flow Cytometry Characterization of Extracellular-Vesicle Subpopulations Derived from Human Mesenchymal Stromal Cells. ACTA ACUST UNITED AC 2019; 48:e76. [PMID: 30624011 DOI: 10.1002/cpsc.76] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This unit describes protocols for isolating subpopulations of extracellular vesicles (EVs) purified from human adipose tissue-derived mesenchymal stromal cells by density gradient centrifugation and for characterizing them by flow cytometry (FCM). Determining the optimal strategy for isolating EVs is a critical step toward retrieving the maximal amount while ensuring the recovery of different vesicular subtypes. The first protocol details density gradient centrifugation to isolate both exosomes and microvesicles. In the second protocol, characterization of EV subpopulations by FCM is depicted, taking advantage of non-conventional modalities, in accordance with the latest technical indications. The procedures described here can be easily reproduced and can be employed regardless of the cell type used to obtain EVs. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cansu Gorgun
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniele Reverberi
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Federico Villa
- U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Rodolfo Quarto
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Tasso
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
208
|
van Balkom BWM, Gremmels H, Giebel B, Lim SK. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 2019; 19:e1800163. [PMID: 30467989 DOI: 10.1002/pmic.201800163] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Small extracellular vesicles (EVs) are 50-200 nm vesicles secreted by most cells. They are considered as mediators of intercellular communication, and EVs from specific cell types, in particular mesenchymal stem/stromal cells (MSCs), offer powerful therapeutic potential, and can provide a novel therapeutic strategy. They appear promising and safe (as EVs are non-self-replicating), and eventually MSC-derived EVs (MSC-EVs) may be developed to standardized, off-the-shelf allogeneic regenerative and immunomodulatory therapeutics. Promising pre-clinical data have been achieved using MSCs from different sources as EV-producing cells. Similarly, a variety EV isolation and characterization methods have been applied. Interestingly, MSC-EVs obtained from different sources and prepared with different methods show in vitro and in vivo therapeutic effects, indicating that isolated EVs share a common potential. Here, well-characterized and controlled, publicly available proteome profiles of MSC-EVs are compared to identify a common MSC-EV protein signature that might be coupled to the MSC-EVs' common therapeutic potential. This protein signature may be helpful in developing MSC-EV quality control platforms required to confirm the identity and test for the purity of potential therapeutic MSC-EVs.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 138648, Singapore
| |
Collapse
|
209
|
A new level of complexity in parasite-host interaction: The role of extracellular vesicles. ADVANCES IN PARASITOLOGY 2019; 104:39-112. [PMID: 31030771 DOI: 10.1016/bs.apar.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans and animals have co-existed with parasites in a battle of constant adaptation to one another. It is becoming increasingly clear that extracellular vesicles (EVs) play important roles in this co-existence and pathology. This chapter reviews the current research on EVs released by protozoa, nematodes, trematodes, and cestodes with a special focus on EVs in parasite life cycles. The environmental changes experienced by the parasite during its life cycle is associated with distinct changes in EV release and content. The function of these EV seems to have a significant influence on parasite pathology and survival in the host by concomitantly modulating host immune responses and triggering parasite differentiation. The role of EVs in communication between the parasites and the host adds a new level of complexity in our understanding of parasite biology, which may be a key to further understand the complexity behind host-parasite interactions and communication. This increased understanding can, in turn, open up new avenues for vaccine, diagnostic, and therapeutic development for a wide variety of diseases such as parasite infection, cancers, and immunological disorders.
Collapse
|
210
|
Dendritic cell extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:213-249. [DOI: 10.1016/bs.ircmb.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
211
|
|
212
|
Barbosa FMC, Dupin TV, Toledo MDS, Reis NFDC, Ribeiro K, Cronemberger-Andrade A, Rugani JN, De Lorenzo BHP, Novaes E Brito RR, Soares RP, Torrecilhas AC, Xander P. Extracellular Vesicles Released by Leishmania ( Leishmania) amazonensis Promote Disease Progression and Induce the Production of Different Cytokines in Macrophages and B-1 Cells. Front Microbiol 2018; 9:3056. [PMID: 30627118 PMCID: PMC6309564 DOI: 10.3389/fmicb.2018.03056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
The extracellular vesicles (EVs) released by Leishmania can contribute to the establishment of infection and host immunomodulation. In this study, we characterized the shedding of EVs from Leishmania (Leishmania) amazonensis promastigotes. This species is the causative agent of cutaneous leishmaniasis, and its role during interactions with bone marrow-derived macrophages (BMDMs) and peritoneal B-1 cells was evaluated. Leishmania amazonensis promastigotes cultivated in vitro at different times and temperatures spontaneously released EVs. EVs were purified using size-exclusion chromatography (SEC) and quantitated by nanoparticle tracking analysis (NTA). NTA revealed that the average size of the EVs was approximately 180 nm, with concentrations ranging from 1.8 × 108 to 2.4 × 109 vesicles/mL. In addition, the presence of LPG and GP63 were detected in EVs obtained at different temperatures. Naïve BMDMs stimulated with EVs exhibited increased IL-10 and IL-6 expression. However, incubating B-1 cells with parasite EVs did not stimulate IL-10 expression but led to an increase in the expression of IL-6 and TNFα. After 7 weeks post-infection, animals infected with L. amazonensis promastigotes in the presence of parasite EVs had significant higher parasite load and a polarization to Th2 response, as compared to the group infected with the parasite alone. This work demonstrated that EVs isolated from L. amazonensis promastigotes were able to stimulate macrophages and B-1 cells to express different types of cytokines. Moreover, the immunomodulatory properties of EVs probably contributed to an increase in parasite burden in mice. These findings suggest that the functionality of L. amazonensis EVs on immune system favor of parasite survival and disease progression.
Collapse
Affiliation(s)
- Fernanda Marins Costa Barbosa
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | - Talita Vieira Dupin
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | - Mayte Dos Santos Toledo
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | - Natasha Ferraz Dos Campos Reis
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | - Kleber Ribeiro
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | - André Cronemberger-Andrade
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | | | | | | | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| | - Patricia Xander
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, Diadema, Brazil
| |
Collapse
|
213
|
Pacienza N, Lee RH, Bae EH, Kim DK, Liu Q, Prockop DJ, Yannarelli G. In Vitro Macrophage Assay Predicts the In Vivo Anti-inflammatory Potential of Exosomes from Human Mesenchymal Stromal Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:67-76. [PMID: 30719485 PMCID: PMC6350420 DOI: 10.1016/j.omtm.2018.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) play key roles in cell biology and may provide new clinical diagnostics and therapies. However, it has proven difficult to develop protocols for their purification and characterization. One of the major barriers in the field has been a lack of convenient assays for their bioactivity. Developing assays has not been a trivial matter, because of the heterogeneity of EVs, the multiple activities they demonstrate, and the uncertainty about their modes of action. Therefore, it is likely that multiple assays for their activities are needed. One important assay will be for the anti-inflammatory activity observed in mice after administration of the small EVs commonly referred to as exosomes. We developed an assay for the anti-inflammatory activity of exosomes with a line of mouse macrophages. The assay makes it possible to rank different preparations of exosomes by their anti-inflammatory activity, and their ranking predicts their efficacy in suppressing LPS-stimulated inflammation in mice. The assay is convenient for comparing multiple samples and, therefore, should be useful in developing protocols for the purification and characterization of anti-inflammatory exosomes.
Collapse
Affiliation(s)
- Natalia Pacienza
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA.,Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro/CONICET, Buenos Aires, Argentina
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Eun-Hye Bae
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Dong-Ki Kim
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Qisong Liu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Darwin J Prockop
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Gustavo Yannarelli
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA.,Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro/CONICET, Buenos Aires, Argentina
| |
Collapse
|
214
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
215
|
Hong CW. Extracellular Vesicles of Neutrophils. Immune Netw 2018; 18:e43. [PMID: 30619629 PMCID: PMC6312893 DOI: 10.4110/in.2018.18.e43] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. As professional phagocytes, neutrophils also produce EVs in response to various inflammatory stimuli during inflammatory processes. Neutrophil-derived EVs can be categorized into 2 subtypes according to the mechanism of generation. Neutrophil-derived trails (NDTRs) are generated from migrating neutrophils. The uropods of neutrophils are elongated by adhesion to endothelial cells, and small parts of the uropods are detached, leaving submicrometer-sized NDTRs. Neutrophil-derived microvesicles (NDMVs) are generated from neutrophils which arrived at the inflammatory foci. Membrane blebbing occurs in response to various stimuli at the inflammatory foci, and small parts of the blebs are detached from the neutrophils, leaving NDMVs. These 2 subtypes of neutrophil-derived EVs share common features such as membrane components, receptors, and ligands. However, there are substantial differences between these 2 neutrophil-derived EVs. NDTRs exert pro-inflammatory functions by guiding subsequent immune cells through the inflammatory foci. On the other hand, NDMVs exert anti-inflammatory functions by limiting the excessive immune responses of nearby cells. This review outlines the current understanding of the different subtypes of neutrophil-derived EVs and provides insights into the clinical relevance of neutrophil-derived EVs.
Collapse
Affiliation(s)
- Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
216
|
Suh M, Lee DS. Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nucl Med Mol Imaging 2018; 52:407-419. [PMID: 30538772 PMCID: PMC6261865 DOI: 10.1007/s13139-018-0550-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Brain disease is one of the greatest threats to public health. Brain theranostics is recently taking shape, indicating the treatments of stroke, inflammatory brain disorders, psychiatric diseases, neurodevelopmental disease, and neurodegenerative disease. However, several factors, such as lack of endophenotype classification, blood-brain barrier (BBB), target determination, ignorance of biodistribution after administration, and complex intercellular communication between brain cells, make brain theranostics application difficult, especially when it comes to clinical application. So, a more thorough understanding of each aspect is needed. In this review, we focus on recent studies regarding the role of exosomes in intercellular communication of brain cells, therapeutic effect of graphene quantum dots, transcriptomics/epitranscriptomics approach for target selection, and in vitro/in vivo considerations.
Collapse
Affiliation(s)
- Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|
217
|
Shtam T, Naryzhny S, Kopylov A, Petrenko E, Samsonov R, Kamyshinsky R, Zabrodskaya Y, Nikitin D, Sorokin M, Buzdin A, Malek A. Functional Properties of Circulating Exosomes Mediated by Surface-Attached Plasma Proteins. J Hematol 2018; 7:149-153. [PMID: 32300430 PMCID: PMC7155850 DOI: 10.14740/jh412w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Exosomes and other types of extracellular vesicles present an important component of circulating plasma. Exosomes released by endothelial and blood cells account for majority of plasma exosomal population; exosomes secreted by other cells might cross tissue-plasma barrier and reach circulating plasma as well. Definitely, exosomes of different cellular origins are different by content and function. However, exosomal surface membrane interacts with plasma components. This interaction may alter composition of exosomal surface and hence, provide these vesicles with new functional properties. This study was aimed to estimate composition and possible functional role of proteins attached on the surface of plasma exosomes. Methods Here, extracellular vesicles from human plasma were isolated by ultracentrifugation and treated by trypsin. Trypsinized and native exosomes were analyzed by nanoparticle tracking analysis, Western blotting and quantitative high-resolution mass spectrometry. Results Surface-attached proteins were removed from exosomes isolated from plasma of healthy donors by incubation with serine protease (trypsin). Treatment did not impact exosomes integrity while slightly reduced hydrodynamic radius. Mass spectrometry revealed 259 exosomal proteins; among them 79 proteins were completely removed and more than half of the proteins were partially removed by trypsinization. Gene ontology functional annotation revealed mostly extracellular locations of proteins cleaved from a surface of the plasma exosomes. Moreover, proteins cleaved from the exosome surface are supposed to be implicated into integrin-linked kinase (ILK), focal adhesion kinase (FAK) and other pathways connecting cell surface with intracellular signaling cascades. Conclusion Taken together, our results demonstrate that a surface of circulating exosomes is decorated by plasma proteins, and these proteins can mask tissue-specific characteristic of the exosomal surface membrane and provide exosomes with new and uniform properties.
Collapse
Affiliation(s)
- Tatiana Shtam
- N.N.Petrov National Medical Research Center of Oncology, 197758, Leningradskaya 68, St.-Petersburg, Russia.,Ltd Oncosystem, 143026, Lugovaya 4, Skolkovo Innovation Center, Moscow, Russia.,Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300, Orlova roscha 1, Gatchina, Russia
| | - Stanislav Naryzhny
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300, Orlova roscha 1, Gatchina, Russia.,Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, 119121, Pogodinskaya 10, Moscow, Russia
| | - Arthur Kopylov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, 119121, Pogodinskaya 10, Moscow, Russia
| | - Elena Petrenko
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, 119121, Pogodinskaya 10, Moscow, Russia
| | - Roman Samsonov
- N.N.Petrov National Medical Research Center of Oncology, 197758, Leningradskaya 68, St.-Petersburg, Russia.,Ltd Oncosystem, 143026, Lugovaya 4, Skolkovo Innovation Center, Moscow, Russia
| | - Roman Kamyshinsky
- National Research Center "Kurchatov Institute", 123098, Academician Kurchatov Square 1, Moscow, Russia
| | - Yana Zabrodskaya
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300, Orlova roscha 1, Gatchina, Russia
| | - Daniil Nikitin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, 32, Vavilova Str., Moscow, Russia
| | - Maxim Sorokin
- National Research Center "Kurchatov Institute", 123098, Academician Kurchatov Square 1, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, 16/10 Miklukho-Maklaya Str., Moscow, Russia.,OmicsWay Corp., 91789, 340 S Lemon Ave, Walnut, CA, USA
| | - Anton Buzdin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, 32, Vavilova Str., Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, 16/10 Miklukho-Maklaya Str., Moscow, Russia.,OmicsWay Corp., 91789, 340 S Lemon Ave, Walnut, CA, USA.,I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Anastasia Malek
- N.N.Petrov National Medical Research Center of Oncology, 197758, Leningradskaya 68, St.-Petersburg, Russia.,Ltd Oncosystem, 143026, Lugovaya 4, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|
218
|
Kichenbrand C, Velot E, Menu P, Moby V. Dental Pulp Stem Cell-Derived Conditioned Medium: An Attractive Alternative for Regenerative Therapy. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:78-88. [PMID: 30156475 DOI: 10.1089/ten.teb.2018.0168] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have a lot of potential in regenerative medicine, and MSC-based therapies are currently explored in numerous research fields. Among these cells, deciduous or permanent dental pulp-MSC represent a promising option in tissue engineering. This expectation is based on their capacity to self-renew, to repair various damaged tissues and organs due to their multipotency, as well as their ability to modulate immune system. They present other advantages such as the harvesting by a simple, painless, and noninvasive procedure and the absence of ethical considerations. The role played by these cells in the reparative process is mainly attributed to paracrine mechanisms mediated by their secreted factors, namely the secretome. The secreted factors can be found in the cell culture medium, called conditioned medium (CM). Moreover, CM presents many advantages compared with cells such as possible use in allogeneic therapies. This minireview aims at investigating the therapeutic use of dental pulp MSC-derived CM to develop cell-free therapies. The analysis of the available literature illustrates its massive panel of potential applications: mainly reduction of inflammation, promotion of angiogenesis and neurogenesis, reduction of stroke or ischemia, and organ regeneration. Furthermore, studies often highlight its superiority over the other sources of CM derived from other stem cells for the same applications. Dental pulp MSC-derived CM is an attractive, noninvasive, and acellular tool for therapeutic approaches in regenerative medicine. This promising novel approach should be further explored for clinical applications.
Collapse
Affiliation(s)
- Charlène Kichenbrand
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,2 CHRU de Nancy-Service Odontologie, Vandœuvre-lès-Nancy, France.,3 Faculté d'Odontologie, Université de Lorraine, Nancy, France
| | - Emilie Velot
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,4 Faculté de Pharmacie, Nancy, France
| | - Patrick Menu
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,4 Faculté de Pharmacie, Nancy, France
| | - Vanessa Moby
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,2 CHRU de Nancy-Service Odontologie, Vandœuvre-lès-Nancy, France.,3 Faculté d'Odontologie, Université de Lorraine, Nancy, France
| |
Collapse
|
219
|
Driedonks TAP, van der Grein SG, Ariyurek Y, Buermans HPJ, Jekel H, Chow FWN, Wauben MHM, Buck AH, 't Hoen PAC, Nolte-'t Hoen ENM. Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cell Mol Life Sci 2018; 75:3857-3875. [PMID: 29808415 PMCID: PMC6154026 DOI: 10.1007/s00018-018-2842-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023]
Abstract
The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Susanne G van der Grein
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk P J Buermans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrike Jekel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Franklin W N Chow
- School of Biological Sciences, Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Marca H M Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Amy H Buck
- School of Biological Sciences, Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Biomolecular and Molecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
220
|
Cesselli D, Parisse P, Aleksova A, Veneziano C, Cervellin C, Zanello A, Beltrami AP. Extracellular Vesicles: How Drug and Pathology Interfere With Their Biogenesis and Function. Front Physiol 2018; 9:1394. [PMID: 30327618 PMCID: PMC6174233 DOI: 10.3389/fphys.2018.01394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV) are at the center of an intense activity of investigation, both for their possible employment as biomarkers of ongoing pathologic processes and for their broad range of biological activities. EV can promote tissue repair in very different pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact mode of action of EV is still partly understood, since they may act by modulating growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs to target cells. However, the term EV identifies cell derived, enveloped particles very heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies on the biological effects exerted by EV is a consequence of differences in methods of separation that result in the enrichment of different entities. Since technical challenges still hamper the highly specific sorting of different EV subpopulations, up to now only few investigators have tried to verify differences in the biological effects of specific EV subtypes. This review summarizes the current state of the art on the comprehension of mechanisms involved in EV biogenesis and release, which is a prerequisite for understanding and investigating the impact that pathology and drug therapy may exert on the secretion and composition of EV. Finally, we described both the mechanism involved in the modulation of EV secretion by drugs commonly used in patients affected by heart failure, and how pathophysiological mechanisms involved in heart disease modify EV secretion.
Collapse
Affiliation(s)
| | | | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste - University of Trieste, Trieste, Italy
| | | | | | - Andrea Zanello
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
221
|
Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci 2018; 19:ijms19092834. [PMID: 30235837 PMCID: PMC6164443 DOI: 10.3390/ijms19092834] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
When a main artery of the brain occludes, a cellular response involving multiple cell types follows. Cells directly affected by the lack of glucose and oxygen in the neuronal core die by necrosis. In the periphery surrounding the ischemic core (the so-called penumbra) neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells react to detrimental factors such as excitotoxicity, oxidative stress, and inflammation in different ways. The fate of the neurons in this area is multifactorial, and communication between all the players is important for survival. This review focuses on the latest research relating to synaptic loss and the release of apoptotic bodies and other extracellular vesicles for cellular communication in stroke. We also point out possible treatment options related to increasing neuronal survival and regeneration in the penumbra.
Collapse
|
222
|
Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair 2018; 32:765-776. [PMID: 30223738 PMCID: PMC6146407 DOI: 10.1177/1545968318798955] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury is a major clinical problem and often results in a poor functional recovery. Despite obvious clinical need, treatment strategies have been largely suboptimal. In the nervous system, exosomes, which are nanosized extracellular vesicles, play a critical role in mediating intercellular communication. More specifically, microRNA carried by exosomes are involved in various key processes such as nerve and vascular regeneration, and exosomes originating from Schwann cells, macrophages, and mesenchymal stem cells can promote peripheral nerve regeneration. In this review, the current knowledge of exosomes' and their miRNA cargo's role in peripheral nerve regeneration are summarized. The possible future roles of exosomes in therapy and the potential for microRNA-containing exosomes to treat peripheral nerve injuries are also discussed.
Collapse
Affiliation(s)
- Liming Qing
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Juyu Tang
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University
School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
223
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
224
|
Lai RC, Lim SK. Membrane lipids define small extracellular vesicle subtypes secreted by mesenchymal stromal cells. J Lipid Res 2018; 60:318-322. [PMID: 30154233 DOI: 10.1194/jlr.r087411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs), multipotent progenitor cells, is attributed to small (50-200 nm) extracellular vesicles (EVs). The presence of a lipid membrane differentiates exosomes and EVs from other macromolecules. Analysis of this lipid membrane revealed three distinct small MSC EV subtypes, each with a differential affinity for cholera toxin B chain (CTB), annexin V (AV), and Shiga toxin B chain (ST) that bind GM1 ganglioside, phosphatidylserine, and globotriaosylceramide, respectively. Similar EV subtypes are also found in biologic fluids and are independent sources of disease biomarkers. Here, we compare and contrast these three EV subtypes. All subtypes carry β-actin, but only CTB-binding EVs (CTB-EVs) are true exosomes, enriched with exosome proteins and derived from endosomes. No unique protein has been identified yet in AV-binding EVs (AV-EVs); ST-binding EVs (ST-EVs) carry RNA and a high level of extra domain A-containing fibronectin. Based on the CTB, AV, and ST subcellular binding sites, the origins of CTB-, AV-, and ST-EV biogenesis are the plasma membrane, cytoplasm, and nucleus, respectively. The differentiation of EV subtypes through membrane lipids underlies the importance of membrane lipids in defining EVs and implies an influence on EV biology and functions.
Collapse
Affiliation(s)
| | - Sai Kiang Lim
- A*STAR Institute of Medical Biology, S138648 Singapore .,Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, S119074 Singapore
| |
Collapse
|
225
|
Hosseinkhani B, Kuypers S, van den Akker NMS, Molin DGM, Michiels L. Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells. Front Immunol 2018; 9:1789. [PMID: 30131806 PMCID: PMC6091278 DOI: 10.3389/fimmu.2018.01789] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) in vitro. Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Baharak Hosseinkhani
- Department of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Sören Kuypers
- Department of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Nynke M S van den Akker
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Daniel G M Molin
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Luc Michiels
- Department of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| |
Collapse
|
226
|
Mastoridis S, Bertolino GM, Whitehouse G, Dazzi F, Sanchez-Fueyo A, Martinez-Llordella M. Multiparametric Analysis of Circulating Exosomes and Other Small Extracellular Vesicles by Advanced Imaging Flow Cytometry. Front Immunol 2018; 9:1583. [PMID: 30034401 PMCID: PMC6043651 DOI: 10.3389/fimmu.2018.01583] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are responsible for a multitude of physiological functions, including immunomodulation. A heterogenous mixture of small EV (sEV) subsets, including putative exosomes, is derived when commonly used "exosome" isolation techniques are employed. Subset diversity relates in part to their different intracellular origins, and can be associated with distinct functional properties. Recent progress in the EV field has enabled the categorization of such subsets based on their surface composition. For the first time, we combine such emerging subset-specific markers with advanced imaging flow cytometry (iFCM) to perform high-throughput, multiparametric, vesicle-by-vesicle characterization, and functional assessment of specific small EV subsets, and exosomes in particular. The approach allows researchers to address three important applications. First, it is known that different isolation techniques result in the divergent recovery of particular vesicle subsets. Taking three commonly used "exosome" isolation techniques as test cases (ultracentrifugation, size-exclusion chromatography, and polymer-based precipitation), the capacity for convenient and accurate isolate compositional analysis by iFCM is demonstrated. The approach was able to corroborate and to quantify the known skewing of subtype recovery among different isolation approaches. Second, exosomes are a particularly widely studied EV subset. Applying exosome-specific markers to samples collected from an optimal clinical transplantation model, we verify the capacity for iFCM to detect exosomes in circulation, to establish their tissue of origin, and to provide insights as to their functional immunological potential. Finally, we describe a technique for establishing whether the transfer of a molecule of interest to a target cell is exosomally mediated. In so doing, we highlight the approach's utility in assessing the functional impact of circulating exosomes and in identifying their targets. In conclusion, we set out a new methodological approach by which small extracellular vesicle subsets, exosomes in particular, can be conveniently and comprehensively investigated, thereby offering novel phenotypic and functional insights.
Collapse
Affiliation(s)
- Sotiris Mastoridis
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Giuliana Minani Bertolino
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London, United Kingdom
| | - Gavin Whitehouse
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Francesco Dazzi
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Marc Martinez-Llordella
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| |
Collapse
|
227
|
Charmsaz S, Prencipe M, Kiely M, Pidgeon GP, Collins DM. Innovative Technologies Changing Cancer Treatment. Cancers (Basel) 2018; 10:cancers10060208. [PMID: 29921753 PMCID: PMC6025540 DOI: 10.3390/cancers10060208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022] Open
Abstract
Conventional therapies for cancer such as chemotherapy and radiotherapy remain a mainstay in treatment, but in many cases a targeted approach is lacking, and patients can be vulnerable to drug resistance. In recent years, novel concepts have been emerging to improve the traditional therapeutic options in cancers with poor survival outcomes. New therapeutic strategies involving areas like energy metabolism and extracellular vesicles along with advances in immunotherapy and nanotechnology are driving the next generation of cancer treatments. The development of fields such as theranostics in nanomedicine is also opening new doors for targeted drug delivery and nano-imaging. Here we discuss the use of innovative technologies presented at the Irish Association for Cancer Research (IACR) Annual Meeting, highlighting examples of where new approaches may lead to promising new treatment options for a range of cancer types.
Collapse
Affiliation(s)
- Sara Charmsaz
- RCSI Surgery, Royal College of Surgeons in Ireland, 31A York Street, Dublin 2, Ireland.
| | - Maria Prencipe
- School of Biomolecular and Biomedical Research, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Maeve Kiely
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.
| | - Graham P Pidgeon
- Trinity Translational Medicine Institute (TTMI), St. James's Hospital and Trinity College Dublin, Dublin 2, Ireland.
| | - Denis M Collins
- Cancer Biotherapeutics, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
228
|
Carter DRF, Clayton A, Devitt A, Hunt S, Lambert DW. Extracellular vesicles in the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0475. [PMID: 29158307 DOI: 10.1098/rstb.2016.0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Aled Clayton
- Division of Cancer and Genetics, Tenovus Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK .,Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
229
|
Abstract
Exosomes are secreted extracellular vesicles (EVs) that carry micro RNAs and other factors to reprogram cancer cells and tissues affected by cancer. Exosomes are exchanged between cancer cells and other tissues, often to prepare a premetastatic niche, escape immune surveillance, or spread multidrug resistance. Only a few studies investigated the function of lipids in exosomes although their lipid composition is different from that of the secreting cells. Ceramide is one of the lipids critical for exosome formation, and it is also enriched in these EVs. New research suggests that lipids in the exosomal membrane may organize and transmit "mobile rafts" that turn exosomes into extracellular signalosomes spreading activation of cell signaling pathways in oncogenesis and metastasis. Ceramide may modulate the function of mobile rafts and their effect on these cell signaling pathways. The critical role of lipids and, in particular, ceramide for formation, secretion, and function of exosomes may lead to a radically new understanding of cancer biology and therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
230
|
Goes A, Fuhrmann G. Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infect Dis 2018; 4:881-892. [PMID: 29553240 DOI: 10.1021/acsinfecdis.8b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biogenic and biomimetic therapeutics are a relatively new class of systems that are of physiological origin and/or take advantage of natural pathways or aim at mimicking these to improve selective interaction with target tissue. The number of biogenic and bioengineered avenues for drug therapy and diagnostics has multiplied over the past years for many applications, indicating the high expectations associated with this biological route. Nevertheless, the use of "bio"-related approaches for treating or diagnosing infectious diseases is still rare. Given that infectious diseases, in particular bacterial resistances, are seriously on the rise, there is an urgent need to take advantage of biogenic and bioengineered systems to target these challenges. In this manuscript, we first give a definition of the various "bio" terms, including biogenic, biomimetic, bioinspired, and bioengineered and we highlight them using tangible applications in the field of infectious diseases. Our examples cover cell-derived systems, including bioengineered bacteria, virus-like particles, and different cell-mimetics. Moreover, we discuss natural and bioengineered particles such as extracellular vesicles from mammalian and bacterial sources and liposomes. A concluding section outlines the potential for biomaterial-related avenues to overcome challenges associated with difficult-to-treat infections. We critically discuss benefits and risks for these applications and give an outlook on the future of biogenic engineering.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
231
|
Exosomes and extracellular vesicles: the path forward. Essays Biochem 2018; 62:119-124. [DOI: 10.1042/ebc20170088] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Over the course of the past several decades, the concept that extracellular vesicles, exosomes and microvesicles, operate as cellular “housekeepers” and as agents for communication between and among cells and tissues, has emerged into one of the most promising yet vexing problems facing the biomedical community. Already, extracellular vesicles from biological fluids are being used for diagnostic purposes and hopes abound for their use as therapeutic agents. However, the most basic mechanistic questions surrounding their biogenesis and function in cellular and tissue homeostasis remain largely unexplored. In this issue of Essays in Biochemistry, the rise of a new intercellular communications pathway is considered from many perspectives—cell biology, physiology, and pathophysiology.
Collapse
|
232
|
Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol 2018; 9:738. [PMID: 29760691 PMCID: PMC5936763 DOI: 10.3389/fimmu.2018.00738] [Citation(s) in RCA: 604] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
Collapse
Affiliation(s)
- Eduard Willms
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Department of Microbiology I (Immunology), Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
233
|
Holzmuller P, Geiger A, Nzoumbou-Boko R, Pissarra J, Hamrouni S, Rodrigues V, Dauchy FA, Lemesre JL, Vincendeau P, Bras-Gonçalves R. Trypanosomatid Infections: How Do Parasites and Their Excreted-Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages? Front Immunol 2018; 9:778. [PMID: 29731753 PMCID: PMC5921530 DOI: 10.3389/fimmu.2018.00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted-secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage's inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Philippe Holzmuller
- CIRAD, Montpellier, France.,UMR 117 ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes", Univ. Montpellier (I-MUSE), CIRAD, INRA, Montpellier, France
| | - Anne Geiger
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Romaric Nzoumbou-Boko
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
| | - Joana Pissarra
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Sarra Hamrouni
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Valérie Rodrigues
- CIRAD, Montpellier, France.,UMR 117 ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes", Univ. Montpellier (I-MUSE), CIRAD, INRA, Montpellier, France
| | - Frédéric-Antoine Dauchy
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Département des Maladies Infectieuses et Tropicales, Bordeaux, France
| | - Jean-Loup Lemesre
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Philippe Vincendeau
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
| | - Rachel Bras-Gonçalves
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| |
Collapse
|
234
|
Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018; 41:360-372. [PMID: 29605090 DOI: 10.1016/j.tins.2018.03.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
The physiology of the central nervous system (CNS) is built on a foundation of connection, integration, and the exchange of complex information among brain cells. Emerging evidence indicates that extracellular vesicles (EVs) are key players in the intercellular communication that underlies physiological processes such as synaptic plasticity and the maintenance of myelination. Furthermore, upon injury to the CNS, EVs may propagate inflammation across the blood-brain barrier and beyond, and also appear to mediate neuroprotection and modulate regenerative processes. In neurodegenerative diseases, EVs may play roles in the formation, spreading, and clearance of toxic protein aggregates. Here, we discuss the physiological roles of EVs in the healthy and the diseased CNS, with a focus on recent findings and emerging concepts.
Collapse
Affiliation(s)
- Mea M Holm
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
235
|
Abstract
Oncologic diseases do not behave as isolated entities. Instead, they are based on complex systemic networks involving cell-cell communication between cancerous and healthy cells of the host, which may either facilitate or prevent cancer progression. In addition to cell-cell contacts, cells communicate through secreted factors in a process modulated by ligand concentration, receptor availability and synergy amongst several signaling circuits. Of these secreted factors, exosomes, 30-150 nm membrane vesicles of endocytic origin released by virtually all cells, have emerged as important cell-cell communication players both in physiological and pathological scenarios by being carriers of all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and performing intercellular transfer of components, locally and systemically. By acting both in tumor and non-tumor cells, such as fibroblasts, leukocytes, endothelial and progenitor cells, tumor- and non-tumor cells-derived exosomes can modulate tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and the immune system. In this Review, we summarize the main findings of the literature on the roles of exosomes in mediating interactions between tumor and tumor-associated cells. We also discuss how the molecular composition analysis of circulating exosomes in clinical settings has emerged as an attractive non-invasive source of liquid biopsies for early diagnosis, prognosis and follow-up of patients with oncologic diseases.
Collapse
|
236
|
Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F, Riccardo F. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs' Revolution for Immunotherapy. Int J Mol Sci 2018. [PMID: 29534457 PMCID: PMC5877660 DOI: 10.3390/ijms19030799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Buracco
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
237
|
Reátegui E, van der Vos KE, Lai CP, Zeinali M, Atai NA, Aldikacti B, Floyd FP, H Khankhel A, Thapar V, Hochberg FH, Sequist LV, Nahed BV, S Carter B, Toner M, Balaj L, T Ting D, Breakefield XO, Stott SL. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 2018; 9:175. [PMID: 29330365 PMCID: PMC5766611 DOI: 10.1038/s41467-017-02261-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) carry RNA, DNA, proteins, and lipids. Specifically, tumor-derived EVs have the potential to be utilized as disease-specific biomarkers. However, a lack of methods to isolate tumor-specific EVs has limited their use in clinical settings. Here we report a sensitive analytical microfluidic platform (EVHB-Chip) that enables tumor-specific EV-RNA isolation within 3 h. Using the EVHB-Chip, we achieve 94% tumor-EV specificity, a limit of detection of 100 EVs per μL, and a 10-fold increase in tumor RNA enrichment in comparison to other methods. Our approach allows for the subsequent release of captured tumor EVs, enabling downstream characterization and functional studies. Processing serum and plasma samples from glioblastoma multiforme (GBM) patients, we can detect the mutant EGFRvIII mRNA. Moreover, using next-generation RNA sequencing, we identify genes specific to GBM as well as transcripts that are hallmarks for the four genetic subtypes of the disease.
Collapse
Affiliation(s)
- Eduardo Reátegui
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- Shriners Hospital for Children, Harvard Medical School, Boston, MA, 02114, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Kristan E van der Vos
- Neurodiscovery Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02124, USA
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066, CX, Amsterdam, The Netherlands
| | - Charles P Lai
- Neurodiscovery Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02124, USA
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Mahnaz Zeinali
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Nadia A Atai
- Neurodiscovery Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02124, USA
| | - Berent Aldikacti
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Frederick P Floyd
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Aimal H Khankhel
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Vishal Thapar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Fred H Hochberg
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Brian V Nahed
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02124, USA
| | - Bob S Carter
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Shriners Hospital for Children, Harvard Medical School, Boston, MA, 02114, USA
| | - Leonora Balaj
- Neurodiscovery Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02124, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Xandra O Breakefield
- Neurodiscovery Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02124, USA
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Shannon L Stott
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02114, USA.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Hospital for Children, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|