201
|
Kour M, Taborosi A, Boyd ES, Szilagyi RK. Development of molecular cluster models to probe pyrite surface reactivity. J Comput Chem 2023; 44:2486-2500. [PMID: 37650712 DOI: 10.1002/jcc.27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.
Collapse
Affiliation(s)
- Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Attila Taborosi
- Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Robert K Szilagyi
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
202
|
Burgess AC, Linscott E, O'Regan DD. The convexity condition of density-functional theory. J Chem Phys 2023; 159:211102. [PMID: 38038199 DOI: 10.1063/5.0174159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
It has long been postulated that within density-functional theory (DFT), the total energy of a finite electronic system is convex with respect to electron count so that 2Ev[N0] ≤ Ev[N0 - 1] + Ev[N0 + 1]. Using the infinite-separation-limit technique, this Communication proves the convexity condition for any formulation of DFT that is (1) exact for all v-representable densities, (2) size-consistent, and (3) translationally invariant. An analogous result is also proven for one-body reduced density matrix functional theory. While there are known DFT formulations in which the ground state is not always accessible, indicating that convexity does not hold in such cases, this proof, nonetheless, confirms a stringent constraint on the exact exchange-correlation functional. We also provide sufficient conditions for convexity in approximate DFT, which could aid in the development of density-functional approximations. This result lifts a standing assumption in the proof of the piecewise linearity condition with respect to electron count, which has proven central to understanding the Kohn-Sham bandgap and the exchange-correlation derivative discontinuity of DFT.
Collapse
Affiliation(s)
- Andrew C Burgess
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Edward Linscott
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David D O'Regan
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
203
|
Sharma K, Maan A, Ghule VD, Dharavath S. Azo-Bridged Triazole Macrocycles: Computational Design, Energy Content, Performance, and Stability Assessment. J Phys Chem A 2023; 127:10128-10138. [PMID: 38015623 DOI: 10.1021/acs.jpca.3c05732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Oxadiazole and triazole are extensively investigated heterocyclic scaffolds in the development of energetic materials. New energetic molecules were designed by replacing 1,2,5-oxadiazole with 2H-1,2,3-triazole in the reported conjugated macrocyclic systems to assess the influence on the energetic properties and stability. In addition, nitro groups were introduced in triazole units (N-functionalization) to improve the energetic performance. Energetic properties, including heat of formation, oxygen balance, density, detonation pressure and velocity, and impact sensitivity, were estimated for these triazole-based macrocycles. The replacement of 1,2,5-oxadiazole with 2H-1,2,3-triazole and 2-nitro-1,2,3-triazole significantly enhances the energy content, detonation performance, and noncovalent interactions. The theoretically computed energetic properties of triazole-based macrocycles reveal high positive heats of formation (1507-2761 kJ/mol), oxygen balance (-88.8 to -22.8%), high densities (1.87-1.90 g/cm3), superior detonation velocities (8.41-9.52 km/s), pressures (26.64-40.55 GPa), acceptable impact sensitivity (27-40 cm), and safety factor (51-290). The overall energetic assessment highlights triazole-based macrocycles as a potential framework that will be useful for developing advanced energetic materials.
Collapse
Affiliation(s)
- Kalpana Sharma
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Anjali Maan
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
204
|
Ye YL, Zhang ZC, Ni BL, Yu D, Chen JH, Sun WM. Theoretical prediction of superatom WSi 12-based catalysts for CO oxidation by N 2O. Phys Chem Chem Phys 2023; 25:32525-32533. [PMID: 37997746 DOI: 10.1039/d3cp05363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Catalytic conversion of N2O and CO into nonharmful gases is of great significance to reduce their adverse impact on the environment. The potential of the WSi12 superatom to serve as a new cluster catalyst for CO oxidation by N2O is examined for the first time. It is found that WSi12 prefers to adsorb the N2O molecule rather than the CO molecule, and the charge transfer from WSi12 to N2O results in the full activation of N2O into a physically absorbed N2 molecule and an activated oxygen atom that is attached to an edge of the hexagonal prism structure of WSi12. After the release of N2, the remaining oxygen atom can oxidize one CO molecule via overcoming a rate-limiting barrier of 28.19 kcal mol-1. By replacing the central W atom with Cr and Mo, the resulting MSi12 (M = Cr and Mo) superatoms exhibit catalytic performance for CO oxidation comparable to the parent WSi12. In particular, the catalytic ability of WSi12 for CO oxidation is well maintained when it is extended into tube-like WnSi6(n+1) (n = 2, 4, and 6) clusters with energy barriers of 25.63-29.50 kcal mol-1. Moreover, all these studied MSi12 (M = Cr, Mo, and W) and WnSi6(n+1) (n = 2, 4, and 6) species have high structural stability and can absorb sunlight to drive the catalytic process. This study not only opens a new door for the atomically precise design of new silicon-based nanoscale catalysts for various chemical reactions but also provides useful atomic-scale insights into the size effect of such catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- Department of Pharmacy, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
205
|
Xu W, Yan Z, Xiong K, Kong J, Song W, Li D, Cheng Q, Zhao Z, Liang X. Ab initio study of the topological itinerant transport properties observed between excited edge states in a 2D compound with the Mn 15B 16Ni composition. Phys Chem Chem Phys 2023; 25:32387-32392. [PMID: 37997152 DOI: 10.1039/d3cp03837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We theoretically demonstrate how the competition between band inversion and spin-orbit coupling (SOC) results in the nontrivial topology of band evolution, using two-dimensional (2D) Mn16B16 as a matrix. This study utilizes the ab initio method with the generalized gradient approximation (GGA+U scheme) and Wannier functions to investigate the topological and transport properties of the Ni-doped structure. The Ni atom induces dynamical antilocalization, which appears due to the phase accumulation between time-reversed fermion loops. A key observation is that when band inversion dominates over SOC, "twin" Weyl cones appear in the band structure, in which the Weyl cones caused by the large Berry curvature coupling with the net magnetization lead to the significantly enhanced anomalous Hall conductivity (AHC). Interestingly, the nested small polaron and energy band inversion coexist with SOC. An analysis of the projected energy band shows that the doped Ni atom induces a strong spin wave for both spin up and spin down.
Collapse
Affiliation(s)
- Wuyue Xu
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Zhengxin Yan
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Kezhao Xiong
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Juntao Kong
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Wei Song
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Dongxin Li
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Qian Cheng
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Zehua Zhao
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Xingkun Liang
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
206
|
Kasprzhitskii A, Ermolov Y, Mischinenko V, Vasilchenko A, Yatsenko EA, Smoliy VA. Mechanism of Cs Immobilization within a Sodalite Framework: The Role of Alkaline Cations and the Si/Al Ratio. Int J Mol Sci 2023; 24:17023. [PMID: 38069346 PMCID: PMC10707466 DOI: 10.3390/ijms242317023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Conditioning of radioactive waste generated from the operation of medical institutions, nuclear cycle facilities, and nuclear facilities is important for the safety of the environment. One of the most hazardous radionuclides is radioactive cesium. There is a need for more effective solutions to contain radionuclides, especially cesium (Cs+). Geopolymers are promising inorganic materials that can provide a large active surface area with adjustable porosity and binding capacity. The existence of nanosized zeolite-like structures in aluminosilicate gels was shown earlier. These structures are candidates for immobilizing radioactive cesium (Cs+). However, the mechanisms of their interactions with the aluminosilicate framework related to radionuclide immobilization have not been well studied. In this work, the influence of alkaline cations (Na+ or K+) and the aluminosilicate framework structure on the binding capacity and mechanism of interaction of geopolymers with Cs+ is explored in the example of a sodalite framework. The local structure of the water molecules and alkaline ions in the equilibrium state and its behavior when the Si/Al ratio was changed were studied by DFT.
Collapse
Affiliation(s)
- Anton Kasprzhitskii
- Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia; (Y.E.); (V.M.); (A.V.); (E.A.Y.); (V.A.S.)
- Department of Civil Engineering, Rostov State Transport University, Narodnogo Opolcheniya Sq., Rostov-on-Don 344038, Russia
- Climate Center, Novosibirsk State University, Pirogov Street, 2, Novosibirsk 630090, Russia
| | - Yakov Ermolov
- Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia; (Y.E.); (V.M.); (A.V.); (E.A.Y.); (V.A.S.)
- Department of Civil Engineering, Rostov State Transport University, Narodnogo Opolcheniya Sq., Rostov-on-Don 344038, Russia
- Climate Center, Novosibirsk State University, Pirogov Street, 2, Novosibirsk 630090, Russia
| | - Vasilii Mischinenko
- Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia; (Y.E.); (V.M.); (A.V.); (E.A.Y.); (V.A.S.)
- Department of Civil Engineering, Rostov State Transport University, Narodnogo Opolcheniya Sq., Rostov-on-Don 344038, Russia
| | - Andrey Vasilchenko
- Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia; (Y.E.); (V.M.); (A.V.); (E.A.Y.); (V.A.S.)
- Department of Civil Engineering, Rostov State Transport University, Narodnogo Opolcheniya Sq., Rostov-on-Don 344038, Russia
| | - Elena A. Yatsenko
- Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia; (Y.E.); (V.M.); (A.V.); (E.A.Y.); (V.A.S.)
| | - Victoria A. Smoliy
- Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia; (Y.E.); (V.M.); (A.V.); (E.A.Y.); (V.A.S.)
| |
Collapse
|
207
|
Bracken AJ, Dong HT, Lengel MO, Lehnert N. Exploring second coordination sphere effects in flavodiiron nitric oxide reductase model complexes. Dalton Trans 2023; 52:17360-17374. [PMID: 37938109 DOI: 10.1039/d3dt02828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Flavodiiron nitric oxide reductases (FNORs) equip pathogens with resistance to nitric oxide (NO), an important immune defense agent in mammals, allowing these pathogens to proliferate in the human body, potentially causing chronic infections. Understanding the mechanism of how FNORs mediate the reduction of NO contributes to the greater goal of developing new therapeutic approaches against drug-resistant strains. Recent density functional theory calculations suggest that a second coordination sphere (SCS) tyrosine residue provides a hydrogen bond that is critical for the reduction of NO to N2O at the active site of FNORs [J. Lu, B. Bi, W. Lai and H. Chen, Origin of Nitric Oxide Reduction Activity in Flavo-Diiron NO Reductase: Key Roles of the Second Coordination Sphere, Angew. Chem., Int. Ed., 2019, 58, 3795-3799]. Specifically, this H-bond stabilizes the hyponitrite intermediate and reduces the energetic barrier for the N-N coupling step. At the same time, the role of the Fe⋯Fe distance and its effect on the N-N coupling step has not been fully investigated. In this study, we equipped the H[BPMP] (= 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol) ligand with SCS amide groups and investigated the corresponding diiron complexes with 0-2 bridging acetate ligands. These amide groups can form hydrogen bonds with the bridging acetate ligand(s) and potentially the coordinated NO groups in these model complexes. At the same time, by changing the number of bridging acetate ligands, we can systematically vary the Fe⋯Fe distance. The reactivity of these complexes with NO was then investigated, and the formation of stable iron(II)-NO complexes was observed. Upon one-electron reduction, these NO complexes form Dinitrosyl Iron Complexes (DNICs), which were further characterized using IR and EPR spectroscopy.
Collapse
Affiliation(s)
- Abigail J Bracken
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | - Hai T Dong
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | - Michael O Lengel
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| |
Collapse
|
208
|
Deore B, Kwok RW, Toregeldiyeva M, Vázquez JT, Marianski M, Sanhueza CA. Conformational Properties of Aryl S-Glucosides in Solution. J Org Chem 2023; 88:15569-15579. [PMID: 37933138 PMCID: PMC11078472 DOI: 10.1021/acs.joc.3c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The conformational study of saccharides and glycomimetics in solution is critical for a comprehensive understanding of their interactions with biological receptors and enabling the design of optimized glycomimetics. Here, we report a nuclear magnetic resonance (NMR) study centered on the conformational properties of the hydroxymethyl group and glycosidic bond of four series of aryl S-glucosides. We found that in acetyl-protected and free aryl S-β-glucosides, the rotational equilibrium around the C5-C6 bond (hydroxymethyl group) exhibits a linear dependence on the electronic properties of the aglycone, namely, as the aryl's substituent electron-withdrawing character increases, the dominance of the gg rotamer declines and the gt contribution rises. Likewise, the conformational equilibrium around the glycosidic C1-S bond also depends on the aglycone's electronic properties, where glucosides carrying electron-poor aglycones exhibit stiffer glycosidic bonds in comparison to their electron-rich counterparts. In the case of the α anomers, the aglycone's effect over the glycosidic bond conformation is like that observed on their β isomers; however, we observe no aglycone's influence over the hydroxymethyl group conformation in the α-glucosides.
Collapse
Affiliation(s)
- Bhavesh Deore
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Ryan W Kwok
- Department of Chemistry, Hunter College, The City University of New York, 695 Park Avenue, New York, New York 10065, United States
- The Ph.D. Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Malika Toregeldiyeva
- The Bronx High School of Science, 75 W 205th Street, Bronx, New York 10468, United States
| | - Jesús T Vázquez
- Instituto Universitario de Bio-Orgánica "Antonio González", Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Mateusz Marianski
- Department of Chemistry, Hunter College, The City University of New York, 695 Park Avenue, New York, New York 10065, United States
- The Ph.D. Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Carlos A Sanhueza
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
209
|
Iaia EP, Soyemi A, Szilvási T, Harris JW. Zeolite encapsulated organometallic complexes as model catalysts. Dalton Trans 2023; 52:16103-16112. [PMID: 37812079 DOI: 10.1039/d3dt02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterogeneities in the structure of active centers in metal-containing porous materials are unavoidable and complicate the description of chemical events occurring along reaction coordinates at the atomic level. Metal containing zeolites include sites of varied local coordination and secondary confining environments, requiring careful titration protocols to quantify the predominant active sites. Hybrid organometallic-zeolite catalysts are useful well-defined platform materials for spectroscopic, kinetic, and computational studies of heterogeneous catalysis that avoid the complications of conventional metal-containing porous materials. Such materials have been synthesized and studied previously, but catalytic applications were mostly limited to liquid-phase oxidation and electrochemical reactions. The hydrothermal stability, time-on-stream stability, and utility of these materials in gas-phase oxidation reactions are under-studied. The potential applications for single-site heterogeneous catalysts in fundamental research are abundant and motivate future synthetic, spectroscopic, kinetic, and computational studies.
Collapse
Affiliation(s)
- Ethan P Iaia
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - James W Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
210
|
Hostaš J, Pérez-Becerra KO, Calaminici P, Barrios-Herrera L, Lourenço MP, Tchagang A, Salahub DR, Köster AM. How important is the amount of exact exchange for spin-state energy ordering in DFT? Case study of molybdenum carbide cluster, Mo4C2. J Chem Phys 2023; 159:184301. [PMID: 37947508 DOI: 10.1063/5.0169409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Since the form of the exact functional in density functional theory is unknown, we must rely on density functional approximations (DFAs). In the past, very promising results have been reported by combining semi-local DFAs with exact, i.e. Hartree-Fock, exchange. However, the spin-state energy ordering and the predictions of global minima structures are particularly sensitive to the choice of the hybrid functional and to the amount of exact exchange. This has been already qualitatively described for single conformations, reactions, and a limited number of conformations. Here, we have analyzed the mixing of exact exchange in exchange functionals for a set of several hundred isomers of the transition metal carbide, Mo4C2. The analysis of the calculated energies and charges using PBE0-type functional with varying amounts of exact exchange yields the following insights: (1) The sensitivity of spin-energy splitting is strongly correlated with the amount of exact exchange mixing. (2) Spin contamination is exacerbated when correlation is omitted from the exchange-correlation functional. (3) There is not one ideal value for the exact exchange mixing which can be used to parametrize or choose among the functionals. Calculated energies and electronic structures are influenced by exact exchange at a different magnitude within a given distribution; therefore, to extend the application range of hybrid functionals to the full periodic table the spin-energy splitting energies should be investigated.
Collapse
Affiliation(s)
- Jiří Hostaš
- Department of Chemistry, CMS - Centre for Molecular Simulation, IQST - Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Kevin O Pérez-Becerra
- Departamento de Química, Cinvestav, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, CDMX C.P. 07360, Mexico
| | - Patrizia Calaminici
- Departamento de Química, Cinvestav, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, CDMX C.P. 07360, Mexico
| | - Lizandra Barrios-Herrera
- Department of Chemistry, CMS - Centre for Molecular Simulation, IQST - Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Maicon Pierre Lourenço
- Departamento de Química e Física - Centro de Ciências Exatas, Naturais e da Saúde - CCENS - Universidade Federal do Espírito Santo, 29500-000 Alegre, Espírito Santo, Brazil
| | - Alain Tchagang
- Digital Technologies Research Centre, National Research Council of Canada, 1200 Montréal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Dennis R Salahub
- Department of Chemistry, CMS - Centre for Molecular Simulation, IQST - Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Andreas M Köster
- Departamento de Química, Cinvestav, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, CDMX C.P. 07360, Mexico
| |
Collapse
|
211
|
Strzelecki AC, Wang G, Hickam SM, Parker SS, Batrice R, Jackson JM, Conroy NA, Mitchell JN, Andersson DA, Monreal MJ, Boukhalfa H, Xu H. In Situ High-Temperature Raman Spectroscopy of UCl 3: A Combined Experimental and Theoretical Study. Inorg Chem 2023; 62:18724-18731. [PMID: 37917811 DOI: 10.1021/acs.inorgchem.3c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Uranium trichloride (UCl3) has received growing interest for its use in uranium-fueled molten salt reactors and in the pyrochemical processing of used fuel. In this paper, we report for the first time the experimentally determined Raman spectra of UCl3, at both ambient condition and in situ high temperatures up to 871 K. The frequencies of five of the Raman-active vibrational modes (vi) of UCl3 exhibit a negative temperature derivative ((∂νi/∂T)P) with increasing temperature. This red-shift behavior is likely due to the elongation of U-Cl bonds. The average isobaric mode Grüneisen parameter (γiP = 0.91 ± 0.02) of UCl3 was determined through use of the coefficient of thermal expansion published in Vogel et al. (2021) and the (∂νi/∂T)P values determined in this study. These results are in general agreement with those calculated here by density functional theory (DFT+U). Finally, a comparison of the ambient band positions of UCl3 to those of isostructural lanthanide (La-Eu) and actinide chlorides (Am-Cf) has been made.
Collapse
Affiliation(s)
- Andrew C Strzelecki
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gaoxue Wang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sarah M Hickam
- Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S Scott Parker
- Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Sigma Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rami Batrice
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - J Matt Jackson
- Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nathan A Conroy
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeremy N Mitchell
- Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David A Andersson
- Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marisa J Monreal
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hakim Boukhalfa
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hongwu Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
212
|
Holland J, Demeyere T, Bhandari A, Hanke F, Milman V, Skylaris CK. A Workflow for Identifying Viable Crystal Structures with Partially Occupied Sites Applied to the Solid Electrolyte Cubic Li 7La 3Zr 2O 12. J Phys Chem Lett 2023; 14:10257-10262. [PMID: 37939005 PMCID: PMC10686666 DOI: 10.1021/acs.jpclett.3c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
To date, experimental and theoretical works have been unable to uncover the ground-state configuration of the solid electrolyte cubic Li7La3Zr2O12 (c-LLZO). Computational studies rely on an initial low-energy structure as a reference point. Here, we present a methodology for identifying energetically favorable configurations of c-LLZO for a crystallographically predicted structure. We begin by eliminating structures that involve overlapping Li atoms based on nearest neighbor counts. We further reduce the configuration space by eliminating symmetry images from all remaining structures. Then, we perform a machine learning-based energetic ordering of all remaining structures. By considering the geometrical constraints that emerge from this methodology, we determine that a large portion of previously reported structures may not be feasible or stable. The method developed here could be extended to other ion conductors. We provide a database containing all of the generated structures with the aim of improving accuracy and reproducibility in future c-LLZO research.
Collapse
Affiliation(s)
- Julian Holland
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11, U.K.
| | - Tom Demeyere
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Arihant Bhandari
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11, U.K.
| | - Felix Hanke
- BIOVIA, 22 Cambridge Science Park, Milton
Road, Cambridge CB4 0FJ, U.K.
| | - Victor Milman
- BIOVIA, 22 Cambridge Science Park, Milton
Road, Cambridge CB4 0FJ, U.K.
| | - Chris-Kriton Skylaris
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11, U.K.
| |
Collapse
|
213
|
Zhou J, Gong P, Xia M, Wu Q. Co-substitution design: a new glaserite-type rare-earth phosphate K 2RbSc(PO 4) 2 with high structural tolerance. Dalton Trans 2023; 52:15807-15814. [PMID: 37815064 DOI: 10.1039/d3dt02494f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
An alkali rare-earth phosphate K2RbSc(PO4)2 was successfully obtained as a derivative of glaserite-type K3Na(SO4)2 by co-substitution of K(1)O12 → RbO12, K(2)O10 → KO7, NaO6 → ScO6 and SO4 → PO4, while maintaining the original anionic framework. K2RbSc(PO4)2 exhibits a layered [Sc(PO4)2]∞ framework built from ScO6 octahedra and PO4 tetrahedra, with K and Rb residing in the interlayers. Its isostructural lanthanide analogues K2RbEr(PO4)2 and K2RbLu(PO4)2, inspired by an elemental substitution strategy, were also prepared by a high-temperature solid state reaction. The successful substitution indicates that the skeleton of K2RbSc(PO4)2 is stable with high structural tolerance, which can provide a possibility for substitution of resident ions to obtain diverse structural types and applications.
Collapse
Affiliation(s)
- Jingfang Zhou
- Ocean College, Tangshan Normal University, Hebei Tangshan 063000, China
| | - Pifu Gong
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingjun Xia
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wu
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
214
|
Yang Q, Bloino J, Šestáková H, Šebestík J, Kessler J, Hudecová J, Kapitán J, Bouř P. Combination of Resonance and Non-Resonance Chiral Raman Scattering in a Cobalt(III) Complex. Angew Chem Int Ed Engl 2023; 62:e202312521. [PMID: 37728178 DOI: 10.1002/anie.202312521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Resonance Raman optical activity (RROA) spectra with high sensitivity reveal details on molecular structure, chirality, and excited electronic properties. Despite the difficulty of the measurements, the recorded data for the Co(III) complex with S,S-N,N-ethylenediaminedisuccinic acid are of exceptional quality and, coupled with the theory, spectacularly document the molecular behavior in resonance. This includes a huge enhancement of the chiral scattering, contribution of the antisymmetric polarizabilities to the signal, and the Herzberg-Teller effect significantly shaping the spectra. The chiral component is by about one order of magnitude bigger than for an analogous aluminum complex. The band assignment and intensity profile were confirmed by simulations based on density functional and vibronic theories. The resonance was attributed to the S0 →S3 transition, with the strongest signal enhancement of Raman and ROA spectral bands below about 800 cm-1 . For higher wavenumbers, other excited electronic states contribute to the scattering in a less resonant way. RROA spectroscopy thus appears as a unique tool to study the structure and electronic states of absorbing molecules in analytical chemistry, biology, and material science.
Collapse
Affiliation(s)
- Qin Yang
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Hana Šestáková
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
- University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Jana Hudecová
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
- University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
215
|
Pouramiri B, Rashidi M, Lotfi S, Mohammadi M, Rabiei K. Biological Evaluation of Anti-Cholinesterase Activity, in Silico Molecular Docking Studies, and DFT Calculations of Green Synthesized Thiadiazolo[3,2-a]pyrimidine Derivatives. Chem Biodivers 2023; 20:e202301193. [PMID: 37869899 DOI: 10.1002/cbdv.202301193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
A series of [1,3,4] thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives 4(a-n) have been designed and synthesized as inhibitors of acetylcholinesterase (AChE). Synthesizing of thiadiazolo[3,2-a] pyrimidines was carried out in a single step, one-pot reaction using aromatic aldehydes, ethyl acetoacetate and different derivatives of 1,3,4-thiadiazoles (with molar ratio of 1 : 2 : 1, respectively) in conjunction with the catalyst, anhydrous iron(III) chloride by a grinding method under solvent-free conditions at room temperature. The in-vitro studies exhibited good potency for inhibiting AChE comparable with donepezil as the reference drug. The best results were obtained by Ethyl 2-(4-nitroophenyl)-7-methyl-5-(pyridin-3-yl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate 4n with IC50 value of 0.082±0.001 μM which was comparable with AChE inhibitory effects of donepezil (IC50 =0.079 μM).
Collapse
Affiliation(s)
- Behjat Pouramiri
- Department of Organic Chemistry, Qom University of Technology, Qom
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 37195 Qom, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Khadijeh Rabiei
- Department of Organic Chemistry, Qom University of Technology, Qom
| |
Collapse
|
216
|
da Silva Alvim R, Borges I, Alves RMB, Capaz RB, Leitão AA. CO adsorption on MgO thin-films: formation and interaction of surface charged defects. Phys Chem Chem Phys 2023; 25:28982-28997. [PMID: 37859503 DOI: 10.1039/d3cp03320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Two-dimensional (2D) materials formed by thin-films of metal oxides that grow on metal supports are commonly used in heterogeneous catalysis and multilayer electronic devices. Despite extensive research on these systems, the effects of charged defects at supported oxides on surface processes are still not clear. In this work, we perform spin-polarized density-functional theory (DFT) calculations to investigate formation and interaction of charged magnesium and oxygen vacancies, and Al dopants on MgO(001)/Ag(001) surface. The results show a sizable interface compressive effect that decreases the metal work function as electrons are added on the MgO surface with a magnesium vacancy. This surface displays a larger formation energy in a water environment (O-rich condition) even with additional Al-doping. Under these conditions, we found that a polar molecule such as CO is more strongly adsorbed on the low-coordination oxygen sites due to a larger contribution of the channeled electronic transport with the silver interface regardless of the surface charge. Therefore, these findings elucidate how surface intrinsic vacancies can influence or contribute to charge transfer, which allows one to explore more specific reactions at different surface topologies for more efficient catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Raphael da Silva Alvim
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brazil
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, 22290-270, Brazil
| | - Rita Maria Brito Alves
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
| | - Rodrigo B Capaz
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-100, Brazil
| | - Alexandre Amaral Leitão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brazil
| |
Collapse
|
217
|
Yoshinaga M, Rocha WR. New Hybrid Compound Candidate as Photothermal Agent Based on DPP Derivatives and Toluidine Blue: A Theoretical Perspective. Photochem Photobiol 2023; 99:1429-1437. [PMID: 36890687 DOI: 10.1111/php.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
In this article, the synthesis of a new hybrid compound, candidate as photothermal agent, is proposed, based on TDPP (3,6-di(thiophene-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) and toluidine blue. Electronic structure calculations at the DFT, TD-DFT and CCSD level of theories were performed to obtain ground and excited states molecular structures, photophysical properties and absorption spectrum of the hybrid and the starting compounds. Additionally, ADMET calculations were performed to predict the pharmacokinetic, metabolic and toxicity properties of the proposed compound. The results showed that the proposed compound is a strong candidate for photothermal agent since (1) it absorbs close to the near-infrared region, (2) it has low fluorescence and intersystem crossing rate constants, (3) it has accessible conical intersection with low energy barrier, (4) the compound shows lower toxicity than the well know compound toluidine blue, which is used in photodynamic therapy, (5) the compound does not show carcinogenic potential, and (6) it obeys the Lipinski's rule of five, used as a reference for the design of new pharmaceuticals.
Collapse
Affiliation(s)
- Mariana Yoshinaga
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
218
|
Shen F, Ma Q, Tietz F, Kao J, Huang C, Hernandha RFH, Huang C, Lo Y, Chang J, Wu W. In Situ Atomic-Scale Investigation of Structural Evolution During Sodiation/Desodiation Processes in Na 3 V 2 (PO 4 ) 3 -Based All-Solid-State Sodium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301490. [PMID: 37672878 PMCID: PMC10646283 DOI: 10.1002/advs.202301490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Indexed: 09/08/2023]
Abstract
Recently, all-solid-state sodium batteries (Na-ASSBs) have received increased interest owing to their high safety and potential of high energy density. The potential of Na-ASSBs based on sodium superionic conductor (NASICON)-structured Na3 V2 (PO4 )3 (Na3 VP) cathodes have been proven by their high capacity and a long cycling stability closely related to the microstructural evolution. However, the detailed kinetics of the electrochemical processes in the cathodes is still unclear. In this work, the sodiation/desodiation process of Na3 VP is first investigated using in situ high-resolution transmission electron microscopy (HRTEM). The intermediate Na2 V2 (PO4 )3 (Na2 VP) phase with the P21 /c space group, which would be inhibited by constant electron beam irradiation, is observed at the atomic scale. With the calculated volume change and the electrode-electrolyte interface after cycling, it can be concluded that the Na2 VP phase reduces the lattice mismatch between Na3 VP and NaV2 (PO4 )3 (NaVP), preventing structural collapse. Based on the density functional theory calculation (DFT), the Na+ ion migrates more rapidly in the Na2 VP structure, which facilitates the desodiation and sodiation processes. The formation of Na2 VP phase lowers the formation energy of NaVP. This study demonstrates the dynamic evolution of the Na3 VP structure, paving the way for an in-depth understanding of electrode materials for energy-storage applications.
Collapse
Affiliation(s)
- Fang‐Chun Shen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Qianli Ma
- Forschungszentrum Jülich GmbHInstitute of Energy and Climate ResearchMaterials Synthesis and Processing (IEK‐1)52425JülichGermany
| | - Frank Tietz
- Forschungszentrum Jülich GmbHInstitute of Energy and Climate ResearchMaterials Synthesis and Processing (IEK‐1)52425JülichGermany
| | - Jui‐Cheng Kao
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Chi‐Ting Huang
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | | | - Chun‐Wei Huang
- Department of Materials Science and EngineeringFeng Chia UniversityNo. 100, Wenhwa Rd., SeatwenTaichung40724Taiwan
| | - Yu‐Chieh Lo
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Jeng‐Kuei Chang
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Wen‐Wei Wu
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Center for the Intelligent Semiconductor Nano‐system Technology ResearchHsinchu30078Taiwan
| |
Collapse
|
219
|
Chen X, Han W, Yue Q, Zhang Q, Liang Y, Peng C, Yin H. The Isoelectronic Dopant in the Z-Scheme SnS 2/β-As Heterostructure Enhancing Photocatalytic Overall Water Splitting. Inorg Chem 2023; 62:17954-17960. [PMID: 37856310 DOI: 10.1021/acs.inorgchem.3c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The catalytic field aims to decrease reaction barriers, accelerate reaction processes, and enhance the selectivity toward a target product. This study uses first-principles calculations to design a modified direct Z-scheme SnS2/β-As heterostructure as a potential photocatalyst for overall water splitting. Our previous investigations have demonstrated that the SnS2/β-As heterostructure can realize a hydrogen evolution reaction (HER) under light, while the oxygen evolution reaction (OER) follows a pathway involving the intermediate HOOH*. Interestingly, by substituting an S atom of SnS2 with a Se or Te atom, the rate-determining step of the OER is significantly reduced from 3.76 eV to 2.56 or 2.22 eV. Moreover, the OER can occur directly without the transition via HOOH*. Isoelectronic doping effectively trades off the adsorption strength of OER intermediates and promotes the OER process. This work highlights the dual benefits of isoelectronic doping, namely lowering the reaction barrier of the rate-determining step and promoting the selectivity of end products. These findings provide insights into the rational design of high-efficiency photocatalysts for water splitting.
Collapse
Affiliation(s)
- Xuefeng Chen
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Wenna Han
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Qian Yue
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Qingmin Zhang
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yong Liang
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Chengxiao Peng
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
220
|
Dong J, Zhang D, Liu J, Jiang Y, Tan XY, Jia N, Cao J, Suwardi A, Zhu Q, Xu J, Li JF, Yan Q. N-Type Thermoelectric AgBiPbS 3 with Nanoprecipitates and Low Thermal Conductivity. Inorg Chem 2023; 62:17905-17912. [PMID: 37843461 DOI: 10.1021/acs.inorgchem.3c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Thermoelectric sulfide materials are of particular interest due to the earth-abundant and cost-effective nature of sulfur. Here, we report a new n-type degenerate semiconductor sulfide, AgBiPbS3, which adopts a Fm3̅m structure with a narrow band gap of ∼0.32 eV. Despite the homogeneous distribution of elements at the scale of micrometer, Ag2S nanoprecipitates with dimensions of several nanometers were detected throughout the matrix. AgBiPbS3 exhibits a low room-temperature lattice thermal conductivity of 0.88 W m-1 K-1, owing to the intrinsic low lattice thermal conductivity of Ag2S and the effective scattering of phonons at nanoprecipitate boundaries. Moreover, compared to AgBiS2, AgBiPbS3 demonstrates a significantly improved weighted mobility of >16 cm2 V-1 s-1 at 300 K, leading to an enhanced PF of 1.6 μW cm-1 K-2 at 300 K. The superior electrical transport in AgBiPbS3 can be attributed to the high valley degeneracy of the L point (the conduction band minimum), which is contributed by the Pb s and Pb p orbitals. Further, Ga doping is found to be effective in modulating the Fermi levels of AgBiPbS3, leading to further enhancement of PF with a PFave of 2.7 μW cm-1 K-2 in the temperature range of 300-823 K. Consequently, a relatively high ZTave of 0.22 and a peak ZT of ∼0.4 at 823 K have been achieved in 3% Ga-doped AgBiPbS3, highlighting the potential of AgBiPbS3 as an n-type thermoelectric sulfide.
Collapse
Affiliation(s)
- Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dan Zhang
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Yilin Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xian Yi Tan
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Ning Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Cao
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Qiang Zhu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| |
Collapse
|
221
|
Xu X, Li H, Mehmood A, Chi K, Shi D, Wang Z, Wang B, Li Y, Luo Y. Mechanistic Studies on Aluminum-Catalyzed Ring-Opening Alternating Copolymerization of Maleic Anhydride with Epoxides: Ligand Effects and Quantitative Structure-Activity Relationship Model. Molecules 2023; 28:7279. [PMID: 37959698 PMCID: PMC10649423 DOI: 10.3390/molecules28217279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Previous work has indicated that aluminum (Al) complexes supported by a bipyridine bisphenolate (BpyBph) ligand exhibit higher activity in the ring-opening copolymerization (ROCOP) of maleic anhydride (MAH) and propylene oxide (PO) than their salen counterparts. Such a ligand effect in Al-catalyzed MAH-PO copolymerization reactions has yet to be clarified. Herein, the origin and applicability of the ligand effect have been explored by density functional theory, based on the mechanistic analysis for chain initiation and propagation. We found that the lower LUMO energy of the (BpyBph)AlCl complex accounts for its higher activity than the (salen)AlCl counterpart in MAH/epoxide copolymerizations. Inspired by the ligand effect, a structure-energy model was further established for catalytic activity (TOF value) predictions. It is found that the LUMO energies of aluminum chloride complexes and their average NBO charges of coordinating oxygen atoms correlate with the catalytic activity (TOF value) of Al complexes (R2 value of 0.98 and '3-fold' cross-validation Q2 value of 0.88). This verified that such a ligand effect is generally applicable in anhydride/epoxide ROCOP catalyzed by aluminum complex and provides hints for future catalyst design.
Collapse
Affiliation(s)
- Xiaowei Xu
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Hao Li
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Kebin Chi
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Dejun Shi
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhuozheng Wang
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yi Luo
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
222
|
Jana S, Śmiga S, Constantin LA, Samal P. Semilocal Meta-GGA Exchange-Correlation Approximation from Adiabatic Connection Formalism: Extent and Limitations. J Phys Chem A 2023; 127:8685-8697. [PMID: 37811903 PMCID: PMC10591512 DOI: 10.1021/acs.jpca.3c03976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Indexed: 10/10/2023]
Abstract
The incorporation of a strong-interaction regime within the approximate semilocal exchange-correlation functionals still remains a very challenging task for density functional theory. One of the promising attempts in this direction is the recently proposed adiabatic connection semilocal correlation (ACSC) approach [Constantin, L. A.; Phys. Rev. B 2019, 99, 085117] allowing one to construct the correlation energy functionals by interpolation of the high and low-density limits for the given semilocal approximation. The current study extends the ACSC method to the meta-generalized gradient approximations (meta-GGA) level of theory, providing some new insights in this context. As an example, we construct the correlation energy functional on the basis of the high- and low-density limits of the Tao-Perdew-Staroverov-Scuseria (TPSS) functional. Arose in this way, the TPSS-ACSC functional is one-electron self-interaction free and accurate for the strictly correlated and quasi-two-dimensional regimes. Based on simple examples, we show the advantages and disadvantages of ACSC semilocal functionals and provide some new guidelines for future developments in this context.
Collapse
Affiliation(s)
- Subrata Jana
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Szymon Śmiga
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzikadzka 5, 87-100 Toruń, Poland
| | - Lucian A. Constantin
- Istituto
di Nanoscienze, Consiglio Nazionale delle
Ricerche CNR-NANO, 41125 Modena, Italy
| | - Prasanjit Samal
- School
of Physical Sciences, National Institute of Science Education and
Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
223
|
Liu H, Yu Y, Chen J. Conversion mechanism of selenium on activated carbon surface: Experimental and density functional theory study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132482. [PMID: 37688874 DOI: 10.1016/j.jhazmat.2023.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The mechanism of SeO2 capture by activated carbon (AC) was explored via combining experiments with density functional theory (DFT). Adsorption experiments confirmed that after mass loss coefficient correction of AC, the selenium capture capacity of AC reached 7.76 mg/g at 350 °C. AC reached a saturated selenium removal capacity of 9.93 mg/g at 50 min. The weight loss curve recorded the temperature window of selenium desorption on AC surface at about 305 °C. The XPS spectrum revealed that the decomposition and reduction behavior of SeO2 on the AC surface promoted the existence of selenium in the form of Se0. DFT calculations showed that SeO2 was chemically adsorbed on the typical Armchair and Zigzag surfaces of AC, and the adsorption energies of the most stable structures were - 89.77 and - 235.12 kcal/mol, respectively. The effect of temperature on selenium capture via AC was studied by thermodynamic and kinetic analysis. Temperature increase promoted the decomposition and reduction of SeO2 on the AC surface. Kinetic analysis further confirmed that the transformation of Se4+→Se0 was more dominated by decomposition behavior. A part of SeO2 in the gas phase was reduced to Se0 by CO and enriched on AC as elemental selenium.
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yang Yu
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Juan Chen
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
224
|
Murcia-Galán RA, Durán SM, Leal-Pinto SM, Roa-Cordero MV, Vargas JD, Herrera LV, Muñoz-Castro A, MacLeod-Carey D, Naranjo TW, Rodríguez-Kessler PL, Hurtado JJ. Antifungal activity of Co(II) and Cu(II) complexes containing 1,3-bis(benzotriazol-1-yl)-propan-2-ol on the growth and virulence traits of fluconazole-resistant Candida species: synthesis, DFT calculations, and biological activity. BMC Chem 2023; 17:135. [PMID: 37817173 PMCID: PMC10563319 DOI: 10.1186/s13065-023-01037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Relevant virulence traits in Candida spp. are associated with dimorphic change and biofilm formation, which became an important target to reduce antifungal resistance. In this work, Co(II) complexes containing a benzotriazole derivative ligand showed a promising capacity of reducing these virulence traits. These complexes exhibited higher antifungal activities than the free ligands against all the Candida albicans and non-albicans strains tested, where compounds 2 and 4 showed minimum inhibitory concentration values between 15.62 and 125 μg mL-1. Moreover, four complexes (2-5) of Co(II) and Cu(II) with benzotriazole ligand were synthesized. These compounds were obtained as air-stable solids and characterized by melting point, thermogravimetric analysis, infrared, Raman and ultraviolet/visible spectroscopy. The analysis of the characterization data allowed us to identify that all the complexes had 1:1 (M:L) stoichiometries. Additionally, Density Functional Theory calculations were carried out for 2 and 3 to propose a probable geometry of both compounds. The conformer Da of 2 was the most stable conformer according to the Energy Decomposition Analysis; while the conformers of 3 have a fluxional behavior in this analysis that did not allow us to determine the most probable conformer. These results provide an important platform for the design of new compounds with antifungal activities and the capacity to attack other target of relevance to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Ricardo A. Murcia-Galán
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Sandra M. Durán
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Sandra M. Leal-Pinto
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Martha V. Roa-Cordero
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Jose D. Vargas
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Laura V. Herrera
- Grupo Sistema Estomatognático Y Morfofisiología (SEMF), Departamento de Ciencias Básicas, Universidad Santo Tomás Seccional Bucaramanga, Carrera 27 No. 180-395, Bucaramanga, Colombia
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, 8420524 Santiago, Chile
| | - Desmond MacLeod-Carey
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Materials Center, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - Tonny W. Naranjo
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), 050010 Medellin, Colombia
- Facultad de Medicina, Universidad Pontificia Bolivariana, 050034 Medellín, Colombia
| | - Peter L. Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, 37150 León, Guanajuato México
| | - John J. Hurtado
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| |
Collapse
|
225
|
Martín-Fernández C, Ferrer M, Alkorta I, Montero-Campillo MM, Elguero J, Mandado M. Metastable Charged Dimers in Organometallic Species: A Look into Hydrogen Bonding between Metallocene Derivatives. Inorg Chem 2023; 62:16523-16537. [PMID: 37755334 DOI: 10.1021/acs.inorgchem.3c02355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.
Collapse
Affiliation(s)
| | - Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- PhD Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química (Módulo 13, Facultad de Ciencias), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Marcos Mandado
- Departamento de Química Física, Universidade de Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
226
|
Kao JC, Bhalothia D, Wang ZX, Lin HW, Tseng FG, Ting LY, Chou HH, Lo YC, Chou JP, Chen TY. Electron Injection via Interfacial Atomic Au Clusters Substantially Enhance the Visible-Light-Driven Photocatalytic H 2 Production of the PF3T Enclosed TiO 2 Nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303391. [PMID: 37267938 DOI: 10.1002/smll.202303391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/04/2023]
Abstract
A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.
Collapse
Affiliation(s)
- Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zan-Xiang Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
227
|
Jeong SG, Kim J, Min T, Song S, Oh JY, Noh WS, Park S, Park T, Ok JM, Lee J, Choi WS. Exotic Magnetic Anisotropy Near Digitized Dimensional Mott Boundary. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303176. [PMID: 37312400 DOI: 10.1002/smll.202303176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Indexed: 06/15/2023]
Abstract
The magnetic anisotropy of low-dimensional Mott systems exhibits unexpected magnetotransport behavior useful for spin-based quantum electronics. Yet, the anisotropy of natural materials is inherently determined by the crystal structure, highly limiting its engineering. The magnetic anisotropy modulation near a digitized dimensional Mott boundary in artificial superlattices composed of a correlated magnetic monolayer SrRuO3 and nonmagnetic SrTiO3 , is demonstrated. The magnetic anisotropy is initially engineered by modulating the interlayer coupling strength between the magnetic monolayers. Interestingly, when the interlayer coupling strength is maximized, a nearly degenerate state is realized, in which the anisotropic magnetotransport is strongly influenced by both the thermal and magnetic energy scales. The results offer a new digitized control for magnetic anisotropy in low-dimensional Mott systems, inspiring promising integration of Mottronics and spintronics.
Collapse
Affiliation(s)
- Seung Gyo Jeong
- Department of Physics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jihyun Kim
- Department of Physics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taewon Min
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Jin Young Oh
- Department of Physics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Woo-Suk Noh
- MPPC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, South Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Tuson Park
- Department of Physics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jong Mok Ok
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Woo Seok Choi
- Department of Physics, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
228
|
Zhou Y, Luo X. Characteristics of the Frustrated Lewis Pairs (FLPs) on the Surface of Albite and the Corresponding Mechanism of H 2 Activation. ChemistryOpen 2023; 12:e202300058. [PMID: 37803405 PMCID: PMC10558424 DOI: 10.1002/open.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/28/2023] [Indexed: 10/08/2023] Open
Abstract
The characteristics of frustrated Lewis pairs (FLPs) on albite surfaces were analyzed with density functional theory, and the reaction mechanism for H2 activation by the FLPs was studied. The results show that albite is an ideal substrate material with FLPs, and its (001) and (010) surfaces have the typical characteristics of FLPs. In the case of H2 activation, the interaction between the HOMO of H2 and the SOMO of the Lewis base and the electron acceptance characteristics of the Lewis acid are the key factors. In fact, the activation energy of H2 is the required activation energy from the ground state to the excited state, and once the excited state is produced, the dissociative adsorption of H2 will occur directly. This study provides a new ideas and a reference for research on the construction of novel solid FLPs catalysts using ultramicro channel materials.
Collapse
Affiliation(s)
- Yannan Zhou
- Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangSichuan621900P. R. China
- Institute of Salt LakesChinese Academy of ScienceXiningQinghai810008P. R. China
| | - Xuegang Luo
- Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangSichuan621900P. R. China
- Engineering Research Center of Biomass Materials Ministry of EducationMianyangSichuan621010P. R. China
| |
Collapse
|
229
|
Guo J, Dai X, Zhang L, Li H. Electron Transport Properties of Graphene/WS 2 Van Der Waals Heterojunctions. Molecules 2023; 28:6866. [PMID: 37836709 PMCID: PMC10574387 DOI: 10.3390/molecules28196866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional theory combined with the nonequilibrium Green's function technique has been used to calculate the transport properties of graphene/WS2 heterojunctions. It is observed that the formation of heterojunctions does not lead to the opening of the Dirac point of graphene. Instead, the respective band structures of both graphene and WS2 are preserved. Therefore, the heterojunction follows a unique Ohm's law at low bias voltages, despite the presence of a certain rotation angle between the two surfaces within the heterojunction. The transmission spectra, the density of states, and the transmission eigenstate are used to investigate the origin and mechanism of unique linear I-V characteristics. This study provides a theoretical framework for designing mixed-dimensional heterojunction nanoelectronic devices.
Collapse
Affiliation(s)
- Junnan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Lishu Zhang
- Peter Grünberg Institut (PGI-1) and Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich, Jülich 52428, Germany;
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
| |
Collapse
|
230
|
Sobota P, Topolnicki R, Ossowski T, Pikula T, Gnida D, Idczak R, Pikul A. Superconductivity in high-entropy alloy system containing Th. Sci Rep 2023; 13:16317. [PMID: 37770558 PMCID: PMC10539351 DOI: 10.1038/s41598-023-43085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Th-containing superconducting high entropy system with the nominal composition (NbTa)[Formula: see text](MoWTh)[Formula: see text] was synthesized. Its structural and physical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, specific heat, resistivity and magnetic measurements. Two main phases of alloy were observed: major bcc structure and minor fcc. The experimental results were supported by numerical simulation by the DFT Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA).
Collapse
Affiliation(s)
- Piotr Sobota
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204, Wrocław, Poland.
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422, Wrocław, Poland.
| | - Rafał Topolnicki
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204, Wrocław, Poland
- Dioscuri Center in Topological Data Analysis, Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656, Warsaw, Poland
| | - Tomasz Ossowski
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204, Wrocław, Poland
| | - Tomasz Pikula
- Institute of Electronics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Daniel Gnida
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422, Wrocław, Poland
| | - Rafał Idczak
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204, Wrocław, Poland
| | - Adam Pikul
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422, Wrocław, Poland
| |
Collapse
|
231
|
Zhu B, Murahashi T, Sakaki S. Palladium cluster complex [Pd 13(μ 4-C 7H 7) 6] 2+ (C 7H 7 = tropylium) with an fcc-close-packed cuboctahedral Pd 13 core and isomers: theoretical insight into ligand-control of the Pd 13 core structure. Phys Chem Chem Phys 2023; 25:25670-25680. [PMID: 37721330 DOI: 10.1039/d3cp03262k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
One of the challenging targets in today's chemistry is size-, shape- and metal-atom packing-controlled synthesis of nano-scale transition metal cluster complexes because key factors governing these features have been elusive. Here, we present a DFT study on a recently synthesized palladium cluster complex [Pd13(μ4-C7H7)6]2+ (named Cubo-μ4; C7H7 = tropylium) with an fcc-close-packed cuboctahedral Pd13 core and possible isomers. The stability decreases in the order Cubo-μ4 > [Pd13(μ3-C7H7)3(μ4-C7H7)3]2+ with an hcp-close-packed anticuboctahedral Pd13 core (Anti-μ3,4) > [Pd13(μ3-C7H7)6]2+ with a non-close packed icosahedral Pd13 core (Ih-μ3) > [Pd13(μ4-C7H7)6]2+ with an anticuboctahedral Pd13 core (Anti-μ4) > [Pd13(μ3-C7H7)6]2+ with a cuboctahedral Pd13 core (Cubo-μ3). This ordering disagrees with the stability of the Pd13 core. The key factor governing the stability and metal-atom packing manner of these Pd13 cluster complexes is not the stability of the Pd13 core but the interaction energy between the Pd13 core and the [(C7H7)6]2+ ligand shell. The interaction energy is mainly determined by the charge-transfer from the Pd13 core to the [(C7H7)6]2+ ligand shell and the coordination mode of the C7H7 ligand (μ3- vs. μ4-coordination bond). In the μ4-coordination, all seven C atoms of the C7H7 ligand interact with four Pd atoms of the Pd4 plane using two CC double bonds and one π-allyl moiety. On the other hand, in the μ3-coordination, one or two C atoms of C7H7 cannot form bonding interaction with the Pd atom of the Pd3 plane. Thus, the use of appropriate capping ligands is one of the key points in the synthesis of nano-scale metal cluster complexes.
Collapse
Affiliation(s)
- Bo Zhu
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Tetsuro Murahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences, Rohm Plaza R312, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8246, Japan.
| |
Collapse
|
232
|
Vuong VQ, Lee KH, Savara AA, Fung V, Irle S. Toward Quantum Chemical Free Energy Simulations of Platinum Nanoparticles on Titania Support. J Chem Theory Comput 2023; 19:6471-6483. [PMID: 37647252 DOI: 10.1021/acs.jctc.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Platinum nanoparticles (Pt-NPs) supported on titania surfaces are costly but indispensable heterogeneous catalysts because of their highly effective and selective catalytic properties. Therefore, it is vital to understand their physicochemical processes during catalysis to optimize their use and to further develop better catalysts. However, simulating these dynamic processes is challenging due to the need for a reliable quantum chemical method to describe chemical bond breaking and bond formation during the processes but, at the same time, fast enough to sample a large number of configurations required to compute the corresponding free energy surfaces. Density functional theory (DFT) is often used to explore Pt-NPs; nonetheless, it is usually limited to some minimum-energy reaction pathways on static potential energy surfaces because of its high computational cost. We report here a combination of the density functional tight binding (DFTB) method as a fast but reliable approximation to DFT, the steered molecular dynamics (SMD) technique, and the Jarzynski equality to construct free energy surfaces of the temperature-dependent diffusion and growth of platinum particles on a titania surface. In particular, we present the parametrization for Pt-X (X = Pt, Ti, or O) interactions in the framework of the second-order DFTB method, using a previous parametrization for titania as a basis. The optimized parameter set was used to simulate the surface diffusion of a single platinum atom (Pt1) and the growth of Pt6 from Pt5 and Pt1 on the rutile (110) surface at three different temperatures (T = 400, 600, 800 K). The free energy profile was constructed by using over a hundred SMD trajectories for each process. We found that increasing the temperature has a minimal effect on the formation free energy; nevertheless, it significantly reduces the free energy barrier of Pt atom migration on the TiO2 surface and the transition state (TS) of its deposition. In a concluding remark, the methodology opens the pathway to quantum chemical free energy simulations of Pt-NPs' temperature-dependent growth and other transformation processes on the titania support.
Collapse
Affiliation(s)
- Van-Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ka Hung Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aditya A Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan Irle
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
- Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
233
|
Gao Z, Xu L, Jiao X, Li X, He C, Wang HZ, Sun C, Hou PX, Liu C, Cheng HM. Strong Connection of Single-Wall Carbon Nanotube Fibers with a Copper Substrate Using an Intermediate Nickel Layer. ACS NANO 2023; 17:18290-18298. [PMID: 37706683 DOI: 10.1021/acsnano.3c05374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.
Collapse
Affiliation(s)
- Zhaoqing Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Lele Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xinyu Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xin Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chengjian He
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hao-Zike Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chunyang Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
234
|
Liu M, Tang XY, Zhang Y, Ren J, Wang S, Wu SF, Mi JX, Huang YX. Strategy for a Rational Design of Deep-Ultraviolet Nonlinear Optical Materials from Zeolites. Inorg Chem 2023; 62:15527-15536. [PMID: 37696003 DOI: 10.1021/acs.inorgchem.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Deep-ultraviolet (DUV) nonlinear optical (NLO) materials play a crucial role in cutting-edge laser technology. In order to solve the serious layered growth tendency of the sole commercial DUV NLO crystal KBe2BO3F2 (KBBF), developing alternative systems of compounds with bulk crystal habits has become an urgent task for practical applications. Herein, a novel strategy was developed by applying non-centrosymmetric (NCS) cancrinite (CAN)-type zincophosphates {Na6(OH)2(H2O)2}Cs2[ZnPO4]6 with bulk-crystal habits as the prototype to design new DUV NLO crystals. Two new anhydrous alkali zincophosphates, namely, {(Li6 -xNaxO)A2}[(ZnPO4)6] (A = Cs, Rb; x = 2-3) crystallizing in the NCS hexagonal space group P63 (no. 173) with a CAN-type framework, were successfully synthesized via a modified fluoro-solvo-hydrothermal method by applying triethylamine (TEA) and concentrated NaF solution as a co-solvent. Interestingly, the rigidity of the NCS CAN-type framework acting as the host ensures the non-centrosymmetry of the resulting new compounds. Meanwhile, the replacement of water molecules by guest cationic species in the channels or cages can greatly improve the thermal stability of the resultant crystal and tune its NLO properties. The synergetic effect of the host framework and the guest species makes the two compounds transparent down to the DUV region (<200 nm) and exhibit SHG effects. Therefore, the proposed rational design strategy of applying the known zeotype NCS frameworks as prototypes together with the modified fluoro-solvo-hydrothermal method opens a great avenue for highly effectively exploring new DUV NLO materials.
Collapse
Affiliation(s)
- Mingfeng Liu
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Xia-Yan Tang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yinggan Zhang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Jilin Ren
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Shuaihua Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shao-Fan Wu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jin-Xiao Mi
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Ya-Xi Huang
- College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
235
|
Xie L, Chen T, Dong X, Liu G, Li H, Yang N, Liu D, Xiao X. A Comparative Study of the Electronic Transport and Gas-Sensitive Properties of Graphene+, T-graphene, Net-graphene, and Biphenylene-Based Two-Dimensional Devices. ACS Sens 2023; 8:3510-3519. [PMID: 37736011 DOI: 10.1021/acssensors.3c01087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The electronic transport properties of the four carbon isomers: graphene+, T-graphene, net-graphene, and biphenylene, as well as the gas-sensing properties to the nitrogen-based gas molecules including NO2, NO, and NH3 molecules, are systematically studied and comparatively analyzed by combining the density functional theory with the nonequilibrium Green's function. The four carbon isomers are metallic, especially with graphene+ being a Dirac metal due to the two Dirac cones present at the Fermi energy level. The two-dimensional devices based on these four carbon isomers exhibit good conduction properties in the order of biphenylene > T-graphene > graphene+ > net-graphene. More interestingly, net-graphene-based and biphenylene-based devices demonstrate significant anisotropic transport properties. The gas sensors based on the above four structures all have good selectivity and sensitivity to the NO2 molecule, among which T-graphene-based gas sensors are the most prominent with a maximum ΔI value of 39.98 μA, being only three-fifths of the original. In addition, graphene+-based and biphenylene-based gas sensors are also sensitive to the NO molecule with maximum ΔI values of 29.42 and 25.63 μA, respectively. However, the four gas sensors are all physically adsorbed for the NH3 molecule. By the adsorption energy, charge transfer, electron localization functions, and molecular projection of self-consistent Hamiltonian states, the mechanisms behind all properties can be clearly explained. This work shows the potential of graphene+, T-graphene, net-graphene, and biphenylene for the detection of toxic molecules of NO and NO2.
Collapse
Affiliation(s)
- Luzhen Xie
- School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Tong Chen
- School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Xiansheng Dong
- School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Guogang Liu
- School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Hui Li
- Department of Applied Physics, East China Jiao tong University, Nanchang 330013, China
| | - Ning Yang
- School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Desheng Liu
- School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Xianbo Xiao
- School of Computer Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
236
|
Menachekanian S, Mora Perez C, Pennathur AK, Voegtle MJ, Blauth D, Prezhdo OV, Dawlaty JM. Phenol as a Tethering Group to Gold Surfaces: Stark Response and Comparison to Benzenethiol. J Phys Chem Lett 2023; 14:8353-8359. [PMID: 37702751 PMCID: PMC10518863 DOI: 10.1021/acs.jpclett.3c02058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Understanding the adsorption of organic molecules on metals is important in numerous areas of surface science, including electrocatalysis, electrosynthesis, and biosensing. While thiols are commonly used to tether organic molecules on metals, it is desirable to broaden the range of anchoring groups. In this study, we use a combined spectroelectrochemical and computational approach to demonstrate the adsorption of 4-cyanophenols (CPs) on polycrystalline gold. Using the nitrile stretching vibration as a marker, we confirm the adsorption of CP on the gold electrode and compare our results with those obtained for the thiol counterpart, 4-mercaptobenzonitirle (MBN). Our results reveal that CP adsorbs on the gold electrode via the OH linker, as evidenced by the similarity in the direction and magnitude of the nitrite Stark shifts for CP and MBN. This finding paves the way for exploring new approaches to modify electrode surfaces for controlled reactivity. Furthermore, it highlights adsorption on metals as an important step in the electroreactivity of phenols.
Collapse
Affiliation(s)
- Sevan Menachekanian
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Theoretical
Physics and Chemistry of Materials, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anuj K. Pennathur
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mattew J. Voegtle
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Drew Blauth
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M. Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
237
|
Jana S, Constantin LA, Samal P. Density functional applications of jellium with a local gap model correlation energy functional. J Chem Phys 2023; 159:114109. [PMID: 37721324 DOI: 10.1063/5.0160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
We develop a realistic density functional approximation for the local gap, which is based on a semilocal indicator that shows good screening properties. The local band model has remarkable density scaling behaviors and works properly for the helium isoelectronic series for the atoms of the Periodic Table, as well as for the non-relativistic noble atom series (up to 2022 e-). Due to these desirable properties, we implement the local gap model in the jellium-with-gap correlation energy, developing the local-density-approximation-with-gap correlation functional (named LDAg) that correctly gives correlation energies of atoms comparable with the LDA ones but shows an improvement for ionization potential of atoms and molecules. Thus, LDAg seems to be an interesting and useful tool in density functional theory.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Lucian A Constantin
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
238
|
Roy P, Ghoshal S, Pramanik A, Sarkar P. Single B-vacancy enriched α 1-borophene sheet: an efficient metal-free electrocatalyst for CO 2 reduction. Phys Chem Chem Phys 2023; 25:25018-25028. [PMID: 37698058 DOI: 10.1039/d3cp01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
By employing first principles calculations, we have studied the electronic structures of pristine (α1) and different defective (α1-t1, α1-t2) borophene sheets to understand the efficacy of such systems as metal-free electrocatalysts for the CO2 reduction reaction. Among the three studied systems, only α1-t1, the defective borophene sheet created by removal of a 5-coordinated boron atom, can chemisorb and activate a CO2 molecule for its subsequent reduction processes, leading to different C1 chemicals, followed by selective conversion into C2 products by multiple proton coupled electron transfer steps. The computed onset potentials for the C1 chemicals such as CH3OH and CH4 are low enough. On the other hand, in the case of the C2 reduction process, the C-C coupling barrier is only 0.80 eV in the solvent phase which produces CH3CHO and CH3CH2OH with very low onset potential values of -0.21 and -0.24 V, respectively, suppressing the competing hydrogen evolution reaction.
Collapse
Affiliation(s)
- Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia-723104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
239
|
Yan Y, Wang C, Cai Z, Wang X, Xuan F. Tuning Electrical and Mechanical Properties of Metal-Organic Frameworks by Metal Substitution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42845-42853. [PMID: 37644617 DOI: 10.1021/acsami.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal-organic frameworks (MOFs), synthesized by the self-assembly of organic ligands and metal centers, are structurally designable materials. In the current study, first-principles calculation based on density functional theory (DFT) was performed to investigate the intrinsic mechanical and electrical properties and mechanical-electrical coupling behavior of MOF-5. To improve the conductivity of MOF-5, homologous elements of Cu, Ag, and Au were adopted to replace the Zn atom in MOF-5, reducing the band gap and improving its electrical performance. Cu-MOF-5 and Au-MOF-5, with stable structures, exhibit better conductivity. The intrinsic mechanical properties such as independent elastic constants of MOF-5 and M-MOF-5 (M = Cu, Ag, Au) were obtained. MOF-5 and Cu-MOF-5 were experimentally synthesized to demonstrate the reduction in the band gap after metal substitution. The study of the strain effect of MOF-5 and Cu-MOF-5 proves that strain engineering is an effective method to regulate the band gap and this modulation is repeatable. This study clarifies the tunability of the band gap of MOF-5 with metal substituents and provides an efficient strategy for the development of new types of MOFs with desired physical properties using the combination of theoretical prediction and experimental synthesis and validation.
Collapse
Affiliation(s)
- Yabin Yan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Pressure Systems and Safety Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunyu Wang
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Pressure Systems and Safety Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengqing Cai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyuan Wang
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Pressure Systems and Safety Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhen Xuan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Pressure Systems and Safety Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
240
|
Ali SA, Ahmed J, Mao Y, Ahmad T. Symbiotic MoO 3-SrTiO 3 Heterostructured Nanocatalysts for Sustainable Hydrogen Energy: Combined Experimental and Theoretical Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12692-12706. [PMID: 37639496 DOI: 10.1021/acs.langmuir.3c01418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Highly efficient Z-scheme MoO3-SrTiO3 heterostructured nanocatalytic systems were engineered via a sol-gel chemical route and exploited in green H2 energy synthesis via overall water splitting. The optical and electronic investigations corroborated the enhancement of the optoelectronic properties of SrTiO3 after the incorporation of MoO3. Emergence of the interfacial charge transfer between SrTiO3 and MoO3 is the driving force, which synergistically triggered the catalytic efficiency of MoO3-SrTiO3 heterostructures. The substitution of Ti4+ by Mo6+ ions led to the suppression of Ti3+ mid-gap states, as the potential involved in the Mo6+/Mo5+ reduction is higher than that in Ti4+/Ti3+. Theoretical studies were employed in order to comprehend the mechanism behind the advancement in the catalytic activity of MoO3-SrTiO3 porous heterostructures, which also possessed a higher surface area. 2% MoO3-SrTiO3 exhibited the optimum catalytic response toward H2 evolution via photochemical, electrochemical, and photo-electrochemical water splitting. 2% MoO3-SrTiO3 evolved H2 at the fourfold higher rate than SrTiO3 with phenomenal 16.06% AQY during photochemical water splitting and photo-degraded MB dye at nearly 88% against the 42% degradation in SrTiO3-led photocatalysis. Electrochemical and photo-electrochemical investigations also manifested the superiority of 2% MoO3-SrTiO3 toward HER, as it exhibited accelerated current and photocurrent densities of 25.02 and 27.45 mA/cm2, respectively, at the 1 V potential. EIS studies demonstrated the improved charge separation efficiency of MoO3-SrTiO3 heterostructures. This work highlights the multi-dimensional approach of obtaining green H2 energy as the sustainable energy source using MoO3@SrTiO3 heterostructures.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
241
|
Han NT, Dien VK, Chang TR, Lin MF. Optical excitations of graphene-like materials: group III-nitrides. NANOSCALE ADVANCES 2023; 5:5077-5093. [PMID: 37705768 PMCID: PMC10496912 DOI: 10.1039/d3na00306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
By using first-principles calculations, we have studied the electronic and optical characteristics of group III-nitrides, such as BN, AlN, GaN, and InN monolayers. The optimized geometry, quasi-particle energy spectra, charge density distributions, band-decomposed charge densities, and Van Hove singularities in density of states are described in the work using physical and chemical pictures and orbital hybridizations found in B-N, Al-N, Ga-N, and In-N chemical bonds. Moreover, the dielectric functions, energy loss functions, absorption coefficients, and reflectance spectra with electron-hole interactions of optical properties are successfully achieved. More importantly, the close relations between electronic and optical properties are successfully demonstrated. The theoretical framework will be useful to research other graphene-like materials.
Collapse
Affiliation(s)
- Nguyen Thi Han
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
| | - Vo Khuong Dien
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
| | - Tay-Rong Chang
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort) Tainan 70101 Taiwan
- Physics Division, National Center for Theoretical Sciences Taipei 10617 Taiwan
| | - Ming-Fa Lin
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
- Hierarchical Green-Energy Material (Hi-GEM) Research Center, National Cheng Kung University Taiwan
| |
Collapse
|
242
|
Nagarajan V, Ramesh R, Chandiramouli R. N-Nitrosamine sensing properties of novel penta-silicane nanosheets-a first-principles outlook. J Mol Model 2023; 29:309. [PMID: 37688608 DOI: 10.1007/s00894-023-05711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
CONTEXT N-Nitrosamine is one of the highly toxic carcinogenic compounds that are found almost in the entire environment. In the present work, novel penta-silicene (penta-Si) and penta-silicane (penta-HSi) are utilised to sense the N-nitrosamine in the air environment. Initially, structural firmness of penta-Si and penta-HSi is confirmed using cohesive energy. Subsequently, the electronic properties of penta-Si and penta-HSi are discussed with the aid of electronic band structure and projected density of states (PDOS) maps. The calculated band gap of penta-Si and penta-HSi is 0.251 eV and 3.117 eV, correspondingly. Mainly, the adsorption property of N-nitrosamine on the penta-Si and penta-HSi is studied based on adsorption energy, Mulliken population analysis along with relative energy gap changes. The computed adsorption energy range is in physisorption (- 0.101 to - 0.619 eV), which recommends that the proposed penta-Si and penta-HSi can be employed as a promising sensor to detect the N-nitrosamine in the air environment. METHODS The structural, electronic and adsorption behaviour of N-nitrosamine on penta-Si and penta-HSi are studied based on the density functional theory (DFT) approach. The hybrid generalized gradient approximation (GGA) with Becke's three-parameter (B3) + Lee-Yang-Parr (LYP) exchange correlation functional is used to optimise the base material. All calculations in the present work are carried out in Quantum-ATK-Atomistic Simulation Software.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Ramesh
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India.
| |
Collapse
|
243
|
Liu G, Jiang H, Guo Z, Zhang X, Jin L, Liu C, Liu Y. Magnetic Second-Order Topological Insulators in 2H-Transition Metal Dichalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301952. [PMID: 37518836 PMCID: PMC10520633 DOI: 10.1002/advs.202301952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Indexed: 08/01/2023]
Abstract
The transition metal dichalcogenides, 2H-VX2 (X = S, Se, Te), are identified as two-dimensional second-order topological insulator (SOTI) with a ferromagnetic ground state by first-principles calculations. The 2H-VX2 (X = S, Se, Te) materials have a nontrivial band gap in two spin channels is found and exhibit topologically protected corner states with spin-polarization. These corner states only accommodate the quantized fractional charge (e/3). And the charge is bound at the corners of the nanodisk geometry 2H-VX2 (X = S, Se, Te) in real space. The corner states are robust against symmetry-breaking perturbations, which makes them more easily detectable in experiments. Further, it is demonstrated that the SOTI properties of 2H-VX2 (X = S, Se, Te) materials can be maintained in the presence of spin-orbit coupling and are stable against magnetization. Overall, the results reveal 2H-VX2 (X = S, Se, Te) as an ideal platform for the exploration of magnetic SOTI and suggest its great potential in experimental detection.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Haoqian Jiang
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Zhenzhou Guo
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Lei Jin
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Cong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| |
Collapse
|
244
|
Xu A, Chen X, Wei D, Chu B, Yu M, Yin X, Xu J. Regulating the Electronic Structure of Bismuth Nanosheets by Titanium Doping to Boost CO 2 Electroreduction and Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302253. [PMID: 37211692 DOI: 10.1002/smll.202302253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Indexed: 05/23/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (E-CO2 RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (TiBi NSs) with enhanced E-CO2 RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4 Ti3 O12 ). We comprehensively evaluated TiBi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of TiBi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 - and enhance the adsorption strength of *OCHO intermediate. The TiBi NSs deliver a high formate Faradaic efficiency (FEformate ) of 96.3% and a formate production rate of 4032 µmol h-1 cm-2 at -1.01 V versus RHE. An ultra-high current density of -338.3 mA cm-2 is achieved at -1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn-CO2 battery using TiBi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm-2 and excellent charging/discharging stability of 27 h.
Collapse
Affiliation(s)
- Aihao Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Xiangyu Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Bingxian Chu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Meihua Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Xucai Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
- School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
245
|
Liu H, Wang Y, Chen J. Transformation of Zn and Cr during co-combustion of sewage sludge and coals: influence of coal and steam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98351-98361. [PMID: 37606773 DOI: 10.1007/s11356-023-28907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Combustion experiments of sewage sludge (SS) blended with low-rank coal were conducted through a drop tube furnace (DTF) to explore the effects of low-rank coal type, blending ratio, and steam on the transformation of Zn and Cr. The results showed that the retention rates of Zn and Cr in ash increased from 24.35% and 71.49% for sludge combustion alone to 53.77% and 117.49%, respectively, for coal blended to SS with a mass ratio of 7:3. The greater the proportion of low-rank coal in the fuel, the greater the residual rate of heavy metals in the ash. Meanwhile, rapid diffusion of vapor occupied adsorption sites on metal mineral surfaces, reducing the retention of Zn and Cr in the co-combustion ash. The leaching toxicity analysis of ash showed that the co-combustion ash of SS with coal was free from leaching toxicity hazards in simulated scenarios. The extraction rate of Zn in co-combustion ash increased from 90.72% with hydrothermal acid leaching to 95.46% with microwave-assisted in 2 mol/L H2SO4 extract. The extraction rate of Cr in hydrothermal acid leaching was 62.80%, which was much higher than that in microwave-assisted extraction (31.76%).
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Yajun Wang
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Juan Chen
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, 250061, Shandong, China.
| |
Collapse
|
246
|
Idczak R, Nowak W, Rusin B, Topolnicki R, Ossowski T, Babij M, Pikul A. Enhanced Superconducting Critical Parameters in a New High-Entropy Alloy Nb 0.34Ti 0.33Zr 0.14Ta 0.11Hf 0.08. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5814. [PMID: 37687508 PMCID: PMC10489023 DOI: 10.3390/ma16175814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The structural and physical properties of the new titanium- and niobium-rich type-A high-entropy alloy (HEA) superconductor Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08 (in at.%) were studied by X-ray powder diffraction, energy dispersive X-ray spectroscopy, magnetization, electrical resistivity, and specific heat measurements. In addition, electronic structure calculations were performed using two complementary methods: the Korringa-Kohn-Rostoker Coherent Potential Approximation (KKR-CPA) and the Projector Augmented Wave (PAW) within Density Functional Theory (DFT). The results obtained indicate that the alloy exhibits type II superconductivity with a critical temperature close to 7.5 K, an intermediate electron-phonon coupling, and an upper critical field of 12.2(1) T. This finding indicates that Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08 has one of the highest upper critical fields among all known HEA superconductors.
Collapse
Affiliation(s)
- Rafał Idczak
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland; (W.N.); (B.R.); (R.T.); (T.O.)
| | - Wojciech Nowak
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland; (W.N.); (B.R.); (R.T.); (T.O.)
- Institute of Low Temperature and Structural Reaseach, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland; (M.B.); (A.P.)
| | - Bartosz Rusin
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland; (W.N.); (B.R.); (R.T.); (T.O.)
| | - Rafał Topolnicki
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland; (W.N.); (B.R.); (R.T.); (T.O.)
- Dioscuri Center in Topological Data Analysis, Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland
| | - Tomasz Ossowski
- Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland; (W.N.); (B.R.); (R.T.); (T.O.)
| | - Michał Babij
- Institute of Low Temperature and Structural Reaseach, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland; (M.B.); (A.P.)
| | - Adam Pikul
- Institute of Low Temperature and Structural Reaseach, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland; (M.B.); (A.P.)
| |
Collapse
|
247
|
Khera M, Anchal, Goel N. Ligand and Substituent Effect on Regium-π Bonding in Cu and Ag π-Conjugated Complexes: A Density Functional Study. J Phys Chem A 2023; 127:6953-6961. [PMID: 37558247 DOI: 10.1021/acs.jpca.3c04110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Density functional theory investigation of regium (Rg)-π bonding using the RgL-X model system, where Rg = Cu and Ag; L = CN, NO2, and OH; X = π-conjugated system (benzene, cyanobenzene, benzoic acid, pyridine, 2-methoxy aniline, 1,4-dimethoxy benzene, and cyclophane), has been performed. Conclusive evidence of the Rg-π bond has been provided by analysis of molecular electrostatic potential surfaces, Rg-π bond length, interaction energy (ΔE), second-order perturbation energy (E2), charge transfer (Δq), quantum theory of atom in molecules, and noncovalent interaction plots for 42 structural arrangements with varying ligands and the substituted aromatic ring. The Rg-π bond length in the optimized model systems varies from 2.03 to 2.12 Å in Cu complexes (1-21) and from 2.26 to 2.38 Å in Ag complexes (22-42) at the PBE0-D3 functional. While the ligand (L) attached to the Rg metal has a bargaining effect on the strength of the Rg-π bond (in the order of -OH > -CN = -NO2), the π-conjugated systems have a diminutive effect. Two X-ray crystal structures (CUCSOI and AHIDQU) having the Rg-π bond, accessed from Cambridge Crystallographic Data Centre (CCDC), are discussed here to signify the influence of Rg-π bonding on the crystal structure.
Collapse
Affiliation(s)
- Mayank Khera
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Anchal
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
248
|
Solomenko AG, Sahalianov IY, Radchenko TM, Tatarenko VA. Straintronics in phosphorene via tensile vs shear strains and their combinations for manipulating the band gap. Sci Rep 2023; 13:13444. [PMID: 37596330 PMCID: PMC10439159 DOI: 10.1038/s41598-023-40541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
We study the effects of the uniaxial tensile strain and shear deformation as well as their combinations on the electronic properties of single-layer black phosphorene. The evolutions of the strain-dependent band gap are obtained using the numerical calculations within the tight-binding (TB) model as well as the first-principles (DFT) simulations and compared with previous findings. The TB-model-based findings show that the band gap of the strain-free phosphorene agrees with the experimental value and linearly depends on both stretching and shearing: increases (decreases) as the stretching increases (decreases), whereas gradually decreases with increasing the shear. A linear dependence is less or more similar as compared to that obtained from the ab initio simulations for shear strain, however disagrees with a non-monotonic behaviour from the DFT-based calculations for tensile strain. Possible reasons for the discrepancy are discussed. In case of a combined deformation, when both strain types (tensile/compression + shear) are loaded simultaneously, their mutual influence extends the realizable band gap range: from zero up to the values respective to the wide-band-gap semiconductors. At a switched-on combined strain, the semiconductor-semimetal phase transition in the phosphorene is reachable at a weaker (strictly non-destructive) strain, which contributes to progress in fundamental and breakthroughs.
Collapse
Affiliation(s)
- Anastasiia G Solomenko
- Department of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, 03142, Ukraine
| | - Ihor Y Sahalianov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Taras M Radchenko
- Department of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, 03142, Ukraine.
| | - Valentyn A Tatarenko
- Department of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, 03142, Ukraine
| |
Collapse
|
249
|
MacLeod-Carey D, Rodríguez-Kessler PL, Muñoz-Castro A. Cl@Si 20X 20 cages: evaluation of encapsulation nature, structural rigidity, and 29Si-NMR patterns using relativistic DFT calculations. Phys Chem Chem Phys 2023. [PMID: 37455622 DOI: 10.1039/d3cp02371k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The experimental characterization of Cl@Si20 endohedral clusters, featuring different ligands such as [Cl@Si20H20]- (1) [Cl@Si20H12Cl8]- (2), and [Cl@Si20Cl20]- (3), provides insight into the variable encapsulation environment for chloride anions. The favorable formation of such species enables the evaluation of the encapsulation nature and the role of the inner anion in the rigidity of the overall cluster. Our results show a sizable interaction which increases as -66.7, -100.8, and -130.3 kcal mol-1 from 1 to 3, respectively, featuring electrostatic character. The orbital interaction involves 3p-Cl → Si20X20 and 3s-Cl → Si20X20 charge transfer channels and a slight contribution from London dispersion-type interactions. These results show that the inner bonding environment can be modified by the choice of exobonded ligands. Moreover, 29Si-NMR parameters are depicted in terms of the chemical shift anisotropy (CSA), leading to a strong variation of the three principal tensor components (δ11, δ22, δ33), unraveling the origin of the experimental 29Si-NMR chemical shift (δiso) differences along the given series. Thus, the Si20 cage is a useful template to further evaluate different environments for encapsulating atomic species.
Collapse
Affiliation(s)
- Desmond MacLeod-Carey
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autónoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| | - Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C. (CIO), Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
250
|
Zhao L, Yang Y, Liu J, Ding J. Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst. CHEMOSPHERE 2023; 330:138754. [PMID: 37088203 DOI: 10.1016/j.chemosphere.2023.138754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu-Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel.
Collapse
Affiliation(s)
- Liming Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Junyan Ding
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|