201
|
Ochocinska MJ, Muñoz EM, Veleri S, Weller JL, Coon SL, Pozdeyev N, Iuvone PM, Goebbels S, Furukawa T, Klein DC. NeuroD1 is required for survival of photoreceptors but not pinealocytes: results from targeted gene deletion studies. J Neurochem 2012; 123:44-59. [PMID: 22784109 DOI: 10.1111/j.1471-4159.2012.07870.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NeuroD1 encodes a basic helix-loop-helix transcription factor involved in the development of neural and endocrine structures, including the retina and pineal gland. To determine the effect of NeuroD1 knockout in these tissues, a Cre/loxP recombination strategy was used to target a NeuroD1 floxed gene and generate NeuroD1 conditional knockout (cKO) mice. Tissue specificity was conferred using Cre recombinase expressed under the control of the promoter of Crx, which is selectively expressed in the pineal gland and retina. At 2 months of age, NeuroD1 cKO retinas have a dramatic reduction in rod- and cone-driven electroretinograms and contain shortened and disorganized outer segments; by 4 months, NeuroD1 cKO retinas are devoid of photoreceptors. In contrast, the NeuroD1 cKO pineal gland appears histologically normal. Microarray analysis of 2-month-old NeuroD1 cKO retina and pineal gland identified a subset of genes that were affected 2-100-fold; in addition, a small group of genes exhibit altered differential night/day expression. Included in the down-regulated genes are Aipl1, which is necessary to prevent retinal degeneration, and Ankrd33, whose protein product is selectively expressed in the outer segments. These findings suggest that NeuroD1 may act through Aipl1 and other genes to maintain photoreceptor homeostasis.
Collapse
Affiliation(s)
- Margaret J Ochocinska
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Iwano T, Masuda A, Kiyonari H, Enomoto H, Matsuzaki F. Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus. Development 2012; 139:3051-62. [DOI: 10.1242/dev.080002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The brain is composed of diverse types of neurons that fulfill distinct roles in neuronal circuits, as manifested by the hippocampus, where pyramidal neurons and granule cells constitute functionally distinct domains: cornu ammonis (CA) and dentate gyrus (DG), respectively. Little is known about how these two types of neuron differentiate during hippocampal development, although a set of transcription factors that is expressed in progenitor cells is known to be required for the survival of granule cells. Here, we demonstrate in mice that Prox1, a transcription factor constitutively expressed in the granule cell lineage, postmitotically functions to specify DG granule cell identity. Postmitotic elimination of Prox1 caused immature DG neurons to lose the granule cell identity and in turn terminally differentiate into the pyramidal cell type manifesting CA3 neuronal identity. By contrast, Prox1 overexpression caused opposing effects on presumptive hippocampal pyramidal cells. These results indicate that the immature DG cell has the potential to become a granule cell or a pyramidal cell, and Prox1 defines the granule cell identity. This bi-potency is lost in mature DG cells, although Prox1 is still required for correct gene expression in DG granule cells. Thus, our data indicate that Prox1 acts as a postmitotic cell fate determinant for DG granule cells over the CA3 pyramidal cell fate and is crucial for maintenance of the granule cell identity throughout the life.
Collapse
Affiliation(s)
- Tomohiko Iwano
- Laboratory for Cell Asymmetry, at RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Aki Masuda
- Laboratory for Cell Asymmetry, at RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, at RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, at RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, at RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| |
Collapse
|
203
|
Wang X, Ye B. Transcriptional regulators that differentially control dendrite and axon development. FRONTIERS IN BIOLOGY 2012; 7:292-296. [PMID: 39219713 PMCID: PMC11364217 DOI: 10.1007/s11515-012-1234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurons are the basic units establishing connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. In order to understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Dar1, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
204
|
Ha TJ, Swanson DJ, Kirova R, Yeung J, Choi K, Tong Y, Chesler EJ, Goldowitz D. Genome-wide microarray comparison reveals downstream genes of Pax6 in the developing mouse cerebellum. Eur J Neurosci 2012; 36:2888-98. [PMID: 22817342 DOI: 10.1111/j.1460-9568.2012.08221.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Pax6 transcription factor is expressed in cerebellar granule cells and when mutated, as in the Sey/Sey mouse, produces granule cells with disturbed survival and migration and with defects in neurite extension. The impact of Pax6 on other genes in the context of cerebellar development has not been identified. In this study, we performed transcriptome comparisons between wildtype and Pax6-null whole cerebellar tissue at embryonic day (E) 13.5, 15.5 and 18.5 using Affymetrix arrays (U74Av2). Statistical analyses identified 136 differentially regulated transcripts (FDR 0.05, 1.2-fold change cutoff) over time in Pax6-null cerebellar tissue. In parallel we examined the Math1-null granuloprival cerebellum and identified 228 down-regulated transcripts (FDR 0.05, 1.2-fold change cutoff). The intersection of these two microarray datasets produced a total of 21 differentially regulated transcripts. For a subset of the identified transcripts, we used qRT-PCR to validate the microarray data and demonstrated the expression in the rhombic lip lineage and differential expression in Pax6-null cerebellum with in situ hybridisation analysis. The candidate genes identified in this way represent direct or indirect Pax6-downstream genes involved in cerebellar development.
Collapse
Affiliation(s)
- Thomas J Ha
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Packard A, Giel-Moloney M, Leiter A, Schwob JE. Progenitor cell capacity of NeuroD1-expressing globose basal cells in the mouse olfactory epithelium. J Comp Neurol 2012; 519:3580-96. [PMID: 21800309 DOI: 10.1002/cne.22726] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The basic helix-loop-helix transcription factor NeuroD1 is expressed in embryonic and adult mouse olfactory epithelium (OE), as well as during epithelial regeneration, suggesting that it plays an important role in olfactory neurogenesis. We characterized NEUROD1-expressing progenitors, determined their progeny in the adult OE, and identified a subtle phenotype in ΔNeuroD1-knockout mice. All olfactory sensory neurons (OSNs) derive from a NeuroD1-expressing progenitor as shown by recombination-mediated lineage tracing, as do other sensory receptors of the nose, including vomeronasal, nasal septal, and Grunenberg ganglion neurons. NEUROD1-expressing cells are found among the globose basal cell population: they are actively proliferating and frequently coexpress Neurog1, but not the transit amplifying cell marker MASH1, nor the neuronal marker NCAM. As a consequence, NEUROD1-expressing globose basal cells are best classified as immediate neuronal precursors. In adolescent ΔNeuroD1-LacZ knock-in null mice the OE displays subtle abnormalities, as compared to wildtype and heterozygous littermates. In some areas of the OE, mature neurons are absent, or sparse, although those same areas retain immature OSNs and LacZ-expressing progenitors, albeit both of these populations are smaller than expected. Our results support the conclusion that most, if not all, nasal chemosensory neurons derive from NeuroD1-expressing globose basal cells of the immediate neuronal precursor variety. Moreover, elimination of NeuroD1 by gene knockout, while it does not disrupt initial OSN differentiation, does compromise the integrity of parts of the olfactory epithelium by altering proliferation, neuronal differentiation, or neuronal survival there.
Collapse
Affiliation(s)
- Adam Packard
- Department of Anatomy & Cell Biology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
206
|
Nlend RN, Aït-Lounis A, Allagnat F, Cigliola V, Charollais A, Reith W, Haefliger JA, Meda P. Cx36 is a target of Beta2/NeuroD1, which associates with prenatal differentiation of insulin-producing β cells. J Membr Biol 2012; 245:263-73. [PMID: 22729650 DOI: 10.1007/s00232-012-9447-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
The insulin-producing β cells of pancreatic islets are coupled by connexin36 (Cx36) channels. To investigate what controls the expression of this connexin, we have investigated its pattern during mouse pancreas development, and the influence of three transcription factors that are critical for β-cell development and differentiation. We show that (1) the Cx36 gene (Gjd2) is activated early in pancreas development and is markedly induced at the time of the surge of the transcription factors that determine β-cell differentiation; (2) the cognate protein is detected about a week later and is selectively expressed by β cells throughout the prenatal development of mouse pancreas; (3) a 2-kbp fragment of the Gjd2 promoter, which contains three E boxes for the binding of the bHLH factor Beta2/NeuroD1, ensures the expression of Cx36 by β cells; and (4) Beta2/NeuroD1 binds to these E boxes and, in the presence of the E47 ubiquitous cofactor, transactivates the Gjd2 promoter. The data identify Cx36 as a novel early marker of β cells and as a target of Beta2/NeuroD1, which is essential for β-cell development and differentiation.
Collapse
Affiliation(s)
- Rachel Nlend Nlend
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel Servet CH- 1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Defining structural homology between the mammalian and avian hippocampus through conserved gene expression patterns observed in the chick embryo. Dev Biol 2012; 366:125-41. [DOI: 10.1016/j.ydbio.2012.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/21/2022]
|
208
|
Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, Biamonte F, Mongiovì AM, Michetti F, Geloso MC. The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 2012; 122:415-26. [DOI: 10.1111/j.1471-4159.2012.07770.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
209
|
Kuwabara T, Asashima M. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications. J Mol Cell Biol 2012; 4:133-9. [PMID: 22577214 DOI: 10.1093/jmcb/mjs016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells (NSCs), which are responsible for continuous neurogenesis during the adult stage, are present in human adults. The typical neurogenic regions are the hippocampus and the subventricular zone; recent studies have revealed that NSCs also exist in the olfactory bulb. Olfactory bulb-derived neural stem cells (OB NSCs) have the potential to be used in therapeutic applications and can be easily harvested without harm to the patient. Through the combined influence of extrinsic cues and innate programming, adult neurogenesis is a finely regulated process occurring in a specialized cellular environment, a niche. Understanding the regulatory mechanisms of adult NSCs and their cellular niche is not only important to understand the physiological roles of neurogenesis in adulthood, but also to provide the knowledge necessary for developing new therapeutic applications using adult NSCs in other organs with similar regulatory environments. Diabetes is a devastating disease affecting more than 200 million people worldwide. Numerous diabetic patients suffer increased symptom severity after the onset, involving complications such as retinopathy and nephropathy. Therefore, the development of treatments for fundamental diabetes is important. The utilization of autologous cells from patients with diabetes may address challenges regarding the compatibility of donor tissues as well as provide the means to naturally and safely restore function, reducing future risks while also providing a long-term cure. Here, we review recent findings regarding the use of adult OB NSCs as a potential diabetes cure, and discuss the potential of OB NSC-based pharmaceutical applications for neuronal diseases and mental disorders.
Collapse
Affiliation(s)
- Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| | | |
Collapse
|
210
|
Kim WY. NeuroD1 is an upstream regulator of NSCL1. Biochem Biophys Res Commun 2012; 419:27-31. [PMID: 22310718 DOI: 10.1016/j.bbrc.2012.01.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
Abstract
Cell fate determination and differentiation during neurogenesis and myogenesis involve the sequential expression of several basic helix-loop-helix (bHLH) transcription factors. The expression of NeuroD1/2 and the expression of NSCL(Nhlh)1/2 are closely related in many developing peripheral and central neuronal cells, suggesting an epistatic relationship between these two bHLH transcription factor families during neurogenesis. To investigate this relationship, a murine neuroblastoma cell culture system and single/double knock-out (KO) mice of NeuroD1 and NeuroD2 were utilized for the gain-of-function and loss-of-function approaches, respectively. Both NeuroD1 and NeuroD2 were able to induce the transcription of NSCL1 in vitro; however, they were not able to activate NSCL2 transcription. The DNA-binding ability of NeuroD1 was essential for NSCL1 induction. To examine the epistatic relationship in vivo, we examined the expression of NSCL1 and NSCL2 in NeuroD1 and NeuroD2 KO mice and NeuroD1/2 compound KO mice by in situ hybridization, RT-PCR and Northern blotting. The expression of NSCL1 was lower in the NeuroD1 KO mice and was not further decreased in the double KO mice. However, the expression of NSCL2 did not change in either the single KO or double KO mice. These results demonstrate that NeuroD1 is an upstream regulator of the NSCL1 gene but not the NSCL2 gene in mice. In addition, NeuroD2 is not involved in this regulatory pathway in vivo.
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, CO 80309, USA.
| |
Collapse
|
211
|
Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS One 2012; 7:e30803. [PMID: 22295110 PMCID: PMC3266290 DOI: 10.1371/journal.pone.0030803] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABAARγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.
Collapse
|
212
|
Kashiwagi K, Ishii J, Sakaeda M, Arimasu Y, Shimoyamada H, Sato H, Miyata C, Kamma H, Aoki I, Yazawa T. Differences of molecular expression mechanisms among neural cell adhesion molecule 1, synaptophysin, and chromogranin A in lung cancer cells. Pathol Int 2012; 62:232-45. [DOI: 10.1111/j.1440-1827.2011.02781.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
213
|
Thomas JL, Ochocinska MJ, Hitchcock PF, Thummel R. Using the Tg(nrd:egfp)/albino zebrafish line to characterize in vivo expression of neurod. PLoS One 2012; 7:e29128. [PMID: 22235264 PMCID: PMC3250405 DOI: 10.1371/journal.pone.0029128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/21/2011] [Indexed: 12/19/2022] Open
Abstract
In this study, we used a newly-created transgenic zebrafish, Tg(nrd:egfp)/albino, to further characterize the expression of neurod in the developing and adult retina and to determine neurod expression during adult photoreceptor regeneration. We also provide observations regarding the expression of neurod in a variety of other tissues. In this line, EGFP is found in cells of the developing and adult retina, pineal gland, cerebellum, olfactory bulbs, midbrain, hindbrain, neural tube, lateral line, inner ear, pancreas, gut, and fin. Using immunohistochemistry and in situ hybridization, we compare the expression of the nrd:egfp transgene to that of endogenous neurod and to known retinal cell types. Consistent with previous data based on in situ hybridizations, we show that during retinal development, the nrd:egfp transgene is not expressed in proliferating retinal neuroepithelium, and is expressed in a subset of retinal neurons. In contrast to previous studies, nrd:egfp is gradually re-expressed in all rod photoreceptors. During photoreceptor regeneration in adult zebrafish, in situ hybridization reveals that neurod is not expressed in Müller glial-derived neuronal progenitors, but is expressed in photoreceptor progenitors as they migrate to the outer nuclear layer and differentiate into new rod photoreceptors. During photoreceptor regeneration, expression of the nrd:egfp matches that of neurod. We conclude that Tg(nrd:egfp)/albino is a good representation of endogenous neurod expression, is a useful tool to visualize neurod expression in a variety of tissues and will aid investigating the fundamental processes that govern photoreceptor regeneration in adults.
Collapse
Affiliation(s)
- Jennifer L. Thomas
- Department of Anatomy and Cell Biology and Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Margaret J. Ochocinska
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Ryan Thummel
- Department of Anatomy and Cell Biology and Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
214
|
Hes6 is required for the neurogenic activity of neurogenin and NeuroD. PLoS One 2011; 6:e27880. [PMID: 22114720 PMCID: PMC3218063 DOI: 10.1371/journal.pone.0027880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/27/2011] [Indexed: 11/26/2022] Open
Abstract
In the embryonic neural plate, a subset of precursor cells with neurogenic potential differentiates into neurons. This process of primary neurogenesis requires both the specification of cells for neural differentiation, regulated by Notch signaling, and the activity of neurogenic transcription factors such as neurogenin and NeuroD which drive the program of neural gene expression. Here we study the role of Hes6, a member of the hairy enhancer of split family of transcription factors, in primary neurogenesis in Xenopus embryos. Hes6 is an atypical Hes gene in that it is not regulated by Notch signaling and promotes neural differentiation in mouse cell culture models. We show that depletion of Xenopus Hes6 (Xhes6) by morpholino antisense oligonucleotides results in a failure of neural differentiation, a phenotype rescued by both wild type Xhes6 and a Xhes6 mutant unable to bind DNA. However, an Xhes6 mutant that lacks the ability to bind Groucho/TLE transcriptional co-regulators is only partly able to rescue the phenotype. Further analysis reveals that Xhes6 is essential for the induction of neurons by both neurogenin and NeuroD, acting via at least two distinct mechanisms, the inhibition of antineurogenic Xhairy proteins and by interaction with Groucho/TLE family proteins. We conclude Xhes6 is essential for neurogenesis in vivo, acting via multiple mechanisms to relieve inhibition of proneural transcription factor activity within the neural plate.
Collapse
|
215
|
Mastracci TL, Wilcox CL, Arnes L, Panea C, Golden JA, May CL, Sussel L. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol 2011; 359:1-11. [PMID: 21856296 PMCID: PMC3192309 DOI: 10.1016/j.ydbio.2011.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/29/2022]
Abstract
Nkx2.2 and Arx are essential pancreatic transcription factors. Nkx2.2 is necessary for the appropriate specification of the islet alpha, beta, PP and epsilon cell lineages, whereas Arx is required to form the correct ratio of alpha, beta, delta and PP cells. To begin to understand the cooperative functions of Nkx2.2 and Arx in the development of endocrine cell lineages, we generated progenitor cell-specific deletions of Arx on the Nkx2.2 null background. The analysis of these mutants demonstrates that expansion of the ghrelin cell population in the Nkx2.2 null pancreas is not dependent on Arx; however, Arx is necessary for the upregulation of ghrelin mRNA levels in Nkx2.2 mutant epsilon cells. Alternatively, in the absence of Arx, delta cell numbers are increased and Nkx2.2 becomes essential for the repression of somatostatin gene expression. Interestingly, the dysregulation of ghrelin and somatostatin expression in the Nkx2.2/Arx compound mutant (Nkx2.2(null);Arx(Δpanc)) results in the appearance of ghrelin+/somatostatin+ co-expressing cells. These compound mutants also revealed a genetic interaction between Nkx2.2 and Arx in the regulation of the PP cell lineage; the PP cell population is reduced when Nkx2.2 is deleted but is restored back to wildtype numbers in the Nkx2.2(null);Arx(Δpanc) mutant. Moreover, conditional deletion of Arx in specific pancreatic cell populations established that the functions of Arx are necessary in the Neurog3+ endocrine progenitors. Together, these experiments identify novel genetic interactions between Nkx2.2 and Arx within the endocrine progenitor cells that ensure the correct specification and regulation of endocrine hormone-producing cells.
Collapse
Affiliation(s)
- Teresa L Mastracci
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA
| | - Crystal L Wilcox
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Arnes
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA
| | - Casandra Panea
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA
| | - Jeffrey A Golden
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Lori Sussel
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA.
| |
Collapse
|
216
|
Kuwabara T, Kagalwala MN, Onuma Y, Ito Y, Warashina M, Terashima K, Sanosaka T, Nakashima K, Gage FH, Asashima M. Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 2011; 3:742-54. [PMID: 21984534 PMCID: PMC3377118 DOI: 10.1002/emmm.201100177] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 12/15/2022] Open
Abstract
In the present study, we demonstrated that insulin is produced not only in the mammalian pancreas but also in adult neuronal cells derived from the hippocampus and olfactory bulb (OB). Paracrine Wnt3 plays an essential role in promoting the active expression of insulin in both hippocampal and OB-derived neural stem cells. Our analysis indicated that the balance between Wnt3, which triggers the expression of insulin via NeuroD1, and IGFBP-4, which inhibits the original Wnt3 action, is regulated depending on diabetic (DB) status. We also show that adult neural progenitors derived from DB animals retain the ability to give rise to insulin-producing cells and that grafting neuronal progenitors into the pancreas of DB animals reduces glucose levels. This study provides an example of a simple and direct use of adult stem cells from one organ to another, without introducing additional inductive genes.
Collapse
Affiliation(s)
- Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Science City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
García-Fuster MJ, Flagel SB, Mahmood ST, Mayo LM, Thompson RC, Watson SJ, Akil H. Decreased proliferation of adult hippocampal stem cells during cocaine withdrawal: possible role of the cell fate regulator FADD. Neuropsychopharmacology 2011; 36:2303-17. [PMID: 21796105 PMCID: PMC3176567 DOI: 10.1038/npp.2011.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 11/08/2022]
Abstract
The current study uses an extended access rat model of cocaine self-administration (5-h session per day, 14 days), which elicits several features manifested during the transition to human addiction, to study the neural adaptations associated with cocaine withdrawal. Given that the hippocampus is thought to have an important role in maintaining addictive behavior and appears to be especially relevant to mechanisms associated with withdrawal, this study attempted to understand how extended access to cocaine impacts the hippocampus at the cellular and molecular levels, and how these alterations change over the course of withdrawal (1, 14, and 28 days). Therefore, at the cellular level, we examined the effects of cocaine withdrawal on cell proliferation (Ki-67+ and NeuroD+ cells) in the DG. At the molecular level, we employed a 'discovery' approach with gene expression profiling in the DG to uncover novel molecules possibly implicated in the neural adaptations that take place during cocaine withdrawal. Our results suggest that decreased hippocampal cell proliferation might participate in the adaptations associated with drug removal and identifies 14 days as a critical time-point of cocaine withdrawal. At the 14-day time-point, gene expression profiling of the DG revealed the dysregulation of several genes associated with cell fate regulation, highlighting two new neurobiological correlates (Ascl-1 and Dnmt3b) that accompany cessation of drug exposure. Moreover, the results point to Fas-Associated protein with Death Domain (FADD), a molecular marker previously associated with the propensity to substance abuse and cocaine sensitization, as a key cell fate regulator during cocaine withdrawal. Identifying molecules that may have a role in the restructuring of the hippocampus following substance abuse provides a better understanding of the adaptations associated with cocaine withdrawal and identifies novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
218
|
Masiulis I, Yun S, Eisch AJ. The interesting interplay between interneurons and adult hippocampal neurogenesis. Mol Neurobiol 2011; 44:287-302. [PMID: 21956642 DOI: 10.1007/s12035-011-8207-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irene Masiulis
- UT Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | | | | |
Collapse
|
219
|
Albanito L, Reddy CE, Musti AM. c-Jun is essential for the induction of Il-1β gene expression in in vitro activated Bergmann glial cells. Glia 2011; 59:1879-90. [PMID: 21948257 DOI: 10.1002/glia.21244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/23/2011] [Indexed: 12/21/2022]
Abstract
In the central nervous system (CNS), the c-Jun transcription factor has been mainly studied in neuronal cells and coupled to apoptotic and regenerative pathways following brain injury. Besides, several studies have shown a transcriptional role of c-Jun in activated cortical and spinal astrocytes. In contrast, little is known about c-Jun expression and transactivation in Bergmann glial (BG) cells, the radial cerebellar astrocytes playing crucial roles in cerebellar development and physiology. Here, we used neuronal/glial cerebellar cultures from neonatal mice to assess putative functions of c-Jun in BG cells. By performing double immunocytochemical staining of c-Jun and two BG specific markers, S100 and glutamate aspartate transporter (GLAST), we show that c-Jun was highly expressed in radial glial cells derived from Bergmann glia. Bergmann glia-derived cells expressed toll-like receptor 4 and treatment with bacterial lipopolysaccharide (LPS)-induced c-Jun phosphorylation at serine 63, a hallmark of c-Jun transactivation, exclusively in BG cells. Moreover, LPS-induced IL-1β expression and inhibition of c-Jun N-terminal kinase (JNK) activity abolished both c-Jun phosphorylation and the increase of IL-1β mRNA. Notably, LPS failed to induce IL-1β mRNA in neuronal/glial cerebellar cultures generated from conditional knockout mice lacking c-Jun expression in the CNS, indicating the essential role of c-Jun in astroglial-specific induction of IL-1β. Immunohistochemical analyses of c-Jun-expressing cells in the early postnatal cerebellum confirmed in vivo the expression of c-Jun in BG cells and uncovered a dynamic expression of c-Jun during the formation of the BG monolayer. Altogether, our finding underlines a putative role of c-Jun in astroglia-mediated neuroinflammatory dysfunctions of the cerebellum.
Collapse
Affiliation(s)
- Lidia Albanito
- Institut for Clinical Neurobiology, University of Würzburg, D-97078 Würzburg, Germany
| | | | | |
Collapse
|
220
|
Abstract
Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to control critical aspects of development in many tissues. To identify bHLH genes that might regulate specific aspects of retinal cell development, we investigated the expression of bHLH genes in single, developing mouse retinal cells, with particular emphasis on the NeuroD family. Two of these factors, NeuroD2 and NeuroD6/NEX, had not been previously reported as expressed in the retina. A series of loss- and gain-of-function experiments was performed, which suggested that NeuroD genes have both similarities and differences in their activities. Notably, misexpression of NeuroD genes can direct amacrine cell processes to two to three specific sublaminae in the inner plexiform layer. This effect is specific to cell type and NeuroD gene, as the AII amacrine cell type is refractory to the effects of NeuroD1 and NeuroD6, but uniquely sensitive to the effect of NeuroD2 on neurite targeting. Additionally, NeuroD2 is endogenously expressed in AII amacrine cells, among others, and loss of NeuroD2 function results in a partial loss of AII amacrine cells. The effects of misexpressing NeuroD genes on retinal cell fate determination also suggested shared and divergent functions. Remarkably, NeuroD2 misexpression induced ganglion cell production even after the normal developmental window of ganglion cell genesis. Together, these data suggest that members of the NeuroD family are important for neuronal cell type identity and may be involved in several cell type-specific aspects of retinal development, including fate determination, differentiation, morphological development, and circuit formation.
Collapse
|
221
|
Kizuka Y, Kitazume S, Yoshida M, Taniguchi N. Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J Biol Chem 2011; 286:31875-84. [PMID: 21771782 DOI: 10.1074/jbc.m111.251173] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is well known that biosynthesis of glycans takes place in organ- and tissue-specific manners and glycan expression is controlled by various factors including glycosyltransferases. The expression mechanism of glycosyltransferases, however, is poorly understood. Here we investigated the expression mechanism of a brain-specific glycosyltransferase, GnT-IX (N-acetylglucosaminyltransferase IX, also designated as GnT-Vb), which synthesizes branched O-mannose glycan. Using an epigenetic approach, we revealed that the genomic region around the transcriptional start site of the GnT-IX gene was highly associated with active chromatin histone marks in a neural cell-specific manner, indicating that brain-specific GnT-IX expression is under control of an epigenetic "histone code." By EMSA and ChIP analyses we identified two regulatory proteins, NeuroD1 and CTCF that bind to and activate the GnT-IX promoter. We also revealed that GnT-IX expression was suppressed in CTCF- and NeuroD1-depleted cells, indicating that a NeuroD1- and CTCF-dependent epigenetic mechanism governs brain-specific GnT-IX expression. Several other neural glycosyltransferase genes are also found to be regulated by epigenetic histone modifications. This is the first report demonstrating a molecular mechanism at the chromatin level underlying tissue-specific glycan expression.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
222
|
Gil-Mohapel J, Boehme F, Patten A, Cox A, Kainer L, Giles E, Brocardo PS, Christie BR. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome. Brain Res 2011; 1384:29-41. [PMID: 21303667 DOI: 10.1016/j.brainres.2011.01.116] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/24/2011] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.
Collapse
Affiliation(s)
- Joana Gil-Mohapel
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 2011; 345:1-19. [PMID: 21647561 DOI: 10.1007/s00441-011-1196-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/13/2011] [Indexed: 12/29/2022]
Abstract
Biologists long believed that, once development is completed, no new neurons are produced in the forebrain. However, as is now firmly established, new neurons can be produced at least in two specific forebrain areas: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation. Neurogenesis within the adult DG occurs constitutively throughout postnatal life, and the rate of neurogenesis within the DG can be altered under various physiological and pathophysiological conditions. The process of adult neurogenesis within the DG is a multi-step process (proliferation, differentiation, migration, targeting, and synaptic integration) that ends with the formation of a post-mitotic functionally integrated new neuron. Various markers are expressed during specific stages of adult neurogenesis. The availability of such markers allows the time-course and fate of newly born cells to be followed within the DG in a detailed and precise fashion. Several of the available markers (e.g., PCNA, Ki-67, PH3, MCM2) are markers for proliferative events, whereas others are more specific for early phases of neurogenesis and gliogenesis within the adult DG (e.g., nestin, GFAP, Sox2, Pax6). In addition, markers are available allowing events to be distinguished that are related to later steps of gliogenesis (e.g., vimentin, BLBP, S100beta) or neurogenesis (e.g., NeuroD, PSA-NCAM, DCX).
Collapse
|
224
|
Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T, Igarashi K, Kanno J, Ushijima T, Suzuki T, Narita M. Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 2011; 21:127-32. [PMID: 20232397 DOI: 10.1002/hipo.20775] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Environmental enrichment is an experimental paradigm that increases brain-derived neurotrophic factor (BDNF) gene expression accompanied by neurogenesis in the hippocampus of rodents. In the present study, we investigated whether an enriched environment could cause epigenetic modification at the BDNF gene in the hippocampus of mice. Exposure to an enriched environment for 3-4 weeks caused a dramatic increase in the mRNA expression of BDNF, but not platelet-derived growth factor A (PDGF-A), PDGF-B, vascular endothelial growth factor (VEGF), nerve growth factor (NGF), epidermal growth factor (EGF), or glial fibrillary acidic protein (GFAP), in the hippocampus of mice. Under these conditions, exposure to an enriched environment induced a significant increase in histone H3 lysine 4 (H3K4) trimethylation at the BDNF P3 and P6 promoters, in contrast to significant decreases in histone H3 lysine 9 (H3K9) trimethylation at the BDNF P4 promoter and histone H3 lysine 27 (H3K27) trimethylation at the BDNF P3 and P4 promoters without any changes in the expression of their associated histone methylases and demethylases in the hippocampus. The expression levels of several microRNAs in the hippocampus were not changed by an enriched environment. These results suggest that an enriched environment increases BDNF mRNA expression via sustained epigenetic modification in the mouse hippocampus.
Collapse
Affiliation(s)
- Naoko Kuzumaki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Boehme F, Gil-Mohapel J, Cox A, Patten A, Giles E, Brocardo PS, Christie BR. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders. Eur J Neurosci 2011; 33:1799-811. [PMID: 21535455 DOI: 10.1111/j.1460-9568.2011.07676.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol consumption during pregnancy can result in a myriad of health problems in the affected offspring ranging from growth deficiencies to central nervous system impairments that result in cognitive deficits. Adult hippocampal neurogenesis is thought to play a role in cognition (i.e. learning and memory) and can be modulated by extrinsic factors such as alcohol consumption and physical exercise. We examined the impact of voluntary physical exercise on adult hippocampal neurogenesis in a rat model of fetal alcohol spectrum disorders (FASD). Intragastric intubation was used to deliver ethanol to rats in a highly controlled fashion through all three trimester equivalents (i.e. throughout gestation and during the first 10 days of postnatal life). Ethanol-exposed animals and their pair-fed and ad libitum controls were left undisturbed until they reached a young adult stage at which point they had free access to a running wheel for 12 days. Prenatal and early postnatal ethanol exposure altered cell proliferation in young adult female rats and increased early neuronal maturation without affecting cell survival in the dentate gyrus (DG) of the hippocampus. Voluntary wheel running increased cell proliferation, neuronal maturation and cell survival as well as levels of brain-derived neurotrophic factor in the DG of both ethanol-exposed female rats and their pair-fed and ad libitum controls. These results indicate that the capacity of the brain to respond to exercise is not impaired in this model of FASD, highlighting the potential therapeutic value of physical exercise for this developmental disorder.
Collapse
Affiliation(s)
- Fanny Boehme
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | | | | | | | | | |
Collapse
|
226
|
Wullimann MF, Mueller T, Distel M, Babaryka A, Grothe B, Köster RW. The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Front Neuroanat 2011; 5:27. [PMID: 21559349 PMCID: PMC3085262 DOI: 10.3389/fnana.2011.00027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/06/2011] [Indexed: 12/21/2022] Open
Abstract
This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes
Collapse
Affiliation(s)
- Mario F Wullimann
- Graduate School of Systemic Neurosciences and Department Biology II, Ludwig-Maximilians-Universität Munich Planegg, Germany
| | | | | | | | | | | |
Collapse
|
227
|
Sierra A, Encinas JM, Maletic-Savatic M. Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci 2011; 5:47. [PMID: 21519376 PMCID: PMC3075882 DOI: 10.3389/fnins.2011.00047] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/23/2011] [Indexed: 01/18/2023] Open
Abstract
Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.
Collapse
Affiliation(s)
- Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| | - Juan M. Encinas
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| |
Collapse
|
228
|
Huang P, Kishida S, Cao D, Murakami-Tonami Y, Mu P, Nakaguro M, Koide N, Takeuchi I, Onishi A, Kadomatsu K. The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. Cancer Res 2011; 71:2938-48. [PMID: 21349947 DOI: 10.1158/0008-5472.can-10-3524] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The basic helix-loop-helix transcription factor NeuroD1 has been implicated in the neurogenesis and early differentiation of pancreatic endocrine cells. However, its function in relation to cancer has been poorly examined. In this study, we found that NeuroD1 is involved in the tumorigenesis of neuroblastoma. NeuroD1 was strongly expressed in a hyperplastic region comprising neuroblasts in the celiac sympathetic ganglion of 2-week-old MYCN transgenic (Tg) mice and was consistently expressed in the subsequently generated neuroblastoma tissue. NeuroD1 knockdown by short hairpin RNA (shRNA) resulted in motility inhibition of the human neuroblastoma cell lines, and this effect was reversed by shRNA-resistant NeuroD1. The motility inhibition by NeuroD1 knockdown was associated with induction of Slit2 expression, and knockdown of Slit2 could restore cell motility. Consistent with this finding, shRNA-resistant NeuroD1 suppressed Slit2 expression. NeuroD1 directly bound to the first and second E-box of the Slit2 promoter region. Moreover, we found that the growth of tumor spheres, established from neuroblastoma cell lines in MYCN Tg mice, was suppressed by NeuroD1 suppression. The functions identified for NeuroD1 in cell motility and tumor sphere growth may suggest a link between NeuroD1 and the tumorigenesis of neuroblastoma. Indeed, tumor formation of tumor sphere-derived cells was significantly suppressed by NeuroD1 knockdown. These data are relevant to the clinical features of human neuroblastoma: high NeuroD1 expression was closely associated with poor prognosis. Our findings establish the critical role of the neuronal differentiation factor NeuroD1 in neuroblastoma as well as its functional relationship with the neuronal repellent factor Slit2.
Collapse
Affiliation(s)
- Peng Huang
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Simpson JM, Gil-Mohapel J, Pouladi MA, Ghilan M, Xie Y, Hayden MR, Christie BR. Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis 2011; 41:249-60. [DOI: 10.1016/j.nbd.2010.09.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 12/31/2022] Open
|
230
|
Molecular and cellular mechanisms contributing to the regulation, proliferation and differentiation of neural stem cells in the adult dentate gyrus. Keio J Med 2011; 59:79-83. [PMID: 20881448 DOI: 10.2302/kjm.59.79] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adult neural stem cells (NSCs) are a potential endogenous source for neuronal cell replacement in the diseased adult central nervous system (CNS). However, the recruitment of adult NSCs for repair is hampered by the current lack of knowledge about the cellular and molecular mechanisms that control their behavior in vivo. We have previously demonstrated that environment-derived signals control the fate choice of adult NSCs. More recently we have provided evidence that in the adult hippocampal dentate gyrus - one of the two neurogenic regions of the adult CNS - specialized astrocytes provide signals that instruct NSCs to adopt a neuronal fate. In this review I will examine in vitro and in vivo the molecular mechanisms underlying the neuronal fate instruction of adult NSCs by the local astrocyte population in the adult hippocampus. In particular, I will focus on the Wnt family of proteins, which we have found to be expressed in adult hippocampal astrocytes; our preliminary studies have also shown that these proteins enhance the generation of neurons from adult NSCs in vitro.
Collapse
|
231
|
Can Clues from Evolution Unlock the Molecular Development of the Cerebellum? Mol Neurobiol 2010; 43:67-76. [DOI: 10.1007/s12035-010-8160-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 12/19/2022]
|
232
|
Jukkola PI, Rogers JT, Kaspar BK, Weeber EJ, Nishijima I. Secretin deficiency causes impairment in survival of neural progenitor cells in mice. Hum Mol Genet 2010; 20:1000-7. [PMID: 21159798 DOI: 10.1093/hmg/ddq545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hippocampal neurogenesis is the lifelong production of new neurons in the central nervous system (CNS), and affects many physiological and pathophysiological conditions, including neurobehavioral disorders. The early postnatal stage is the most prominent neurogenesis period; however, the functional role of neurogenesis in this developing stage has not been well characterized. To understand the role of hippocampal neurogenesis in the postnatal developing period, we analyzed secretin, a neuropeptide, which is expressed significantly higher in the development stage. Secretin is a pleiotropic neuropeptide hormone that belongs to the secretin/VIP/glucagon peptide family. Although secretin was originally isolated in the gastrointestinal system, it has been found that secretin itself acts as a neuropeptide in the CNS. Here, we report a new function of secretin as a survival factor for neural progenitor cells in the hippocampus. We found that secretin-deficient mice exhibit decreased numbers of BrdU-labeled new neurons and dramatically increased apoptosis of doublecortin-positive neural progenitor cells in the subgranular zone of the dentate gyrus (DG) during the early postnatal period. Furthermore, we found that reduced survival of neural progenitor cells leads to decreased volume of DG, reduced long-term potentiation and impaired spatial learning ability in adults. Our studies demonstrate that secretin has important implications for neurogenesis in postnatal development, and affects neurobehavioral function in the adult mouse.
Collapse
Affiliation(s)
- Peter I Jukkola
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
233
|
Engel T, Schindler CK, Sanz-Rodriguez A, Conroy RM, Meller R, Simon RP, Henshall DC. Expression of neurogenesis genes in human temporal lobe epilepsy with hippocampal sclerosis. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2010; 3:38-47. [PMID: 21479101 PMCID: PMC3068852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
Both evoked and spontaneous seizures have been reported to increase neurogenesis in animal models. Less is known about whether neurogenesis and markers thereof are aberrantly expressed in human temporal lobe epilepsy (TLE) with hippocampal sclerosis. In the present study we measured protein levels of multiple neurogenesis marker genes using Western blotting. Tissue homogenates from sclerotic hippocampus surgically resected from patients with pharmacoresistantTLE (n = 7) were compared to hippocampal samples from a group of age- and gender-matched autopsy controls (n = 6). Expression of the mature neuron marker NeuN was significantly lower in TLE samples compared to controls. In contrast, levels of neurogenesis-associated genes including TUC-4, doublecortin, Neu-roD and Numb, were all similarly expressed in TLE and control hippocampus samples. The present study suggests hippocampal expression levels of proteins associated with neurogenesis are not notably different in human TLE, implying the sclerotic hippocampus may retain neurogenic potential.
Collapse
|
234
|
Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R. MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 2010; 39:2869-79. [PMID: 21131276 PMCID: PMC3074159 DOI: 10.1093/nar/gkq904] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the fine control of cell proliferation and differentiation during the development of the nervous system. MiR-124, a neural specific miRNA, is expressed from the beginning of eye development in Xenopus, and has been shown to repress cell proliferation in the optic cup, however, its role at earlier developmental stages is unclear. Here, we show that this miRNA exerts a different role in cell proliferation at the optic vesicle stage, the stage which precedes optic cup formation. We show that miR-124 is both necessary and sufficient to promote cell proliferation and repress neurogenesis at the optic vesicle stage, playing an anti-neural role. Loss of miR-124 upregulates expression of neural markers NCAM, N-tubulin while gain of miR-124 downregulates these genes. Furthermore, miR-124 interacts with a conserved miR-124 binding site in the 3'-UTR of NeuroD1 and negatively regulates expression of the proneural marker NeuroD1, a bHLH transcription factor for neuronal differentiation. The miR-124-induced effect on cell proliferation can be antagonized by NeuroD1. These results reveal a novel regulatory role of miR-124 in neural development and uncover a previously unknown interaction between NeuroD1 and miR-124.
Collapse
Affiliation(s)
- Kaili Liu
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
235
|
Radotra B, Apostolopoulos V, Sandison A, Hatfield ECI, Mendoza N, Moss J, Mehta A, Glaser M, Meeran K, Roncaroli F. Primary sellar neuroblastoma presenting with syndrome of inappropriate secretion of anti-diuretic hormone. Endocr Pathol 2010; 21:266-73. [PMID: 21053097 DOI: 10.1007/s12022-010-9140-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 29-year-old Ethiopian man presented with marked bilateral visual loss, headache, hypopituitarism and significant hyponatraemia (115 mmol/L). A brain MRI scan demonstrated a large, lobulated, sellar and suprasellar mass, elevating the floor of the 3rd ventricle and compressing the optic chiasm. The patient underwent a transphenoidal resection of the mass followed by a craniotomy 10 days later. Histological examination demonstrated a Hyams' grade III neuroblastoma with ectopic expression of vasopressin. He underwent fractionated radiotherapy at a dose of 60 Gy in 30 fractions. Fourteen months after the onset, he is well with no neuroimaging evidence of tumour recurrence. His serum and urine sodium are completely normalised.
Collapse
Affiliation(s)
- Bishan Radotra
- Department of Medicine, Faculty of Medicine, Charing Cross Campus, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Jung S, Park RH, Kim S, Jeon YJ, Ham DS, Jung MY, Kim SS, Lee YD, Park CH, Suh-Kim H. Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells Dev 2010; 19:831-41. [PMID: 19757990 DOI: 10.1089/scd.2009.0093] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Members of helix-loop-helix (HLH) protein family of Id (inhibitor of differentiation) dimerize with bHLH transcription factors and function as negative regulators of differentiation during development. Most of inhibitory roles of Id proteins have been demonstrated in non-neural tissues, and their roles in the developing nervous system are not clearly demonstrated. In this study, we show that Id1, Id2, and Id3 increase self-renewing and proliferation potential of cortical neural stem cells (NSCs) while inhibiting neuronal differentiation. In electrophoretic mobility gel shift and luciferase assays, Id proteins interfered with binding of NeuroD/E47 complexes to the E-box sequences and inhibited E-box-mediated gene expression. Overexpression of Id proteins in NSCs increased both the number and the size of neurospheres in colony-forming assays. Expression of Hes1 and Hes5 was not increased by overexpression of Id proteins under the condition in which Nestin expression was increased. In utero electroporation of Id yielded higher numbers of Ki67-positive and Sox2-positive cells in the mouse embryonic brain. The study suggests Id proteins play independent roles in the maintenance of neural stem properties.
Collapse
Affiliation(s)
- Seunghwan Jung
- Department of Anatomy, Ajou University, School of Medicine, Suwon, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
A small molecule accelerates neuronal differentiation in the adult rat. Proc Natl Acad Sci U S A 2010; 107:16542-7. [PMID: 20823227 DOI: 10.1073/pnas.1010300107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adult neurogenesis occurs in mammals and provides a mechanism for continuous neural plasticity in the brain. However, little is known about the molecular mechanisms regulating hippocampal neural progenitor cells (NPCs) and whether their fate can be pharmacologically modulated to improve neural plasticity and regeneration. Here, we report the characterization of a small molecule (KHS101) that selectively induces a neuronal differentiation phenotype. Mechanism of action studies revealed a link of KHS101 to cell cycle exit and specific binding to the TACC3 protein, whose knockdown in NPCs recapitulates the KHS101-induced phenotype. Upon systemic administration, KHS101 distributed to the brain and resulted in a significant increase in neuronal differentiation in vivo. Our findings indicate that KHS101 accelerates neuronal differentiation by interaction with TACC3 and may provide a basis for pharmacological intervention directed at endogenous NPCs.
Collapse
|
238
|
Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 2010; 59:2326-31. [PMID: 20573748 PMCID: PMC2927956 DOI: 10.2337/db10-0011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE NEUROD1 is expressed in both developing and mature beta-cells. Studies in mice suggest that this basic helix-loop-helix transcription factor is critical in the development of endocrine cell lineage. Heterozygous mutations have previously been identified as a rare cause of maturity-onset diabetes of the young (MODY). We aimed to explore the potential contribution of NEUROD1 mutations in patients with permanent neonatal diabetes. RESEARCH DESIGN AND METHODS We sequenced the NEUROD1 gene in 44 unrelated patients with permanent neonatal diabetes of unknown genetic etiology. RESULTS Two homozygous mutations in NEUROD1 (c.427_ 428del and c.364dupG) were identified in two patients. Both mutations introduced a frameshift that would be predicted to generate a truncated protein completely lacking the activating domain. Both patients had permanent diabetes diagnosed in the first 2 months of life with no evidence of exocrine pancreatic dysfunction and a morphologically normal pancreas on abdominal imaging. In addition to diabetes, they had learning difficulties, severe cerebellar hypoplasia, profound sensorineural deafness, and visual impairment due to severe myopia and retinal dystrophy. CONCLUSIONS We describe a novel clinical syndrome that results from homozygous loss of function mutations in NEUROD1. It is characterized by permanent neonatal diabetes and a consistent pattern of neurological abnormalities including cerebellar hypoplasia, learning difficulties, sensorineural deafness, and visual impairment. This syndrome highlights the critical role of NEUROD1 in both the development of the endocrine pancreas and the central nervous system in humans.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jayne A.L. Minton
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
| | - Iren Kantor
- Department of Pediatrics, Jósa András Hospital, Nyíregyháza, Hungary
| | - Denise Williams
- West Midlands Regional Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
- Corresponding author: Andrew T. Hattersley,
| |
Collapse
|
239
|
Fedele V, Roybon L, Nordström U, Li JY, Brundin P. Neurogenesis in the R6/2 mouse model of Huntington's disease is impaired at the level of NeuroD1. Neuroscience 2010; 173:76-81. [PMID: 20807561 DOI: 10.1016/j.neuroscience.2010.08.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 08/07/2010] [Accepted: 08/11/2010] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis is impaired in the hippocampus of transgenic R6 mouse models of Huntington's disease (HD). The phenotypes of R6 transgenic mice mimic several symptoms and signs of the disease (Li et al., 2005). They exhibit neurological and endocrine changes resembling some symptoms seen in humans. The reduction in neurogenesis is only apparent in the dentate gyrus as the number of newborn neurons in the subventricular zone, and olfactory bulb, is normal in R6 mice. The mechanism(s) underlying the reduction in hippocampal neurogenesis is still not fully understood. Here we show that the number of neuroblasts, but not granule neuron progenitors, is greatly reduced in 11-week old transgenic mice compared with wild-type (WT) controls. We demonstrate that NeuroD1 expression is reduced in the hippocampus. This is coupled to a decreased expression of downstream markers doublecortin and calretinin in maturing neurons. Taken together, our results suggest that mutant huntingtin (Htt) causes alterations of proteins expression in hippocampal progenitors, which might contribute to cognitive deficits in Huntington's disease.
Collapse
Affiliation(s)
- V Fedele
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
240
|
Lavado A, Lagutin OV, Chow LML, Baker SJ, Oliver G. Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 2010; 8. [PMID: 20808958 PMCID: PMC2923090 DOI: 10.1371/journal.pbio.1000460] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/09/2010] [Indexed: 01/19/2023] Open
Abstract
The transcription factor Prox1 plays a crucial role in intermediate progenitor maintenance and hippocampal neuron differentiation during adult neurogenesis in the dentate gyrus region of the hippocampus. The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis. We also demonstrate that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone; thus, we have identified a previously unknown non-cell autonomous regulatory feedback mechanism that controls adult neurogenesis in this region of the mammalian brain. Finally, we show that the ectopic expression of Prox1 induces premature differentiation of neural stem cells. In the brain, the hippocampus has a crucial role in learning and memory. In mammals, neurogenesis (the birth of new neurons) occurs in the dentate gyrus region of the hippocampus throughout adulthood, and this activity is thought to be the basis for the acquisition of new memories. In this study we describe for the first time the functional roles of the transcription factor Prox1 during brain development and adult neurogenesis. We demonstrate that in mammals, Prox1 is required for the differentiation of granule cells during dentate gyrus development. We also show that conditional inactivation of Prox1 results in the absence of specific intermediate progenitors in the subgranular zone of the dentate gyrus, which prevents adult neurogenesis from occurring. This is the first report showing blockade of adult neurogenesis at the level of progenitor cells. Next, we demonstrate that in the absence of Prox1-expressing intermediate progenitors, the stem cell population of the subgranular zone becomes depleted. Further, we show that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone. Finally, we demonstrate that Prox1 ectopic expression induces premature granule cell differentiation in the subgranular zone. Therefore, our results identify a previously unknown non-cell autonomous feedback mechanism that links adult stem cell self-maintenance with neuronal differentiation in the dentate gyrus and could have important implications for neurogenesis in other brain regions.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Oleg V. Lagutin
- Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Lionel M. L. Chow
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Guillermo Oliver
- Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
241
|
Botia B, Jolivel V, Burel D, Le Joncour V, Roy V, Naassila M, Bénard M, Fournier A, Vaudry H, Vaudry D. Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. Neurotox Res 2010; 19:423-34. [PMID: 20422475 DOI: 10.1007/s12640-010-9186-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/25/2010] [Accepted: 03/27/2010] [Indexed: 11/30/2022]
Abstract
The developing rat cerebellum is particularly sensitive to alcohol at the end of the first postnatal week, a period of intense neurogenesis. The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) has previously been shown to prevent the death of cultured neurons in vitro. We have thus investigated the capacity of PACAP to counteract ethanol toxicity in 8-day-old rats. Behavioral studies revealed that PACAP reduces the deleterious action of alcohol in the negative geotaxis test. Administration of ethanol induced a transient increase of the expression of pro-apoptotic genes including c-jun or caspase-3 , which could be partially blocked by PACAP. Alcohol inhibited the expression of the α6 GABA ( A ) subunit while PACAP increased neuroD2 mRNA level, two markers of neuronal differentiation. Although gene regulations occurred rapidly, a third injection of ethanol was required to strongly reduce the number of granule cells in the internal granule cell layer, an effect which was totally blocked by PACAP. The action of PACAP was mimicked by D-JNKi1 and Z-VAD-FMK, indicating the involvement of the jun and caspase-3 pathways in alcohol toxicity. The present data demonstrate that PACAP can counteract in vivo the deleterious effect of ethanol. The beneficial action of PACAP on locomotor activity precedes its activity on cell survival, indicating that PACAP can block the detrimental action of ethanol on cell differentiation.
Collapse
Affiliation(s)
- Béatrice Botia
- INSERM U982, DC2N, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
García-Fuster MJ, Perez JA, Clinton SM, Watson SJ, Akil H. Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse. Eur J Neurosci 2010; 31:79-89. [PMID: 20104651 DOI: 10.1111/j.1460-9568.2009.07045.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hippocampal plasticity (e.g. neurogenesis) likely plays an important role in maintaining addictive behavior and/or relapse. This study assessed whether rats with differential propensity to drug-seeking behavior, bred Low-Responders (bLR) and bred High-Responders (bHR) to novelty, show differential neurogenesis regulation after cocaine exposure. Using specific immunological markers, we labeled distinct populations of adult stem cells in the dentate gyrus at different time-points of the cocaine sensitization process; Ki-67 for newly born cells, NeuroD for cells born partway, and 5-bromo-2'-deoxyuridine for older cells born prior to sensitization. Results show that: (i) bHRs exhibited greater psychomotor response to cocaine than bLRs; (ii) acute cocaine did not alter cell proliferation in bLR/bHR rats; (iii) chronic cocaine decreased cell proliferation in bLRs only, which became amplified through the course of abstinence; (iv) neither chronic cocaine nor cocaine abstinence affected the survival of immature neurons in either phenotype; (v) cocaine abstinence decreased survival of mature neurons in bHRs only, an effect that paralleled the greater psychomotor response to cocaine; and (vi) cocaine treatment did not affect the ratio of neurons to glia in bLR/bHR rats as most cells differentiated into neurons in both lines. Thus, cocaine exerts distinct effects on neurogenesis in bLR vs. bHR rats, with a decrease in the birth of new progenitor cells in bLRs and a suppression of the survival of new neurons in bHRs, which likely leads to an earlier decrease in formation of new connections. This latter effect in bHRs could contribute to their enhanced degree of cocaine-induced psychomotor behavioral sensitization.
Collapse
Affiliation(s)
- M J García-Fuster
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
243
|
Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima SI, Hibi M. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 2010; 343:1-17. [PMID: 20388506 DOI: 10.1016/j.ydbio.2010.03.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/30/2023]
Abstract
In mammals, cerebellar neurons are categorized as glutamatergic or GABAergic, and are derived from progenitors that express the proneural genes atoh1 or ptf1a, respectively. In zebrafish, three atoh1 genes, atoh1a, atoh1b, and atoh1c, are expressed in overlapping but distinct expression domains in the upper rhombic lip (URL): ptf1a is expressed exclusively in the ventricular zone (VZ). Using transgenic lines expressing fluorescent proteins under the control of the regulatory elements of atoh1a and ptf1a, we traced the lineages of the cerebellar neurons. The atoh1(+) progenitors gave rise not only to granule cells but also to neurons of the anteroventral rhombencephalon. The ptf1a(+) progenitors generated Purkinje cells. The olig2(+) eurydendroid cells, which are glutamatergic, were derived mostly from ptf1a(+) progenitors in the VZ but some originated from the atoh1(+) progenitors in the URL. In the adult cerebellum, atoh1a, atoh1b, and atoh1c are expressed in the molecular layer of the valvula cerebelli and of the medial corpus cerebelli, and ptf1a was detected in the VZ. The proneural gene expression patterns coincided with the sites of proliferating neuronal progenitors in the adult cerebellum. Our data indicate that proneural gene-linked neurogenesis is evolutionarily conserved in the cerebellum among vertebrates, and that the continuously generated neurons help remodel neural circuits in the adult zebrafish cerebellum.
Collapse
Affiliation(s)
- Shuichi Kani
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Ravanpay AC, Hansen SJ, Olson JM. Transcriptional inhibition of REST by NeuroD2 during neuronal differentiation. Mol Cell Neurosci 2010; 44:178-89. [PMID: 20346398 DOI: 10.1016/j.mcn.2010.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 03/07/2010] [Accepted: 03/08/2010] [Indexed: 11/17/2022] Open
Abstract
For a progenitor cell to become a neuron, three activities must occur: neuronal differentiation program must be activated, elements repressing neuronal differentiation must be deactivated and competing differentiation programs must be silenced. It is known that NeuroD2 and related bHLH transcription factors induce neuronal differentiation, REST represses neuronal differentiation, and Zfhx1a prevents myogenic gene expression. We demonstrate that NeuroD2 suppresses REST during differentiation in culture. In the hippocampus of NeuroD2 knockout mice, higher level of REST is detected. Functional significance of NeuroD2-REST interplay is uncovered by showing that forced expression of REST interferes with neuronal differentiation in culture. NeuroD2 inhibits REST indirectly by involving the inhibitor of myogenic genes, Zfhx1a, which binds response elements in REST 5'-UTR. Our study supports a model wherein NeuroD2 induces transcription of neuronal genes and Zfhx1a, which in turn de-represses neuronal differentiation by down-regulating REST, and suppresses competing myogenic fate.
Collapse
Affiliation(s)
- Ali C Ravanpay
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
245
|
Lundell TG, Zhou Q, Doughty ML. Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn 2010; 238:3310-25. [PMID: 19924827 DOI: 10.1002/dvdy.22165] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors Ptf1a and Math1 are necessary for the specification of gamma-aminobutyric acid-ergic and glutamatergic cell lineages in the cerebellum, respectively. Recent evidence suggests cascades of bHLH factor activities drive cell type specificity in Ptf1a(+ve) and Math1(+ve) lineages. In this manuscript, we reveal cell lineages in the cerebellar cortex but not deep cerebellar nuclei express the pro-neural bHLH factor Neurogenin1 (Ngn1). Ngn1 is expressed in ventricular zone progenitors and in newly generated neurons in the caudal cerebellar primordium. In later embryonic and postnatal developmental stages, Ngn1 is expressed in progenitors and in migrating interneurons in the prospective white matter. Transgenic fate-mapping reveals Ngn1 reporter-gene expression in Purkinje cells, multiple inhibitory interneuron cell types, and in unipolar brush cells of the cortex. The data suggest Ngn1 is a component of the bHLH factor code regulating cell type specification in the cerebellar cortex.
Collapse
Affiliation(s)
- T G Lundell
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
246
|
Uittenbogaard M, Baxter KK, Chiaramello A. NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J Neurosci Res 2010; 88:33-54. [PMID: 19610105 DOI: 10.1002/jnr.22182] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During neurogenesis, expression of the basic helix-loop-helix NeuroD6/Nex1/MATH-2 transcription factor parallels neuronal differentiation and is maintained in differentiated neurons in the adult brain. To dissect NeuroD6 differentiation properties further, we previously generated a NeuroD6-overexpressing stable PC12 cell line, PC12-ND6, which displays a neuronal phenotype characterized by spontaneous neuritogenesis, accelerated NGF-induced differentiation, and increased regenerative capacity. Furthermore, we reported that NeuroD6 promotes long-term neuronal survival upon serum deprivation. In this study, we identified the NeuroD6-mediated transcriptional regulatory pathways linking neuronal differentiation to survival, by conducting a genome-wide microarray analysis using PC12-ND6 cells and serum deprivation as a stress paradigm. Through a series of filtering steps and a gene-ontology analysis, we found that NeuroD6 promotes distinct but overlapping gene networks, consistent with the differentiation, regeneration, and survival properties of PC12-ND6 cells. By using a gene-set-enrichment analysis, we provide the first evidence of a compelling link between NeuroD6 and a set of heat shock proteins in the absence of stress, which may be instrumental in conferring stress tolerance on PC12-ND6 cells. Immunocytochemistry results showed that HSP27 and HSP70 interact with cytoskeletal elements, consistent with their roles in neuritogenesis and preserving cellular integrity. HSP70 also colocalizes with mitochondria located in the soma, growing neurites, and growth cones of PC12-ND6 cells prior to and upon stress stimulus, consistent with its neuroprotective functions. Collectively, our findings support the notion that NeuroD6 links neuronal differentiation to survival via the network of molecular chaperones and endows the cells with increased stress tolerance.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
247
|
Abstract
The identification of neural stem cells (NSCs) and their contribution to continuous neurogenesis has shown that the hippocampus and olfactory bulb are plastic. Brain plasticity, achieved at the level of cell genesis, has an essential role in the maintenance of brain homeostasis. Via combinatorial functions of extrinsic signals and intrinsic programs, adult neurogenesis is tightly regulated in a specialized microenvironment, a niche. Misregulated neurogenesis is detrimental to normal brain functions and, in extreme cases, pathogenic. Hence, understanding signaling in adult neurogenesis is not only important to understand the physiological roles of neurogenesis, but also to provide knowledge that is essential for developing therapeutic applications using NSCs to intervene in the progression of brain diseases.
Collapse
Affiliation(s)
- Hoonkyo Suh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
248
|
NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc Natl Acad Sci U S A 2009; 107:1201-6. [PMID: 20080708 DOI: 10.1073/pnas.0909015107] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
After their generation and specification in periventricular regions, neuronal precursors maintain an immature and migratory state until their arrival in the respective target structures. Only here are terminal differentiation and synaptic integration induced. Although the molecular control of neuronal specification has started to be elucidated, little is known about the factors that control the latest maturation steps. We aimed at identifying factors that induce terminal differentiation during postnatal and adult neurogenesis, thereby focusing on the generation of periglomerular interneurons in the olfactory bulb. We isolated neuronal precursors and mature neurons from the periglomerular neuron lineage and analyzed their gene expression by microarray. We found that expression of the bHLH transcription factor NeuroD1 strikingly coincides with terminal differentiation. Using brain electroporation, we show that overexpression of NeuroD1 in the periventricular region in vivo leads to the rapid appearance of cells with morphological and molecular characteristics of mature neurons in the subventricular zone and rostral migratory stream. Conversely, shRNA-induced knockdown of NeuroD1 inhibits terminal neuronal differentiation. Thus, expression of a single transcription factor is sufficient to induce neuronal differentiation of neural progenitors in regions that normally do not show addition of new neurons. These results suggest a considerable potential of NeuroD1 for use in cell-therapeutic approaches in the nervous system.
Collapse
|
249
|
Zhang S, Su Y, Shinmyo Y, Islam SM, Naser IB, Ahmed G, Tamamaki N, Tanaka H. Draxin, a repulsive axon guidance protein, is involved in hippocampal development. Neurosci Res 2009; 66:53-61. [PMID: 19808066 DOI: 10.1016/j.neures.2009.09.1710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 01/25/2023]
Abstract
The hippocampus plays an essential role in learning and memory and is one of the major sites implicated in neural diseases. The proper organization of the hippocampus during development is important for its function. We found that draxin, a repulsive axon guidance cue, was widely expressed in the developing hippocampus and draxin deficient mice possessed a smaller hippocampus, particularly in the anterior part of the structure. Quantification of this reduction revealed that the volume of the dentate gyrus of the mutant was significantly smaller compared to the normal counterpart. This size reduction seemed to be dependent on apoptosis rather than due to a decrease in the rate of cell division.
Collapse
Affiliation(s)
- Sanbing Zhang
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Roybon L, Mastracci TL, Ribeiro D, Sussel L, Brundin P, Li JY. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. ACTA ACUST UNITED AC 2009; 20:1234-44. [PMID: 19767311 DOI: 10.1093/cercor/bhp187] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During forebrain development, Mash1 directs gamma-aminobutyric acid (GABA)ergic neuron differentiation ventrally in the ganglionic eminences. Repression of Mash1 in the cortex is necessary to prevent the formation of GABAergic interneurons. Negative regulation of Mash1 has been attributed to members of the Neurogenin family; the genetic ablation of Neurogenin2 (Ngn2) leads to the derepression of Mash1 and the formation of ectopic GABAergic neurons in the cortex. We have developed an in vitro system to clarify the importance of NeuroD proteins in the Mash1 regulatory pathway. Using a neurosphere culture system, we show that the downstream effectors of the Ngn2 pathway NeuroD1 and NeuroD2 can abrogate GABAergic differentiation directed by Mash1. The ectopic expression of either of these genes in Mash1-expressing cells derived from the lateral ganglionic eminence, independently downregulate Mash1 expression without affecting expression of distal less homeodomain genes. This results in a complete loss of the GABAergic phenotype. Moreover, we demonstrate that ectopic expression of Mash1 in cortical progenitors is sufficient to phenocopy the loss of Ngn2 and strongly enhances ectopic GABAergic differentiation. Collectively, our results define the compensatory and cross-regulatory mechanisms that exist among basic helix-loop-helix transcription factors during neuronal fate specification.
Collapse
Affiliation(s)
- Laurent Roybon
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|