201
|
Candresse T, Krause-Sakate R, Richard-Forget F, Redondo E, German-Retana S, Le Gall O. Plant viruses and the recent discovery of unforeseen basic cellular processes. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:935-41. [PMID: 11570282 DOI: 10.1016/s0764-4469(01)01369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given their small genome size, the biological cycle of plant viruses is tightly integrated with the cellular processes of their host plants, so that studies of the viral biology will often provide insights into basic cellular processes. In the last decade, two such unforeseen mechanisms were discovered. One concerns intercellular communications: for their movement in infected plants, viruses use channels (plasmodesmata, phloem) also used by the plant to exchange information-rich molecules (proteins, RNAs) between cells. The second phenomenon concerns the existence, in plants, of an anti-viral defence mechanism based on the specific degradation of RNA molecules in the cytoplasm. This same mechanism, also allowing the regulation of gene expression (post-transcriptional gene silencing, PTGS) now appears to be widespread in pluricellular organisms. Besides their general interest, these new results modify drastically our vision of interactions between plant and viruses and raise numerous new research questions.
Collapse
Affiliation(s)
- T Candresse
- Equipe de virologie, UMR GD2P, IBVM, centre Inra de Bordeaux, BP 81, 33883 Villenave-d'Ornon, France.
| | | | | | | | | | | |
Collapse
|
202
|
Ryabov EV, Robinson DJ, Taliansky M. Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 2001; 288:391-400. [PMID: 11601910 DOI: 10.1006/viro.2001.1078] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteins encoded by open reading frame 3 (ORF3) of the umbraviruses pea enation mosaic virus-2 and tobacco mottle virus, like that of groundnut rosette virus, mediated the movement of viral RNA through the phloem of infected Nicotiana benthamiana or N. clevelandii plants when they were expressed from chimeric tobacco mosaic virus in place of the coat protein. However, these chimeras did not move systemically in N. tabacum. In lysates of N. benthamiana or N. tabacum protoplasts, the chimeric RNAs were more stable than was RNA of tobacco mosaic virus lacking the coat protein gene. The chimeric viruses also protected the latter in trans, suggesting that the ORF3 proteins can increase the stability of heterologous viral RNA. Umbraviral ORF3 proteins contain a conserved arginine-rich domain, and the possible roles of this motif in the functions of the proteins are discussed.
Collapse
Affiliation(s)
- E V Ryabov
- Unit of Virology, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
| | | | | |
Collapse
|
203
|
Lough TJ, Emerson SJ, Lucas WJ, Forster RL. Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology 2001; 288:18-28. [PMID: 11543654 DOI: 10.1006/viro.2001.1060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Both cell-to-cell and long-distance movement of White clover mosaic virus in which individual, combinations, or all movement functions were mutated could be rescued by transgenic Nicotiana benthamiana expressing complementary viral products. To address the importance of TGB functions in vascular transport, we used an experimental system based on grafted plants and trans-complementation, to define co-translocated viral products and the minimal requirements for viral exit from the plant vasculature. Evidence is presented that TGBp1 is co-translocated with viral RNA and CP and that, once viral RNA is loaded into the phloem translocation stream, it can exit in sink tissues and replicate in the absence of TGBp2-3. These results are discussed in the context of the recent finding that TGBp1 can mediate the suppression of signaling involved in systemic gene silencing.
Collapse
Affiliation(s)
- T J Lough
- Plant Health and Development Group, Horticulture and Food Research Institute of New Zealand, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
204
|
Nagano H, Mise K, Furusawa I, Okuno T. Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J Virol 2001; 75:8045-53. [PMID: 11483749 PMCID: PMC115048 DOI: 10.1128/jvi.75.17.8045-8053.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 05/29/2001] [Indexed: 11/20/2022] Open
Abstract
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.
Collapse
Affiliation(s)
- H Nagano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
205
|
Lauber E, Janssens L, Weyens G, Jonard G, Richards KE, Lefèbvre M, Guilley H. Rapid screening for dominant negative mutations in the beet necrotic yellow vein virus triple gene block proteins P13 and P15 using a viral replicon. Transgenic Res 2001; 10:293-302. [PMID: 11592709 DOI: 10.1023/a:1016689430264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Point mutations were introduced into the genes encoding the triple gene bock movement proteins P13 and P15 of beet necrotic yellow vein virus (BNYVV). Mutations which disabled viral cell-to-cell movement in Chenopodium quinoa were then tested for their ability to act as dominant negative inhibiters of movement of wild-type BNYVV when expressed from a co-inoculated BNYVV RNA 3-based replicon. For P13, three types of mutation inhibited the movement function: non-synomynous mutations in the N- and C-terminal hydrophobic domains, a mutation at the boundary between the N-terminal hydrophobic domain and the central hydrophilic domain (mutant P13-A12), and mutations in the conserved sequence motif in the central hydrophilic domain. However, only the 'boundary' mutant P13-A12 strongly inhibited movement of wild-type virus when expressed from the co-inoculated replicon. Similar experiments with P15 detected four movement-defective mutants which strongly inhibited cell-to-cell movement of wild-type BNYVV when the mutants were expressed from a co-inoculated replicon. Beta vulgaris transformed with two of these P15 mutants were highly resistant to fungus-mediated infection with BNYVV.
Collapse
Affiliation(s)
- E Lauber
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
206
|
Tóbiás I, Palkovics L, Tzekova L, Balázs E. Replacement of the coat protein gene of plum pox potyvirus with that of zucchini yellow mosaic potyvirus: characterization of the hybrid potyvirus. Virus Res 2001; 76:9-16. [PMID: 11376842 DOI: 10.1016/s0168-1702(01)00241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infectious hybrid virus was generated by replacing part of the coat protein gene of plum pox potyvirus with that of the zucchini yellow mosaic potyvirus. This viable hybrid contains 84.5% of zucchini yellow mosaic potyvirus coat protein gene while the rest of the sequence was derived from plum pox potyvirus. Changing the coat protein gene between these two viruses had no effect on the experimental host range. Pathogenicity, stability and replication capacity of the hybrid virus were nearly identical to the parent viruses.
Collapse
Affiliation(s)
- I Tóbiás
- Plant Protection Institute, Hungarian Academy of Sciences, H-1515 P.O. Box 102, Budapest, Hungary
| | | | | | | |
Collapse
|
207
|
Okinaka Y, Mise K, Suzuki E, Okuno T, Furusawa I. The C terminus of brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J Virol 2001; 75:5385-90. [PMID: 11333922 PMCID: PMC114946 DOI: 10.1128/jvi.75.11.5385-5390.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2000] [Accepted: 03/09/2001] [Indexed: 11/20/2022] Open
Abstract
To investigate the functional domains of the coat protein (CP; 189 amino acids) of Brome mosaic virus, a plant RNA virus, 19 alanine-scanning mutants were constructed and tested for their infectivity in barley and Nicotiana benthamiana. Despite its apparent normal replicative competence and CP production, the C-terminal mutant F184A produced no virions. Furthermore, virion-forming C-terminal mutants P178A and D182A failed to move from cell to cell in both plant species, and mutants D181A and V187A showed host-specific movement. These results indicate that the C-terminal region of CP plays some important roles in virus movement and encapsidation. The specificity of certain mutations for viral movement in two different plant species is evidence for the involvement of host-specific factors.
Collapse
Affiliation(s)
- Y Okinaka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
208
|
Hajimorad MR, Hill JH. Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:587-98. [PMID: 11332723 DOI: 10.1094/mpmi.2001.14.5.587] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rsv1, a single dominant gene in soybean PI 96983, confers resistance to most strains of Soybean mosaic virus (SMV), including strain G2. The phenotypic response includes the lack of symptoms and virus recovery from mechanically inoculated leaves. To study the resistance mechanism, SMV-N (an isolate of strain G2) was introduced into PI 96983 by grafting. Hypersensitive response (HR)-like lesions occurred on the stems, petioles, and leaf veins, and virus was recovered from these lesions. The response demonstrated the cytological and histological characteristics of HR as well as elevated transcription of a soybean salicylic acid-inducible, pathogenesis-related (PR-1) protein gene. Mechanical inoculation of PI 96983 primary leaves with a high level of SMV-N virions caused no symptoms or up regulation of the PR-1 protein gene transcript. Furthermore, inoculation with infectious viral RNA did not alter the resistance phenotype. The data suggest that interaction of SMV-N with Rsv1 has the potential to induce an HR-like defense reaction. Rsv1-mediated resistance in the inoculated leaf, however, is HR-independent and operates after virion disassembly.
Collapse
Affiliation(s)
- M R Hajimorad
- Department of Plant Pathology, Iowa State University, Ames 50011, USA.
| | | |
Collapse
|
209
|
Allan AC, Lapidot M, Culver JN, Fluhr R. An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. PLANT PHYSIOLOGY 2001; 126:97-108. [PMID: 11351074 PMCID: PMC102285 DOI: 10.1104/pp.126.1.97] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Revised: 11/16/2000] [Accepted: 01/15/2001] [Indexed: 05/18/2023]
Abstract
Induction of reactive oxygen species (ROS) was observed within seconds of the addition of exogenous tobacco mosaic virus (TMV) to the outside of tobacco (Nicotiana tabacum cv Samsun NN, EN, or nn) epidermal cells. Cell death was correlated with ROS production. Infectivity of the TMV virus was not a prerequisite for this elicitation and isolated coat protein (CP) subunits could also elicit the fast oxidative burst. The rapid induction of ROS was prevented by both inhibitors of plant signal transduction and inhibitors of NAD(P)H oxidases, suggesting activation of a multi-step signal transduction pathway. Induction of intracellular ROS by TMV was detected in TMV-resistant and -susceptible tobacco cultivars isogenic for the N allele. The burst was also detected with strains of virus that either elicit (ToMV) or fail to elicit (TMV U1) N' gene-mediated responses. Hence, early ROS generation is independent or upstream of known genetic systems in tobacco that can mediate hypersensitive responses. Analysis of other viruses and TMV CP mutants showed marked differences in their ability to induce ROS showing specificity of the response. Thus, initial TMV-plant cell interactions that lead to early ROS induction occur outside the plasma membrane in an event requiring specific CP epitopes.
Collapse
Affiliation(s)
- A C Allan
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
210
|
Dasgupta R, Garcia BH, Goodman RM. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes. Proc Natl Acad Sci U S A 2001; 98:4910-5. [PMID: 11296259 PMCID: PMC33137 DOI: 10.1073/pnas.081288198] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2000] [Indexed: 11/18/2022] Open
Abstract
Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434-438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants.
Collapse
Affiliation(s)
- R Dasgupta
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
211
|
Taliansky ME, Robinson DJ, Murant AF. Groundnut rosette disease virus complex: biology and molecular biology. Adv Virus Res 2001; 55:357-400. [PMID: 11050947 DOI: 10.1016/s0065-3527(00)55008-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M E Taliansky
- Virology Department, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | |
Collapse
|
212
|
Crawford KM, Zambryski PC. Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. PLANT PHYSIOLOGY 2001; 125:1802-12. [PMID: 11299360 PMCID: PMC88836 DOI: 10.1104/pp.125.4.1802] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Revised: 12/19/2000] [Accepted: 01/09/2001] [Indexed: 05/18/2023]
Abstract
Plant cells rely on plasmodesmata for intercellular transport of small signaling molecules as well as larger informational macromolecules such as proteins. A green fluorescent protein (GFP) reporter and low-pressure microprojectile bombardment were used to quantify the degree of symplastic continuity between cells of the leaf at different developmental stages and under different growth conditions. Plasmodesmata were observed to be closed to the transport of GFP or dilated to allow the traffic of GFP. In sink leaves, between 34% and 67% of the cells transport GFP (27 kD), and between 30% and 46% of the cells transport double GFP (54 kD). In leaves in transition transport was reduced; between 21% and 46% and between 2% and 9% of cells transport single and double GFP, respectively. Thus, leaf age dramatically affects the ability of cells to exchange proteins nonselectively. Further, the number of cells allowing GFP or double GFP movement was sensitive to growth conditions because greenhouse-grown plants exhibited higher diffusion rates than culture-grown plants. These studies reveal that leaf cell plasmodesmata are dynamic and do not have a set size exclusion limit. We also examined targeted movement of the movement protein of tobacco mosaic virus fused to GFP, P30::GFP. This 58-kD fusion protein localizes to plasmodesmata, consistently transits from up to 78% of transfected cells, and was not sensitive to developmental age or growth conditions. The relative number of cells containing dilated plasmodesmata varies between different species of tobacco, with Nicotiana clevelandii exhibiting greater diffusion of proteins than Nicotiana tabacum.
Collapse
Affiliation(s)
- K M Crawford
- University of California, Department of Plant and Microbial Biology, Berkeley, California 94720, USA
| | | |
Collapse
|
213
|
Zambryski P, Crawford K. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu Rev Cell Dev Biol 2001; 16:393-421. [PMID: 11031242 DOI: 10.1146/annurev.cellbio.16.1.393] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell walls separate individual plant cells. To enable essential intercellular communication, plants have evolved membrane-lined channels, termed plasmodesmata, that interconnect the cytoplasm between neighboring cells. Historically, plasmodesmata were viewed as facilitating traffic of low-molecular weight growth regulators and nutrients critical to growth. Evidence for macromolecular transport via plasmodesmata was solely based on the exploitation of plasmodesmata by plant viruses during infectious spread. Now plasmodesmata are revealed to transport endogenous proteins, including transcription factors important for development. Two general types of proteins, non-targeted and plasmodesmata-targeted, traffic plasmodesmata channels. Size and subcellular location influence non-targeted protein transportability. Superimposed on cargo-specific parameters, plasmodesmata themselves fluctuate in aperture between closed, open, and dilated. Furthermore, plasmodesmata alter their transport capacity temporally during development and spatially in different regions of the plant. Plasmodesmata are exposed as major gatekeepers of signaling molecules that facilitate or regulate developmental programs, maintain physiological status, and respond to pathogens.
Collapse
Affiliation(s)
- P Zambryski
- Department of Plant and Microbial Biology, Koshland Hall, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
214
|
Szittya G, Burgyán J. Cymbidium ringspot tombusvirus coat protein coding sequence acts as an avirulent RNA. J Virol 2001; 75:2411-20. [PMID: 11160744 PMCID: PMC114824 DOI: 10.1128/jvi.75.5.2411-2420.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avirulent genes either directly or indirectly produce elicitors that are recognized by specific receptors of plant resistance genes, leading to the induction of host defense responses such as hypersensitive reaction (HR). HR is characterized by the development of a necrotic lesion at the site of infection which results in confinement of the invader to this area. Artificial chimeras and mutants of cymbidium ringspot (CymRSV) and the pepper isolate of tomato bushy stunt (TBSV-P) tombusviruses were used to determine viral factors involved in the HR resistance phenotype of Datura stramonium upon infection with CymRSV. A series of constructs carrying deletions and frameshifts of the CymRSV coat protein (CP) undoubtedly clarified that an 860-nucleotide (nt)-long RNA sequence in the CymRSV CP coding region (between nt 2666 and 3526) is the elicitor of a very rapid HR-like response of D. stramonium which limits the virus spread. This finding provides the first evidence that an untranslatable RNA can trigger an HR-like resistance response in virus-infected plants. The effectiveness of the resistance response might indicate that other nonhost resistance could also be due to RNA-mediated HR. It is an appealing explanation that RNA-mediated HR has evolved as an alternative defense strategy against RNA viruses.
Collapse
Affiliation(s)
- G Szittya
- Agricultural Biotechnology Center, 2101 Gödöllo, Hungary
| | | |
Collapse
|
215
|
Sasaki N, Fujita Y, Mise K, Furusawa I. Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost. Virology 2001; 279:47-57. [PMID: 11145888 DOI: 10.1006/viro.2000.0518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hybrid Cowpea chlorotic mottle virus (CCMV) [CCMV(B3a)] in which the CCMV 3a movement protein gene is replaced by the 3a (B3a) gene of Brome mosaic virus cannot infect cowpea systemically. Previously, analysis of RNA3 cDNA clones constructed from cowpea-adapted mutants derived from CCMV(B3a) revealed that a single codon change in the B3a gene allowed CCMV(B3a) to infect cowpea systemically. In this study, to extend the analysis of the CCMV(B3a) adaptation mechanism, we directly sequenced B3a gene RT-PCR products prepared from 28 cowpea plants in which cowpea-adapted mutants appeared, and found seven patterns of a codon change localized at five specific positions in the central region (Ser(118), Glu(132), Glu(138), Gln(178), and Ser(180)). All of the patterns involved an amino acid change to Lys or Arg. Mutational analysis of the B3a gene demonstrated that a single codon change resulting in either Lys or Arg at any of the five positions was sufficient for the adaptation of CCMV(B3a) to cowpea. In contrast, CCMV(B3a) variants with a codon change resulting in Lys or Arg at three other positions (137, 155, and 161) in the B3a gene not only showed lack of systemic infection of cowpea but also showed weakened initial cell-to-cell movement in the inoculated leaves and diminished B3a accumulation in protoplasts. These results suggest that adaptive changes in the B3a gene are site-specifically selected in cowpea plants.
Collapse
Affiliation(s)
- N Sasaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto, 606-8502, Japan.
| | | | | | | |
Collapse
|
216
|
Callaway A, Giesman-Cookmeyer D, Gillock ET, Sit TL, Lommel SA. The multifunctional capsid proteins of plant RNA viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:419-460. [PMID: 11701872 DOI: 10.1146/annurev.phyto.39.1.419] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article summarizes studies of viral coat (capsid) proteins (CPs) of RNA plant viruses. In addition, we discuss and seek to interpret the knowledge accumulated to data. CPs are named for their primary function; to encapsidate viral genomic nucleic acids. However, encapsidation is only one feature of an extremely diverse array of structural, functional, and ecological roles played during viral infection and spread. Herein, we consider the evolution of viral CPs and their multitude of interactions with factors encoded by the virus, host plant, or viral vector (biological transmission agent) that influence the infection and epidemiological facets of plant disease. In addition, applications of today's understanding of CPs in the protection of crops from viral infection and use in the manufacture of valuable compounds are considered.
Collapse
Affiliation(s)
- A Callaway
- Department of Plant Pathology, North Carolina State University, Box 7616, Raleigh, North Carolina 27695-7616, USA.
| | | | | | | | | |
Collapse
|
217
|
Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ. Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. PROTOPLASMA 2001; 218:31-44. [PMID: 11732318 DOI: 10.1007/bf01288358] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The sink-source transition in tobacco leaves was studied noninvasively using transgenic plants expressing the green-fluorescent protein (GFP) under control of the Arabidopsis thaliana SUC2 promoter, and also by imaging transgenic plants that constitutively expressed a tobacco mosaic virus movement protein (MP) fused to GFP (MP-GFP). The sink-source transition was measured on intact leaves and progressed basipetally at rates of up to 600 microns/h. The transition was most rapid on the largest sink leaves. However, leaf size was a poor indicator of the current position of the sink-source transition. A quantitative study of plasmodesmatal frequencies revealed the loss of enormous numbers of simple plasmodemata during the sink-source transition. In contrast, branched plasmodesmata increased in frequency during the sink-source transition, particularly between periclinal cell walls of the spongy mesophyll. The progression of plasmodesmal branching, as mapped by the labelling of plasmodesmata with MP-GFP fusion, occurred asynchronously in different cell layers, commencing in trichomes and appearing lastly in periclinal cell walls of the palisade layer. It appears that dividing cells retain simple plasmodesmata for longer periods than nondividing cells. The rapid conversion of simple to branched plasmodesmata is discussed in relation to the capacity for macromolecular trafficking in developing leaf tissues.
Collapse
Affiliation(s)
- I M Roberts
- Unit of Cell Biology, Scottish Crop Research Institute, Dundee
| | | | | | | | | | | |
Collapse
|
218
|
Xoconostle-Cázares B, Ruiz-Medrano R, Lucas WJ. Proteolytic processing of CmPP36, a protein from the cytochrome b(5) reductase family, is required for entry into the phloem translocation pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:735-747. [PMID: 11135108 DOI: 10.1046/j.1365-313x.2000.00916.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cucurbita maxima (pumpkin) phloem sap contains a 31 kDa protein that cross-reacts with antibodies directed against the red clover necrotic mosaic virus movement protein (RCNMV MP). Microsequence data from phloem-purified 31 kDa protein were used to isolate a complementary DNA: the open reading frame encodes a 36 kDa protein belonging to the cytochrome b(5) reductase (Cb5R) family; the gene was termed CmPP36. Western analyses established that CmPP36, RCNMV MP and CmPP16 (Xoconostle-Cázares et al., 1999, Science 283, 94-98) are immunologically related, probably due to a common epitope, represented by the NADH(+)-binding domain of CmPP36. An N-terminal 5 kDa membrane-targeting domain is cleaved to produce the 31 kDa Delta N-CmPP36 detected in the phloem sap. Microinjection experiments established that Delta N-CmPP36, but not CmPP36, is able to interact with plasmodesmata to mediate its cell-to-cell transport. Thus, intercellular movement of CmPP36 requires proteolytic processing in the companion cell to produce a soluble, movement-competent, protein. In contrast to RCNMV and CmPP16, Delta N-CmPP36 interacts with but does not mediate the trafficking of RNA. Northern and in situ RT-PCR studies established that CmPP36 mRNA is present in all plant organs, being highly abundant within vascular tissues. In roots of hydroponically grown pumpkin plants, CmPP36 mRNA levels respond to changes in available iron in the culture solution. Finally, enzymatic assays established that both CmPP36 and Delta N-CmPP36 could reduce Fe(3+)-citrate and Fe(3+)-EDTA in the presence of NADH(+). These findings are discussed in terms of the possible roles played by CmPP36 in phloem function.
Collapse
Affiliation(s)
- B Xoconostle-Cázares
- Section of Plant Biology, Division of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
219
|
Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon MO, Heinlein M. Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 2000; 74:11339-46. [PMID: 11070034 PMCID: PMC113239 DOI: 10.1128/jvi.74.23.11339-11346.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular transport of tobacco mosaic virus (TMV) RNA involves the accumulation of virus-encoded movement protein (MP) in plasmodesmata (Pd), in endoplasmic reticulum (ER)-derived inclusion bodies, and on microtubules. The functional significance of these interactions in viral RNA (vRNA) movement was tested in planta and in protoplasts with TMV derivatives expressing N- and C-terminal deletion mutants of MP fused to the green fluorescent protein. Deletion of 55 amino acids from the C terminus of MP did not interfere with the vRNA transport function of MP:GFP but abolished its accumulation in inclusion bodies, indicating that accumulation of MP at these ER-derived sites is not a requirement for function in vRNA intercellular movement. Deletion of 66 amino acids from the C terminus of MP inactivated the protein, and viral infection occurred only upon complementation in plants transgenic for MP. The functional deficiency of the mutant protein correlated with its inability to associate with microtubules and, independently, with its absence from Pd at the leading edge of infection. Inactivation of MP by N-terminal deletions was correlated with the inability of the protein to target Pd throughout the infection site, whereas its associations with microtubules and inclusion bodies were unaffected. The observations support a role of MP-interacting microtubules in TMV RNA movement and indicate that MP targets microtubules and Pd by independent mechanisms. Moreover, accumulation of MP in Pd late in infection is insufficient to support viral movement, confirming that intercellular transport of vRNA relies on the presence of MP in Pd at the leading edge of infection.
Collapse
Affiliation(s)
- V Boyko
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
220
|
Liou DY, Hsu YH, Wung CH, Wang WH, Lin NS, Chang BY. Functional analyses and identification of two arginine residues essential to the ATP-utilizing activity of the triple gene block protein 1 of bamboo mosaic potexvirus. Virology 2000; 277:336-44. [PMID: 11080481 DOI: 10.1006/viro.2000.0610] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TGBp1 of bamboo mosaic potexvirus (BaMV) is encoded by the first overlapping gene of the triple-gene-block (TGB), whose products are thought to play roles in virus movement between plant cells. This protein forms cytoplasmic inclusions associated with virus particles in the BaMV-infected tissues. It has been proposed that the inclusion is one of the active forms of TGBp1. To prove this idea, we purified the TGBp1 inclusions from both the BaMV-infected Chenopodium quinoa and Escherichia coli cells overexpressing this protein to test some of their biochemical activities. We found that the TGBp1 inclusions isolated from the infected plant leaves, but not from E. coli, possess the NTP-binding and NTPase activities. However, they lack the RNA-binding activity possessed by the soluble TGBp1. These results indicate that the TGBp1 proteins in the BaMV-infected tissues assume two different functional forms. Mutational analyses and competition experiments show that the two arginine residues, Arg-16 and Arg-21, essential to RNA binding, are also required for the ATP-utilizing activity of the soluble TGBp1. This indicates that a same-structure motif is required for the two functions of the soluble TGBp1. The location of the two arginine residues outside the seven conserved motifs of the NTP-utilizing superfamily I RNA helicases, to which TGBp1 belongs, suggests that an extra-structure motif, besides the seven conserved ones, is required for the NTP-utilizing activity of the TGBp1 protein of BaMV.
Collapse
Affiliation(s)
- D Y Liou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
221
|
Morra MR, Petty IT. Tissue specificity of geminivirus infection is genetically determined. THE PLANT CELL 2000; 12:2259-70. [PMID: 11090223 PMCID: PMC150172 DOI: 10.1105/tpc.12.11.2259] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 08/29/2000] [Indexed: 05/20/2023]
Abstract
The types of cells and tissues infected by a virus define its tissue tropism. Determinants of tissue tropism in animal-infecting viruses have been extensively investigated, but little is known about plant viruses in this regard. Some geminiviruses in the genus Begomovirus exhibit phloem limitation and are restricted to cells of the vascular system, whereas others can invade mesophyll tissue. To identify viral genetic determinants of tissue tropism, we established a model system using two begomoviruses and their common host plant, Nicotiana benthamiana. Analysis by DNA in situ hybridization confirmed that tomato golden mosaic virus invades mesophyll tissues in systemically infected leaves, whereas bean golden mosaic virus remains phloem limited. Through genetic complementation and analysis of recombinant hybrid viruses, we demonstrated that three genetic elements of tomato golden mosaic virus determine its mesophyll tissue tropism. A noncoding region of the viral genome is essential for the phenotype, but it must be accompanied by one of two different coding regions. To our knowledge, this is the first example documented in a plant virus of noncoding DNA sequences that determine tissue tropism.
Collapse
Affiliation(s)
- M R Morra
- Department of Microbiology, North Carolina State University, Box 7615, Raleigh, North Carolina 27695-7615, USA
| | | |
Collapse
|
222
|
Mas P, Beachy RN. Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc Natl Acad Sci U S A 2000; 97:12345-9. [PMID: 11050252 PMCID: PMC17344 DOI: 10.1073/pnas.97.22.12345] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2000] [Indexed: 11/18/2022] Open
Abstract
Despite its central role in virus infection, little is known about the mechanisms of intracellular trafficking of virus components within infected cells. In this study, we followed the dynamics of tobacco mosaic virus movement protein (MP) distribution in living protoplasts after disruption of microtubules (MTs) by cold treatment and subsequent rewarming to 29 degrees C. At early stages of infection, cold treatment (4 degrees C) caused the accumulation of MP fused to green fluorescent protein (GFP) in large virus replication bodies that localized in perinuclear positions, whereas at midstages of infection, the association of MP:GFP with MTs was disrupted. Rewarming the protoplasts to 29 degrees C reestablished the association of MTs with the replication bodies that subsequently spread throughout the cytoplasm and to the periphery of the cell. The role of MTs in the intracellular distribution of the MP also was analyzed by examining the distribution pattern of a nonfunctional mutant of MP (TAD5). Like MP:GFP, TAD5:GFP interacted with the endoplasmic reticulum membranes and colocalized with its viral RNA but did not colocalize with MTs. The involvement of MTs in the intracellular distribution of tobacco mosaic virus MP is discussed.
Collapse
Affiliation(s)
- P Mas
- Division of Plant Biology, Department of Cell Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
223
|
Voinnet O, Lederer C, Baulcombe DC. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 2000; 103:157-67. [PMID: 11051555 DOI: 10.1016/s0092-8674(00)00095-7] [Citation(s) in RCA: 430] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In plants, viruses induce an RNA-mediated defense that is similar to posttranscriptional gene silencing (PTGS) of transgenes. Here we demonstrate with potato virus X (PVX) that PTGS operates as a systemic, sequence-specific defense system. However, in grafting experiments or with movement defective forms of PVX, we could not detect systemic silencing unless the 25 kDa viral movement protein (p25) was made nonfunctional. Investigation of p25 revealed two branches to the PTGS pathway that converge in the production of 25 nucleotide RNAs corresponding to the target RNA. One of these branches is unique to virus-induced PTGS and is not affected by p25. The second branch is common to both virus- and transgene-induced PTGS, is blocked by p25, and is likely to generate the systemic silencing signal.
Collapse
MESH Headings
- Gene Deletion
- Gene Expression Regulation, Plant/physiology
- Gene Expression Regulation, Viral/physiology
- Gene Silencing/physiology
- Mutation/genetics
- Plant Viral Movement Proteins
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/virology
- Plants, Toxic
- Potexvirus/genetics
- Potexvirus/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/virology
- Transgenes/genetics
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- O Voinnet
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
224
|
Waigmann E, Chen MH, Bachmaier R, Ghoshroy S, Citovsky V. Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J 2000; 19:4875-84. [PMID: 10990451 PMCID: PMC314230 DOI: 10.1093/emboj/19.18.4875] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Revised: 07/12/2000] [Accepted: 08/01/2000] [Indexed: 11/12/2022] Open
Abstract
Cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata, is mediated by a specialized viral movement protein (MP). In vivo studies using transgenic tobacco plants showed that MP is phosphorylated at its C-terminus at amino acid residues Ser258, Thr261 and Ser265. When MP phosphorylation was mimicked by negatively charged amino acid substitutions, MP lost its ability to gate plasmodesmata. This effect on MP-plasmodesmata interactions was specific because other activities of MP, such as RNA binding and interaction with pectin methylesterases, were not affected. Furthermore, TMV encoding the MP mutant mimicking phosphorylation was unable to spread from cell to cell in inoculated tobacco plants. The regulatory effect of MP phosphorylation on plasmodesmal permeability was host dependent, occurring in tobacco but not in a more promiscuous Nicotiana benthamiana host. Thus, phosphorylation may represent a regulatory mechanism for controlling the TMV MP-plasmodesmata interactions in a host-dependent fashion.
Collapse
Affiliation(s)
- E Waigmann
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
225
|
Crawford KM, Zambryski PC. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 2000; 10:1032-40. [PMID: 10996070 DOI: 10.1016/s0960-9822(00)00657-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Individual plant cells are encased in a cell wall. To enable cell-to-cell communication, plants have evolved channels, termed plasmodesmata, to span thick walls and interconnect the cytoplasm between adjacent cells. How macromolecules pass through these channels is now beginning to be understood. RESULTS Using two green fluorescent protein (GFP) reporters and a non-invasive transfection system, we assayed for intercellular macromolecular traffic in leaf epidermal cells. Plasmodesmata were found in different states of dilation. We could distinguish two forms of protein movement across plasmodesmata, non-targeted and targeted. Although leaves have generally been considered closed to non-specific transport of macromolecules, we found that 23% of the cells had plasmodesmatal channels in a dilated state, allowing GFP that was not targeted to plasmodesmata to move into neighboring cells. GFP fusions that were targeted to the cytoskeleton or to the endoplasmic reticulum did not move between cells, whereas those that were localized to the cytoplasm or nucleus diffused to neighboring cells in a size-dependent manner. Superimposed upon this non-specific exchange, proteins that were targeted to the plasmodesmata could transit efficiently between 62% of transfected cells. CONCLUSIONS A significant population of leaf cells contain plasmodesmata in a dilated state, allowing macromolecular transport between cells. Protein movement potential is regulated by subcellular address and size. These parameters of protein movement illustrate how gradients of signaling macromolecules could be formed and regulated, and suggest that non-cell-autonomous development in plants may be more significant than previously assumed.
Collapse
Affiliation(s)
- K M Crawford
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA.
| | | |
Collapse
|
226
|
Napuli AJ, Falk BW, Dolja VV. Interaction between HSP70 homolog and filamentous virions of the Beet yellows virus. Virology 2000; 274:232-9. [PMID: 10936104 DOI: 10.1006/viro.2000.0475] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An HSP70 homolog (HSP70h), encoded by the Closterovirus Beet yellows virus (BYV), functions in viral movement from cell to cell. A previous study revealed that in infected cells, HSP70h colocalizes with the masses of BYV filamentous virions. Here we demonstrate that HSP70h forms a physical complex with BYV virions. This conclusion is based on both the comigration of HSP70h with BYV virions in sucrose density gradients and the coimmunoprecipitation of the HSP70h and BYV capsid protein using anti-HSP70h serum. The HSP70h-virion complex is stable at high concentrations of sodium chloride; its dissociation using sodium dodecyl sulfate, lithium chloride, or alkaline pH was accompanied by virion disassembly. However, the complex formation does not involve covalent bonds between HSP70h and virion components. Each BYV virion contains approximately 10 molecules of HSP70h. The possible role of HSP70h interaction with the virions in cell-to-cell movement of BYV is discussed.
Collapse
Affiliation(s)
- A J Napuli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
227
|
Kotlizky G, Boulton MI, Pitaksutheepong C, Davies JW, Epel BL. Intracellular and intercellular movement of maize streak geminivirus V1 and V2 proteins transiently expressed as green fluorescent protein fusions. Virology 2000; 274:32-8. [PMID: 10936086 DOI: 10.1006/viro.2000.0415] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient expression of the maize streak geminivirus virion-sense proteins V1 and V2 (movement protein, MP, and coat protein, CP, respectively) in maize leaves allowed investigation of their roles in inter- and intracellular movement. Bombardment of a construct directing expression of a V1:green fluorescent protein (GFP) fusion product resulted in significantly increased spread of fluorescence from the bombarded cell to adjacent cells compared to that obtained following expression of free GFP. A mutant V1:GFP fusion product exhibited markedly less movement than the V1:GFP protein. Thus, the MSV V1 protein moves from cell to cell in the absence of other viral proteins. However, V1:GFP did not localize to plasmodesmata in maize or tobacco leaves although a tobacco mosaic virus MP:GFP fusion protein was shown to do so in tobacco. The CP:GFP fusion product targeted exclusively to the nucleus and did not move from cell to cell or exit the nucleus when expressed alone. When coexpressed with V1, some CP:GFP fluorescence was seen at the cell periphery in a proportion of cells, but in no case was cell-to-cell movement of CP:GFP detected. The likely roles of V1 and CP in MSV movement are discussed.
Collapse
Affiliation(s)
- G Kotlizky
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
228
|
|
229
|
Abstract
The P30 movement protein (MP) of tobacco mosaic virus is essential for distribution of sites of replication within infected cells and for cell-cell spread of infection. MP is an integral membrane protein and in early and mid-stages of infection causes severe disruption of the cortical endoplasmic reticulum (ER). MP also associates with microtubules, and in late stages is targeted for degradation by the 26S proteosome. During these stages, the ER regains its normal pre-infection configuration. Viral RNA is associated with ER and microtubules in the presence of MP. The MP is phosphorylated and mutation of the phosphorylated amino acid reduced association of MP with the ER, plasmodesmata, and microtubules, and altered the stability of the MP. The nature of the association of MP with vRNA and ER and microtubules, and the role of phosphorylation of MP in each of these functions, if any, remains to be determined.
Collapse
Affiliation(s)
- R N Beachy
- Donald Danforth Plant Science Center, 7425 Forsyth Boulevard, Box 1098, St. Louis, MO 63105, USA.
| | | |
Collapse
|
230
|
Zupan J, Muth TR, Draper O, Zambryski P. The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:11-28. [PMID: 10929098 DOI: 10.1046/j.1365-313x.2000.00808.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- J Zupan
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
231
|
Oparka KJ, Cruz SS. THE GREAT ESCAPE: Phloem Transport and Unloading of Macromolecules1. ACTA ACUST UNITED AC 2000; 51:323-347. [PMID: 15012195 DOI: 10.1146/annurev.arplant.51.1.323] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phloem of higher plants translocates a diverse range of macromolecules including proteins, RNAs, and pathogens. This review considers the origin and destination of such macromolecules. A survey of the literature reveals that the majority of phloem-mobile macromolecules are synthesized within companion cells and enter the sieve elements through the branched plasmodesmata that connect these cells. Examples of systemic macromolecules that originate outside the companion cell are rare and are restricted to viral and subviral pathogens and putative RNA gene-silencing signals, all of which involve a relay system in which the macromolecule is amplified in each successive cell along the pathway to companion cells. Evidence is presented that xenobiotic macromolecules may enter the sieve element by a default pathway as they do not possess the necessary signals for retention in the sieve element-companion cell complex. Several sink tissues possess plasmodesmata with a high-molecular-size exclusion limit, potentially allowing the nonspecific escape of a wide range of small (<50-kDa) macromolecules from the phloem. Larger macromolecules and systemic mRNAs appear to require facilitated transport through sink plasmodesmata. The fate of phloem-mobile macromolecules is considered in relation to current models of long-distance signaling in plants.
Collapse
Affiliation(s)
- Karl J. Oparka
- Unit of Cell Biology, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; e-mail:
| | | |
Collapse
|
232
|
Abstract
Post-transcriptional gene-silencing (PTGS) was first discovered in plants and results from the sequence-specific degradation of RNA. Degradation can be activated by introducing transgenes, RNA viruses or DNA sequences that are homologous to expressed genes. A similar RNA degradation mechanism which is inducible by double-stranded RNA (dsRNAs), has been discovered recently in vertebrates, invertebrates and protozoa. dsRNAs may also be potent activators of PTGS in plants. PTGS is not cell autonomous, suggesting the synthesis of sequence-specific silencing signals which are not only moving through the plant but are also amplified and an RNA-directed RNA Polymerase which has recently been cloned from various plant species is a candidate enzyme for amplifying silencing signals. The natural role of PTGS seems to be as a defence against plant viruses, so what first appeared to be RNAs on the attack may now be considered RNAs on the defense. BioEssays 22:520-531, 2000.
Collapse
Affiliation(s)
- T Sijen
- Department of Developmental Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, HV Amsterdam, The Netherlands
| | | |
Collapse
|
233
|
Shalitin D, Wolf S. Cucumber mosaic virus infection affects sugar transport in melon plants. PLANT PHYSIOLOGY 2000; 123:597-604. [PMID: 10859189 PMCID: PMC59027 DOI: 10.1104/pp.123.2.597] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Accepted: 02/07/2000] [Indexed: 05/20/2023]
Abstract
Viral infection often affects carbon assimilation and metabolism in host plants. To better understand the effect of cucumber mosaic virus (CMV) infection on sugar transport, carbohydrate levels and the amounts of the various sugars in the phloem sap were determined in infected melon (Cucumis melo L.) plants. Source leaves infected with CMV were characterized by high concentrations of reducing sugars and relatively low starch levels. The altered level of carbohydrates was accompanied by increased respiration and decreased net photosynthetic rates in the infected leaves. Although stachyose was the predominant sugar in phloem sap collected from petioles of control leaves, sucrose (Suc) was a major sugar in the phloem sap of infected leaves. Moreover, analyses of the newly fixed (14)CO(2) revealed a high proportion of radioactive Suc in the phloem sap of infected leaves 60 min post-labeling. The alteration in phloem sap sugar composition was found in source, but not old, leaves. Moreover, elevations in Suc concentration were also evident in source leaves that did not exhibit symptoms or contain detectable amounts of virus particles. The mode by which CMV infection may cause alterations in sugar transport is discussed in terms of the mechanism by which sugars are loaded into the phloem of cucurbit plants.
Collapse
Affiliation(s)
- D Shalitin
- Department of Field Crops, Vegetables, and Genetics and the Otto Warburg Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
234
|
Huang Z, Han Y, Howell SH. Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the cauliflower mosaic virus movement protein. Virology 2000; 271:58-64. [PMID: 10814570 DOI: 10.1006/viro.2000.0292] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The movement protein (MP) of cauliflower mosaic virus (CaMV) is a multifunctional protein that potentiates the cell-to-cell and long distance movement of the virus. Functional domains in the CaMV MP were determined by analyzing deletions in green fluorescent protein (GFP)-MP fusions transfected into Arabidopsis thaliana leaf protoplasts. GFP-MP accumulated at fluorescent foci at the cell periphery and in tubular structures extending from the protoplast surface. A region located near the center of MP was required for targeting GFP-MP to foci, whereas a larger region extending nearly to the N-terminus was needed for tubule formation. Cytoskeletal assembly inhibitors did not disrupt tubule formation or the accumulation of GFP-MP at foci, but brefeldin A, which disrupts the plant cell endomembrane system, did interfere with the formation of tubules but not foci.
Collapse
Affiliation(s)
- Z Huang
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
235
|
Fedorkin ON, Merits A, Lucchesi J, Solovyev AG, Saarma M, Morozov SY, Mäkinen K. Complementation of the movement-deficient mutations in potato virus X: potyvirus coat protein mediates cell-to-cell trafficking of C-terminal truncation but not deletion mutant of potexvirus coat protein. Virology 2000; 270:31-42. [PMID: 10772977 DOI: 10.1006/viro.2000.0246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell-to-cell movement of the GUS-tagged potato virus X (PVX) coat protein (CP) movement-deficient mutant was restored by potyviral CPs of potato virus A (PVA) and potato virus Y (PVY) in Nicotiana benthamiana leaves in transient cobombardment experiments. Viral cell-to-cell movement of PVX CP mutant was complemented in Nicotiana tabacum cv. SR1 transgenic plants expressing PVY CP: PVX RNA and polymerase were detected in the PVX CP mutant-inoculated leaves of transgenic plants. These findings demonstrated the ability of the PVX CP-deficient mutant to move from cell to cell but not long distances in the transgenic plants and suggest that CPs of potex- and potyviruses display complementary activities in the movement process. Potyviral CP alone is not able to carry out these activities, since the mutated PVX CP is indispensable for restored movement. No trans-encapsidation between potyviral CP and PVX RNA was observed. Therefore, potyviral CP facilitates the PVX CP mutant movement by the mechanism that cannot be explained by coat protein substitution. Our data also suggest that CP functioning in cell-to-cell movement is not restricted to a simple passive role in forming virions.
Collapse
MESH Headings
- Biolistics
- Blotting, Western
- Capsid/genetics
- Capsid/metabolism
- Capsid/ultrastructure
- Capsid Proteins
- Cloning, Molecular
- Genes, Viral/genetics
- Genes, Viral/physiology
- Genetic Complementation Test
- Genome, Viral
- Microscopy, Immunoelectron
- Movement
- Plant Leaves/cytology
- Plant Leaves/virology
- Plants, Genetically Modified
- Plants, Toxic
- Potexvirus/enzymology
- Potexvirus/genetics
- Potexvirus/physiology
- Potexvirus/ultrastructure
- Potyvirus/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Dependent RNA Polymerase/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Deletion/genetics
- Nicotiana/cytology
- Nicotiana/virology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Assembly
Collapse
Affiliation(s)
- O N Fedorkin
- Institute of Biotechnology, Program for Plant Molecular Biology, Viikki Biocentre, University of Helsinki, (Viikinkaari 9), Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | |
Collapse
|
236
|
Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. THE PLANT CELL 2000; 12:569-82. [PMID: 10760245 PMCID: PMC139854 DOI: 10.1105/tpc.12.4.569] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Accepted: 02/16/2000] [Indexed: 05/19/2023]
Abstract
Arabidopsis plants have a system to specifically restrict the long-distance movement of tobacco etch potyvirus (TEV) without involving either hypersensitive cell death or systemic acquired resistance. At least two dominant genes, RTM1 and RTM2, are necessary for this restriction. Through a series of coinfection experiments with heterologous viruses, the RTM1/RTM2-mediated restriction was shown to be highly specific for TEV. The RTM2 gene was isolated by a map-based cloning strategy. Isolation of RTM2 was confirmed by transgenic complementation and sequence analysis of wild-type and mutant alleles. The RTM2 gene product is a multidomain protein containing an N-terminal region with high similarity to plant small heat shock proteins (HSPs). Phylogenetic analysis revealed that the RTM2 small HSP-like domain is evolutionarily distinct from each of the five known classes of plant small HSPs. Unlike most other plant genes encoding small HSPs, expression of the RTM2 gene was not induced by high temperature and did not contribute to thermotolerance of seedlings. The RTM2 gene product was also shown to contain a large C-terminal region with multiple repeating sequences.
Collapse
Affiliation(s)
- S A Whitham
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | |
Collapse
|
237
|
Medeiros RB, Ullman DE, Sherwood JL, German TL. Immunoprecipitation of a 50-kDa protein: a candidate receptor component for tomato spotted wilt tospovirus (Bunyaviridae) in its main vector, Frankliniella occidentalis. Virus Res 2000; 67:109-18. [PMID: 10867190 DOI: 10.1016/s0168-1702(00)00123-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 50-kDa protein that binds to viral particles in solid-phase assays and that is recognized by anti-idiotypic antibodies made against anti-viral glycoproteins G1/G2 (anti-Ids) has been proposed as a receptor candidate for tomato spotted wilt tospovirus (TSWV) in its main thrips vector, Frankliniella occidentalis Pergande (Bandla et al., 1998. Phytopathology 88, 98-104). Here we show the immunoprecipitation of the 50-kDa protein by anti-Ids and by an anti-G1/G2-TSWV conjugate - a new immunoprecipitation method. In addition, we show that anti-Ids made against anti-G1 (anti-IdG1) block virus replication in an insect tissue replication assay. The results indicate that (a) the TSWV-50-kDa protein interaction occurs in solution, as it must do in vivo; (b) G1 is a viral attachment protein; and (c) the 50-kDa protein is a candidate host factor essential for TSWV entry. These results provide additional support for the role of the 50-kDa thrips protein as a viral receptor. Additionally these experiments provide the basis for testing saturable binding and represent an important step toward the first cloning and identification of a cellular receptor for a plant virus.
Collapse
Affiliation(s)
- R B Medeiros
- Department of Plant Pathology, University of Wisconsin, Russell Labs, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
238
|
Solovyev AG, Stroganova TA, Zamyatnin AA, Fedorkin ON, Schiemann J, Morozov SY. Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 2000; 269:113-27. [PMID: 10725204 DOI: 10.1006/viro.2000.0200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied subcellular distribution of green fluorescent protein (GFP)-tagged movement proteins encoded by the second and the third genes of poa semilatent hordeivirus (PSLV) triple gene block (TGB), 15K TGBp2 and 18K TGBp3. GFP-15K transiently expressed in Nicotiana benthamiana leaf epidermal cells was associated with the endomembrane system elements. GFP-18K appeared in the membrane bodies at cell periphery. Mutation analysis demonstrated that subcellular targeting of GFP-15K depended on the protein transmembrane segment(s), whereas the TGBp3 central hydrophilic region was responsible for targeting of GFP-18K. Coexpression of GFP-15K with the intact 18K protein induced drastic changes in the TGBp2 localization: GFP-15K appeared in the cell peripheral bodies similar to those in the cells expressing GFP-18K alone. Coexpression experiments with mutant forms of both proteins argue against involvement of direct interaction between small TGB proteins in the TGBp3-assisted targeting of TGBp2 to the cell peripheral compartments. This conclusion was further confirmed by similar effects on the PSLV 15K TGBp2 localization induced by TGBp3 proteins of PSLV and potato virus X, which have no detectable sequence similarity to each other.
Collapse
Affiliation(s)
- A G Solovyev
- Department of Virology, Moscow State University, Moscow, 119899, Russia.
| | | | | | | | | | | |
Collapse
|
239
|
Abstract
Retrotransposons are mobile genetic elements that transpose through reverse transcription of an RNA intermediate. Retrotransposons are ubiquitous in plants and play a major role in plant gene and genome evolution. In many cases, retrotransposons comprise over 50% of nuclear DNA content, a situation that can arise in just a few million years. Plant retrotransposons are structurally and functionally similar to the retrotransposons and retroviruses that are found in other eukaryotic organisms. However, there are important differences in the genomic organization of retrotransposons in plants compared to some other eukaryotes, including their often-high copy numbers, their extensively heterogeneous populations, and their chromosomal dispersion patterns. Recent studies are providing valuable insights into the mechanisms involved in regulating the expression and transposition of retrotransposons. This review describes the structure, genomic organization, expression, regulation, and evolution of retrotransposons, and discusses both their contributions to plant genome evolution and their use as genetic tools in plant biology.
Collapse
Affiliation(s)
- A Kumar
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland.
| | | |
Collapse
|
240
|
Tenllado F, Bol JF. Genetic dissection of the multiple functions of alfalfa mosaic virus coat protein in viral RNA replication, encapsidation, and movement. Virology 2000; 268:29-40. [PMID: 10683324 DOI: 10.1006/viro.1999.0170] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coat protein (CP) of alfalfa mosaic virus (AMV) binds as a dimer to the 3' termini of the three genomic RNAs and is required for initiation of infection, asymmetric plus-strand RNA accumulation, virion formation, and spread of the virus in plants. A mutational analysis of the multiple functions of AMV CP was made. Mutations that interfered with CP dimer formation in the two-hybrid system had little effect on the initiation of infection or plus-strand RNA accumulation but interfered with virion formation and reduced or abolished cell-to-cell movement of the virus in plants. Six of the 7 basic amino acids in the N-terminal arm of CP (positions 5, 6, 10, 13, 16, and 25) could be deleted or mutated into alanine without affecting any step of the replication cycle except systemic movement in plants. Mutation of Arg-17 interfered with initiation of infection (as previously shown by others) and cell-to-cell movement of the virus but not with plus-strand RNA accumulation or virion formation. The results indicate that in addition to the RNA-binding domain, different domains of AMV CP are involved in initiation of infection, plus-strand RNA accumulation, virion formation, cell-to-cell movement, and systemic spread of the virus.
Collapse
Affiliation(s)
- F Tenllado
- Institute of Molecular Plant Sciences, Leiden University, Leiden, 2300 RA, The Netherlands
| | | |
Collapse
|
241
|
Han A, Liu Y, Xiao L, Kang L, Zhang Y, Li D, Tian B. Expression of human hepatitis C virus core antigen in tobacco plants by tobacco mosaic virus-based vector system. CHINESE SCIENCE BULLETIN-CHINESE 2000. [DOI: 10.1007/bf02884901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
242
|
Chen MH, Sheng J, Hind G, Handa AK, Citovsky V. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 2000; 19:913-20. [PMID: 10698933 PMCID: PMC305631 DOI: 10.1093/emboj/19.5.913] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Revised: 01/07/2000] [Accepted: 01/07/2000] [Indexed: 11/15/2022] Open
Abstract
Virus-encoded movement protein (MP) mediates cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata. The molecular pathway by which TMV MP interacts with the host cell is largely unknown. To understand this process better, a cell wall-associated protein that specifically binds the viral MP was purified from tobacco leaf cell walls and identified as pectin methylesterase (PME). In addition to TMV MP, PME is recognized by MPs of turnip vein clearing virus (TVCV) and cauliflower mosaic virus (CaMV). The use of amino acid deletion mutants of TMV MP showed that its domain was necessary and sufficient for association with PME. Deletion of the PME-binding region resulted in inactivation of TMV cell-to-cell movement.
Collapse
Affiliation(s)
- M H Chen
- Department of Biochemistry, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
243
|
Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja VV. Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology 2000; 268:192-200. [PMID: 10683341 DOI: 10.1006/viro.1999.0155] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A beet yellows closterovirus (BYV) variant expressing green fluorescent protein and leaves of BYV local lesion host Claytonia perfoliata were used to reveal genetic requirements for BYV cell-to-cell movement in leaf epidermis and mesophyll. A series of mutations targeting genes that are not involved in amplification of the viral positive-strand RNA was analyzed. The products of genes coding for a 6-kDa hydrophobic protein (p6) and a 64-kDa protein (p64), as well as for minor and major capsid proteins, were found to be essential for intercellular translocation of BYV. In a previous work, we have demonstrated that the BYV HSP70-homolog (HSP70h) also plays a critical role in viral movement (V. V. Peremyslov, Y. Hagiwara, and V. V. Dolja, 1999, Proc. Natl. Acad. Sci. USA, 96, 14771-14776). Altogether, a unique protein quintet including three dedicated movement proteins (p6, p64, and HSP70h) and two structural proteins is required to potentiate the cell-to-cell movement of a closterovirus. The corresponding BYV genes are clustered in a block that is conserved among diverse representatives of the family Closteroviridae.
Collapse
Affiliation(s)
- D V Alzhanova
- Department of Botany, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | | | | |
Collapse
|
244
|
Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 2000; 97:2373-8. [PMID: 10688879 PMCID: PMC15808 DOI: 10.1073/pnas.030548397] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 12/15/1999] [Indexed: 11/18/2022] Open
Abstract
The nonstructural NSm protein of tomato spotted wilt tospovirus (TSWV) represents a putative viral movement protein involved in cell-to-cell movement of nonenveloped ribonucleocapsid structures. To study the molecular basis of NSm function, we expressed the protein in Escherichia coli and investigated protein-protein and protein-RNA interactions of NSm protein in vitro. NSm specifically interacts with TSWV N protein and binds single-stranded RNA in a sequence-nonspecific manner. Using NSm as a bait in a yeast two-hybrid screen, we identified two homologous NSm-binding proteins of the DnaJ family from Nicotiana tabacum and Arabidopsis thaliana.
Collapse
Affiliation(s)
- T Soellick
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | |
Collapse
|
245
|
Affiliation(s)
- M Bendahmane
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
246
|
Bertens P, Wellink J, Goldbach R, van Kammen A. Mutational analysis of the cowpea mosaic virus movement protein. Virology 2000; 267:199-208. [PMID: 10662615 DOI: 10.1006/viro.1999.0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cowpea mosaic virus moves from cell-to-cell in a virion form through tubular structures that are assembled in modified plasmodesmata. Similar tubular structures are formed on the surface of protoplasts inoculated with cowpea mosaic virus. The RNA 2-encoded movement protein (MP) is responsible for the induction and formation of these structures. To define functional domains of the MP, an alanine-substitution mutagenesis was performed on eight positions in the MP, including two conserved sequence motifs, the LPL and D motifs. Results show that these two conserved motifs as well as the central region of the MP are essential for cell-to-cell movement. Several viruses carrying mutations in the N- or C-terminal parts of their MP retained infectivity on cowpea plants. Coexpression studies revealed that mutant MPs did not interfere with the activity of wild-type MP and could not mutually complement their defects.
Collapse
Affiliation(s)
- P Bertens
- Laboratories of Molecular Biology, Virology, Graduate School for Experimental Plant Sciences, Wageningen University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | | | | | | |
Collapse
|
247
|
An Introduction to the Evolutionary Ecology of Viruses. VIRAL ECOLOGY 2000. [PMCID: PMC7149709 DOI: 10.1016/b978-012362675-2/50005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
248
|
Peremyslov VV, Hagiwara Y, Dolja VV. HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A 1999; 96:14771-6. [PMID: 10611288 PMCID: PMC24723 DOI: 10.1073/pnas.96.26.14771] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1999] [Indexed: 11/18/2022] Open
Abstract
Plant closteroviruses encode a homolog of the HSP70 (heat shock protein, 70 kDa) family of cellular proteins. To facilitate studies of the function of HSP70 homolog (HSP70h) in viral infection, the beet yellows closterovirus (BYV) was modified to express green fluorescent protein. This tagged virus was competent in cell-to-cell movement, producing multicellular infection foci similar to those formed by the wild-type BYV. Inactivation of the HSP70h gene by replacement of the start codon or by deletion of 493 codons resulted in complete arrest of BYV translocation from cell to cell. Identical movement-deficient phenotypes were observed in BYV variants possessing HSP70h that lacked the computer-predicted ATPase domain or the C-terminal domain, or that harbored point mutations in the putative catalytic site of the ATPase. These results demonstrate that the virus-specific member of the HSP70 family of molecular chaperones functions in intercellular translocation and represents an additional type of a plant viral-movement protein.
Collapse
Affiliation(s)
- V V Peremyslov
- Department of Botany, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
249
|
Nagano H, Mise K, Okuno T, Furusawa I. The cognate coat protein is required for cell-to-cell movement of a chimeric brome mosaic virus mediated by the cucumber mosaic virus movement protein. Virology 1999; 265:226-34. [PMID: 10600595 DOI: 10.1006/viro.1999.0065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cucumber mosaic cucumovirus (CMV) and brome mosaic bromovirus (BMV) have many similarities, including the three-dimensional structure of virions, genome organizations, and requirement of the coat protein (CP) for cell-to-cell movement. We have shown that a chimeric BMV with the CMV 3a movement protein (MP) gene instead of its own cannot move from cell to cell in Chenopodium quinoa, a common permissive host for both BMV and CMV. Another chimeric BMV was constructed by replacing both MP and CP genes of BMV with those of CMV (MP/CP-chimera) and tested for its infectivity in C. quinoa, to determine whether the CMV CP has some functions required for the CMV MP-mediated cell-to-cell movement and to exhibit functional difference between CPs of BMV and CMV. Cell-to-cell movement of the MP/CP-chimera occurred, and small local lesions were induced on the inoculated leaves. A frameshift mutation introduced in the CMV CP gene of the MP/CP-chimera resulted in a lack of cell-to-cell movement of the chimeric virus. These results indicate that the viral movement mediated by the CMV MP requires its cognate CP. Deletion of the amino-terminal region in CMV CP, which is not obligatory for CMV movement, also abolished cell-to-cell movement of the MP/CP-chimera. This may suggest some differences in cell-to-cell movement of the MP/CP-chimera and CMV. On the other hand, the sole replacement of BMV CP gene with that of CMV abolished viral cell-to-cell movement, suggesting a possibility that the viral movement mediated by the BMV MP may also require its cognate CP. Functional compatibility between MP and CP in viral cell-to-cell movement is discussed.
Collapse
Affiliation(s)
- H Nagano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | | | | | | |
Collapse
|
250
|
Más P, Beachy RN. Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 1999; 147:945-58. [PMID: 10579716 PMCID: PMC2169346 DOI: 10.1083/jcb.147.5.945] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 10/05/1999] [Indexed: 11/22/2022] Open
Abstract
Little is known about the mechanisms of intracellular targeting of viral nucleic acids within infected cells. We used in situ hybridization to visualize the distribution of tobacco mosaic virus (TMV) viral RNA (vRNA) in infected tobacco protoplasts. Immunostaining of the ER lumenal binding protein (BiP) concurrent with in situ hybridization revealed that vRNA colocalized with the ER, including perinuclear ER. At midstages of infection, vRNA accumulated in large irregular bodies associated with cytoplasmic filaments while at late stages, vRNA was dispersed throughout the cytoplasm and was associated with hair-like protrusions from the plasma membrane containing ER. TMV movement protein (MP) and replicase colocalized with vRNA, suggesting that viral replication and translation occur in the same subcellular sites. Immunostaining with tubulin provided evidence of colocalization of vRNA with microtubules, while disruption of the cytoskeleton with pharmacological agents produced severe changes in vRNA localization. Mutants of TMV lacking functional MP accumulated vRNA, but the distribution of vRNA was different from that observed in wild-type infection. MP was not required for association of vRNA with perinuclear ER, but was required for the formation of the large irregular bodies and association of vRNA with the hair-like protrusions.
Collapse
Affiliation(s)
- Paloma Más
- Division of Plant Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Roger N. Beachy
- Division of Plant Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|