201
|
Zhang X, Liu T, Li X, Duan M, Wang J, Qiu Y, Wang H, Song J, Shen D. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Sci Rep 2016; 6:18618. [PMID: 26727246 PMCID: PMC4698638 DOI: 10.1038/srep18618] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022] Open
Abstract
Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Tongjin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Mengmeng Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jinglei Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Di Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
202
|
Han Y, Xin M, Huang K, Xu Y, Liu Z, Hu Z, Yao Y, Peng H, Ni Z, Sun Q. Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. THE NEW PHYTOLOGIST 2016; 209:721-32. [PMID: 26334764 DOI: 10.1111/nph.13615] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/22/2015] [Indexed: 05/23/2023]
Abstract
Polyploidy is a major driving force in plant evolution and speciation. Phenotypic changes often arise with the formation, natural selection and domestication of polyploid plants. However, little is known about the consequence of hybridization and polyploidization on root hair development. Here, we report that root hair length of synthetic and natural allopolyploid wheats is significantly longer than those of their diploid progenitors, whereas no difference is observed between allohexaploid and allotetraploid wheats. The expression of wheat gene TaRSL4, an orthologue of AtRSL4 controlling the root hair development in Arabidopsis, was positively correlated with the root hair length in diploid and allotetraploid wheats. Moreover, transcript abundance of TaRSL4 homoeologue from A genome (TaRSL4-A) was much higher than those of other genomes in natural allopolyploid wheat. Notably, increased root hair length by overexpression of the TaRSL4-A in wheat led to enhanced shoot fresh biomass under nutrient-poor conditions. Our observations indicate that increased root hair length in allohexaploid wheat originated in the allotetraploid progenitors and altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat.
Collapse
Affiliation(s)
- Yao Han
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Ke Huang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yuyun Xu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| |
Collapse
|
203
|
Gao L, Diarso M, Zhang A, Zhang H, Dong Y, Liu L, Lv Z, Liu B. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat. THE NEW PHYTOLOGIST 2016; 209:364-75. [PMID: 26295562 DOI: 10.1111/nph.13595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 05/05/2023]
Abstract
Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution.
Collapse
Affiliation(s)
- Lihong Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Moussa Diarso
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yuzhu Dong
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Lixia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
204
|
Shi FX, Li MR, Li YL, Jiang P, Zhang C, Pan YZ, Liu B, Xiao HX, Li LF. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC PLANT BIOLOGY 2015; 15:297. [PMID: 26690782 PMCID: PMC4687065 DOI: 10.1186/s12870-015-0669-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/23/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Panax L. is a medicinally important genus within family Araliaceae, where almost all species are of cultural significance for traditional Chinese medicine. Previous studies suggested two independent origins of the East Asia and North America disjunct distribution of this genus and multiple rounds of whole genome duplications (WGDs) might have occurred during the evolutionary process. RESULTS We employed multiple chloroplast and nuclear markers to investigate the evolution and diversification of Panax. Our phylogenetic analyses confirmed previous observations of the independent origins of disjunct distribution and both ancient and recent WGDs have occurred within Panax. The estimations of divergence time implied that the ancient WGD might have occurred before the establishment of Panax. Thereafter, at least two independent recent WGD events have occurred within Panax, one of which has led to the formation of three geographically isolated tetraploid species P. ginseng, P. japonicus and P. quinquefolius. Population genetic analyses showed that the diploid species P. notoginseng harbored significantly lower nucleotide diversity than those of the two tetraploid species P. ginseng and P. quinquefolius and the three species showed distinct nucleotide variation patterns at exon regions. CONCLUSION Our findings based on the phylogenetic and population genetic analyses, coupled with the species distribution patterns of Panax, suggested that the two rounds of WGD along with the geographic and ecological isolations might have together contributed to the evolution and diversification of this genus.
Collapse
Affiliation(s)
- Feng-Xue Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Ming-Rui Li
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Ya-Ling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Cui Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Yue-Zhi Pan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Hong-Xing Xiao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
205
|
Cytonuclear Coordination Is Not Immediate upon Allopolyploid Formation in Tragopogon miscellus (Asteraceae) Allopolyploids. PLoS One 2015; 10:e0144339. [PMID: 26646761 PMCID: PMC4673006 DOI: 10.1371/journal.pone.0144339] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential interactions with cytoplasmic genomes. As a step toward understanding the fates of nuclear-encoded subunits that are plastid-targeted, here we examine the retention and expression of the gene encoding the small subunit of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco; rbcS) in multiple populations of allotetraploid Tragopogon miscellus (Asteraceae). These polyploids formed recently (~80 years ago) and repeatedly from T. dubius and T. pratensis in the northwestern United States. Examination of 79 T. miscellus individuals from 10 natural populations, as well as 25 synthetic allotetraploids, including reciprocally formed plants, revealed a low percentage of naturally occurring individuals that show a bias in either gene (homeolog) loss (12%) or expression (16%), usually toward maintaining the maternal nuclear copy of rbcS. For individuals showing loss, seven retained the maternally derived rbcS homeolog only, while three had the paternally derived copy. All of the synthetic polyploid individuals examined (S0 and S1 generations) retained and expressed both parental homeologs. These results demonstrate that cytonuclear coordination does not happen immediately upon polyploid formation in Tragopogon miscellus.
Collapse
|
206
|
Polyploidy and genome evolution in plants. Curr Opin Genet Dev 2015; 35:119-25. [PMID: 26656231 DOI: 10.1016/j.gde.2015.11.003] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
Abstract
Plant genomes vary in size and complexity, fueled in part by processes of whole-genome duplication (WGD; polyploidy) and subsequent genome evolution. Despite repeated episodes of WGD throughout the evolutionary history of angiosperms in particular, the genomes are not uniformly large, and even plants with very small genomes carry the signatures of ancient duplication events. The processes governing the evolution of plant genomes following these ancient events are largely unknown. Here, we consider mechanisms of diploidization, evidence of genome reorganization in recently formed polyploid species, and macroevolutionary patterns of WGD in plant genomes and propose that the ongoing genomic changes observed in recent polyploids may illustrate the diploidization processes that result in ancient signatures of WGD over geological timescales.
Collapse
|
207
|
Chen X, Ge X, Wang J, Tan C, King GJ, Liu K. Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. FRONTIERS IN PLANT SCIENCE 2015; 6:836. [PMID: 26500672 PMCID: PMC4598586 DOI: 10.3389/fpls.2015.00836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/23/2015] [Indexed: 05/25/2023]
Abstract
Brassica rapa includes some of the most important vegetables worldwide as well as oilseed crops. The complete annotated genome sequence confirmed its paleohexaploid origins and provides opportunities for exploring the detailed process of polyploid genome evolution. We generated a genome-wide DNA methylation profile for B. rapa using a modified reduced representation bisulfite sequencing (RRBS) method. This sampling represented 2.24% of all CG loci (2.5 × 10(5)), 2.16% CHG (2.7 × 10(5)), and 1.68% CHH loci (1.05 × 10(5)) (where H = A, T, or C). Our sampling of DNA methylation in B. rapa indicated that 52.4% of CG sites were present as (5m)CG, with 31.8% of CHG and 8.3% of CHH. It was found that genic regions of single copy genes had significantly higher methylation compared to those of two or three copy genes. Differences in degree of genic DNA methylation were observed in a hierarchical relationship corresponding to the relative age of the three ancestral subgenomes, primarily accounted by single-copy genes. RNA-seq analysis revealed that overall the level of transcription was negatively correlated with mean gene methylation content and depended on copy number or was associated with the different subgenomes. These results provide new insights into the role epigenetic variation plays in polyploid genome evolution, and suggest an alternative mechanism for duplicate gene loss.
Collapse
Affiliation(s)
- Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chen Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
208
|
Gu AX, Shen SX, Wang YH, Zhao JJ, Xuan SX, Chen XP, Li XF, Luo SX, Zhao YJ. Generation and characterization of Brassica rapa ssp. pekinensis - B. oleracea var. capitata monosomic and disomic alien addition lines. J Genet 2015; 94:435-44. [PMID: 26440082 DOI: 10.1007/s12041-015-0542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis - B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien linkage groups were identified using 42 B. oleracea var. capitata linkage group-specific markers as B. oleracea linkage groups C2, C3, C6, C7 and C8. Based on the chromosomal karyotype of root tip cells, these five MAALs added individual chromosomes from B. oleracea var. capitata: chr 1 (the longest), chr 2 or 3, chr 5 (small locus of 25S rDNA), chr 7 (satellite-carrying) and chr 9 (the shortest). Five disomic alien addition lines were then generated by selfing their corresponding MAALs.
Collapse
Affiliation(s)
- Ai Xia Gu
- College of Horticulture, Agricultural University of Hebei, No. 289, Lingyusi Road, Baoding 071001, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Shi J, Zhan J, Yang Y, Ye J, Huang S, Li R, Wang X, Liu G, Wang H. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep 2015; 5:14481. [PMID: 26434411 PMCID: PMC4593047 DOI: 10.1038/srep14481] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
To facilitate the pseudochromosomes assembly and gene cloning in rapeseed, we developed a reference genetic population/map (named BnaZNF2) from two sequenced cultivars, Zhongshuang11 and No.73290, those exhibit significant differences in many traits, particularly yield components. The BnaZNF2 genetic map exhibited perfect collinearity with the physical map of B. napus, indicating its high quality. Comparative mapping revealed several genomic rearrangements between B. napus and B. rapa or B. oleracea. A total of eight and 16 QTLs were identified for pod number and seed number per pod, respectively, and of which three and five QTLs are identical to previously identified ones, whereas the other five and 11 are novel. Two new major QTL respectively for pod number and seed number per pod, qPN.A06-1 and qSN.A06-1 (R(2 )= 22.8% and 32.1%), were colocalised with opposite effects, and only qPN.A06-1 was confirmed and narrowed by regional association analysis to 180 kb including only 33 annotated genes. Conditional QTL analysis and subsequent NILs test indicated that tight linkage, rather than pleiotropy, was the genetic causation of their colocalisation. Our study demonstrates potential of this reference genetic population/map for precise QTL mapping and as a base for positional gene cloning in rapeseed.
Collapse
Affiliation(s)
- Jiaqin Shi
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jiepeng Zhan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuhua Yang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jiang Ye
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shunmou Huang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ruiyuan Li
- Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xinfa Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guihua Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hanzhong Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
210
|
Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza). PLoS One 2015. [PMID: 26208215 PMCID: PMC4514751 DOI: 10.1371/journal.pone.0132911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica) and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown. Methodology/Principal Findings We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH) and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs) and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i) all three triploid hybrids are stable in both chromosome number and gross structure; (ii) stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii) alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv) transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner. Conclusions/Significance Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic instabilities at the molecular level. These novel hybrids might provide a rich resource of genetic and epigenetic diversities for potential utilization in rice genetic improvements.
Collapse
|
211
|
Mason AS, Takahira J, Atri C, Samans B, Hayward A, Cowling WA, Batley J, Nelson MN. Microspore culture reveals complex meiotic behaviour in a trigenomic Brassica hybrid. BMC PLANT BIOLOGY 2015; 15:173. [PMID: 26152188 PMCID: PMC4493989 DOI: 10.1186/s12870-015-0555-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/16/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Development of synthetic allohexaploid Brassica (2n = AABBCC) would be beneficial for agriculture, as allelic contributions from three genomes could increase hybrid vigour and broaden adaptation. Microspore culture of a near-allohexaploid hybrid derived from the cross (B. napus × B. carinata) × B. juncea was undertaken in order to assess the frequency and distribution of homologous and homoeologous crossovers in this trigenomic hybrid. SNP and SSR molecular markers were used to detect inheritance of A, B and C genome alleles in microspore-derived (MD) progeny. SNP allele copy number was also assessed. The MD progeny were also compared to progeny derived by self-pollination and open-pollination for fertility (estimated by self-pollinated seed set and pollen viability) and DNA ploidy (measured by flow cytometry). RESULTS In the trigenomic hybrid, homologous chromosome pairs A(j)-A(n), B(j)-B(c) and C(n)-C(c) had similar meiotic crossover frequencies and segregation to that previously observed in established Brassica species, as demonstrated by marker haplotype analysis of the MD population. Homoeologous pairing between chromosomes A1-C1, A2-C2 and A7-C6 was detected at frequencies of 12-18 %, with other homoeologous chromosome regions associating from 8 % (A3-C3) to 0-1 % (A8-C8, A8-C9) of the time. Copy number analysis revealed eight instances of additional chromosomes and 20 instances of chromosomes present in one copy in somatically doubled MD progeny. Presence of chromosome A6 was positively correlated with self-pollinated seed set and pollen viability in the MD population. Many MD progeny were unable to produce self-pollinated seed (76 %) or viable pollen (53 %), although one MD plant produced 198 self-pollinated seeds. Average fertility was significantly lower in progeny obtained by microspore culture than progeny obtained by self-pollination or open-pollination, after excluding MD progeny which had not undergone chromosome doubling. CONCLUSIONS Based on SNP data analysis of the microspore-derived progeny, crossover frequency per chromosome in the allohexaploid hybrid was found to be similar to that in established Brassica species, suggesting that the higher chromosome number did not significantly disrupt cellular regulation of meiosis. SNP allele copy number analysis revealed the occurrence not only of homoeologous duplication/deletion events but also other cryptic duplications and deletions that may have been the result of mitotic instability. Microspore culture simplified the assessment of chromosome behaviour in the allohexaploid hybrid but yielded progeny with lower fertility and a greater range of ploidy levels compared to progeny obtained by self- or open-pollination.
Collapse
Affiliation(s)
- Annaliese S Mason
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- Centre for Integrative Legume Research, The University of Queensland, Brisbane, 4072, Australia.
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Junko Takahira
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia.
| | - Chhaya Atri
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia.
- Plant Breeding & Genetics Department, Punjab Agricultural University, Ferozepur Road, Ludhiana, Punjab, 141004, India.
| | - Birgit Samans
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Alice Hayward
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- Centre for Integrative Legume Research, The University of Queensland, Brisbane, 4072, Australia.
| | - Wallace A Cowling
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia.
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- Centre for Integrative Legume Research, The University of Queensland, Brisbane, 4072, Australia.
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia.
| | - Matthew N Nelson
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia.
| |
Collapse
|
212
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|
213
|
Abstract
This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.
Collapse
|
214
|
McCarthy EW, Arnold SEJ, Chittka L, Le Comber SC, Verity R, Dodsworth S, Knapp S, Kelly LJ, Chase MW, Baldwin IT, Kovařík A, Mhiri C, Taylor L, Leitch AR. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae). ANNALS OF BOTANY 2015; 115:1117-31. [PMID: 25979919 PMCID: PMC4598364 DOI: 10.1093/aob/mcv048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/15/2015] [Accepted: 03/16/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.
Collapse
Affiliation(s)
- Elizabeth W McCarthy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sarah E J Arnold
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Robert Verity
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sandra Knapp
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian T Baldwin
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Aleš Kovařík
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Corinne Mhiri
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lin Taylor
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
215
|
Zuo H, Wu P, Wu D, Sun G. Origin and Reticulate Evolutionary Process of Wheatgrass Elymus trachycaulus (Triticeae: Poaceae). PLoS One 2015; 10:e0125417. [PMID: 25946188 PMCID: PMC4422617 DOI: 10.1371/journal.pone.0125417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
To study origin and evolutionary dynamics of tetraploid Elymus trachycaulus that has been cytologically defined as containing StH genomes, thirteen accessions of E. trachycaulus were analyzed using two low-copy nuclear gene Pepc (phosphoenolpyruvate carboxylase) and Rpb2 (the second largest subunit of RNA polymerase II), and one chloroplast region trnL–trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Our chloroplast data indicated that Pseudoroegneria (St genome) was the maternal donor of E. trachycaulus. Rpb2 data indicated that the St genome in E. trachycaulus was originated from either P. strigosa, P. stipifolia, P. spicata or P. geniculate. The Hordeum (H genome)-like sequences of E. trachycaulus are polyphyletic in the Pepc tree, suggesting that the H genome in E. trachycaulus was contributed by multiple sources, whether due to multiple origins or introgression resulting from subsequent hybridization. Failure to recovering St copy of Pepc sequence in most accessions of E. trachycaulus might be caused by genome convergent evolution in allopolyploids. Multiple copies of H-like Pepc sequence from each accession with relative large deletions and insertions might be caused by either instability of Pepc sequence in H- genome or incomplete concerted evolution. Our results highlighted complex evolutionary history of E. trachycaulus.
Collapse
Affiliation(s)
- Hongwei Zuo
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Panpan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- * E-mail: (GS); (DW)
| | - Genlou Sun
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Biology Department, Saint Mary’s University, Halifax, Nova Scotia, Canada
- * E-mail: (GS); (DW)
| |
Collapse
|
216
|
Liu C, Yang X, Zhang H, Wang X, Zhang Z, Bian Y, Zhu B, Dong Y, Liu B. Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. PLANT MOLECULAR BIOLOGY 2015; 88:53-64. [PMID: 25809554 DOI: 10.1007/s11103-015-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 2015; 33:531-7. [PMID: 25893781 DOI: 10.1038/nbt.3207] [Citation(s) in RCA: 1071] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.
Collapse
|
218
|
Song Q, Chen ZJ. Epigenetic and developmental regulation in plant polyploids. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:101-9. [PMID: 25765928 PMCID: PMC4395545 DOI: 10.1016/j.pbi.2015.02.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 05/18/2023]
Abstract
Polyploidy or whole-genome duplication occurs in some animals and many flowering plants, including many important crops such as wheat, cotton and oilseed rape. The prevalence of polyploidy in the plant kingdom suggests it as an important evolutionary feature for plant speciation and crop domestication. Studies of natural and synthetic polyploids have revealed rapid and dynamic changes in genomic structure and gene expression after polyploid formation. Growing evidence suggests that epigenetic modifications can alter homoeologous gene expression and reprogram gene expression networks, which allows polyploids to establish new cytotypes, grow vigorously and promote adaptation in local environments. Sequence and gene expression changes in polyploids have been well documented and reviewed elsewhere. This review is focused on developmental regulation and epigenetic changes including DNA methylation and histone modifications in polyploids.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
219
|
Gene-expression novelty in allopolyploid cotton: a proteomic perspective. Genetics 2015; 200:91-104. [PMID: 25735302 DOI: 10.1534/genetics.115.174367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/28/2015] [Indexed: 01/20/2023] Open
Abstract
Allopolyploidization is accompanied by changes in gene expression that are thought to contribute to phenotypic diversification. Here we describe global changes in the single-celled cotton fiber proteome of two natural allopolyploid species (Gossypium hirsutum and G. barbadense) and living models of their diploid parents using two different proteomic approaches. In total, 1323 two-dimensional gel electrophoresis spots and 1652 identified proteins by isobaric tags for relative and absolute quantitation were quantitatively profiled during fiber elongation. Between allopolyploids and their diploid A- and D-genome progenitors, amounts of differential expression ranged from 4.4 to 12.8%. Over 80% of the allopolyploid proteome was additively expressed with respect to progenitor diploids. Interestingly, the fiber proteome of G. hirsutum resembles the parental A-genome more closely, where long, spinable fiber first evolved, than does the fiber proteome of G. barbadense. More protein expression patterns were A-dominant than D-dominant in G. hirsutum, but in G. barbadense, the direction of expression-level dominance switched from the D-genome to the A-genome during fiber development. Comparison of developmental changes between the two allopolyploid species revealed a high level of proteomic differentiation despite their shared ancestry, relatively recent evolutionary divergence, and similar gross morphology. These results suggest that the two allopolyploid species have achieved superficially similar modern fiber phenotypes through different evolutionary routes at the proteome level. We also detected homeolog-specific expression for 1001 proteins and present a novel approach to infer the relationship between homeolog-specific and duplicate expression patterns. Our study provides a proteomic perspective on understanding evolutionary consequences of allopolyploidization, showing how protein expression has been altered by polyploidization and subsequently has diversified among species.
Collapse
|
220
|
Betto-Colliard C, Sermier R, Litvinchuk S, Perrin N, Stöck M. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity (Edinb) 2015; 114:300-8. [PMID: 25370211 PMCID: PMC4815583 DOI: 10.1038/hdy.2014.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023] Open
Abstract
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.
Collapse
Affiliation(s)
- C Betto-Colliard
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - R Sermier
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - S Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - N Perrin
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - M Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
221
|
Buggs RJA, Wendel JF, Doyle JJ, Soltis DE, Soltis PS, Coate JE. The legacy of diploid progenitors in allopolyploid gene expression patterns. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0354. [PMID: 24958927 DOI: 10.1098/rstb.2013.0354] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allopolyploidization (hybridization and whole-genome duplication) is a common phenomenon in plant evolution with immediate saltational effects on genome structure and gene expression. New technologies have allowed rapid progress over the past decade in our understanding of the consequences of allopolyploidy. A major question, raised by early pioneer of this field Leslie Gottlieb, concerned the extent to which gene expression differences among duplicate genes present in an allopolyploid are a legacy of expression differences that were already present in the progenitor diploid species. Addressing this question necessitates phylogenetically well-understood natural study systems, appropriate technology, availability of genomic resources and a suitable analytical framework, including a sufficiently detailed and generally accepted terminology. Here, we review these requirements and illustrate their application to a natural study system that Gottlieb worked on and recommended for this purpose: recent allopolyploids of Tragopogon (Asteraceae). We reanalyse recent data from this system within the conceptual framework of parental legacies on duplicate gene expression in allopolyploids. On a broader level, we highlight the intellectual connection between Gottlieb's phrasing of this issue and the more contemporary framework of cis- versus trans-regulation of duplicate gene expression in allopolyploid plants.
Collapse
Affiliation(s)
- Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011, USA
| | - Jeffrey J Doyle
- L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
222
|
Jiang J, Wang Y, Zhu B, Fang T, Fang Y, Wang Y. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids. BMC PLANT BIOLOGY 2015; 15:22. [PMID: 25623840 PMCID: PMC4312607 DOI: 10.1186/s12870-015-0417-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/08/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. RESULTS We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. CONCLUSION Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Yue Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Bao Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Tingting Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
223
|
Zhang D, Pan Q, Cui C, Tan C, Ge X, Shao Y, Li Z. Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq. FRONTIERS IN PLANT SCIENCE 2015; 6:957. [PMID: 26583027 PMCID: PMC4631939 DOI: 10.3389/fpls.2015.00957] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/20/2015] [Indexed: 05/18/2023]
Abstract
Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brassica allotetraploids.
Collapse
Affiliation(s)
- Dawei Zhang
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Qi Pan
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Chen Tan
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of EducationWuhan, China
- *Correspondence: Yujiao Shao
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Zaiyun Li
| |
Collapse
|
224
|
Dun X, Shen W, Hu K, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T, Lagercrantz U. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. PLANT PHYSIOLOGY 2014; 166:1403-19. [PMID: 25185122 PMCID: PMC4226349 DOI: 10.1104/pp.114.246470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes.
Collapse
Affiliation(s)
- Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Zhengfu Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Ulf Lagercrantz
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| |
Collapse
|
225
|
Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. THE PLANT CELL 2014; 26:4311-27. [PMID: 25415973 PMCID: PMC4277213 DOI: 10.1105/tpc.114.129841] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
226
|
Cai G, Yang Q, Yi B, Fan C, Edwards D, Batley J, Zhou Y. A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map. PLoS One 2014; 9:e109910. [PMID: 25356735 PMCID: PMC4214627 DOI: 10.1371/journal.pone.0109910] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/13/2014] [Indexed: 12/29/2022] Open
Abstract
Polyploidy plays a crucial role in plant evolution. Brassica napus (2n = 38, AACC), the most important oil crop in the Brassica genus, is an allotetraploid that originated through natural doubling of chromosomes after the hybridization of its progenitor species, B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC). A better understanding of the evolutionary relationship between B. napus and B. rapa, B. oleracea, as well as Arabidopsis, which has a common ancestor with these three species, will provide valuable information about the generation and evolution of allopolyploidy. Based on a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, we performed a comparative genomic analysis of B. napus with Arabidopsis and its progenitor species B. rapa and B. oleracea. Based on the collinear relationship of B. rapa and B. oleracea in the B. napus genetic map, the B. napus genome was found to consist of 70.1% of the skeleton components of the chromosomes of B. rapa and B. oleracea, with 17.7% of sequences derived from reciprocal translocation between homoeologous chromosomes between the A- and C-genome and 3.6% of sequences derived from reciprocal translocation between non-homologous chromosomes at both intra- and inter-genomic levels. The current study thus provides insights into the formation and evolution of the allotetraploid B. napus genome, which will allow for more accurate transfer of genomic information from B. rapa, B. oleracea and Arabidopsis to B. napus.
Collapse
Affiliation(s)
- Guangqin Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
227
|
Shpylchyn VV, Antonyuk MZ, Ternovska TK. Genetic analysis of artificial Triticinae amphidiploid Aurotica based on the glaucousness trait. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714050107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
228
|
Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. AMERICAN JOURNAL OF BOTANY 2014; 101:1711-25. [PMID: 25090999 DOI: 10.3732/ajb.1400119] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jonathan F Wendel
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
229
|
Martin KJ, Holland PWH. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol Biol Evol 2014; 31:2592-611. [PMID: 24974377 PMCID: PMC4166920 DOI: 10.1093/molbev/msu202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approximately 350 Ma in a common ancestor of over 26,000 species of teleost fishes. Through a combination of whole genome and bacterial artificial chromosome clone sequencing we characterized all Hox gene clusters of Pantodon buchholzi, a member of the early branching teleost subdivision Osteoglossomorpha. We find 45 Hox genes organized in only five clusters indicating that Pantodon has suffered more Hox cluster loss than other known species. Despite strong evidence for homology of the five Pantodon clusters to the four canonical pre-TGD vertebrate clusters (one HoxA, two HoxB, one HoxC, and one HoxD), we were unable to confidently resolve 1:1 orthology relationships between four of the Pantodon clusters and the eight post-TGD clusters of other teleosts. Phylogenetic analysis revealed that many Pantodon genes segregate outside the conventional "a" and "b" post-TGD orthology groups, that extensive topological incongruence exists between genes physically linked on a single cluster, and that signal divergence causes ambivalence in assigning 1:1 orthology in concatenated Hox cluster analyses. Out of several possible explanations for this phenomenon we favor a model which keeps with the prevailing view of a single TGD prior to teleost radiation, but which also considers the timing of diploidization after duplication, relative to speciation events. We suggest that although the duplicated hoxa clusters diploidized prior to divergence of osteoglossomorphs, the duplicated hoxb, hoxc, and hoxd clusters concluded diploidization independently in osteoglossomorphs and other teleosts. We use the term "tetralogy" to describe the homology relationship which exists between duplicated sequences which originate through a shared WGD, but which diploidize into distinct paralogs from a common allelic pool independently in two lineages following speciation.
Collapse
Affiliation(s)
- Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
230
|
Havlícková L, Jozová E, Klíma M, Kucera V, Curn V. Detection of self-incompatible oilseed rape plants (Brassica napus L.) based on molecular markers for identification of the class I S haplotype. Genet Mol Biol 2014; 37:556-9. [PMID: 25249779 PMCID: PMC4171774 DOI: 10.1590/s1415-47572014000400012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/14/2014] [Indexed: 11/22/2022] Open
Abstract
The selection of desirable genotypes with recessive characteristics, such as self-incompatible plants, is often difficult or even impossible and represents a crucial barrier in accelerating the breeding process. Molecular approaches and selection based on molecular markers can allow breeders to overcome this limitation. The use of self-incompatibility is an alternative in hybrid breeding of oilseed rape. Unfortunately, stable self-incompatibility is recessive and phenotype-based selection is very difficult and time-consuming. The development of reliable molecular markers for detecting desirable plants with functional self-incompatible genes is of great importance for breeders and allows selection at early stages of plant growth. Because most of these reliable molecular markers are based on discrimination of class I S-locus genes that are present in self-compatible plants, there is a need to use an internal control in order to detect possible PCR inhibition that gives false results during genotyping. In this study, 269 double haploid F2 oilseed rape plants obtained by microspore embryogenesis were used to verify the applicability of an improved PCR assay based on the detection of the class I SLG gene along with an internal control. Comparative analysis of the PCR genotyping results vs. S phenotype analysis confirmed the applicability of this molecular approach in hybrid breeding programs. This approach allows accurate detection of self-incompatible plants via a different amplification profile.
Collapse
Affiliation(s)
- Lenka Havlícková
- Biotechnological Centre, Faculty of Agriculture,
University of South Bohemia,
Ceské Budejovice,
Czech Republic
| | - Eva Jozová
- Biotechnological Centre, Faculty of Agriculture,
University of South Bohemia,
Ceské Budejovice,
Czech Republic
| | | | | | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture,
University of South Bohemia,
Ceské Budejovice,
Czech Republic
| |
Collapse
|
231
|
Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014; 345:950-3. [PMID: 25146293 DOI: 10.1126/science.1253435] [Citation(s) in RCA: 1506] [Impact Index Per Article: 136.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.
Collapse
Affiliation(s)
- Boulos Chalhoub
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - France Denoeud
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France. Université d'Evry Val d'Essone, UMR 8030, CP5706, Evry, France. Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, MD 20850, USA. Center for Genomics and Biotechnology, Fujian Agriculture and Forestry, University, Fuzhou 350002, Fujian Province, China
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA. Center of Genomics and Computational Biology, School of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Julien Chiquet
- Laboratoire de Mathématiques et Modélisation d'Evry-UMR 8071 CNRS/Université d'Evry val d'Essonne-USC INRA, Evry, France
| | - Harry Belcram
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Birgit Samans
- Department of Plant Breeding, Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Margot Corréa
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Jérémy Just
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Cyril Falentin
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Chu Shin Koh
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Isabelle Le Clainche
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Mathieu Charles
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Dominique Arnaud
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Salman Alamery
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kamel Jabbari
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France. Cologne Center for Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Meixia Zhao
- Department of Agronomy, Purdue University, WSLR Building B018, West Lafayette, IN 47907, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Houda Chelaifa
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - David Tack
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Gilles Lassalle
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Imen Mestiri
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Nicolas Schnel
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Marie-Christine Le Paslier
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Guangyi Fan
- Beijing Genome Institute-Shenzhen, Shenzhen 518083, China
| | - Victor Renault
- Fondation Jean Dausset-Centre d'Étude du Polymorphisme Humain, 27 rue Juliette Dodu, 75010 Paris, France
| | - Philippe E Bayer
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Agnieszka A Golicz
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahana Manoli
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Vinh Ha Dinh Thi
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Smahane Chalabi
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Qiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Reece Tollenaere
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yunhai Lu
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christophe Battail
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Aurélie Canaguier
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Aurélie Chauveau
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Aurélie Bérard
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Gwenaëlle Deniot
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Mei Guan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fengming Sun
- Beijing Genome Institute-Shenzhen, Shenzhen 518083, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon-305764, South Korea
| | - Eric Lyons
- School of Plant Sciences, iPlant Collaborative, University of Arizona, Tucson, AZ, USA
| | | | - Ian Bancroft
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, WSLR Building B018, West Lafayette, IN 47907, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Dominique Brunel
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Régine Delourme
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Michel Renard
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Keith L Adams
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline Batley
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. School of Plant Biology, University of Western Australia, WA 6009, Australia
| | - Rod J Snowdon
- Department of Plant Breeding, Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91000 Evry, France
| | - David Edwards
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. School of Plant Biology, University of Western Australia, WA 6009, Australia.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA.
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France. Université d'Evry Val d'Essone, UMR 8030, CP5706, Evry, France. Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France.
| |
Collapse
|
232
|
Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. Polyploidy and novelty: Gottlieb's legacy. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130351. [PMID: 24958924 PMCID: PMC4071524 DOI: 10.1098/rstb.2013.0351] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nearly four decades ago, Roose & Gottlieb (Roose & Gottlieb 1976 Evolution 30, 818-830. (doi:10.2307/2407821)) showed that the recently derived allotetraploids Tragopogon mirus and T. miscellus combined the allozyme profiles of their diploid parents (T. dubius and T. porrifolius, and T. dubius and T. pratensis, respectively). This classic paper addressed the link between genotype and biochemical phenotype and documented enzyme additivity in allopolyploids. Perhaps more important than their model of additivity, however, was their demonstration of novelty at the biochemical level. Enzyme multiplicity-the production of novel enzyme forms in the allopolyploids-can provide an extensive array of polymorphism for a polyploid individual and may explain, for example, the expanded ranges of polyploids relative to their diploid progenitors. In this paper, we extend the concept of evolutionary novelty in allopolyploids to a range of genetic and ecological features. We observe that the dynamic nature of polyploid genomes-with alterations in gene content, gene number, gene arrangement, gene expression and transposon activity-may generate sufficient novelty that every individual in a polyploid population or species may be unique. Whereas certain combinations of these features will undoubtedly be maladaptive, some unique combinations of newly generated variation may provide tremendous evolutionary potential and adaptive capabilities.
Collapse
Affiliation(s)
- Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
233
|
Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R. Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker. BMC Genomics 2014; 15:498. [PMID: 24948032 PMCID: PMC4082613 DOI: 10.1186/1471-2164-15-498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 06/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several major crop species are current or ancient polyploids. To better describe the genetic factors controlling traits of agronomic interest (QTL), it is necessary to understand the structural and functional organisation of these QTL regions in relation to genome duplication. We investigated quantitative resistance to the fungal disease stem canker in Brassica napus, a highly duplicated amphidiploid species, to assess the proportion of resistance QTL located at duplicated positions. RESULTS Genome-wide association analysis on a panel of 116 oilseed rape varieties genotyped with 3228 SNP indicated that 321 markers, corresponding to 64 genomic regions, are associated with resistance to stem canker. These genomic regions are relatively equally distributed on the A (53%) and C (47%) genomes of B. napus. Overall, 44% of these regions (28/64) are duplicated homoeologous regions. They are located in duplications of six (E, J, R, T, U and W) of the 24 ancestral blocks that constitute the B. napus genome. Overall, these six ancestral blocks have 34 duplicated copies in the B.napus genome. Almost all of the duplicated copies (82% of the 34 regions) harboured resistance associated markers for stem canker resistance, which suggests structural and functional conservation of genetic factors involved in this trait in B. napus. CONCLUSIONS Our study provides information on the involvement of duplicated loci in the control of stem canker resistance in B. napus. Further investigation of the similarity/divergence in sequence and gene content of these duplicated regions will provide insight into the conservation and allelic diversity of the underlying genes.
Collapse
|
234
|
Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 2014; 1320:16-34. [PMID: 24903334 DOI: 10.1111/nyas.12466] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.
Collapse
|
235
|
Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (). THE NEW PHYTOLOGIST 2014; 202:1105-1117. [PMID: 24754325 DOI: 10.1111/nph.12756] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - María Claudia Segovia-Salcedo
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Grupo de Investigacíon Conservación de Bosques de Polylepis, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de la Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Ingrid Jordon-Thaden
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- University and Jepson Herbaria, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Lucas Majure
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicolas M Miles
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Evgeny V Mavrodiev
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Wenbin Mei
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | | | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
236
|
Lashermes P, Combes MC, Hueber Y, Severac D, Dereeper A. Genome rearrangements derived from homoeologous recombination following allopolyploidy speciation in coffee. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:674-85. [PMID: 24628823 DOI: 10.1111/tpj.12505] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 05/27/2023]
Abstract
Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next-generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single-nucleotide polymorphisms detected using RNA-seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.
Collapse
Affiliation(s)
- Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
237
|
|
238
|
Near-absent levels of segregational variation suggest limited opportunities for the introduction of genetic variation via homeologous chromosome pairing in synthetic neoallotetraploid Mimulus. G3-GENES GENOMES GENETICS 2014; 4:509-22. [PMID: 24470218 PMCID: PMC3962489 DOI: 10.1534/g3.113.008441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetic variation is the fundamental medium of evolution. In allopolyploids, which are the product of hybridization and whole genome duplication, if homologous chromosomes always pair, then all descendants of a single diploid F1 hybrid lineage will be genetically identical. Contrarily, genetic variation among initially isogenic lineages is augmented when homeologous chromosomes pair; this added variation may contribute to phenotypic evolution. Mimulus sookensis is a naturally occurring, small-flowered allotetraploid derived from the large-flowered Mimulus guttatus and small-flowered Mimulus nasutus. Because diploid F1 hybrids between M. guttatus and M. nasutus have large flowers, phenotypic evolution post-polyploidization is implied in M. sookensis. Here, we present genetic and phenotypic analyses of synthetic neoallotetraploid Mimulus derived from a cross between M. guttatus and M. nasutus. Genetic marker data from S2 and BC1N progeny suggest that chromosomes regularly pair with their homologous counterpart. By measuring the phenotype of synthetic neoallotetraploids, we demonstrate that polyploidization per se does not induce the small flowers of M. sookensis. Moreover, phenotypic measurements of synthetic allotetraploid F2s and S4 families suggest that rare homeologous recombination events have a negligible phenotypic effect in the first few generations. In total, the results are consistent with either exceedingly rare homeologous pairing and recombination or spontaneous fragment loss. The low levels of fragment loss and phenotypic variation in neoallotetraploids suggest that homeologous recombination after polyploidization is not a major mechanism of phenotypic evolution in M. sookensis. Rather, it may be that spontaneous mutations or epigenetic changes after allopolyploidization have driven phenotypic evolution in M. sookensis.
Collapse
|
239
|
Cox MP, Dong T, Shen G, Dalvi Y, Scott DB, Ganley ARD. An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns. PLoS Genet 2014; 10:e1004180. [PMID: 24603805 PMCID: PMC3945203 DOI: 10.1371/journal.pgen.1004180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Polyploidy, a state in which the chromosome complement has undergone an increase, is a major force in evolution. Understanding the consequences of polyploidy has received much attention, and allopolyploids, which result from the union of two different parental genomes, are of particular interest because they must overcome a suite of biological responses to this merger, known as “genome shock.” A key question is what happens to gene expression of the two gene copies following allopolyploidization, but until recently the tools to answer this question on a genome-wide basis were lacking. Here we utilize high throughput transcriptome sequencing to produce the first genome-wide picture of gene expression response to allopolyploidy in fungi. A novel pipeline for assigning sequence reads to the gene copies was used to quantify their expression in a fungal allopolyploid. We find that the transcriptional response to allopolyploidy is predominantly conservative: both copies of most genes are retained; over half the genes inherit parental gene expression patterns; and parental differential expression is often lost in the allopolyploid. Strikingly, the patterns of gene expression change are highly concordant with the genome-wide expression results of a cotton allopolyploid. The very different nature of these two allopolyploids implies a conserved, eukaryote-wide transcriptional response to genome merger. We provide evidence that the transcriptional responses we observe are mostly driven by intrinsic differences between the regulatory systems in the parent species, and from this propose a mechanistic model in which the cross-kingdom conservation in transcriptional response reflects conservation of the mutational processes underlying eukaryotic gene regulatory evolution. This work provides a platform to develop a universal understanding of gene expression response to allopolyploidy and suggests that allopolyploids are an exceptional system to investigate gene regulatory changes that have evolved in the parental species prior to allopolyploidization. Organisms are complex biological systems that must continue to function even as their genomes evolve. While evolution is usually gradual, the formation of new species by the hybridization of different parents—allopolyploidization—occurs nearly instantaneously. A key question is what happens to expression of the two parental gene copies following genome merger. To determine this, we focused on a fungal allopolyploid from a group that dominates many of the world's pastoral economies. To investigate the fate of gene expression in this system, we developed a novel pipeline to assign high throughput RNA sequence reads to the two parental gene copies, thus allowing quantification of expression. We found transcriptional responses to be predominantly conservative: most gene copies either inherit parental expression patterns, or if differentially expressed in the parents, that difference is lost in the hybrid. Moreover, we identified an extraordinary level of concordance in the fate of genome-wide allopolyploid gene expression with that seen in cotton. The very different nature of these two allopolyploids suggests that there is a set of universal rules for the transcriptional response to genome merger. We propose a mechanistic model whereby this conserved response reflects similarities in mutational processes that underlie gene regulatory evolution.
Collapse
Affiliation(s)
- Murray P. Cox
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- * E-mail: (MPC); (ARDG)
| | - Ting Dong
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - GengGeng Shen
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Yogesh Dalvi
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - D. Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- * E-mail: (MPC); (ARDG)
| |
Collapse
|
240
|
Xiao D, Wang H, Basnet RK, Zhao J, Lin K, Hou X, Bonnema G. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. PLANT PHYSIOLOGY 2014; 164:1309-25. [PMID: 24394778 PMCID: PMC3938622 DOI: 10.1104/pp.113.227348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/01/2014] [Indexed: 05/20/2023]
Abstract
The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene Brassica rapa KIP-related protein2_A03 colocalized with QTLs for leaf shape and plant height; Brassica rapa Erecta_A09 colocalized with QTLs for leaf color and leaf shape; Brassica rapa Longifolia1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, Brassica rapa flowering locus C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa.
Collapse
|
241
|
Sui Y, Li B, Shi J, Chen M. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta. BMC Genomics 2014; 15:11. [PMID: 24393121 PMCID: PMC3890553 DOI: 10.1186/1471-2164-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/30/2013] [Indexed: 11/27/2022] Open
Abstract
Background Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. Results Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement. Conclusions Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.
Collapse
Affiliation(s)
| | | | | | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
242
|
Rambani A, Page JT, Udall JA. Polyploidy and the petal transcriptome of Gossypium. BMC PLANT BIOLOGY 2014; 14:3. [PMID: 24393201 PMCID: PMC3890615 DOI: 10.1186/1471-2229-14-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Background Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. Results Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. Conclusions Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation.
Collapse
Affiliation(s)
- Aditi Rambani
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Justin T Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua A Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
243
|
Matsuoka Y, Takumi S, Nasuda S. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:199-258. [PMID: 24529724 DOI: 10.1016/b978-0-12-800255-1.00004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
244
|
Schiessl S, Samans B, Hüttel B, Reinhard R, Snowdon RJ. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. FRONTIERS IN PLANT SCIENCE 2014; 5:404. [PMID: 25202314 PMCID: PMC4142343 DOI: 10.3389/fpls.2014.00404] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2014] [Indexed: 05/18/2023]
Abstract
Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, GiessenGiessen, Germany
- *Correspondence: Sarah Schiessl, Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany e-mail:
| | - Birgit Samans
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, GiessenGiessen, Germany
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Breeding ResearchCologne, Germany
| | - Richard Reinhard
- Max Planck Genome Centre Cologne, Max Planck Institute for Breeding ResearchCologne, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, GiessenGiessen, Germany
| |
Collapse
|
245
|
Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L. The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. THE PLANT CELL 2014; 26:181-94. [PMID: 24464296 PMCID: PMC3963567 DOI: 10.1105/tpc.113.120626] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 05/18/2023]
Abstract
Whole-genome duplication resulting from polyploidy is ubiquitous in the evolutionary history of plant species. Yet, polyploids must overcome the meiotic challenge of pairing, recombining, and segregating more than two sets of chromosomes. Using genomic sequencing of synthetic and natural allopolyploids of Arabidopsis thaliana and Arabidopsis arenosa, we determined that dosage variation and chromosomal translocations consistent with homoeologous pairing were more frequent in the synthetic allopolyploids. To test the role of structural chromosomal differentiation versus genetic regulation of meiotic pairing, we performed sequenced-based, high-density genetic mapping in F2 hybrids between synthetic and natural lines. This F2 population displayed frequent dosage variation and deleterious homoeologous recombination. The genetic map derived from this population provided no indication of structural evolution of the genome of the natural allopolyploid Arabidopsis suecica, compared with its predicted parents. The F2 population displayed variation in meiotic regularity and pollen viability that correlated with a single quantitative trait locus, which we named BOY NAMED SUE, and whose beneficial allele was contributed by A. suecica. This demonstrates that an additive, gain-of-function allele contributes to meiotic stability and fertility in a recently established allopolyploid and provides an Arabidopsis system to decipher evolutionary and molecular mechanisms of meiotic regularity in polyploids.
Collapse
Affiliation(s)
- Isabelle M. Henry
- Plant Biology and Genome Center, University of California Davis, Davis, California 95616
| | - Brian P. Dilkes
- Plant Biology and Genome Center, University of California Davis, Davis, California 95616
- Department of Biology, University of Washington, Seattle, Washington 98195-5325
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47905
| | - Anand Tyagi
- Plant Biology and Genome Center, University of California Davis, Davis, California 95616
| | - Jian Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Brian Christensen
- Department of Biology, University of Washington, Seattle, Washington 98195-5325
| | - Luca Comai
- Plant Biology and Genome Center, University of California Davis, Davis, California 95616
- Department of Biology, University of Washington, Seattle, Washington 98195-5325
- Address correspondence to
| |
Collapse
|
246
|
Clarke WE, Parkin IA, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, Sharpe AG, Snowdon RJ, Federico ML, Iniguez-Luy FL. Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. PLoS One 2013; 8:e81992. [PMID: 24312619 PMCID: PMC3849492 DOI: 10.1371/journal.pone.0081992] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/20/2013] [Indexed: 12/24/2022] Open
Abstract
Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.
Collapse
Affiliation(s)
- Wayne E. Clarke
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Isobel A. Parkin
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Humberto A. Gajardo
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic Center (CGNA), Temuco, Louisiana, United States of America Araucanía, Chile
| | | | - Erin Higgins
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Christine Sidebottom
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Andrew G. Sharpe
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Maria L. Federico
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic Center (CGNA), Temuco, Louisiana, United States of America Araucanía, Chile
| | - Federico L. Iniguez-Luy
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic Center (CGNA), Temuco, Louisiana, United States of America Araucanía, Chile
- * E-mail:
| |
Collapse
|
247
|
Dufresne F, Stift M, Vergilino R, Mable BK. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 2013; 23:40-69. [DOI: 10.1111/mec.12581] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- France Dufresne
- Département de Biologie; Université du Québec à Rimouski; Québec QC Canada G5L 3A1
| | - Marc Stift
- Department of Biology; University of Konstanz; Konstanz D 78457 Germany
| | - Roland Vergilino
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Barbara K. Mable
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
248
|
Wei L, An Z, Mason AS, Xiao M, Guo Y, Yin J, Li J, Fu D. Extensive tRNA gene changes in synthetic Brassica napus. J Mol Evol 2013; 78:38-49. [PMID: 24271856 DOI: 10.1007/s00239-013-9598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Allopolyploidization, where two species come together to form a new species, plays a major role in speciation and genome evolution. Transfer RNAs (abbreviated tRNA) are typically 73-94 nucleotides in length, and are indispensable in protein synthesis, transferring amino acids to the cell protein synthesis machinery (ribosome). To date, the regularity and function of tRNA gene sequence variation during the process of allopolyploidization have not been well understood. In this study, the inter-tRNA gene corresponding to tRNA amplification polymorphism method was used to detect changes in tRNA gene sequences in the progeny of interspecific hybrids between Brassica rapa and B. oleracea, mimicking the original B. napus (canola) species formation event. Cluster analysis showed that tRNA gene variation during allopolyploidization did not appear to have a genotypic basis. Significant variation occurred in the early generations of synthetic B. napus (F1 and F2 generations), but fewer alterations were observed in the later generation (F3). The variation-prone tRNA genes tended to be located in AT-rich regions. BlastN analysis of novel tRNA gene variants against a Brassica genome sequence database showed that the variation of these tRNA-gene-associated sequences in allopolyploidization might result in variation of gene structure and function, e.g., metabolic process and transport.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci U S A 2013; 110:19466-71. [PMID: 24218593 DOI: 10.1073/pnas.1319598110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.
Collapse
|
250
|
Ge XH, Ding L, Li ZY. Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. PLANT CELL REPORTS 2013; 32:1661-73. [PMID: 23864197 DOI: 10.1007/s00299-013-1475-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/05/2023]
Abstract
Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.
Collapse
Affiliation(s)
- Xian-Hong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | |
Collapse
|