201
|
Inferring coregulation of transcription factors and microRNAs in breast cancer. Gene 2013; 518:139-44. [DOI: 10.1016/j.gene.2012.11.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/27/2012] [Indexed: 01/24/2023]
|
202
|
Klimenko OV, Shtilman MI. Transfection of Kasumi-1 cells with a new type of polymer carriers loaded with miR-155 and antago-miR-155. Cancer Gene Ther 2013; 20:237-41. [PMID: 23538486 DOI: 10.1038/cgt.2013.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated functional roles for microRNAs (miRNAs) in various aspects of normal and malignant hematopoiesis, including lineage commitment, differentiation, apoptosis and maturation. In vivo delivery of naked DNA, oligonucleotides and miRNAs is complicated by their low stability, rapid degradation and inefficient delivery into target cells. In our experiments, we used a new type of polymer carriers to monitor the effects of miR-155 and antago-miR-155 on the morphology and genetics of Kasumi-1 cells. We obtained platelet-like cells from leukemic cells, and detected the expression of platelet marker genes after transfection with antago-miR-155. Our findings suggest that administration of miR mimics or antago-miRs as therapeutic agents is a desirable goal for future treatment of hematologic malignancies and that polymer-based carriers for the delivery of miR mimics or antago-miRs may provide a solution to the challenges of standard miR delivery approaches.
Collapse
Affiliation(s)
- O V Klimenko
- Department of Experimental Diagnostics and Therapy of Tumors, Russian Cancer Center, Moscow, Russia.
| | | |
Collapse
|
203
|
Abstract
MicroRNAs are a class of small non-coding RNAs regulating gene expression at posttranscriptional level. Their target genes include numerous regulators of cell cycle, cell proliferation as well as apoptosis. Therefore, they are implicated in the initiation and progression of cancer, tissue invasion and metastasis formation as well. MicroRNA profiles supply much information about both the origin and the differentiation state of tumours. MicroRNAs also have a key role during haemopoiesis. An altered expression level of those have often been observed in different types of leukemia. There are successful attempts to apply microRNAs in the diagnosis and prognosis of acute lymphoblastic leukemia and acute myeloid leukemia. Measurement of the expression levels may help to predict the success of treatment with different kinds of chemotherapeutic drugs. MicroRNAs are also regarded as promising therapeutic targets, and can contribute to a more personalized therapeutic approach in haemato-oncologic patients.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Debreceni Egyetem, Általános Orvostudományi Kar, Orvos- és Egészségtudományi Centrum Gyermekgyógyászati Intézet
| | | |
Collapse
|
204
|
Ding X, Park SI, McCauley LK, Wang CY. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem 2013; 288:10241-53. [PMID: 23447531 DOI: 10.1074/jbc.m112.443655] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TGF-β promotes tumor invasion and metastasis by inducing an epithelial-mesenchymal transition (EMT). Understanding the molecular and epigenetic mechanisms by which TGF-β induces EMT may facilitate the development of new therapeutic strategies for metastasis. Here, we report that TGF-β induced SNAI2 to promote EMT by repressing miR-203. Although miR-203 targeted SNAI2, SNAI2 induced by TGF-β could directly bind to the miR-203 promoter to inhibit its transcription. SNAI2 and miR-203 formed a double negative feedback loop to inhibit each other's expression, thereby controlling EMT. Moreover, we found that miR-203 was significantly down-regulated in highly metastatic breast cancer cells. The restoration of miR-203 in highly metastatic breast cancer cells inhibited tumor cell invasion in vitro and lung metastatic colonization in vivo by repressing SNAI2. Taken together, our results suggest that the SNAI2 and miR-203 regulatory loop plays important roles in EMT and tumor metastasis.
Collapse
Affiliation(s)
- Xiangming Ding
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
205
|
Santhi WS, Prathibha R, Charles S, Anurup KG, Reshmi G, Ramachandran S, Jissa VT, Sebastian P, Radhakrishna Pillai M. Oncogenic microRNAs as biomarkers of oral tumorigenesis and minimal residual disease. Oral Oncol 2013; 49:567-75. [PMID: 23380617 DOI: 10.1016/j.oraloncology.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Classical diagnostic methods are not sensitive enough in detecting oral lesions that may progress to cancer and in assessing minimal residual disease (MRD) in oral surgical margins. Altered expression of microRNAs (miRNAs) contributes to human cancer, including oral cancer. Although there are many studies on microRNAs in oral cancer, there is no reported study comparing the expression of microRNAs during oral tumor progression and in oral surgical margins. MATERIALS AND METHODS This study analyzed the expression of 72 miRNAs that were reported (till June 2011) to be differentially expressed in oral cancer, during phases of oral cancer progression and in oral surgical margins. RESULTS Of the 72 miRNAs analyzed, four (hsa-miR-125a, hsa-miR-184, hsa-miR16 and hsa-miR-96) showed a common pattern of expression in both sets of tissues. We further analyzed the downstream target genes of hsa-miR-16 BCL2 and CCND1. The in silico network analysis of these four microRNAs and their target genes revealed presence of genes involved in tumor progression and transcription factors. CONCLUSIONS The findings suggest that the combinatorial regulation by these miRNAs and their target transcription factors might play a substantial role in oral tumorigenesis. Here we report for the first time that a decreased expression of hsa-miR-125a, hsa-miR-184 and hsa-miR-16 and an increased expression of hsa-miR-96 could be useful in predicting oral tumorigenesis and importantly in the detection of MRD and decision-making process for postoperative treatment modalities.
Collapse
Affiliation(s)
- W S Santhi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20-23-nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the translation and stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and invasion. miRNA targeting is initiated through specific base-pairing interactions between the 5' end ("seed" region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3' UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer, we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis, and mechanism of target recognition, examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease specific expression, they hold potential as therapeutic targets and novel biomarkers.
Collapse
|
207
|
Rossi S, Calin GA. Bioinformatics, non-coding RNAs and its possible application in personalized medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:21-37. [PMID: 23377966 DOI: 10.1007/978-94-007-5590-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-coding RNAs are important actors in human biology. A massive amount of data has been created and manipulated, and important findings have been extracted thanks in part to bioinformatics approaches and consequent experimental validation; many of these results are for a specific class of non-coding RNAs, the microRNAs (miRNAs), that are important regulators of gene expression although their transcriptional regulation is not yet well understood. Their involvement in cancer development and progression makes the related research field an integrated one, composed of bioinformaticians, clinicians, statisticians and biologists, as well as informaticians and data miners that cure data manipulation and storage especially due to the output of the latest technologies, like the Next Generation Sequencers.In this chapter we report the main miRNA findings of the last 10 years in terms of identification and prediction techniques, data generation and manipulation methods, as well as possible use in clinical practice.
Collapse
Affiliation(s)
- Simona Rossi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | |
Collapse
|
208
|
Abstract
The discovery that noncoding components of the genome, including microRNA (miRNA or miR), can contribute to the pathogenesis of cancer has led investigators to contemplate using these molecules to guide clinical decision making. Currently, miRNA signatures are being applied in human clinical trials and miRNA-directed therapy is under way, with miR-122 targeting in hepatitis C (HCV) being the most developed therapy thus far. miRNA-based targeting in cancer is not far behind, with several private companies developing therapeutics. We are recognizing the potential for miRNA biology to clarify both the molecular pathogenesis of cancer and the inherent complexities in translating its biology to clinics. An increased understanding of fundamental miRNA biology, improved bioinformatics, and directed in vivo targeting while minimizing off-target effects and toxicity will be required for successful translational application. Here, we provide an overview of miRNAs, with a focus on aspects of translating bench-based discoveries to the clinic.
Collapse
Affiliation(s)
- S P Nana-Sinkam
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
209
|
Wu X, Zhang D, Li G. Insights into the regulation of human CNV-miRNAs from the view of their target genes. BMC Genomics 2012; 13:707. [PMID: 23244579 PMCID: PMC3582595 DOI: 10.1186/1471-2164-13-707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 12/07/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent research showed that copy number alterations of miRNAs and their target genes are highly prevalent in cancers; however, the evolutionary and biological functions of naturally existing copy number variable miRNAs (CNV-miRNAs) among individuals have not been studied extensively throughout the genome. RESULTS In this study, we comprehensively analyzed the properties of genes regulated by CNV-miRNAs, and found that CNV-miRNAs tend to target a higher average number of genes and prefer to synergistically regulate the same genes; further, the targets of CNV-miRNAs tend to have higher variability of expression within and between populations. Finally, we found the targets of CNV-miRNAs are more likely to be differentially expressed among tissues and developmental stages, and participate in a wide range of cellular responses. CONCLUSIONS Our analyses of CNV-miRNAs provide new insights into the impact of copy number variations on miRNA-mediated post-transcriptional networks. The deeper interpretation of patterns of gene expression variation and the functional characterization of CNV-miRNAs will help to broaden the current understanding of the molecular basis of human phenotypic diversity.
Collapse
Affiliation(s)
- Xudong Wu
- Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd,, Dalian, 116023, PR China
| | | | | |
Collapse
|
210
|
Scheibner KA, Teaboldt B, Hauer MC, Chen X, Cherukuri S, Guo Y, Kelley SM, Liu Z, Baer MR, Heimfeld S, Civin CI. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3θ. PLoS One 2012; 7:e50895. [PMID: 23236401 PMCID: PMC3517579 DOI: 10.1371/journal.pone.0050895] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/26/2012] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRs) play major roles in normal hematopoietic differentiation and hematopoietic malignancies. In this work, we report that miR-27a, and its coordinately expressed cluster (miR-23a∼miR-27a∼miR-24-2), was down-regulated in acute leukemia cell lines and primary samples compared to hematopoietic stem-progenitor cells (HSPCs). Decreased miR-23a cluster expression in some acute leukemia cell lines was mediated by c-MYC. Replacement of miR-27a in acute leukemia cell lines inhibited cell growth due, at least in part, to increased cellular apoptosis. We identified a member of the anti-apoptotic 14-3-3 family of proteins, which support cell survival by interacting with and negatively regulating pro-apoptotic proteins such as Bax and Bad, as a target of miR-27a. Specifically, miR-27a regulated 14-3-3θ at both the mRNA and protein levels. These data indicate that miR-27a contributes a tumor suppressor-like activity in acute leukemia cells via regulation of apoptosis, and that miR-27a and 14-3-3θ may be potential therapeutic targets.
Collapse
Affiliation(s)
- Kara A Scheibner
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Rossi S, Di Narzo AF, Mestdagh P, Jacobs B, Bosman FT, Gustavsson B, Majoie B, Roth A, Vandesompele J, Rigoutsos I, Delorenzi M, Tejpar S. microRNAs in colon cancer: a roadmap for discovery. FEBS Lett 2012; 586:3000-7. [PMID: 23166923 DOI: 10.1016/j.febslet.2012.07.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer omics data are exponentially created and associated with clinical variables, and important findings can be extracted based on bioinformatics approaches which can then be experimentally validated. Many of these findings are related to a specific class of non-coding RNA molecules called microRNAs (miRNAs) (post-transcriptional regulators of mRNA expression). The related research field is quite heterogeneous and bioinformaticians, clinicians, statisticians and biologists, as well as data miners and engineers collaborate to cure stored data and on new impulses coming from the output of the latest Next Generation Sequencing technologies. Here we review the main research findings on miRNA of the first 10 years in colon cancer research with an emphasis on possible uses in clinical practice. This review intends to provide a road map in the jungle of publications of miRNA in colorectal cancer, focusing on data availability and new ways to generate biologically relevant information out of these huge amounts of data.
Collapse
Affiliation(s)
- Simona Rossi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Genome-wide screen for aberrantly expressed miRNAs reveals miRNA profile signature in breast cancer. Mol Biol Rep 2012. [PMID: 23196705 DOI: 10.1007/s11033-012-2277-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dysregulation in the expression of miRNAs contributes to the occurrence and development of many human cancers. We herein attempted to obtain the potential association between miRNA expression profile and breast cancer by applying high-throughput sequencing technology. Small RNAs from seven paired tumor and adjacent normal tissue samples were sequenced. To determine the miRNA expression profiles in tissues and sera, another five equally pooled serum samples from 20 patients and 30 normal women were sequenced. Despite a similar number in abundantly expressed miRNAs across samples, we detected varying miRNA expression profiles. Some miRNAs showed inconsistent or opposite dysregulation trends across different tumor tissues, including some abundantly expressed miRNA gene clusters and gene families. Wilcoxon sign-rank test for paired samples analysis revealed that abnormal miRNAs showed a higher level of variation across the seven tumor samples. We also completely surveyed abnormal miRNAs expressed in tumor and serum tissues in the mixed datasets based on the relative expression levels. Most of these miRNAs were significantly down-regulated in tumor samples, but nine abnormal miRNAs (miR-18a, 19a, 20a, 30a, 103b, 126, 126*, 192, 1287) were consistently expressed in tumor tissues and serum samples. Based on experimentally validated target mRNAs, functional enrichment analysis indicated that these abnormal miRNAs and miRNA groups (miRNA gene clusters and gene families) have important roles in multiple biological processes. Dynamic miRNA expression profiles, various abnormal miRNA profiles and complexity of the miRNA regulatory network reveal that the miRNA expression profile is a potential biomarker for classifying or detecting human disease.
Collapse
|
213
|
Bhattacharya A, Ziebarth JD, Cui Y. SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res 2012. [PMID: 23180788 PMCID: PMC3531132 DOI: 10.1093/nar/gks1138] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing of cancers has begun to identify thousands of somatic mutations that distinguish the genomes of normal tissues from cancers. While many germline mutations within microRNAs (miRNAs) and their targets have been shown to alter miRNA function in cancers and have been associated with cancer risk, the impact of somatic mutations on miRNA function has received relatively little attention. Here, we have created the SomamiR database (http://compbio.uthsc.edu/SomamiR/) to provide a comprehensive resource that integrates several types of data for use in investigating the impact of somatic and germline mutations on miRNA function in cancer. The database contains somatic mutations that may create or disrupt miRNA target sites and integrates these somatic mutations with germline mutations within the same target sites, genome-wide and candidate gene association studies of cancer and functional annotations that link genes containing mutations with cancer. Additionally, the database contains a collection of germline and somatic mutations in miRNAs and their targets that have been experimentally shown to impact miRNA function and have been associated with cancer.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Department of Microbiology, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
214
|
Abstract
An ongoing challenge in cancer research is represented by the identification of new specific clinical molecular markers and pharmacological targets. During the last 10 years, microRNAs (miRNAs) have become one of the hottest subjects in the area of cancer genomics. MicroRNAs are single-stranded RNAs of 19 to 24 nucleotides in length generated through a complex maturation process. Recent studies have demonstrated that microRNAs can have an oncogene or tumor suppressor role by regulating the expression of target genes. Therefore, microRNAs are highly related to cancer processes, including initiation, growth, apoptosis, invasion, and metastasis. In this panorama, several high-through put technologies studies have revealed miRNA roles in classifying tumors and predicting patient outcome with high accuracy. We provide a review highlighting recent progress on the understanding of the cellular function of human microRNAs and their expression in solid tumors.
Collapse
|
215
|
Cesano A, Perbellini O, Evensen E, Chu CC, Cioffi F, Ptacek J, Damle RN, Chignola R, Cordeiro J, Yan XJ, Hawtin RE, Nichele I, Ware JR, Cavallini C, Lovato O, Zanotti R, Rai KR, Chiorazzi N, Pizzolo G, Scupoli MT. Association between B-cell receptor responsiveness and disease progression in B-cell chronic lymphocytic leukemia: results from single cell network profiling studies. Haematologica 2012; 98:626-34. [PMID: 23144194 DOI: 10.3324/haematol.2012.071910] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While many prognostic markers in B-cell chronic lymphocytic leukemia provide insight into the biology of the disease, few have been demonstrated to be useful in the daily management of patients. B-cell receptor signaling is a driving event in the progression of B-cell chronic lymphocytic leukemia and markers of B-cell receptor responsiveness have been shown to be of prognostic value. Single cell network profiling, a multiparametric flow cytometry-based assay, allows functional signaling analysis at the level of the single cell. B-cell receptor signaling proteins (i.e. p-SYK, p-NF-κB p65, p-ERK, p-p38, p-JNK) were functionally characterized by single cell network profiling in samples from patients with B-cell chronic lymphocytic leukemia in an exploratory study (n=27) after stimulation with anti-IgM. Significant associations of single cell network profiling data with clinical outcome (i.e. time to first treatment), as assessed by Cox regression models, were then confirmed in patients' samples in two other sequential independent studies, i.e. test study 1 (n=30), and test study 2 (n=37). In the exploratory study, higher responsiveness of the B-cell receptor signaling proteins to anti-IgM was associated with poor clinical outcomes. Patients' clustering based on signaling response was at least as powerful in discriminating different disease courses as traditional prognostic markers. In an unselected subgroup of patients with Binet stage A disease (n=21), increased anti-IgM-modulated p-ERK signaling was shown to be a significant, independent predictor of shorter time to first treatment. This result was independently confirmed in two test cohorts from distinct populations of patients. In conclusion, these findings support the utility of the single cell network profiling assay in elucidating signaling perturbations with the potential for the development of a clinically useful prognostic test in patients with early stage B-cell chronic lymphocytic leukemia. These data support the clinical relevance of B-cell receptor signaling in B-cell chronic lymphocytic leukemia, and suggest a key role of ERK activation in the physiopathology of this leukemia.
Collapse
|
216
|
Satoh JI. Molecular network analysis of human microRNA targetome: from cancers to Alzheimer's disease. BioData Min 2012; 5:17. [PMID: 23034144 PMCID: PMC3492042 DOI: 10.1186/1756-0381-5-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs, mediate posttranscriptional regulation of protein-coding genes by binding chiefly to the 3’ untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation. A single miRNA concurrently downregulates hundreds of target mRNAs designated “targetome”, and thereby fine-tunes gene expression involved in diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. Recently, we characterized the molecular network of the whole human miRNA targetome by using bioinformatics tools for analyzing molecular interactions on the comprehensive knowledgebase. We found that the miRNA targetome regulated by an individual miRNA generally constitutes the biological network of functionally-associated molecules in human cells, closely linked to pathological events involved in cancers and neurodegenerative diseases. We also identified a collaborative regulation of gene expression by transcription factors and miRNAs in cancer-associated miRNA targetome networks. This review focuses on the workflow of molecular network analysis of miRNA targetome in silico. We applied the workflow to two representative datasets, composed of miRNA expression profiling of adult T cell leukemia (ATL) and Alzheimer’s disease (AD), retrieved from Gene Expression Omnibus (GEO) repository. The results supported the view that miRNAs act as a central regulator of both oncogenesis and neurodegeneration.
Collapse
Affiliation(s)
- Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
217
|
Ning MS, Andl T. Control by a hair's breadth: the role of microRNAs in the skin. Cell Mol Life Sci 2012; 70:1149-69. [PMID: 22983383 DOI: 10.1007/s00018-012-1117-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs have continued to attract enormous interest in the scientific community ever since their discovery. Their allure stems from their unique role in posttranscriptional gene expression control as well as their potential application as therapeutic targets in various disease pathologies. While much is known concerning their general biological function, such as their interaction with RNA-induced silencing complexes, many important questions still remain unanswered, especially regarding their functions in the skin. In this review, we summarize our current knowledge of the role of microRNAs in the skin in order to shine new light on our understanding of cutaneous biology and emphasize the significance of these small, single-stranded RNA molecules in the largest organ of the human body. Key events in epidermal and hair follicle biology, including differentiation, proliferation, and pigmentation, all involve microRNAs. We explore the role of microRNAs in several cutaneous processes, such as appendage formation, wound-healing, epithelial-mesenchymal transition, carcinogenesis, immune response, and aging. In addition, we discuss current trends in research and offer suggestions for future studies.
Collapse
Affiliation(s)
- Matthew S Ning
- Department of Medicine/Division of Dermatology, Vanderbilt University Medical Center, Medical Center North, Room A2310B, 1161 21st Avenue South, Nashville, TN 37232-2600, USA
| | | |
Collapse
|
218
|
Põlajeva J, Swartling FJ, Jiang Y, Singh U, Pietras K, Uhrbom L, Westermark B, Roswall P. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma. BMC Cancer 2012; 12:378. [PMID: 22931209 PMCID: PMC3517377 DOI: 10.1186/1471-2407-12-378] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/09/2012] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. Methods We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. Results We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling. Conclusions Our data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma.
Collapse
Affiliation(s)
- Jelena Põlajeva
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Thomas R, Phuong J, McHale CM, Zhang L. Using bioinformatic approaches to identify pathways targeted by human leukemogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2479-503. [PMID: 22851955 PMCID: PMC3407916 DOI: 10.3390/ijerph9072479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/28/2022]
Abstract
We have applied bioinformatic approaches to identify pathways common to chemical leukemogens and to determine whether leukemogens could be distinguished from non-leukemogenic carcinogens. From all known and probable carcinogens classified by IARC and NTP, we identified 35 carcinogens that were associated with leukemia risk in human studies and 16 non-leukemogenic carcinogens. Using data on gene/protein targets available in the Comparative Toxicogenomics Database (CTD) for 29 of the leukemogens and 11 of the non-leukemogenic carcinogens, we analyzed for enrichment of all 250 human biochemical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The top pathways targeted by the leukemogens included metabolism of xenobiotics by cytochrome P450, glutathione metabolism, neurotrophin signaling pathway, apoptosis, MAPK signaling, Toll-like receptor signaling and various cancer pathways. The 29 leukemogens formed 18 distinct clusters comprising 1 to 3 chemicals that did not correlate with known mechanism of action or with structural similarity as determined by 2D Tanimoto coefficients in the PubChem database. Unsupervised clustering and one-class support vector machines, based on the pathway data, were unable to distinguish the 29 leukemogens from 11 non-leukemogenic known and probable IARC carcinogens. However, using two-class random forests to estimate leukemogen and non-leukemogen patterns, we estimated a 76% chance of distinguishing a random leukemogen/non-leukemogen pair from each other.
Collapse
Affiliation(s)
- Reuben Thomas
- Genes and Environment Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
220
|
Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Res 2012; 22:1-8. [PMID: 22108608 DOI: 10.1097/cmr.0b013e32834e6aa0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of melanoma subtypes into prognostically relevant and therapeutically insightful categories has been a challenge since the first description of melanoma in the 1800s. One limitation has been the assumption that the two most common histological subtypes of melanoma, superficial spreading and nodular, evolve according to a linear model of progression, as malignant melanocytes spread radially and then invade vertically. However, recent clinical, pathological, and molecular data indicate that these two histological subtypes might evolve as distinct entities. Here, we review the published data that support distinct molecular characterization of superficial spreading and nodular melanoma, the clinical significance of this distinction including prognostic relevance and the therapeutic implications.
Collapse
|
221
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that control the expression of around 60% of the human protein-coding genes. In the past decade, deregulation of miRNAs (by expression and/or function) has been associated with the pathogenesis, progression and prognosis of different diseases, including leukemia. The number of discovered genes encoding miRNAs has risen exponentially in this period, but the numbers of miRNA-target genes discovered and validated lag far behind. Scientists have gained more in-depth knowledge of the basic mechanism of action of miRNAs, but the main challenge still remaining is the identification of direct targets of these important 'micro-players', to understand how they fine-tune so many biological processes in both healthy and diseased tissue. Many technologies have been developed in the past few years, some with more potential than others, but all with their own pros and cons. Here, we review the most common and most potent computational and experimental approaches for miRNA-target gene discovery and discuss how the hunting of targets is challenging but possible by taking the experimental limitations in consideration and choosing the correct cellular context for identifying relevant target genes.
Collapse
|
222
|
Martino F, Lorenzen J, Schmidt J, Schmidt M, Broll M, Görzig Y, Kielstein JT, Thum T. Circulating microRNAs are not eliminated by hemodialysis. PLoS One 2012; 7:e38269. [PMID: 22715378 PMCID: PMC3371001 DOI: 10.1371/journal.pone.0038269] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 01/02/2023] Open
Abstract
Background Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. Methods We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m2, Molecular Weight Cut Off (MWCO): 30 kDa, n = 8), AV 1000 S (1.8 m2, MWCO: 30 kDa, n = 6) and EMiC 2 (1.8 m2, MWCO: 40 kDa, n = 6). Results Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. Conclusions In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury.
Collapse
Affiliation(s)
- Filippo Martino
- Institute for Molecular and Translational Treatment Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, Block K, Kasinath BS, Abboud HE, Choudhury GG. microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 2012; 7:e37366. [PMID: 22685542 PMCID: PMC3368259 DOI: 10.1371/journal.pone.0037366] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Metastatic renal cancer manifests multiple signatures of gene expression. Deviation in expression of mature miRNAs has been linked to human cancers. Importance of miR-21 in renal cell carcinomas is proposed from profiling studies using tumor tissue samples. However, the role of miR-21 function in causing renal cancer cell proliferation and invasion has not yet been shown. Using cultured renal carcinoma cells, we demonstrate enhanced expression of mature miR-21 along with pre-and pri-miR-21 by increased transcription compared to normal proximal tubular epithelial cells. Overexpression of miR-21 Sponge to quench endogenous miR-21 levels inhibited proliferation, migration and invasion of renal cancer cells. In the absence of mutation in the PTEN tumor suppressor gene, PTEN protein levels are frequently downregulated in renal cancer. We show that miR-21 targets PTEN mRNA 3'untranslated region to decrease PTEN protein expression and augments Akt phosphorylation in renal cancer cells. Downregulation of PTEN as well as overexpression of constitutively active Akt kinase prevented miR-21 Sponge-induced inhibition of renal cancer cell proliferation and migration. Moreover, we show that miR-21 Sponge inhibited the inactivating phosphorylation of the tumor suppressor protein tuberin and attenuated TORC1 activation. Finally, we demonstrate that expression of constitutively active TORC1 attenuated miR-21 Sponge-mediated suppression of proliferation and migration of renal cancer cells. Our results uncover a layer of post-transcriptional regulation of PTEN by transcriptional activation of miR-21 to force the canonical oncogenic Akt/TORC1 signaling conduit to drive renal cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nandini Ghosh-Choudhury
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dipen J. Parekh
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Balakuntalam S. Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Hanna E. Abboud
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| |
Collapse
|
224
|
Zhang T, Luo Y, Wang T, Yang JY. MicroRNA-297b-5p/3p target Mllt3/Af9 to suppress lymphoma cell proliferation, migration and invasion in vitro and tumor growth in nude mice. Leuk Lymphoma 2012; 53:2033-40. [PMID: 22448917 DOI: 10.3109/10428194.2012.678005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mllt3/Af9 is a proto-oncogene capable of deregulating the expression of genes critical for leukemia. However, the regulation of its expression remains incompletely elucidated. Herein, we show that the microRNAs miR-297b-5p/3p are capable of regulating Mllt3/Af9 expression negatively by binding to its 3'-untranslated region. Overexpression of miR-297b-5p/3p also led to altered expression of p27(Kip1) and proliferating cell nuclear antigen, abnormal cell cycle arrest, decreased cell proliferation, migration and invasion in vitro in cell cultures, and suppressed xenograft tumor growth in vivo in the nude mouse. These data demonstrate that miR-297b-5p/3p and Mllt3/Af9 might be critical regulators of lymphoma cell proliferation or carcinogenesis. Together our findings suggest that miR-297b-5p/3p might be useful molecular targets for diagnosis or treatment of cancers associated with abnormal expression of Mllt3/Af9.
Collapse
Affiliation(s)
- Tiantian Zhang
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | |
Collapse
|
225
|
Chatterton Z, Morenos L, Saffery R, Craig JM, Ashley D, Wong NC. DNA methylation and miRNA expression profiling in childhood B-cell acute lymphoblastic leukemia. Epigenomics 2012; 2:697-708. [PMID: 22122053 DOI: 10.2217/epi.10.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children in the modern world. Recent efforts in characterizing the genetic contribution to this disease through uncovering gene mutations, deletions and structural variation by genome-scale methods have only accounted for a modest proportion of children with ALL. This suggests that either further genetic contributions to ALL have yet to be characterized or other factors, such as epigenetic aberrations are involved. A number of DNA methylation and miRNA profiling studies have investigated the role of both in childhood ALL. Here, we review these profiling efforts, summarize their major findings and speculate as to what the future may hold.
Collapse
Affiliation(s)
- Zac Chatterton
- Developmental Epigenetics, Early Development & Disease Theme, Murdoch Children's Research Institute, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
226
|
Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 2012; 134:1081-93. [PMID: 22476851 DOI: 10.1007/s10549-012-2034-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Tumor recurrence and metastasis result in an unfavorable prognosis for cancer patients. Recent studies have suggested that specific microRNAs (miRNAs) may play important roles in the development of cancer cells. However, prognostic markers and the outcome prediction of the miRNA signature in breast cancer patients have not been comprehensively assessed. The aim of this study was to identify miRNA biomarkers relating to clinicopathological features and outcome of breast cancer. A miRNA microarray analysis was performed on breast tumors of different lymph node metastasis status and with different progression signatures, indicated by overexpression of cyclin D1 and β-catenin genes, to identify miRNAs showing a significant difference in expression. The functional interaction between the candidate miRNA, miR-30a, and the target gene, Vim, which codes for vimentin, a protein involved in epithelial-mesenchymal transition, was examined using the luciferase reporter assay, western blotting, and migration and invasion assays. The association between the decreased miR-30a levels and breast cancer progression was examined in a survival analysis. miR-30a negatively regulated vimentin expression by binding to the 3'-untranslated region of Vim. Overexpression of miR-30a suppressed the migration and invasiveness phenotypes of breast cancer cell lines. Moreover, reduced tumor expression of miR-30a in breast cancer patients was associated with an unfavorable outcome, including late tumor stage, lymph node metastasis, and worse progression (mortality and recurrence) (p < 0.05). In conclusion, these findings suggest a role for miR-30a in inhibiting breast tumor invasiveness and metastasis. The finding that miR-30a downmodulates vimentin expression might provide a therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Almeida MI, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafà R, Xiao L, Zhang X, Vannini I, Fanini F, Fabbri M, Lanza G, Reis RM, Zweidler-McKay PA, Calin GA. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology 2012; 142:886-896.e9. [PMID: 22240480 PMCID: PMC3321100 DOI: 10.1053/j.gastro.2011.12.047] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/21/2011] [Accepted: 12/27/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) can promote or inhibit tumor growth and are therefore being developed as targets for cancer therapies. They are diverse not only in the messenger RNAs (mRNA) they target, but in their production; the same hairpin RNA structure can generate mature products from each strand, termed 5p and 3p, that can bind different mRNAs. We analyzed the expression, functions, and mechanisms of miR-28-5p and miR-28-3p in colorectal cancer (CRC) cells. METHODS We measured levels of miR-28-5p and miR-28-3p expression in 108 CRC and 49 normal colorectal samples (47 paired) by reverse transcription, quantitative real-time polymerase chain reaction. The roles of miR-28 in CRC development were studied using cultured HCT116, RKO, and SW480 cells and tumor xenograft analyses in immunodeficient mice; their mRNA targets were also investigated. RESULTS miR-28-5p and miR-28-3p were down-regulated in CRC samples compared with normal colon samples. Overexpression of miRNAs in CRC cells had different effects and the miRNAs interacted with different mRNAs: miR-28-5p altered expression of CCND1 and HOXB3, whereas miR-28-3p bound NM23-H1. Overexpression of miR-28-5p reduced CRC cell proliferation, migration, and invasion in vitro, whereas miR-28-3p increased CRC cell migration and invasion in vitro. CRC cells overexpressing miR-28 developed tumors more slowly in mice compared with control cells, but miR-28 promoted tumor metastasis in mice. CONCLUSION miR-28-5p and miR-28-3p are transcribed from the same RNA hairpin and are down-regulated in CRC cells. Overexpression of each has different effects on CRC cell proliferation and migration. Such information has a direct application for the design of miRNA gene therapy trials.
Collapse
Affiliation(s)
- Maria I. Almeida
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | - Milena S. Nicoloso
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lizhi Zeng
- Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cristina Ivan
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roberta Gafà
- Department of Experimental and Diagnostic Medicine and Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara, Italy
| | - Lianchun Xiao
- Division of Quantitative Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinna Zhang
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivan Vannini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Francesca Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Muller Fabbri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Giovanni Lanza
- Department of Experimental and Diagnostic Medicine and Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara, Italy
| | - Rui M. Reis
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - Patrick A. Zweidler-McKay
- Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
228
|
Piepoli A, Tavano F, Copetti M, Mazza T, Palumbo O, Panza A, di Mola FF, Pazienza V, Mazzoccoli G, Biscaglia G, Gentile A, Mastrodonato N, Carella M, Pellegrini F, di Sebastiano P, Andriulli A. Mirna expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One 2012; 7:e33663. [PMID: 22479426 PMCID: PMC3316496 DOI: 10.1371/journal.pone.0033663] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/14/2012] [Indexed: 01/12/2023] Open
Abstract
Background and Aim Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways. Methods Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed. Results The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers. Conclusion MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.
Collapse
Affiliation(s)
- Ada Piepoli
- Department and Laboratory of Gastroenterology, IRCCS Casa Sollievo della Sofferenza, Research Hospital, San Giovanni Rotondo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Zhong H, Xu L, Zhong JH, Xiao F, Liu Q, Huang HH, Chen FY. Clinical and prognostic significance of miR-155 and miR-146a expression levels in formalin-fixed/paraffin-embedded tissue of patients with diffuse large B-cell lymphoma. Exp Ther Med 2012; 3:763-770. [PMID: 22969965 DOI: 10.3892/etm.2012.502] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/30/2012] [Indexed: 12/19/2022] Open
Abstract
It has been found that aberrant expression of microRNAs (miRNAs) is strongly associated with carcinogenesis. In the present study, we investigated the expression of miR-155 and miR-146a in diffuse large B-cell lymphoma (DLBCL) patients (n=90). The expression levels of miR-155 and miR-146a were significantly higher in de novo DLBCL patients. miR-146a expression levels were associated with miR-155, lactate dehydrogenase, β 2 microglobulin, c-myc, International Prognostic Index status and Eastern Cooperative Oncology Group performance status. We found that patients with low miR-155 and miR-146a expression levels achieved a higher complete remission rate, higher overall response rate and longer progression-free survival time. Moreover, a high expression level of miR-155, but not miR-146a, was an independent indicator for chemotherapy protocol selection in our study. Patients with high expression of miR-155 received more survival benefits from rituximab treatment. These data suggest that miR-155 and miR-146a have potential as diagnostic and prognostic markers in DLBCL.
Collapse
|
230
|
Xiao Y, Xu C, Guan J, Ping Y, Fan H, Li Y, Zhao H, Li X. Discovering dysfunction of multiple microRNAs cooperation in disease by a conserved microRNA co-expression network. PLoS One 2012; 7:e32201. [PMID: 22384175 PMCID: PMC3285207 DOI: 10.1371/journal.pone.0032201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 01/24/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, a new class of key regulators of gene expression, have been shown to be involved in diverse biological processes and linked to many human diseases. To elucidate miRNA function from a global perspective, we constructed a conserved miRNA co-expression network by integrating multiple human and mouse miRNA expression data. We found that these conserved co-expressed miRNA pairs tend to reside in close genomic proximity, belong to common families, share common transcription factors, and regulate common biological processes by targeting common components of those processes based on miRNA targets and miRNA knockout/transfection expression data, suggesting their strong functional associations. We also identified several co-expressed miRNA sub-networks. Our analysis reveals that many miRNAs in the same sub-network are associated with the same diseases. By mapping known disease miRNAs to the network, we identified three cancer-related miRNA sub-networks. Functional analyses based on targets and miRNA knockout/transfection data consistently show that these sub-networks are significantly involved in cancer-related biological processes, such as apoptosis and cell cycle. Our results imply that multiple co-expressed miRNAs can cooperatively regulate a given biological process by targeting common components of that process, and the pathogenesis of disease may be associated with the abnormality of multiple functionally cooperative miRNAs rather than individual miRNAs. In addition, many of these co-expression relationships provide strong evidence for the involvement of new miRNAs in important biological processes, such as apoptosis, differentiation and cell cycle, indicating their potential disease links.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
231
|
Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R, Döhner H, Stilgenbauer S, Pscherer A, Lichter P, Seiffert M. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res 2012; 72:1763-72. [PMID: 22350415 DOI: 10.1158/0008-5472.can-11-3671] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxicity and relapses from the immunochemotherapy used to treat chronic lymphocytic leukemia (CLL) prompt continued interest in gentle but effective targeted treatment options for the mainly elderly population suffering from this disease. Here, we report the definition of critical CLL cell survival pathways that can be targeted by ectopic reexpression of the miRNA genes miR-130a and miR-143 which are widely downregulated in CLL. Notably, miR-130a inhibited autophagy by reducing autophagosome formation, an effect mediated by downregulation of the genes ATG2B and DICER1, the latter of which is a major component of the miRNA silencing machinery. In support of the concept of a fundamental connection between miRNA disregulation and altered autophagic flux in this cancer, we showed that RNA interference-mediated knockdown of DICER1 expression was sufficient to reduce autophagy in primary or established cultures of CLL cells. Together, our findings show that miR-130a modulates cell survival programs by regulating autophagic flux, and they define roles for miR-130a and Dicer1 in a regulatory feedback loop that mediates CLL cell survival.
Collapse
|
232
|
Schuetz JM, Daley D, Graham J, Berry BR, Gallagher RP, Connors JM, Gascoyne RD, Spinelli JJ, Brooks-Wilson AR. Genetic variation in cell death genes and risk of non-Hodgkin lymphoma. PLoS One 2012; 7:e31560. [PMID: 22347493 PMCID: PMC3274532 DOI: 10.1371/journal.pone.0031560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/13/2012] [Indexed: 12/18/2022] Open
Abstract
Background Non-Hodgkin lymphomas are a heterogeneous group of solid tumours that constitute the 5th highest cause of cancer mortality in the United States and Canada. Poor control of cell death in lymphocytes can lead to autoimmune disease or cancer, making genes involved in programmed cell death of lymphocytes logical candidate genes for lymphoma susceptibility. Materials and Methods We tested for genetic association with NHL and NHL subtypes, of SNPs in lymphocyte cell death genes using an established population-based study. 17 candidate genes were chosen based on biological function, with 123 SNPs tested. These included tagSNPs from HapMap and novel SNPs discovered by re-sequencing 47 cases in genes for which SNP representation was judged to be low. The main analysis, which estimated odds ratios by fitting data to an additive logistic regression model, used European ancestry samples that passed quality control measures (569 cases and 547 controls). A two-tiered approach for multiple testing correction was used: correction for number of tests within each gene by permutation-based methodology, followed by correction for the number of genes tested using the false discovery rate. Results Variant rs928883, near miR-155, showed an association (OR per A-allele: 2.80 [95% CI: 1.63–4.82]; pF = 0.027) with marginal zone lymphoma that is significant after correction for multiple testing. Conclusions This is the first reported association between a germline polymorphism at a miRNA locus and lymphoma.
Collapse
Affiliation(s)
- Johanna M. Schuetz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Daley
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinko Graham
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brian R. Berry
- Department of Pathology, Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | | | - Joseph M. Connors
- Division of Medical Oncology and Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Randy D. Gascoyne
- Department of Pathology and Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - John J. Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela R. Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
233
|
Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One 2012; 7:e29979. [PMID: 22276136 PMCID: PMC3262799 DOI: 10.1371/journal.pone.0029979] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023] Open
Abstract
Blood consists of different cell populations with distinct functions and correspondingly, distinct gene expression profiles. In this study, global miRNA expression profiling was performed across a panel of nine human immune cell subsets (neutrophils, eosinophils, monocytes, B cells, NK cells, CD4 T cells, CD8 T cells, mDCs and pDCs) to identify cell-type specific miRNAs. mRNA expression profiling was performed on the same samples to determine if miRNAs specific to certain cell types down-regulated expression levels of their target genes. Six cell-type specific miRNAs (miR-143; neutrophil specific, miR-125; T cells and neutrophil specific, miR-500; monocyte and pDC specific, miR-150; lymphoid cell specific, miR-652 and miR-223; both myeloid cell specific) were negatively correlated with expression of their predicted target genes. These results were further validated using an independent cohort where similar immune cell subsets were isolated and profiled for both miRNA and mRNA expression. miRNAs which negatively correlated with target gene expression in both cohorts were identified as candidates for miRNA/mRNA regulatory pairs and were used to construct a cell-type specific regulatory network. miRNA/mRNA pairs formed two distinct clusters in the network corresponding to myeloid (nine miRNAs) and lymphoid lineages (two miRNAs). Several myeloid specific miRNAs targeted common genes including ABL2, EIF4A2, EPC1 and INO80D; these common targets were enriched for genes involved in the regulation of gene expression (p<9.0E-7). Those miRNA might therefore have significant further effect on gene expression by repressing the expression of genes involved in transcriptional regulation. The miRNA and mRNA expression profiles reported in this study form a comprehensive transcriptome database of various human blood cells and serve as a valuable resource for elucidating the role of miRNA mediated regulation in the establishment of immune cell identity.
Collapse
|
234
|
Baxter D, McInnes IB, Kurowska-Stolarska M. Novel regulatory mechanisms in inflammatory arthritis: a role for microRNA. Immunol Cell Biol 2012; 90:288-92. [PMID: 22249200 DOI: 10.1038/icb.2011.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating pathways that regulate cytokine production in the context of autoimmune disease will likely lead to the development of novel therapeutics. Herein, we review data suggesting that microRNAs (miRs) represent one such level of regulatory activity, with particular emphasis on the pathogenesis of rheumatoid arthritis (RA). A series of miRs have been identified to be dysregulated in cell subsets within the articular compartment of patients with RA. These have a critical role in regulating cartilage-invading phenotype of RA synovial fibroblasts. More recently, several studies suggest that miRs also regulate leukocyte activation and cytokine production that in turn contribute to the immunologic component of effector synovial pathology. Together, these observations open an exciting new vista of understanding and therapeutic opportunity for this difficult and common disease.
Collapse
Affiliation(s)
- Derek Baxter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | | | | |
Collapse
|
235
|
Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma--a pilot study. PLoS One 2012; 7:e30221. [PMID: 22253921 PMCID: PMC3256226 DOI: 10.1371/journal.pone.0030221] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/14/2011] [Indexed: 01/06/2023] Open
Abstract
Background To date, no biomarkers with reasonable sensitivity and specificity for the early detection of malignant mesothelioma have been described. The use of microRNAs (miRNAs) as minimally-invasive biomarkers has opened new opportunities for the diagnosis of cancer, primarily because they exhibit tumor-specific expression profiles and have been commonly observed in blood of both cancer patients and healthy controls. The aim of this pilot study was to identify miRNAs in the cellular fraction of human peripheral blood as potential novel biomarkers for the detection of malignant mesothelioma. Methodology/Principal Findings Using oligonucleotide microarrays for biomarker identification the miRNA levels in the cellular fraction of human peripheral blood of mesothelioma patients and asbestos-exposed controls were analyzed. Using a threefold expression change in combination with a significance level of p<0.05, miR-103 was identified as a potential biomarker for malignant mesothelioma. Quantitative real-time PCR (qRT-PCR) was used for validation of miR-103 in 23 malignant mesothelioma patients, 17 asbestos-exposed controls, and 25 controls from the general population. For discrimination of mesothelioma patients from asbestos-exposed controls a sensitivity of 83% and a specificity of 71% were calculated, and for discrimination of mesothelioma patients from the general population a sensitivity of 78% and a specificity of 76%. Conclusions/Significance The results of this pilot study show that miR-103 is characterized by a promising sensitivity and specificity and might be a potential minimally-invasive biomarker for the diagnosis of mesothelioma. In addition, our results support the concept of using the cellular fraction of human blood for biomarker discovery. However, for early detection of malignant mesothelioma the feasibility of miR-103 alone or in combination with other biomarkers needs to be analyzed in a prospective study.
Collapse
|
236
|
Aldridge S, Hadfield J. Introduction to miRNA profiling technologies and cross-platform comparison. Methods Mol Biol 2012; 822:19-31. [PMID: 22144189 DOI: 10.1007/978-1-61779-427-8_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
MicroRNA analysis has been widely adopted for basic and applied science. The tools and technologies available for quantifying and analysing miRNAs are still maturing. Here, we give an introductory overview of the main tools and the challenges in their use. We also discuss the importance of basic experimental design, sample handling and analysis methods as the impact of these can be as profound as the choice of miRNA analysis platform. Whether the reader is interested in a gene-by-gene or genome-wide approach choosing the platform to use is not trivial. Careful thought given before starting an experiment will make the execution much easier.
Collapse
|
237
|
Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, Lee DH, Borin JF, Naslund MJ, Alexander RB, Dorsey TH, Stephens RM, Croce CM, Ambs S. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 2011; 40:3689-703. [PMID: 22210864 PMCID: PMC3333883 DOI: 10.1093/nar/gkr1222] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3'-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility.
Collapse
Affiliation(s)
- Robert S Hudson
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Nana-Sinkam SP, Croce CM. Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol 2011; 5:483-491. [PMID: 22079056 PMCID: PMC5528327 DOI: 10.1016/j.molonc.2011.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 02/09/2023] Open
Abstract
Cancer represents a complex group of heterogeneous diseases. While many cancers share fundamental biological processes (hallmarks of cancer) necessary for their development and progression, cancers also distinguish themselves by their dependence on distinct oncogenic pathways. Over the last decade, targeted therapies have been introduced to the clinic with variable success. In truth, single targeted therapies may be successful in only a subset of malignancies but insufficient to address malignancies that often rely on multiple pathways, thus evading single targeted agents. Investigators have recently identified potentially functional components of the human genome that were previously thought to have no biological function. This discovery has added to the already established complexity of gene regulation in the pathogenesis of cancer. Non-coding RNAs represent key regulators of gene expression. Improved knowledge of their biogenesis and function may in turn lead to a better understanding of the heterogeneity of malignancies and eventually be leveraged as diagnostic, prognostic and therapeutic targets. MicroRNAs (miRNAs or miRs) for example, have the capacity for the regulation of multiple genes and thus redirection or reprogramming of biological pathways. However, several other members of the non-coding RNA family may be of equal biological relevance. In this review, we provide a perspective on emerging concepts in the clinical application of miRNA and other non-coding RNAs as biomarkers in cancer with an eye on the eventual integration of both miRNA and other non-coding RNA biology into our understanding of cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- S. Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, 473 West 12th Avenue, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 410 West 10th Avenue, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
239
|
Wang X, Prins BP, Sõber S, Laan M, Snieder H. Beyond genome-wide association studies: new strategies for identifying genetic determinants of hypertension. Curr Hypertens Rep 2011; 13:442-51. [PMID: 21953487 PMCID: PMC3212682 DOI: 10.1007/s11906-011-0230-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic linkage and association methods have long been the most important tools for gene identification in humans. These approaches can either be hypothesis-based (i.e., candidate-gene studies) or hypothesis-free (i.e., genome-wide studies). The first part of this review offers an overview of the latest successes in gene finding for blood pressure (BP) and essential hypertension using these DNA sequence-based discovery techniques. We further emphasize the importance of post-genome-wide association study (post-GWAS) analysis, which aims to prioritize genetic variants for functional follow-up. Whole-genome next-generation sequencing will eventually be necessary to provide a more comprehensive picture of all DNA variants affecting BP and hypertension. The second part of this review discusses promising novel approaches that move beyond the DNA sequence and aim to discover BP genes that are differentially regulated by epigenetic mechanisms, including microRNAs, histone modification, and methylation.
Collapse
Affiliation(s)
- Xiaoling Wang
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, GA USA
| | - Bram P. Prins
- Unit of Genetic Epidemiology & Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Siim Sõber
- Human Molecular Genetics group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maris Laan
- Human Molecular Genetics group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Harold Snieder
- Unit of Genetic Epidemiology & Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
240
|
Turner DP, Findlay VJ, Moussa O, Semenchenko VI, Watson PM, LaRue AC, Desouki MM, Fraig M, Watson DK. Mechanisms and functional consequences of PDEF protein expression loss during prostate cancer progression. Prostate 2011; 71:1723-35. [PMID: 21446014 PMCID: PMC3128180 DOI: 10.1002/pros.21389] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/01/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Ets is a large family of transcriptional regulators with functions in most biological processes. While the Ets family gene, prostate-derived epithelial factor (PDEF), is expressed in epithelial tissues, PDEF protein expression has been found to be reduced or lost during cancer progression. The goal of this study was to examine the mechanism for and biologic impact of altered PDEF expression in prostate cancer. METHODS PDEF protein expression of prostate specimens was examined by immunohistochemistry. RNA and protein expression in cell lines were measured by q-PCR and Western blot, respectively. Cellular growth was determined by quantifying viable and apoptotic cells over time. Cell cycle was measured by flow cytometry. Migration and invasion were determined by transwell assays. PDEF promoter occupancy was determined by chromatin immunoprecipitation (ChIP). RESULTS While normal prostate epithelium expresses PDEF mRNA and protein, tumors show no or decreased PDEF protein expression. Re-expression of PDEF in prostate cancer cells inhibits cell growth. PDEF expression is inversely correlated with survivin, urokinase plasminogen activator (uPA) and slug expression and ChIP studies identify survivin and uPA as direct transcriptional targets of PDEF. This study also shows that PDEF expression is regulated via a functional microRNA-204 (miR-204) binding site within the 3'UTR. Furthermore, we demonstrate the biologic significance of miR-204 expression and that miR-204 is over-expressed in human prostate cancer specimens. CONCLUSIONS Collectively, the reported studies demonstrate that PDEF is a negative regulator of tumor progression and that the miR-204-PDEF regulatory axis contributes to PDEF protein loss and resultant cancer progression.
Collapse
Affiliation(s)
- David P Turner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Omar Moussa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Victor I. Semenchenko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Patricia M. Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Amanda C. LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Mohamed M Desouki
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Mostafa Fraig
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Department of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
241
|
Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11:849-64. [PMID: 22113163 PMCID: PMC4314215 DOI: 10.1038/nrc3166] [Citation(s) in RCA: 793] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In normal cells multiple microRNAs (miRNAs) converge to maintain a proper balance of various processes, including proliferation, differentiation and cell death. miRNA dysregulation can have profound cellular consequences, especially because individual miRNAs can bind to and regulate multiple mRNAs. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a quest to understand the pathways that are regulated by these miRNAs using in vivo model systems, and to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. Here we discuss progress in using mouse models to understand the roles of miRNAs in cancer and the potential for manipulating miRNAs for cancer therapy as these molecules make their way towards clinical trials.
Collapse
Affiliation(s)
- Andrea L Kasinski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
242
|
Schmeier S, Schaefer U, Essack M, Bajic VB. Network analysis of microRNAs and their regulation in human ovarian cancer. BMC SYSTEMS BIOLOGY 2011; 5:183. [PMID: 22050994 PMCID: PMC3219655 DOI: 10.1186/1752-0509-5-183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/03/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules that repress the translation of messenger RNAs (mRNAs) or degrade mRNAs. These functions of miRNAs allow them to control key cellular processes such as development, differentiation and apoptosis, and they have also been implicated in several cancers such as leukaemia, lung, pancreatic and ovarian cancer (OC). Unfortunately, the specific machinery of miRNA regulation, involving transcription factors (TFs) and transcription co-factors (TcoFs), is not well understood. In the present study we focus on computationally deciphering the underlying network of miRNAs, their targets, and their control mechanisms that have an influence on OC development. RESULTS We analysed experimentally verified data from multiple sources that describe miRNA influence on diseases, miRNA targeting of mRNAs, and on protein-protein interactions, and combined this data with ab initio transcription factor binding site predictions within miRNA promoter regions. From these analyses, we derived a network that describes the influence of miRNAs and their regulation in human OC. We developed a methodology to analyse the network in order to find the nodes that have the largest potential of influencing the network's behaviour (network hubs). We further show the potentially most influential miRNAs, TFs and TcoFs, showing subnetworks illustrating the involved mechanisms as well as regulatory miRNA network motifs in OC. We find an enrichment of miRNA targeted OC genes in the highly relevant pathways cell cycle regulation and apoptosis. CONCLUSIONS We combined several sources of interaction and association data to analyse and place miRNAs within regulatory pathways that influence human OC. These results represent the first comprehensive miRNA regulatory network analysis for human OC. This suggests that miRNAs and their regulation may play a major role in OC and that further directed research in this area is of utmost importance to enhance our understanding of the molecular mechanisms underlying human cancer development and OC in particular.
Collapse
Affiliation(s)
- Sebastian Schmeier
- Computational Bioscience Research Center (CBRC), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
243
|
Abstract
CONTEXT Traditionally, factors predisposing to diseases are either genetic ("nature") or environmental, also known as lifestyle-related ("nurture"). Papillary thyroid cancer is an example of a disease where the respective roles of these factors are surprisingly unclear. EVIDENCE ACQUISITION Original articles and reviews summarizing our current understanding of the role of microRNA in thyroid tumorigenesis are reviewed and evaluated. CONCLUSION The genetic predisposition to papillary thyroid cancer appears to consist of a variety of gene mutations that are mostly either of low penetrance and common or of high penetrance but rare. Moreover, they likely interact with each other and with environmental factors. The culpable genes may not be of the traditional, protein-coding type. A limited number of noncoding candidate genes have indeed been described, and we propose here that the failure to find mutations in traditional protein-coding genes is not coincidental. Instead, a more likely hypothesis is that changes in the expression of multiple regulatory RNA genes, e.g. microRNAs, may be a major mechanism. Our review of the literature strongly supports this notion in that a polymorphism in one microRNAs (miR-146a) predisposes to thyroid carcinoma, whereas numerous other microRNAs are involved in signaling (mainly PTEN/PI3K/AKT and T3/THRB) that is central to thyroid carcinogenesis.
Collapse
Affiliation(s)
- Albert de la Chapelle
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, 804 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
244
|
Keck-Wherley J, Grover D, Bhattacharyya S, Xu X, Holman D, Lombardini ED, Verma R, Biswas R, Galdzicki Z. Abnormal microRNA expression in Ts65Dn hippocampus and whole blood: contributions to Down syndrome phenotypes. Dev Neurosci 2011; 33:451-67. [PMID: 22042248 PMCID: PMC3254042 DOI: 10.1159/000330884] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS; trisomy 21) is one of the most common genetic causes of intellectual disability, which is attributed to triplication of genes located on chromosome 21. Elevated levels of several microRNAs (miRNAs) located on chromosome 21 have been reported in human DS heart and brain tissues. The Ts65Dn mouse model is the most investigated DS model with a triplicated segment of mouse chromosome 16 harboring genes orthologous to those on human chromosome 21. Using ABI TaqMan miRNA arrays, we found a set of miRNAs that were significantly up- or downregulated in the Ts65Dn hippocampus compared to euploid controls. Furthermore, miR-155 and miR-802 showed significant overexpression in the Ts65Dn hippocampus, thereby confirming results of previous studies. Interestingly, miR-155 and miR-802 were also overexpressed in the Ts65Dn whole blood but not in lung tissue. We also found overexpression of the miR-155 precursors, pri- and pre-miR-155 derived from the miR-155 host gene, known as B cell integration cluster, suggesting enhanced biogenesis of miR-155. Bioinformatic analysis revealed that neurodevelopment, differentiation of neuroglia, apoptosis, cell cycle, and signaling pathways including ERK/MAPK, protein kinase C, phosphatidylinositol 3-kinase, m-TOR and calcium signaling are likely targets of these miRNAs. We selected some of these potential gene targets and found downregulation of mRNA encoding Ship1, Mecp2 and Ezh2 in Ts65Dn hippocampus. Interestingly, the miR-155 target gene Ship1 (inositol phosphatase) was also downregulated in Ts65Dn whole blood but not in lung tissue. Our findings provide insights into miRNA-mediated gene regulation in Ts65Dn mice and their potential contribution to impaired hippocampal synaptic plasticity and neurogenesis, as well as hemopoietic abnormalities observed in DS.
Collapse
Affiliation(s)
- Jennifer Keck-Wherley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Deepak Grover
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Sharmistha Bhattacharyya
- Department of Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Xiufen Xu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Derek Holman
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Eric D. Lombardini
- Department of Comparative Pathology Division, Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Ranjana Verma
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Roopa Biswas
- Department of Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| |
Collapse
|
245
|
Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 2011; 93:555-62. [PMID: 22028337 PMCID: PMC3291086 DOI: 10.1093/cvr/cvr266] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The recent discovery that microRNAs (miRNAs) are present in the circulation sparked interest in their use as potential biomarkers. In this review, we will summarize the latest findings on circulating miRNAs and cardiovascular disease but also discuss analytical challenges. While research on circulating miRNAs is still in its infancy, high analytical standards in statistics and study design are a prerequisite to obtain robust data and avoid repeating the mistakes of the early genetic association studies. Otherwise, studies tend to get published because of their novelty despite low numbers, poorly matched cases and controls and no multivariate adjustment for conventional risk factors. Research on circulating miRNAs can only progress by bringing more statistical rigour to bear in this field and by evaluating changes of individual miRNAs in the context of the overall miRNA network. Such miRNA signatures may have better diagnostic and prognostic value.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre, King' s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | | | |
Collapse
|
246
|
Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, Di Leo A, Le XF, Bast RC, Park ST, Pusztai L, Calin GA. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 2011; 118:2603-14. [PMID: 22370716 DOI: 10.1002/cncr.26565] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Trastuzumab is part of the standard treatment for patients with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer, but not all patients respond to trastuzumab. Altered microRNA (miR) expression levels in cancer cells have been correlated with prognosis and response to chemotherapy. The authors of this report hypothesized that altered miR expression levels in plasma are associated with sensitivity to trastuzumab in patients with HER-2 positive breast cancer. METHODS Quantitative reverse transcriptase-polymerase chain reaction was used to analyze plasma samples, including samples from patients with breast cancer who were enrolled in a clinical trial of neoadjuvant trastuzumab-based chemotherapy. Expression levels of miR-210, miR-21, miR-29a, and miR-126 were analyzed according to the type of response (pathologic complete response [n = 18] vs residual disease [n = 11]). MicroRNA expression levels also were compared in trastuzumab-sensitive and trastuzumab-resistant breast cancer cells derived from BT474 cells and in an independent set of preoperative plasma samples (n = 39) and postoperative plasma samples (n = 30) from 43 breast cancer patients who did not receive any treatment. RESULTS At baseline before patients received neoadjuvant chemotherapy combined with trastuzumab, circulating miR-210 levels were significantly higher in those who had residual disease than in those who achieved a pathologic complete response (P = .0359). The mean expression ratio for miR-210 was significantly higher in trastuzumab-resistant BT474 cells, and miR-210 expression was significantly higher before surgery than after surgery (P = .0297) and in patients whose cancer metastasized to the lymph nodes (P = .0030). CONCLUSIONS Circulating miR-210 levels were associated with trastuzumab sensitivity, tumor presence, and lymph node metastases. These results suggest that plasma miR-210 may be used to predict and perhaps monitor response to therapies that contain trastuzumab.
Collapse
Affiliation(s)
- Eun-Jung Jung
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. EMBO J 2011; 30:4450-64. [PMID: 21897363 PMCID: PMC3230374 DOI: 10.1038/emboj.2011.317] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023] Open
Abstract
This study unravels an epigenetic mechanism for the regulation of the oncogenic miRNA cluster 17-92, involving the master hematopoietic transcription factor PU.1/Egr-2 and Jarid1b. The oncogenic cluster miR-17-92 encodes seven related microRNAs that regulate cell proliferation, apoptosis and development. Expression of miR-17-92 cluster is decreased upon cell differentiation. Here, we report a novel mechanism of the regulation of miR-17-92 cluster. Using transgenic PU.1−/− myeloid progenitors we show that upon macrophage differentiation, the transcription factor PU.1 induces the secondary determinant Egr2 which, in turn, directly represses miR-17-92 expression by recruiting histone demethylase Jarid1b leading to histone H3 lysine K4 demethylation within the CpG island at the miR-17-92 promoter. Conversely, Egr2 itself is targeted by miR-17-92, indicating existence of mutual regulatory relationship between miR-17-92 and Egr2. Furthermore, restoring EGR2 levels in primary acute myeloid leukaemia blasts expressing elevated levels of miR-17-92 and low levels of PU.1 and EGR2 leads to downregulation of miR-17-92 and restored expression of its targets p21CIP1 and BIM. We propose that upon macrophage differentiation PU.1 represses the miR-17-92 cluster promoter by an Egr-2/Jarid1b-mediated H3K4 demethylation mechanism whose deregulation may contribute to leukaemic states.
Collapse
|
248
|
Russ AC, Sander S, Lück SC, Lang KM, Bauer M, Rücker FG, Kestler HA, Schlenk RF, Döhner H, Holzmann K, Döhner K, Bullinger L. Integrative nucleophosmin mutation-associated microRNA and gene expression pattern analysis identifies novel microRNA - target gene interactions in acute myeloid leukemia. Haematologica 2011; 96:1783-91. [PMID: 21880628 DOI: 10.3324/haematol.2011.046888] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs are regulators of gene expression, which act mainly by decreasing mRNA levels of their multiple targets. Deregulated microRNA expression has been shown for acute myeloid leukemia, a disease also characterized by altered gene expression associated with distinct genomic aberrations such as nucleophosmin (NPM1) mutations. To shed further light on the role of deregulated microRNA and gene expression in cytogenetically normal acute myeloid leukemia with NPM1 mutation we performed an integrative analysis of microRNA and mRNA expression data sets. DESIGN AND METHODS Both microRNA and gene expression profiles were investigated in samples from a cohort of adult cytogenetically normal acute myeloid leukemia patients (n=43; median age 46 years, range 23-60 years) with known NPM1 mutation status (n=23 mutated, n=20 wild-type) and the data were integratively analyzed. Putative microRNA-mRNA interactions were validated by quantitative reverse transcriptase polymerase chain reaction, western blotting and luciferase reporter assays. For selected microRNAs, sensitivity of microRNA-overexpressing cells to cytarabine treatment was tested by FACS viability and cell proliferation assays. RESULTS Our integrative approach of analyzing both microRNA- and gene expression profiles in parallel resulted in a refined list of putative target genes affected by NPM1 mutation-associated microRNA deregulation. Of 177 putative microRNA - target mRNA interactions we identified and validated 77 novel candidates with known or potential involvement in leukemogenesis, such as IRF2-miR-20a, KIT-miR-20a and MN1-miR-15a. Furthermore, our data showed that deregulated expression of tumor suppressor microRNAs, such as miR-29a and miR-30c, might contribute to sensitivity to cytarabine, which is observed in NPM1 mutated acute myeloid leukemia. CONCLUSIONS Overall, our observations highlight that integrative data analysis approaches can improve insights into leukemia biology, and lead to the identification of novel microRNA - target gene interactions of potential relevance for acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- Annika C Russ
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
miR-21 and miR-155 are associated with mitotic activity and lesion depth of borderline melanocytic lesions. Br J Cancer 2011; 105:1023-9. [PMID: 21863027 PMCID: PMC3185929 DOI: 10.1038/bjc.2011.288] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Expression of microRNAs (miRs) has been shown to be altered in many solid tumours and is being explored in melanoma. The malignant potential of some melanocytic lesions is difficult to predict. We hypothesised that characterisation of miR expression in borderline melanocytic proliferations would lead to the identification of a molecular profile that could be used with known prognostic factors to differentiate lesions with high malignant potential. Methods: The miR expression profile of melanocytic lesions (benign naevi, malignant melanoma and borderline melanocytic tumours) was evaluated by real-time PCR. Results: PCR analysis revealed primary cutaneous melanomas had an 8.6-fold overexpression of miR-21 and a 7.5-fold overexpression of miR-155 compared with benign naevi (P<0.0001). In situ hybridisation confirmed these results. miR-21 and miR-155 were significantly overexpressed within borderline lesions (P=0.0011 and P=0.0048, respectively). When borderline lesions were categorised by mitotic activity and Breslow thickness, miR-21 was associated with mitotic activity and miR-155 was associated with thickness (P<0.025). Among 14 patients with borderline lesions who underwent sentinel lymph node biopsy (SLNB), positive SLNB was associated with increased miR-21 and miR-155 in the primary lesion compared with lesions with a negative SLNB. Conclusion: MicroRNA expression profiles can be used to characterise atypical melanocytic lesions.
Collapse
|
250
|
Rossi S, Christ-Neumann ML, Rüping S, Buffa FM, Wegener D, McVie G, Coveney PV, Graf N, Delorenzi M. p-Medicine: From data sharing and integration via VPH models to personalized medicine. Ecancermedicalscience 2011; 5:218. [PMID: 22276060 PMCID: PMC3223941 DOI: 10.3332/ecancer.2011.218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Indexed: 12/16/2022] Open
Abstract
The Worldwide innovative Networking in personalized cancer medicine (WIN) initiated by the Institute Gustave Roussy (France) and The University of Texas MD Anderson Cancer Center (USA) has dedicated its 3rd symposium (Paris, 6-8 July 2011) to discussion on gateways to increase the efficacy of cancer diagnostics and therapeutics (http://www.winconsortium.org/symposium.html).Speakers ranged from clinical oncologist to researchers, industrial partners, and tools developers; a famous patient was present: Janelle Hail, a 30-year breast cancer survivor, founder and CEO of the National Breast Cancer Foundation, Inc. (NBCF).The p-medicine consortium found this venue a perfect occasion to present a poster about its activities that are in accordance with the take home message of the symposium.In this communication, we summarize what we presented with particular attention to the interaction between the symposium's topic and content and our project.
Collapse
Affiliation(s)
- S Rossi
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | | | - S Rüping
- Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
| | - FM Buffa
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - D Wegener
- Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
| | - G McVie
- Ecancermedicalscience, Gotthardstrasse 20, 6300 Zug, Switzerland
| | - PV Coveney
- Centre for Computational Science, University College London, London, UK
| | - N Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - M Delorenzi
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|