201
|
A critical role for endoglin in the emergence of blood during embryonic development. Blood 2012; 119:5417-28. [PMID: 22535663 DOI: 10.1182/blood-2011-11-391896] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Much remains unknown about the signals that induce early mesoderm to initiate hematopoietic differentiation. Here, we show that endoglin (Eng), a receptor for the TGFβ superfamily, identifies all cells with hematopoietic fate in the early embryo. These arise in an Eng(+)Flk1(+) mesodermal precursor population at embryonic day 7.5 (E7.5), a cell fraction also endowed with endothelial potential. In Eng-knockout embryos, hematopoietic colony activity and numbers of CD71(+)Ter119(+) erythroid progenitors were severely reduced. This coincided with severely reduced expression of embryonic globin and key bone morphogenic protein (BMP) target genes, including the hematopoietic regulators Scl, Gata1, Gata2, and Msx-1. To interrogate molecular pathways active in the earliest hematopoietic progenitors, we applied transcriptional profiling to sorted cells from E7.5 embryos. Eng(+)Flk-1(+) progenitors coexpressed TGFβ and BMP receptors and target genes. Furthermore, Eng(+)Flk-1(+) cells presented high levels of phospho-SMAD1/5, indicating active TGFβ and/or BMP signaling. Remarkably, under hematopoietic serum-free culture conditions, hematopoietic outgrowth of Eng-expressing cells was dependent on the TGFβ superfamily ligands BMP4, BMP2, or TGF-β1. These data demonstrate that the E(+)F(+) fraction at E7.5 represents mesodermal cells competent to respond to TGFβ1, BMP4, or BMP2, shaping their hematopoietic development, and that Eng acts as a critical regulator in this process by modulating TGF/BMP signaling.
Collapse
|
202
|
Emmett LSD, O'Shea KS. Geminin is required for epithelial to mesenchymal transition at gastrulation. Stem Cells Dev 2012; 21:2395-409. [PMID: 22335560 DOI: 10.1089/scd.2011.0483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Geminin is a multifunctional protein previously suggested to both maintain the bone morphogenetic protein inhibition required for neural induction and to control cell-cycle progression and cell fate in the early embryo. Since Geminin is required in the blastocyst on E3.5, we employed shRNA to examine its role during postimplantation development. Geminin knockdown inhibited the epithelial to mesenchymal transition (EMT) required at gastrulation and neural crest delamination, resulting in anterior-posterior axis and patterning defects, while overexpression promoted EMT at both locations. Geminin was negatively correlated with expression of E-cadherin, which is critically involved in controlling epithelial architecture. In addition, Geminin expression level was correlated with Wnt signaling and expression of the Wnt target gene Axin2 and with Msx2, and negatively correlated with the expression of Bmp4 and Neurog1 in quantitative reverse transcriptase-polymerase chain reaction analysis of RNAs from individual embryos. These results suggest that in addition to patterning the early embryo, Geminin plays a previously unrecognized role in EMT via its ability to affect Wnt signaling and E-cadherin expression.
Collapse
Affiliation(s)
- Lisa S D Emmett
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
203
|
Chiu CY, Kuo KK, Kuo TL, Lee KT, Cheng KH. The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res 2012; 10:415-27. [PMID: 22241220 DOI: 10.1158/1541-7786.mcr-11-0293] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common visceral malignancies worldwide, with a very high incidence and poor prognosis. Bone morphogenesis protein 4 (BMP4), which belongs to the TGF-β superfamily of proteins, is a multifunctional cytokine, which exerts its biologic effects through SMAD- and non-SMAD-dependent pathways, and is also known to be involved in human carcinogenesis. However, the effects of the BMP4 signaling in liver carcinogenesis are not yet clearly defined. Here, we first show that BMP4 and its receptor, BMPR1A, are overexpressed in a majority of primary HCCs and that it promotes the growth and migration of HCC cell lines in vitro. We also establish that BMP4 can induce HCC cyclin-dependent kinase (CDK)1 and cyclin B1 upregulation to accelerate cell-cycle progression. Our study indicates that the induction of HCC cell proliferation is independent of the SMAD signaling pathway, as Smad4 knockdown of HCC cell lines still leads to the upregulation of CDK1 and cyclin B1 expression after BMP4 treatment. Using mitogen-activated protein/extracellular signal-regulated kinase (MEK) selective inhibitors, the induction of CDK1, cyclin B1 mRNA and protein were shown to be dependent on the activation of MEK/extracellular signal-regulated kinase (ERK) signaling. In vivo xenograft studies confirmed that the BMPR1A-knockdown cells were significantly less tumorigenic than the control groups. Our findings show that the upregulation of BMP4 and BMPR1A in HCC promotes the proliferation and metastasis of HCC cells and that CDK1 and cyclin B1 are important SMAD-independent molecular targets in BMP4 signaling pathways, during the HCC tumorigenesis. It is proposed that BMP4 signaling pathways may have potential as new therapeutic targets in HCC treatment.
Collapse
Affiliation(s)
- Chiang-Yen Chiu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | | | | | | |
Collapse
|
204
|
Paca A, Séguin CA, Clements M, Ryczko M, Rossant J, Rodriguez TA, Kunath T. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev Biol 2012; 361:90-102. [DOI: 10.1016/j.ydbio.2011.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
|
205
|
A crucial role of bone morphogenetic protein signaling in the wound healing response in acute liver injury induced by carbon tetrachloride. Int J Hepatol 2012; 2012:476820. [PMID: 22701178 PMCID: PMC3372049 DOI: 10.1155/2012/476820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/14/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
Background. Acute liver injury induced by administration of carbon tetrachloride (CCl(4)) has used a model of wound repair in the rat liver. Previously, we reported transient expression of bone morphogenetic protein (Bmp) 2 or Bmp4 at 6-24 h after CCl(4) treatment, suggesting a role of BMP signaling in the wound healing response in the injured liver. In the present study, we investigated the biological meaning of the transient Bmp expression in liver injury. Methods. Using conditional knockout mice carrying a floxed exon in the BMP receptor 1A gene, we determined the hepatic gene expressions and proliferative activity following CCl(4)-treated liver. Results. We observed retardation of the healing response in the knockout mice treated with CCl(4), including aggravated histological feature and reduced expressions of the albumin and Tdo2 genes, and a particular decrease in the proliferative activity shown by Ki-67 immunohistochemistry. Conclusion. Our findings suggest a crucial role of BMP signaling in the amelioration of acute liver injury.
Collapse
|
206
|
Heinke J, Patterson C, Moser M. Life is a pattern: vascular assembly within the embryo. Front Biosci (Elite Ed) 2012; 4:2269-88. [PMID: 22202036 DOI: 10.2741/541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of the vascular system is one of the earliest and most important events during organogenesis in the developing embryo because the growing organism needs a transportation system to supply oxygen and nutrients and to remove waste products. Two distinct processes termed vasculogenesis and angiogenesis lead to a complex vasculature covering the entire body. Several cellular mechanisms including migration, proliferation, differentiation and maturation are involved in generating this hierarchical vascular tree. To achieve this aim, a multitude of signaling pathways need to be activated and coordinated in spatio-temporal patterns. Understanding embryonic molecular mechanism in angiogenesis further provides insight for therapeutic approaches in pathological conditions like cancer or ischemic diseases in the adult. In this review, we describe the current understanding of major signaling pathways that are necessary and active during vascular development.
Collapse
Affiliation(s)
- Jennifer Heinke
- Department of Internal Medicine III, University of Freiburg, Germany
| | | | | |
Collapse
|
207
|
Takaoka K, Hamada H. Cell fate decisions and axis determination in the early mouse embryo. Development 2012; 139:3-14. [DOI: 10.1242/dev.060095] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mouse embryo generates multiple cell lineages, as well as its future body axes in the early phase of its development. The early cell fate decisions lead to the generation of three lineages in the pre-implantation embryo: the epiblast, the primitive endoderm and the trophectoderm. Shortly after implantation, the anterior-posterior axis is firmly established. Recent studies have provided a better understanding of how the earliest cell fate decisions are regulated in the pre-implantation embryo, and how and when the body axes are established in the pregastrulation embryo. In this review, we address the timing of the first cell fate decisions and of the establishment of embryonic polarity, and we ask how far back one can trace their origins.
Collapse
Affiliation(s)
- Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
208
|
Baron RM, Choi AJS, Owen CA, Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2011; 302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
209
|
Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R, Esguerra C, Francis A, Ibrahimi A, Kroes R, Lesage F, Maas E, Moya I, Pereira PNG, Stappers E, Stryjewska A, van den Berghe V, Vermeire L, Verstappen G, Seuntjens E, Umans L, Zwijsen A, Huylebroeck D. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. Cytokine Growth Factor Rev 2011; 22:287-300. [PMID: 22119658 DOI: 10.1016/j.cytogfr.2011.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen) of Center for Human Genetics, University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Madabhushi M, Lacy E. Anterior visceral endoderm directs ventral morphogenesis and placement of head and heart via BMP2 expression. Dev Cell 2011; 21:907-19. [PMID: 22075149 PMCID: PMC3386144 DOI: 10.1016/j.devcel.2011.08.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/30/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023]
Abstract
In amniotes, ventral folding morphogenesis achieves gut internalization, linear heart tube formation, ventral body wall closure, and encasement of the fetus in extraembryonic membranes. Impairment of ventral morphogenesis results in human birth defects involving body wall, gut, and heart malformations and in mouse misplacement of head and heart. Absence of knowledge about genetic pathways and cell populations directing ventral folding in mammals has precluded systematic study of cellular mechanisms driving this vital morphogenetic process. We report tissue-specific mouse mutant analyses identifying the bone morphogenetic protein (BMP) pathway as a key regulator of ventral morphogenesis. BMP2 expressed in anterior visceral endoderm (AVE) signals to epiblast derivatives during gastrulation to orchestrate initial stages of ventral morphogenesis, including foregut development and positioning of head and heart. These findings identify unanticipated functions for the AVE in organizing the gastrulating embryo and indicate that visceral endoderm-expressed BMP2 coordinates morphogenetic cell behaviors in multiple epiblast lineages.
Collapse
Affiliation(s)
- Mary Madabhushi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
211
|
Santos A, Bakker AD, Willems HME, Bravenboer N, Bronckers ALJJ, Klein-Nulend J. Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes. Calcif Tissue Int 2011; 89:318-26. [PMID: 21842277 DOI: 10.1007/s00223-011-9521-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/22/2011] [Indexed: 01/26/2023]
Abstract
Bone mechanical adaptation is a cellular process that allows bones to adapt their mass and structure to mechanical loading. This process is governed by the osteocytes, which in response to mechanical loading produce signaling molecules that affect osteoblasts and osteoclasts. Bone morphogenic proteins (BMPs) are excellent candidates as signaling molecules, but it is unknown whether mechanically stimulated osteocytes affect bone adaptation through BMP production. Therefore, the aim of this study was to assess whether osteocytes produce BMPs in response to mechanical loading. In addition, since BMP7 has a vitamin D receptor (VDR) response element in the promoter region, we also investigated whether VDR is involved in the BMP7 response to mechanical loading. Human or VDR(-/-) mouse primary bone cells were submitted in vitro to 1 h pulsating fluid flow (PFF) and postincubated without PFF (PI) for 1-24 h, and gene and protein expression of BMP2 and BMP7 were quantified. In human bone cells, PFF did not change BMP2 gene expression, but it upregulated BMP7 gene expression by 4.4- to 5.6-fold at 1-3 h PI and stimulated BMP7 protein expression by 2.4-fold at 6 h PI. PFF did not stimulate BMP7 gene expression in VDR(-/-) mouse bone cells. These results show for the first time that mechanical loading upregulates BMP7, likely via the VDR, but not BMP2, gene and protein expression in osteocytes in vitro. Since BMP7 plays a major role in bone development and remodeling, these data might contribute to a better understanding of the mechanism leading to the mechanical adaptation of bone.
Collapse
Affiliation(s)
- Ana Santos
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan, LA, The Netherlands
| | | | | | | | | | | |
Collapse
|
212
|
Smith KA, Noël E, Thurlings I, Rehmann H, Chocron S, Bakkers J. Bmp and nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genet 2011; 7:e1002289. [PMID: 21980297 PMCID: PMC3183088 DOI: 10.1371/journal.pgen.1002289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning. Although vertebrates are bilaterally symmetric when observed from the outside, inside the body cavity the organs are positioned asymmetrically with respect to the left and right sides. Cases where all the organs are mirror imaged, known as situs inversus, are not associated with any medical defects. Severe medical problems occur however in infants with a partial organ reversal (situs ambigious or heterotaxia), which arises during embryonic development. Left-right asymmetry in the embryo is established by unilateral expression of Nodal, a member of the Tgf-ß superfamily of secreted growth factors, a role that has been conserved from human to snails. By performing a genetic screen in zebrafish for laterality mutants, we have identified the linkspoot mutant, which displayed partial defects in asymmetric left-right positioning of the internal organs. The gene disrupted in the linkspoot mutant encodes a receptor for bone morphogenetic proteins (Bmp), another member of the Tgf-ß superfamily of secreted growth factors. Further analysis of Bmp over-expression or knock-down models demonstrate that Bmp signalling is required for unilateral Nodal expression, through the initiation and maintenance of an embryonic midline barrier. Our results demonstrate a novel and important mechanism by which left-right asymmetry in the vertebrate embryo is established and regulated.
Collapse
Affiliation(s)
- Kelly A. Smith
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily Noël
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid Thurlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sonja Chocron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
213
|
Miura S, Mishina Y. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs) is involved in BMP signaling through phosphorylation of SMADS and TAK1 in early mouse embryo. Dev Dyn 2011; 240:2474-81. [PMID: 21953618 DOI: 10.1002/dvdy.22750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2011] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte growth factor-regulated tyrosine kinase substrate that is encoded by Hgs promotes degradation of ubiquitinated signaling molecule in the early endosome. We previously reported that a targeted mutation in Hgs results in embryonic lethality soon after gastrulation in the mouse. Here, we report that downstream target genes for BMP signaling were highly down-regulated in the Hgs mutant embryos. We also showed that Hgs is required for phosphorylation of SMAD1/5/8 and TAK1/p38 to transduce BMP signaling. Furthermore, we found that HGS functions to localize TAK1 in early endosome for its activation. These results suggest that HGS is critical to localize TAK1 to early endosome for transducing BMP signaling for proper development. Our data revealed a new mechanism to modify BMP signaling by Hgs during early mouse development.
Collapse
Affiliation(s)
- Shigeto Miura
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
214
|
Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood 2011; 118:4224-30. [PMID: 21841161 DOI: 10.1182/blood-2011-03-339952] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling induces hepatic expression of the peptide hormone hepcidin. Hepcidin reduces serum iron levels by promoting degradation of the iron exporter ferroportin. A relative deficiency of hepcidin underlies the pathophysiology of many of the genetically distinct iron overload disorders, collectively termed hereditary hemochromatosis. Conversely, chronic inflammatory conditions and neoplastic diseases can induce high hepcidin levels, leading to impaired mobilization of iron stores and the anemia of chronic disease. Two BMP type I receptors, Alk2 (Acvr1) and Alk3 (Bmpr1a), are expressed in murine hepatocytes. We report that liver-specific deletion of either Alk2 or Alk3 causes iron overload in mice. The iron overload phenotype was more marked in Alk3- than in Alk2-deficient mice, and Alk3 deficiency was associated with a nearly complete ablation of basal BMP signaling and hepcidin expression. Both Alk2 and Alk3 were required for induction of hepcidin gene expression by BMP2 in cultured hepatocytes or by iron challenge in vivo. These observations demonstrate that one type I BMP receptor, Alk3, is critically responsible for basal hepcidin expression, whereas 2 type I BMP receptors, Alk2 and Alk3, are required for regulation of hepcidin gene expression in response to iron and BMP signaling.
Collapse
|
215
|
Horner VL, Caspary T. Disrupted dorsal neural tube BMP signaling in the cilia mutant Arl13b hnn stems from abnormal Shh signaling. Dev Biol 2011; 355:43-54. [PMID: 21539826 PMCID: PMC3119544 DOI: 10.1016/j.ydbio.2011.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/22/2011] [Accepted: 04/14/2011] [Indexed: 12/22/2022]
Abstract
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13b(hnn), to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13b(hnn) mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13b(hnn) dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13b(hnn) mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13b(hnn) embryos indirectly causes dorsal defects.
Collapse
Affiliation(s)
- Vanessa L. Horner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
216
|
Abstract
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation. The Wnt and BMP (bone morphogenic protein) signalling pathways have been identified as dorsal spinal cord signals with overlapping temporal activity, and both have similar inhibitory effects on OL differentiation. Both these pathways feature prominently in many developmental processes and demyelinating events after injury, and they are known to interact in complex inductive, inhibitive and synergistic manners in many developing systems. The interaction between BMP and Wnt signalling in OL development, however, has not been extensively explored. In the present study, we examine the relationship between the canonical Wnt and BMP pathways. We use pharmacological and genetic paradigms to show that both Wnt3a and BMP4 will inhibit OL differentiation in vitro. We also show that when the canonical BMP signalling pathway is blocked, neither Wnt3a nor BMP4 have inhibitory effects on OL differentiation. In contrast, abrogating the Wnt signalling pathway does not alter the actions of BMP4 treatment. Our results indicate that the BMP signalling pathway is necessary for the canonical Wnt signalling pathway to exert its effects on OL development, but not vice versa, suggesting that Wnt signals upstream of BMP.
Collapse
|
217
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
218
|
Di Giovanni V, Alday A, Chi L, Mishina Y, Rosenblum ND. Alk3 controls nephron number and androgen production via lineage-specific effects in intermediate mesoderm. Development 2011; 138:2717-27. [PMID: 21613322 DOI: 10.1242/dev.059030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian kidney and male reproductive system are both derived from the intermediate mesoderm. The spatial and temporal expression of bone morphogenetic protein (BMP) 2 and BMP4 and their cognate receptor, activin like kinase 3 (ALK3), suggests a functional role for BMP-ALK3 signaling during formation of intermediate mesoderm-derivative organs. Here, we define cell autonomous functions for Alk3 in the kidney and male gonad in mice with CRE-mediated Alk3 inactivation targeted to intermediate mesoderm progenitors (Alk3(IMP null)). Alk3-deficient mice exhibit simple renal hypoplasia characterized by decreases in both kidney size and nephron number but normal tissue architecture. These defects are preceded by a decreased contribution of Alk3-deleted cells to the metanephric blastema and reduced expression of Osr1 and SIX2, which mark nephron progenitor cells. Mutant mice are also characterized by defects in intermediate mesoderm-derived genital tissues with fewer mesonephric tubules and testicular Leydig cells, epithelial vacuolization in the postnatal corpus epididymis, and decreased serum testosterone levels and reduced fertility. Analysis of ALK3-dependent signaling effectors revealed lineage-specific reduction of phospho-p38 MAPK in metanephric mesenchyme and phospho-SMAD1/5/8 in the testis. Together, these results demonstrate a requirement for Alk3 in distinct progenitor cell populations derived from the intermediate mesoderm.
Collapse
Affiliation(s)
- Valeria Di Giovanni
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
219
|
Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25:1379-88. [PMID: 21566654 DOI: 10.1038/leu.2011.95] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- U Blank
- Division of Molecular Medicine and Gene Therapy, Laboratory Medicine, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
220
|
Doss MX, Gaspar JA, Winkler J, Hescheler J, Schulz H, Sachinidis A. Specific Gene Signatures and Pathways in Mesodermal Cells and Their Derivatives Derived from Embryonic Stem Cells. Stem Cell Rev Rep 2011; 8:43-54. [DOI: 10.1007/s12015-011-9263-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
221
|
Focusing forward genetics: a tripartite ENU screen for neurodevelopmental mutations in the mouse. Genetics 2011; 188:615-24. [PMID: 21515572 DOI: 10.1534/genetics.111.126862] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The control of growth, patterning, and differentiation of the mammalian forebrain has a large genetic component, and many human disease loci associated with cortical malformations have been identified. To further understand the genes involved in controlling neural development, we have performed a forward genetic screen in the mouse (Mus musculus) using ENU mutagenesis. We report the results from our ENU screen in which we biased our ascertainment toward mutations affecting neurodevelopment. Our screen had three components: a careful morphological and histological examination of forebrain structure, the inclusion of a retinoic acid response element-lacZ reporter transgene to highlight patterning of the brain, and the use of a genetically sensitizing locus, Lis1/Pafah1b1, to predispose animals to neurodevelopmental defects. We recovered and mapped eight monogenic mutations, seven of which affect neurodevelopment. We have evidence for a causal gene in four of the eight mutations. We describe in detail two of these: a mutation in the planar cell polarity gene scribbled homolog (Drosophila) (Scrib) and a mutation in caspase-3 (Casp3). We find that refining ENU mutagenesis in these ways is an efficient experimental approach and that investigation of the developing mammalian nervous system using forward genetic experiments is highly productive.
Collapse
|
222
|
Catalano V, Gaggianesi M, Spina V, Iovino F, Dieli F, Stassi G, Todaro M. Colorectal cancer stem cells and cell death. Cancers (Basel) 2011; 3:1929-46. [PMID: 24212789 PMCID: PMC3757397 DOI: 10.3390/cancers3021929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022] Open
Abstract
Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.
Collapse
Affiliation(s)
- Veronica Catalano
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Miriam Gaggianesi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
- Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia (PV), Italy
| | - Valentina Spina
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Flora Iovino
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Francesco Dieli
- Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mail:
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
- Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia (PV), Italy
- Author to whom correspondence should be addressed; E-Mail: or
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| |
Collapse
|
223
|
Stafford DA, Brunet LJ, Khokha MK, Economides AN, Harland RM. Cooperative activity of noggin and gremlin 1 in axial skeleton development. Development 2011; 138:1005-14. [PMID: 21303853 DOI: 10.1242/dev.051938] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.
Collapse
Affiliation(s)
- David A Stafford
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
224
|
Stuckey DW, Clements M, Di-Gregorio A, Senner CE, Le Tissier P, Srinivas S, Rodriguez TA. Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo. Development 2011; 138:1521-30. [PMID: 21427142 PMCID: PMC3062422 DOI: 10.1242/dev.063537] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
During development, the growth of the embryo must be coupled to its patterning to ensure correct and timely morphogenesis. In the mouse embryo, migration of the anterior visceral endoderm (AVE) to the prospective anterior establishes the anterior-posterior (A-P) axis. By analysing the distribution of cells in S phase, M phase and G2 from the time just prior to the migration of the AVE until 18 hours after its movement, we show that there is no evidence for differential proliferation along the A-P axis of the mouse embryo. Rather, we have identified that as AVE movements are being initiated, the epiblast proliferates at a much higher rate than the visceral endoderm. We show that these high levels of proliferation in the epiblast are dependent on Nodal signalling and are required for A-P establishment, as blocking cell division in the epiblast inhibits AVE migration. Interestingly, inhibition of migration by blocking proliferation can be rescued by Dkk1. This suggests that the high levels of epiblast proliferation function to move the prospective AVE away from signals that are inhibitory to its migration. The finding that initiation of AVE movements requires a certain level of proliferation in the epiblast provides a mechanism whereby A-P axis development is coordinated with embryonic growth.
Collapse
Affiliation(s)
- Daniel W. Stuckey
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Melanie Clements
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Aida Di-Gregorio
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Claire E. Senner
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Paul Le Tissier
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Shankar Srinivas
- University of Oxford, Department of Physiology Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Tristan A. Rodriguez
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
225
|
Li L, Jing N. Pluripotent stem cell studies elucidate the underlying mechanisms of early embryonic development. Genes (Basel) 2011; 2:298-312. [PMID: 24710192 PMCID: PMC3924820 DOI: 10.3390/genes2020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/08/2011] [Accepted: 03/21/2011] [Indexed: 01/02/2023] Open
Abstract
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.
Collapse
Affiliation(s)
- Lingyu Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Naihe Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
226
|
Hardy KM, Yatskievych TA, Konieczka J, Bobbs AS, Antin PB. FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC DEVELOPMENTAL BIOLOGY 2011; 11:20. [PMID: 21418646 PMCID: PMC3071786 DOI: 10.1186/1471-213x-11-20] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 03/21/2011] [Indexed: 12/15/2022]
Abstract
Background FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos. Results We find that pharmacological inhibition of FGFR activity blocks migration of cells through the primitive streak of chicken embryos without apparent alterations in the level or intracellular localization of E-cadherin. E-cadherin protein is localized to the periphery of epiblast, primitive streak and some mesodermal cells. FGFR inhibition leads to downregulation of a large number of regulatory genes in the preingression epiblast adjacent to the primitive streak, the primitive streak and the newly formed mesoderm. This includes members of the FGF, NOTCH, EPH, PDGF, and canonical and non-canonical WNT pathways, negative modulators of these pathways, and a large number of transcriptional regulatory genes. SNAI2 expression in the primitive streak and mesoderm is not altered by FGFR inhibition, but is downregulated only in the preingression epiblast region with no significant effect on E-cadherin. Furthermore, over expression of SNAIL has no discernable effect on E-cadherin protein levels or localization in epiblast, primitive streak or mesodermal cells. FGFR activity modulates distinct downstream pathways including RAS/MAPK and PI3K/AKT. Pharmacological inhibition of MEK or AKT indicate that these downstream effectors control discrete and overlapping groups of genes during gastrulation. FGFR activity regulates components of several pathways known to be required for cell migration through the streak or in the mesoderm, including RHOA, the non-canonical WNT pathway, PDGF signalling and the cell adhesion protein N-cadherin. Conclusions In chicken embryos, FGF signalling regulates cell movement through the primitive streak by mechanisms that appear to be independent of changes in E-cadherin expression or protein localization. The positive and negative effects on large groups of genes by pharmacological inhibition of FGF signalling, including major signalling pathways and transcription factor families, indicates that the FGF pathway is a focal point of regulation during gastrulation in chicken.
Collapse
Affiliation(s)
- Katharine M Hardy
- Department of Cell Biology and Anatomy, University of Arizona, Medical Research Building, 1656 E, Mabel Street, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
227
|
Abstract
It is well known that Bone morphogenetic proteins (BMPs) induce bone formation and that some BMPs, including BMP2 and BMP7, are clinically used in orthopedics. Signaling by BMPs plays an important role in a variety of cell-types in bone such as osteoblasts, chondrocytes, and osteoclasts. It is recently reported using an osteoblast-targeted deletion of BMP signaling that BMP signaling in osteoblasts physiologically induces bone resorption by enhancing osteoclastogenesis via the RANKL-OPG pathway and reduces bone mass. In this review, the physiological function of BMP signaling in bone will be focused, and the current outcomes from mouse genetic studies will be discuss.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.
| | | |
Collapse
|
228
|
Baek JA, Lan Y, Liu H, Maltby KM, Mishina Y, Jiang R. Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation. Dev Biol 2011; 350:520-31. [PMID: 21185278 PMCID: PMC3031756 DOI: 10.1016/j.ydbio.2010.12.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/02/2010] [Accepted: 12/16/2010] [Indexed: 12/27/2022]
Abstract
Cleft palate, including submucous cleft palate, is among the most common birth defects in humans. While overt cleft palate results from defects in growth or fusion of the developing palatal shelves, submucous cleft palate is characterized by defects in palatal bones. In this report, we show that the Bmpr1a gene, encoding a type I receptor for bone morphogenetic proteins (Bmp), is preferentially expressed in the primary palate and anterior secondary palate during palatal outgrowth. Following palatal fusion, Bmpr1a mRNA expression was upregulated in the condensed mesenchyme progenitors of palatal bone. Tissue-specific inactivation of Bmpr1a in the developing palatal mesenchyme in mice caused reduced cell proliferation in the primary and anterior secondary palate, resulting in partial cleft of the anterior palate at birth. Expression of Msx1 and Fgf10 was downregulated in the anterior palate mesenchyme and expression of Shh was downregulated in the anterior palatal epithelium in the Bmpr1a conditional mutant embryos, indicating that Bmp signaling regulates mesenchymal-epithelial interactions during palatal outgrowth. In addition, formation of the palatal processes of the maxilla was blocked while formation of the palatal processes of the palatine was significantly delayed, resulting in submucous cleft of the hard palate in the mutant mice. Our data indicate that Bmp signaling plays critical roles in the regulation of palatal mesenchyme condensation and osteoblast differentiation during palatal bone formation.
Collapse
Affiliation(s)
- Jin-A Baek
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
- Institute of Oral Biosciences and BK 21 Program, Chonbuk National University School of Dentistry, Jeonju 561-756, Republic of Korea
| | - Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Han Liu
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Kathleen M. Maltby
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Yuji Mishina
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rulang Jiang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
229
|
Leung AWL, Wong SYY, Chan D, Tam PPL, Cheah KSE. Loss of procollagen IIA from the anterior mesendoderm disrupts the development of mouse embryonic forebrain. Dev Dyn 2011; 239:2319-29. [PMID: 20730911 DOI: 10.1002/dvdy.22366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Morphogenesis of the mammalian forebrain is influenced by the patterning activity of signals emanating from the anterior mesendoderm. In this study, we show that procollagen IIA (IIA), an isoform of the cartilage extracellular matrix protein encoded by an alternatively spliced transcript of Col2a1, is expressed in the prechordal plate and the anterior definitive endoderm. In the absence of IIA activity, the null mutants displayed a partially penetrant phenotype of loss of head tissues, holoprosencephaly, and loss of mid-facial structures, which is associated with reduced sonic hedgehog (Shh) expression in the prechordal mesoderm. Genetic interaction studies reveal that IIA function in forebrain and face development does not involve bone morphogenetic protein receptor 1A (BMPR1A)- or NODAL-mediated signaling activity.
Collapse
Affiliation(s)
- Alan W L Leung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
230
|
The mammalian class 3 PI3K (PIK3C3) is required for early embryogenesis and cell proliferation. PLoS One 2011; 6:e16358. [PMID: 21283715 PMCID: PMC3024421 DOI: 10.1371/journal.pone.0016358] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022] Open
Abstract
The Pik3c3 gene encodes an 887 amino acid lipid kinase, phosphoinositide-3-kinase class 3 (PIK3C3). PIK3C3 is known to regulate various intracellular membrane trafficking events. However, little is known about its functions during early embryogenesis in mammals. To investigate the function of PIK3C3 in vivo, we generated Pik3c3 null mice. We show here that Pik3c3 heterozygous are normal and fertile. In contrast, Pik3c3 homozygous mutants are embryonic lethal and die between E7.5 and E8.5 of embryogenesis. Mutant embryos are poorly developed with no evidence of mesoderm formation, and suffer from severely reduced cell proliferations. Cell proliferation defect is also evident in vitro, where mutant blastocysts in culture fail to give rise to typical colonies formed by inner cell mass. Electron microscopic analysis revealed that epiblast cells in mutant embryos appear normal, whereas the visceral endoderm cells contain larger vesicles inside the lipid droplets. Finally, we provide evidence that mTOR signaling is drastically reduced in Pik3c3 null embryos, which could be a major contributor to the observed proliferation and embryogenesis defects.
Collapse
|
231
|
Li L, Lin M, Wang Y, Cserjesi P, Chen Z, Chen Y. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development. Dev Biol 2011; 349:451-61. [PMID: 21034733 PMCID: PMC3019275 DOI: 10.1016/j.ydbio.2010.10.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/30/2010] [Accepted: 10/20/2010] [Indexed: 01/09/2023]
Abstract
The BMP signaling plays a pivotal role in the development of craniofacial organs, including the tooth and palate. BmprIa and BmprIb encode two type I BMP receptors that are primarily responsible for BMP signaling transduction. We investigated mesenchymal tissue-specific requirement of BmprIa and its functional redundancy with BmprIb during the development of mouse tooth and palate. BmprIa and BmprIb exhibit partially overlapping and distinct expression patterns in the developing tooth and palatal shelf. Neural crest-specific inactivation of BmprIa leads to formation of an unusual type of anterior clefting of the secondary palate, an arrest of tooth development at the bud/early cap stages, and severe hypoplasia of the mandible. Defective tooth and palate development is accompanied by the down-regulation of BMP-responsive genes and reduced cell proliferation levels in the palatal and dental mesenchyme. To determine if BmprIb could substitute for BmprIa during tooth and palate development, we expressed a constitutively active form of BmprIb (caBmprIb) in the neural crest cells in which BmprIa was simultaneously inactivated. We found that substitution of BmprIa by caBmprIb in neural rest cells rescues the development of molars and maxillary incisor, but the rescued teeth exhibit a delayed odontoblast and ameloblast differentiation. In contrast, caBmprIb fails to rescue the palatal and mandibular defects including the lack of lower incisors. Our results demonstrate an essential role for BmprIa in the mesenchymal component and a limited functional redundancy between BmprIa and BmprIb in a tissue-specific manner during tooth and palate development.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
- College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Minkui Lin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
- College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Peter Cserjesi
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Zhi Chen
- College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
232
|
Noseda M, Peterkin T, Simões FC, Patient R, Schneider MD. Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 2011; 108:129-52. [PMID: 21212394 DOI: 10.1161/circresaha.110.223792] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
Abstract
Cardiac muscle creation during embryogenesis requires extracellular instructive signals that are regulated precisely in time and space, intersecting with intracellular genetic programs that confer or fashion the ability of the cells to respond. Unmasking the essential signals for cardiac lineage decisions has paramount importance for cardiac development and regenerative medicine, including the directed differentiation of progenitor and stem cells to a cardiac muscle fate.
Collapse
Affiliation(s)
- Michela Noseda
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, United Kingdom
| | | | | | | | | |
Collapse
|
233
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
234
|
Galvin-Burgess KE, Vivian JL. Transforming growth factor-beta superfamily in mouse embryonic stem cell self-renewal. VITAMINS AND HORMONES 2011; 87:341-65. [PMID: 22127250 DOI: 10.1016/b978-0-12-386015-6.00035-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells that maintain the capability of undifferentiated self-renewal in culture. As mouse ES cells have the capacity to give rise to all the tissues of the body, they are an excellent developmental biology model system and a model for regenerative therapies. The extracellular cues and the intracellular signaling cascades that regulate ES cell self-renewal and cell-fate choices are complex and actively studied. Many developmental signaling pathways regulate the ES cell phenotype, and their intracellular programs interact to modulate the gene networks controlling ES cell pluripotency. This review focuses on the current understanding and outstanding questions of the roles of the transforming growth factor-beta-related signaling pathways in regulating pluripotency and differentiation of mouse ES cells. The complex dichotomic roles of bone morphogenetic protein signaling in maintaining the undifferentiated state and also inducing specific cell fates will be reviewed. The emerging roles of Nodal signaling in ES cell self-renewal will also be discussed.
Collapse
Affiliation(s)
- Katherine E Galvin-Burgess
- Department of Pathology and Laboratory Medicine, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, USA
| | | |
Collapse
|
235
|
Abstract
Maintenance of a pluripotent cell population during mammalian embryogenesis is crucial for the proper generation of extraembryonic and embryonic tissues to ensure intrauterine survival and fetal development. Pluripotent stem cells derived from early stage mammalian embryos are known as "embryonic stem cells." Such embryo-derived stem cells can proliferate indefinitely in vitro and give rise to derivatives of all three primary germ layers. Their potential for clinical and commercial applications has sparked great excitement within scientific and lay communities. Identification of the signaling pathways controlling stem cell pluripotency and differentiation provides knowledge-based approaches to manipulate stem cells for regenerative medicine. One of the signaling cascades that has been identified in the control of stem cell pluripotency and differentiation is the Activin/Nodal pathway. Here, we describe the differences among pluripotent cell types and discuss the latest findings on the molecular mechanisms involving Activin/Nodal signaling in controlling their pluripotency and differentiation.
Collapse
Affiliation(s)
- Zhenzhi Chng
- Institute of Medical Biology, Singapore, Singapore
| | | | | |
Collapse
|
236
|
Chen DF, Cao JH, Liu Y, Wu Y, Du SH, Li H, Zhou JH, Li YW, Zeng HP, Hua ZC. BMP-Id pathway targeted by cholesterol myristate suppresses the apoptosis of PC12 cells. Brain Res 2011; 1367:33-42. [DOI: 10.1016/j.brainres.2010.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
237
|
Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J Neurosci 2010; 30:15044-51. [PMID: 21068310 PMCID: PMC3074492 DOI: 10.1523/jneurosci.3547-10.2010] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 01/04/2023] Open
Abstract
The mammalian inner ear detects sound with the organ of Corti, an intricately patterned region of the cochlea in which one row of inner hair cells and three rows of outer hair cells are surrounded by specialized supporting cells. The organ of Corti derives from a prosensory domain that runs the length of the cochlear duct and is bounded by two nonsensory domains, Kölliker's organ on the neural side and the outer sulcus on the abneural side. Although much progress has been made in identifying the signals regulating organ of Corti induction and differentiation, less is known about the mechanisms that establish sensory and nonsensory territories in the cochlear duct. Here, we show that a gradient of bone morphogenetic protein (BMP) signaling is established in the abneural-neural axis of the cochlea. Analysis of compound mutants of Alk3/6 type I BMP receptors shows that BMP signaling is necessary for specification of the prosensory domain destined to form the organ of Corti. Reduction of BMP signaling in Alk3/6 compound mutants eliminates both the future outer sulcus and the prosensory domain, with all cells expressing markers of Kölliker's organ. BMP4 upregulates markers of the future outer sulcus and downregulates marker genes of Kölliker's organ in cochlear organ cultures in a dose-dependent manner. Our results suggest BMP signaling is required for patterning sensory and nonsensory tissue in the mammalian cochlea.
Collapse
Affiliation(s)
- Takahiro Ohyama
- Division of Cell Biology and Genetics, House Ear Institute, Los Angeles, California 90057, USA.
| | | | | | | | | | | |
Collapse
|
238
|
Yang D, Lai D, Huang X, Shi X, Gao Z, Huang F, Zhou X, Geng YJ. The defects in development and apoptosis of cardiomyocytes in mice lacking the transcriptional factor Pax-8. Int J Cardiol 2010; 154:43-51. [PMID: 20851479 DOI: 10.1016/j.ijcard.2010.08.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 05/31/2010] [Accepted: 08/19/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cardiac-specific deletion of ALK3 is lethal in mid-gestation with ventricular septum malformations (VSM). This study was designed to define the Pax-8's role in heart development and cardiomyocyte apoptosis. METHODS Pathologic changes in the hearts of Pax-8 or ALK3 knockout and wild type control mice were determined by light and electron microscopy. Analysis of cardiomyocyte apoptosis was performed by TUNEL. The effect of Pax-8 gene deficiency on caspase-3 activity was examined after transfecting Pax-8 siRNA into cultured myoblast cell line. RESULTS Mice with ALK3 or Pax-8 gene knockout but not wild type control animals showed the development of VSM. Increased cardiomyocyte apoptosis was found in homozygotes. Echocardiography showed that Pax-8 homozygote mice developed malfunction of the heart. Furthermore, the caspase-3 activity was significantly higher in the cells treated with Pax-8 siRNA as compared to those treated with negative control siRNA in H9C2 (2-1) cell line. CONCLUSIONS The Pax-8 gene may play a crucial role in heart development and regulating cardiocyte apoptosis. Knockout of Pax-8 may exert a similar effect on myocardial morphology and apoptosis as those seen in ALK3 knockouts. Furthermore, the ventricular septum malformations could be partially attributed to accelerated cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Deye Yang
- The First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
During early mammalian development, as the pluripotent cells that give rise to all of the tissues of the body proliferate and expand in number, they pass through transition states marked by a stepwise restriction in developmental potential and by changes in the expression of key regulatory genes. Recent findings show that cultured stem-cell lines derived from different stages of mouse development can mimic these transition states. They further reveal that there is a high degree of heterogeneity and plasticity in pluripotent populations in vitro and that these properties are modulated by extrinsic signalling. Understanding the extrinsic control of plasticity will guide efforts to use human pluripotent stem cells in research and therapy.
Collapse
Affiliation(s)
- Martin F Pera
- Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | |
Collapse
|
240
|
Ohta S, Schoenwolf GC, Yamada G. The cessation of gastrulation: BMP signaling and EMT during and at the end of gastrulation. Cell Adh Migr 2010; 4:440-6. [PMID: 20448472 DOI: 10.4161/cam.4.3.12000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An integral component of gastrulation in all organisms is epithelial to mesenchymal transition (EMT), a fundamental morphogenetic event through which epithelial cells transform into mesenchymal cells. The mesenchymal cells that arise from epithelial cells during gastrulation contribute to various tissue rudiments during subsequent development, including the notochord, somites, heart, gut, kidney, body wall and lining of the coelom. The process of gastrulation has been the subject of several hundred scientific papers. Despite all that has been written, it is likely that what we currently know about gastrulation is still considerably less than what remains to be learned. One critical remaining question that we consider here is how does gastrulation cease at the right place along the body axis, and at the right time? In this commentary, we focus on the molecular mechanism for the cessation of gastrulation, using the chick embryo as a model system.
Collapse
Affiliation(s)
- Sho Ohta
- University of Utah School of Medicine, Department of Neurobiology and Anatomy, Salt Lake City, Utah, USA.
| | | | | |
Collapse
|
241
|
Dudley B, Palumbo C, Nalepka J, Molyneaux K. BMP signaling controls formation of a primordial germ cell niche within the early genital ridges. Dev Biol 2010; 343:84-93. [PMID: 20417197 PMCID: PMC2885459 DOI: 10.1016/j.ydbio.2010.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/17/2022]
Abstract
Stem cells are necessary to maintain tissue homeostasis and the microenvironment (a.k.a. the niche) surrounding these cells controls their ability to self-renew or differentiate. For many stem cell populations it remains unclear precisely what cells and signals comprise a niche. Here we identify a possible PGC niche in the mouse genital ridges. Conditional ablation of Bmpr1a was used to demonstrate that BMP signaling is required for PGC survival and migration as these cells colonize the genital ridges. Reduced BMP signaling within the genital ridges led to increased somatic cell death within the mesonephric mesenchyme. Loss of these supporting cells correlated with decreased levels of the mesonephric marker, Pax2, as well as a reduction in genes expressed in the coelomic epithelium including the putative PGC chemo-attractants Kitl and Sdf1a. We propose that BMP signaling promotes mesonephric cell survival within the genital ridges and that these cells support correct development of the coelomic epithelium, the target of PGC migration. Loss of BMP signaling leads to the loss of the PGC target resulting in reduced PGC numbers and disrupted PGC migration.
Collapse
Affiliation(s)
- Brian Dudley
- Department of Genetics, Case Western Reserve University, Cleveland OH
| | | | | | | |
Collapse
|
242
|
Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 2010; 115:4689-98. [DOI: 10.1182/blood-2009-05-220988] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5, we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly, concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However, Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover, although BMP receptor expression is increased in fetal liver, fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion, canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis, despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.
Collapse
|
243
|
O'Shea KS, De Boer LS, Slawny NA, Gratsch TE. Transplacental RNAi: deciphering gene function in the postimplantation-staged embryo. J Biomed Biotechnol 2010; 2006:18657. [PMID: 17057360 PMCID: PMC1698258 DOI: 10.1155/jbb/2006/18657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNAi offers the opportunity to examine the role in
postimplantation development of genes that cause preimplantation
lethality and to create allelic series of targeted embryos. We
have delivered constituitively expressed short hairpin (sh) RNAs
to pregnant mice during the early postimplantation period of
development and observed gene knockdown and defects that phenocopy
the null embryo. We have silenced genes that have not yet been
“knocked out” in the mouse (geminin and
Wnt8b), those required during earlier cleavage stages of
development (nanog), and genes required at implantation
(Bmp4, Bmp7) singly and in combination
(Bmp4 + Bmp7), and obtained unique phenotypes. We have also determined a role in postimplantation development of
two transcripts identified in a differential display RT-PCR screen
of genes induced in ES cells by noggin exposure, Aggf1
and an Est (GenBank AK008955). Systemic delivery of
shRNAs provides a valuable approach to gene silencing in the
embryo.
Collapse
Affiliation(s)
- K. Sue O'Shea
- Department of Cell and Developmental Biology,
Medical School, University of Michigan, Ann Arbor, MI 48109-0616, USA
- *K. Sue O'Shea:
| | - Lisa S. De Boer
- Department of Cell and Developmental Biology,
Medical School, University of Michigan, Ann Arbor, MI 48109-0616, USA
| | - Nicole A. Slawny
- Department of Cell and Developmental Biology,
Medical School, University of Michigan, Ann Arbor, MI 48109-0616, USA
| | - Theresa E. Gratsch
- Department of Cell and Developmental Biology,
Medical School, University of Michigan, Ann Arbor, MI 48109-0616, USA
| |
Collapse
|
244
|
Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:395-422. [PMID: 19589040 DOI: 10.1089/ten.teb.2009.0461] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Collapse
Affiliation(s)
- Petros Lenas
- Department of Biochemistry and Molecular Biology IV, Veterinary Faculty, Complutense University of Madrid , Madrid, Spain
| | | | | |
Collapse
|
245
|
Jackson SA, Schiesser J, Stanley EG, Elefanty AG. Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 2010; 5:e10706. [PMID: 20502661 PMCID: PMC2873409 DOI: 10.1371/journal.pone.0010706] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background Mesendoderm induction during embryonic stem cell (ESC) differentiation in vitro is stimulated by the Transforming Growth Factor and Wingless (Wnt) families of growth factors. Principal Findings We identified the periods during which Bone Morphogenetic Protein (BMP) 4, Wnt3a or Activin A were able to induce expression of the mesendoderm marker, Mixl1, in differentiating mouse ESCs. BMP4 and Wnt3a were required between differentiation day (d) 1.5 and 3 to most effectively induce Mixl1, whilst Activin A induced Mixl1 expression in ESC when added between d2 and d4, indicating a subtle difference in the requirement for Activin receptor signalling in this process. Stimulation of ESCs with these factors at earlier or later times resulted in little Mixl1 induction, suggesting that the differentiating ESCs passed through ‘temporal windows’ in which they sequentially gained and lost competence to respond to each growth factor. Inhibition of either Activin or Wnt signalling blocked Mixl1 induction by any of the three mesendoderm-inducing factors. Mixing experiments in which chimeric EBs were formed between growth factor-treated and untreated ESCs revealed that BMP, Activin and Wnt signalling all contributed to the propagation of paracrine mesendoderm inducing signals between adjacent cells. Finally, we demonstrated that the differentiating cells passed through ‘exit gates’ after which point they were no longer dependent on signalling from inducing molecules for Mixl1 expression. Conclusions These studies suggest that differentiating ESCs are directed by an interconnected network of growth factors similar to those present in early embryos and that the timing of growth factor activity is critical for mesendoderm induction.
Collapse
Affiliation(s)
- Steven A. Jackson
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Jacqueline Schiesser
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
246
|
Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 2010; 123:1684-92. [DOI: 10.1242/jcs.061556] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the bone morphogenetic protein (BMP) family have been implicated in the development and maintenance of vascular systems. Whereas members of the BMP-2/4 and osteogenic protein-1 groups signal via activin receptor-like kinase (ALK)-2, ALK-3 and ALK-6, BMP-9 and BMP-10 have been reported to bind to ALK-1 in endothelial cells. However, the roles of BMP-9–ALK-1 signaling in the regulation of endothelial cells have not yet been fully elucidated. Here, using various systems, we examined the effects of BMP-9 on the proliferation of endothelial cells. Vascular-tube formation from ex vivo allantoic explants of mouse embryos was promoted by BMP-9. BMP-9, as well as BMP-4 and BMP-6, also induced the proliferation of in-vitro-cultured mouse embryonic-stem-cell-derived endothelial cells (MESECs) by inducing the expression of vascular endothelial growth factor receptor 2 and Tie2, a receptor for angiopoietin-1. A decrease in ALK-1 expression or expression of constitutively active ALK-1 in MESECs abrogated and mimicked the effects of BMP-9 on the proliferation of MESECs, respectively, suggesting that BMP-9 promotes the proliferation of these cells via ALK-1. Furthermore, in vivo angiogenesis was promoted by BMP-9 in a Matrigel plug assay and in a BxPC3 xenograft model of human pancreatic cancer. Consistent with these in vivo findings, BMP-9 enhanced the proliferation of in-vitro-cultured normal endothelial cells from dermal tissues of adult mice and of tumor-associated endothelial cells isolated from tumor xenografts in host mice. These findings suggest that BMP-9 signaling activates the endothelium tested in the present study via ALK-1.
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Noritaka Ohga
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, Division of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Hokkaido 060-0808, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Hida
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, Division of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Hokkaido 060-0808, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuro Watabe
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
247
|
Lan Y, Yang X. The role of Smad signaling in vascular and hematopoietic development revealed by studies using genetic mouse models. SCIENCE CHINA-LIFE SCIENCES 2010; 53:485-9. [DOI: 10.1007/s11427-010-0087-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/01/2009] [Indexed: 01/12/2023]
|
248
|
Caronia G, Wilcoxon J, Feldman P, Grove EA. Bone morphogenetic protein signaling in the developing telencephalon controls formation of the hippocampal dentate gyrus and modifies fear-related behavior. J Neurosci 2010; 30:6291-301. [PMID: 20445055 PMCID: PMC2905858 DOI: 10.1523/jneurosci.0550-10.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/10/2010] [Accepted: 03/23/2010] [Indexed: 12/14/2022] Open
Abstract
The cortical hem is an embryonic signaling center that generates bone morphogenetic proteins (BMPs) and acts as an organizer for the hippocampus. The role of BMP signaling in hippocampal neurogenesis, however, has not been established. We therefore generated mice that were deficient in Bmpr1b constitutively, and deficient in Bmpr1a conditionally in the dorsal telencephalon. In double mutant male and female mice, the dentate gyrus (DG) was dramatically smaller than in control mice, reflecting decreased production of granule neurons at the peak period of DG neurogenesis. Additionally, the pool of cells that generates new DG neurons throughout life was reduced, commensurate with the smaller size of the DG. Effects of diminished BMP signaling on the cortical hem were at least partly responsible for these defects in DG development. Reduction of the DG and its major extrinsic output to CA3 raised the possibility that the DG was functionally compromised. We therefore looked for behavioral deficits in double mutants and found that the mice were less responsive to fear- or anxiety-provoking stimuli, whether the association of the stimulus with fear or anxiety was learned or innate. Given that no anatomical defects appeared in the double mutant telencephalon outside the DG, our observations support a growing literature that implicates the hippocampus in circuitry mediating fear and anxiety. Our results additionally indicate a requirement for BMP signaling in generating the dorsalmost neuronal lineage of the telencephalon, DG granule neurons, and in the development of the stem cell niche that makes neurons in the adult hippocampus.
Collapse
Affiliation(s)
- Giuliana Caronia
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Jennifer Wilcoxon
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Polina Feldman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Elizabeth A. Grove
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
249
|
Miura S, Singh AP, Mishina Y. Bmpr1a is required for proper migration of the AVE through regulation of Dkk1 expression in the pre-streak mouse embryo. Dev Biol 2010; 341:246-54. [PMID: 20211162 PMCID: PMC2854289 DOI: 10.1016/j.ydbio.2010.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/04/2010] [Accepted: 02/28/2010] [Indexed: 01/06/2023]
Abstract
Here, we report a novel mechanism regulating migration of the anterior visceral endoderm (AVE) by BMP signaling through BMPRIA. In Bmpr1a-deficient (Bmpr-null) embryos, the AVE does not migrate at all. In embryos with an epiblast-specific deletion of Bmpr1a (Bmpr1a(null/flox); Sox2Cre embryos), the AVE cells migrate randomly from the distal end of embryos, resulting in an expansion of the AVE. Dkk1, which is normally expressed in the anterior proximal visceral endoderm (PxVE), is downregulated in Bmpr-null embryos, whereas it is circumferentially expressed in Bmpr1a(null/flox); Sox2Cre embryos at E5.75-6.5. These results demonstrate an association of the position of Dkk1 expressing cells with direction of the migration of AVE. In Bmpr1a(null/flox); Sox2Cre embryos, a drastic decrease of WNT signaling is observed at E6.0. Addition of WNT3A to the culture of Bmpr1a(null/flox); Sox2Cre embryos at E5.5 restores expression patterns of Dkk1 and Cer1. These data indicate that BMP signaling in the epiblast induces Wnt3 and Wnt3a expression to maintain WNT signaling in the VE, resulting in downregulation of Dkk1 to establish the anterior expression domain. Thus, our results suggest that BMP signaling regulates the expression patterns of Dkk1 for anterior migration of the AVE.
Collapse
Affiliation(s)
- Shigeto Miura
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ajeet Pratap Singh
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yuji Mishina
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
250
|
Edson MA, Nalam RL, Clementi C, Franco HL, Demayo FJ, Lyons KM, Pangas SA, Matzuk MM. Granulosa cell-expressed BMPR1A and BMPR1B have unique functions in regulating fertility but act redundantly to suppress ovarian tumor development. Mol Endocrinol 2010; 24:1251-66. [PMID: 20363875 DOI: 10.1210/me.2009-0461] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have diverse roles in development and reproduction. Although several BMPs are produced by oocytes, thecal cells, and granulosa cells of developing follicles, the in vivo functions of most of these ligands are unknown. BMP signals are transduced by multiple type I and type II TGFbeta family receptors, and of the type I receptors, BMP receptor 1A (BMPR1A) and BMP receptor 1B (BMPR1B) are known to be expressed in rodent granulosa cells. Female mice homozygous null for Bmpr1b are sterile due to compromised cumulus expansion, but the function of BMPR1A in the ovary is unknown. To further decipher a role for BMP signaling in mouse granulosa cells, we deleted Bmpr1a in the granulosa cells of the ovary and found Bmpr1a conditional knockout females to be subfertile with reduced spontaneous ovulation. To explore the redundant functions of BMP receptor signaling in the ovary, we generated Bmpr1a Bmpr1b double-mutant mice, which developed granulosa cell tumors that have evidence of increased TGFbeta and hedgehog signaling. Thus, similar to SMAD1 and SMAD5, which have redundant roles in suppressing granulosa cell tumor development in mice, two type I BMP receptors, BMPR1A and BMPR1B, function together to prevent ovarian tumorigenesis. These studies support a role for a functional BMP signaling axis as a tumor suppressor pathway in the ovary, with BMPR1A and BMPR1B acting downstream of BMP ligands and upstream of BMP receptor SMADs.
Collapse
Affiliation(s)
- Mark A Edson
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|