201
|
Silva JV, Cabral M, Correia BR, Carvalho P, Sousa M, Oliveira PF, Fardilha M. mTOR Signaling Pathway Regulates Sperm Quality in Older Men. Cells 2019; 8:cells8060629. [PMID: 31234465 PMCID: PMC6627782 DOI: 10.3390/cells8060629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023] Open
Abstract
Understanding how age affects fertility becomes increasingly relevant as couples delay childbearing toward later stages of their lives. While the influence of maternal age on fertility is well established, the impact of paternal age is poorly characterized. Thus, this study aimed to understand the molecular mechanisms responsible for age-dependent decline in spermatozoa quality. To attain it, we evaluated the impact of male age on the activity of signaling proteins in two distinct spermatozoa populations: total spermatozoa fraction and highly motile/viable fraction. In older men, we observed an inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) in the highly viable spermatozoa population. On the contrary, when considering the entire spermatozoa population (including defective/immotile/apoptotic cells) our findings support an active mTORC1 signaling pathway in older men. Additionally, total spermatozoa fractions of older men presented increased levels of apoptotic/stress markers [e.g., cellular tumor antigen p53 (TP53)] and mitogen-activated protein kinases (MAPKs) activity. Moreover, we established that the levels of most signaling proteins analyzed were consistently and significantly altered in men older than 27 years of age. This study was the first to associate the mTOR signaling pathway with the age impact on spermatozoa quality. Additionally, we constructed a network of the sperm proteins associated with male aging, identifying TP53 as a central player in spermatozoa aging.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Madalena Cabral
- COGE-Clínica Obstétrica e Ginecológica de Espinho, 4500-057 Espinho, Portugal.
| | - Bárbara Regadas Correia
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Carvalho
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
- COGE-Clínica Obstétrica e Ginecológica de Espinho, 4500-057 Espinho, Portugal.
| | - Mário Sousa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Pedro Fontes Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
202
|
Rožman P. How Could We Slow or Reverse the Human Aging Process and Extend the Healthy Life Span with Heterochronous Autologous Hematopoietic Stem Cell Transplantation. Rejuvenation Res 2019; 23:159-170. [PMID: 31203790 DOI: 10.1089/rej.2018.2164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The senescence of the immune system contributes considerably to the age-related diseases that are the main causes of death after the age of 65. In this study, we present an appealing option for the prevention of immune senescence and slowing or reversing the aging process, which can be achieved by heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow stem cells are collected from donors while young, cryopreserved and stored for a long period, and reinfused at a later time when indicated. After reinfusion and homing, these young HSCs could participate in normal hemato- and immunopoiesis and improve several immune functions by expanding the immune- as well as hematopoietic cell repertoire. Several animal studies have already confirmed the feasibility of this procedure, which extended the longevity of the treated animals. If translated to human medicine, haHSCT could prevent or mitigate age-related immune defects and extend the healthy life span. In this review, we describe the concept of haHSCT, recent studies that confirm its feasibility, and discuss the further research needed to translate this heterochronous methodology.
Collapse
Affiliation(s)
- Primož Rožman
- Immunohaematology Department, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
203
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
204
|
Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S. Accelerated bio-cognitive aging in Down syndrome: State of the art and possible deceleration strategies. Aging Cell 2019; 18:e12903. [PMID: 30768754 PMCID: PMC6516152 DOI: 10.1111/acel.12903] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) has been proposed by George Martin as a segmental progeroid syndrome since 1978. In fact, DS persons suffer from several age-associated disorders much earlier than euploid persons. Furthermore, a series of recent studies have found that DS persons display elevated levels of age biomarkers, thus supporting the notion that DS is a progeroid trait. Nowadays, due to the progressive advancements in social inclusion processes and medical assistance, DS persons live much longer than in the past; therefore, the early-onset health problems of these persons are becoming an urgent and largely unmet social and medical burden. In particular, the most important ailment of DS persons is the accelerated cognitive decline that starts when they reach about 40 years of age. This decline can be at least in part counteracted by multi-systemic approaches including early-onset cognitive training, physical activity, and psychosocial assistance. However, no pharmacological treatment is approved to counteract this decline. According to the most advanced conceptualization of Geroscience, tackling the molecular mechanisms underpinning the aging process should be a smart/feasible strategy to combat and/or delay the great majority of age-related diseases, including cognitive decline. We think that a debate is needed urgently on if (and how) this strategy could be integrated in protocols to face DS-associated dementia and overall unhealthy aging. In particular we propose that, on the basis of data obtained in different clinical settings, metformin is a promising candidate that could be exploited to counteract cognitive decline in DS.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Clinical Chemistry, Department of Laboratory MedicineKarolinska Institutet at Huddinge University HospitalStockholmSweden
- Applied Biomedical Research Center (CRBA)S. Orsola‐Malpighi PolyclinicBolognaItaly
- CNR Institute of Molecular GeneticsUnit of BolognaBolognaItaly
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | | | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Interdepartmental Center “L. Galvani” (CIG)University of BolognaBolognaItaly
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Interdepartmental Center “L. Galvani” (CIG)University of BolognaBolognaItaly
| |
Collapse
|
205
|
Xing S, Zhang L, Lin H, Mao Z, Bao K, Hao P, Pei Z, Li J, Hu Z. Lactose induced redox-dependent senescence and activated Nrf2 pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2034-2045. [PMID: 31934025 PMCID: PMC6949649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 06/10/2023]
Abstract
Lactose is a disaccharide found in milk and thus a part of our daily food intake. Upon ingestion, it is hydrolyzed to glucose and galactose by the enzyme lactase and absorbed in the small intestine. People who suffer from lactose intolerance are unable to completely digest it due to deficiency of lactase, leading to intestinal problems such as diarrhoea, and bloating. Various studies have focused on treating these symptoms. However, the effects of lactose that diffuses passively into cells, on cellular senescence have largely remained unknown. Thus, the present study investigated the effects and mechanisms of lactose on senescence both in vitro and in vivo. The study was conducted in MRC-5 cells. The cellular senescence was estimated by determining the expression of SA-β-gal and p16ink4a. The cell viability of MRC-5 cells was determined by the CCK-8 Assay. Activity of intracellular reactive oxygen species was estimated by measuring the levels of superoxide dismutase (SOD), glutathione (GHS), and reactive oxygen species (ROS). The mechanism of lactose on cellular senescence was explored by western blotting. We also studied the effect of lactose on the lifespan of Caenorhabditis elegans. Increased activities of SA-β-gal and p16ink4a revealed the ability of lactose to induce senescence in MRC-5 cells. The elevated intracellular ROS level and decreased GSH and SOD levels in these cells were indicative of cellular oxidative stress induced by lactose. Furthermore, western blotting analysis of Nrf2 and mRNA expression of its downstream genes suggested the Nrf2/ARE pathway was involved in the oxidative stress induced by lactose. These results were further validated by the shortened lifespan of C. elegans after lactose supplement. Moreover, the lactose-induced senescence could be alleviated by an antioxidant, N-Acetyl-L-cysteine (NAC), both in vitro and in vivo. The present study observed a positive correlation between lactose and cellular oxidative stress, suggesting the latter to be an underlying mechanism of lactose-induced senescence.
Collapse
Affiliation(s)
- Shuli Xing
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Lanxin Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Huiling Lin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Zhifan Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Keting Bao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Peng Hao
- Duke University Medical SchoolDurham, NC, USA
| | - Zhe Pei
- Duke University Medical SchoolDurham, NC, USA
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai, China
| | - Zelan Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| |
Collapse
|
206
|
The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. Int J Mol Sci 2019; 20:ijms20082022. [PMID: 31022953 PMCID: PMC6515465 DOI: 10.3390/ijms20082022] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is characterized by an extensive remodeling of epigenetic patterns, which has been implicated in the physiopathology of age-related diseases. Nutrition plays a significant role in modulating the epigenome, and a growing amount of data indicate that dietary changes can modify the epigenetic marks associated with aging. In this review, we will assess the current advances in the relationship between caloric restriction, a proven anti-aging intervention, and epigenetic signatures of aging. We will specifically discuss the impact of caloric restriction on epigenetic regulation and how some of the favorable effects of caloric restriction on lifespan and healthspan could be mediated by epigenetic modifications.
Collapse
|
207
|
|
208
|
Waziry R, Gras L, Sedaghat S, Tiemeier H, Weverling GJ, Ghanbari M, Klap J, de Wolf F, Hofman A, Ikram MA, Goudsmit J. Quantification of biological age as a determinant of age-related diseases in the Rotterdam Study: a structural equation modeling approach. Eur J Epidemiol 2019; 34:793-799. [PMID: 30993509 DOI: 10.1007/s10654-019-00497-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/13/2019] [Indexed: 01/20/2023]
Abstract
Chronological age alone is not a sufficient measure of the true physiological state of the body. The aims of the present study were to: (1) quantify biological age based on a physiological biomarker composite model; (2) and evaluate its association with death and age-related disease onset in the setting of an elderly population. Using structural equation modeling we computed biological age for 1699 individuals recruited from the first and second waves of the Rotterdam study. The algorithm included nine physiological parameters (c-reactive protein, creatinine, albumin, total cholesterol, cytomegalovirus optical density, urea nitrogen, alkaline phosphatase, forced expiratory volume and systolic blood pressure). We assessed the association between biological age, all-cause mortality, all-cause morbidity and specific age-related diseases over a median follow-up of 11 years. Biological age, compared to chronological age or the traditional biomarkers of age-related diseases, showed a stronger association with all-cause mortality (HR 1.15 vs. 1.13 and 1.10), all-cause morbidity (HR 1.06 vs. 1.05 and 1.03), stroke (HR 1.17 vs. 1.08 and 1.04), cancer (HR 1.07 vs. 1.04 and 1.02) and diabetes mellitus (HR 1.12 vs. 1.01 and 0.98). Individuals who were biologically younger exhibited a healthier life-style as reflected in their lower BMI (P < 0.001) and lower incidence of stroke (P < 0.001), cancer (P < 0.01) and diabetes mellitus (P = 0.02). Collectively, our findings suggest that biological age based on the biomarker composite model of nine physiological parameters is a useful construct to assess individuals 65 years and older at increased risk for specific age-related diseases.
Collapse
Affiliation(s)
- Reem Waziry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA. .,Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Luuk Gras
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, The Netherlands
| | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Henning Tiemeier
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gerrit J Weverling
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Jaco Klap
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, The Netherlands
| | - Frank de Wolf
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, The Netherlands.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jaap Goudsmit
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Amsterdam Neuroscience, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
209
|
Costa MD, Goldberger AL. Heart rate fragmentation: using cardiac pacemaker dynamics to probe the pace of biological aging. Am J Physiol Heart Circ Physiol 2019; 316:H1341-H1344. [PMID: 30951362 DOI: 10.1152/ajpheart.00110.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This perspectives article discusses the use of a novel set of dynamical biomarkers in the assessment of biological versus chronological age. The basis for this development is a recently delineated property of altered sinoatrial pacemaker-neuroautonomic function, termed heart rate fragmentation (HRF). Fragmented rhythms manifest as an increase in the density of changes in heart rate acceleration sign, not mechanistically explicable by physiological cardiac vagal tone modulation. We reported that HRF increased monotonically with cross-sectional age and that HRF measures, but not conventional heart rate variability metrics, were significantly associated with major incident cardiovascular events in the Multi-Ethnic Study of Atherosclerosis (MESA). Furthermore, HRF measures added value to both Framingham and MESA cardiovascular risk indices. Here, we propose that interventions that fundamentally slow or reverse the pace of biological aging, via system-wide effects, should be associated with a decrease in the degree of HRF and possibly with a reemergence of the nonfragmented ("fluent") patterns associated with more youthful heart rate dynamics.
Collapse
Affiliation(s)
- Madalena D Costa
- Department of Medicine, Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts
| | - Ary L Goldberger
- Department of Medicine, Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
210
|
Garratt M, Leander D, Pifer K, Bower B, Herrera JJ, Day SM, Fiehn O, Brooks SV, Miller RA. 17-α estradiol ameliorates age-associated sarcopenia and improves late-life physical function in male mice but not in females or castrated males. Aging Cell 2019; 18:e12920. [PMID: 30740872 PMCID: PMC6413653 DOI: 10.1111/acel.12920] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022] Open
Abstract
Pharmacological treatments can extend mouse lifespan, but lifespan effects often differ between sexes. 17-α estradiol (17aE2), a less feminizing structural isomer of 17-β estradiol, produces lifespan extension only in male mice, suggesting a sexually dimorphic mechanism of lifespan regulation. We tested whether these anti-aging effects extend to anatomical and functional aging-important in late-life health-and whether gonadally derived hormones control aging responses to 17aE2 in either sex. While 17aE2 started at 4 months of age diminishes body weight in both sexes during adulthood, in late-life 17aE2-treated mice better maintain body weight. In 17aE2-treated male mice, the higher body weight is associated with heavier skeletal muscles and larger muscle fibers compared with untreated mice during aging, while treated females have heavier subcutaneous fat. Maintenance of skeletal muscle in male mice is associated with improved grip strength and rotarod capacity at 25 months, in addition to higher levels of most amino acids in quadriceps muscle. We further show that sex-specific responses to 17aE2-metabolomic, structural, and functional-are regulated by gonadal hormones in male mice. Castrated males have heavier quadriceps than intact males at 25 months, but do not respond to 17aE2, suggesting 17aE2 promotes an anti-aging skeletal muscle phenotype similar to castration. Finally, 17aE2 treatment benefits can be recapitulated in mice when treatment is started at 16 months, suggesting that 17aE2 may be able to improve aspects of late-life function even when started after middle age.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
| | - Danielle Leander
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
| | - Kaitlyn Pifer
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
| | - Brian Bower
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
| | - Jonathan J. Herrera
- Molecular and Integrative Physiology; University of Michigan; Ann Arbor Michigan
- Internal Medicine; University of Michigan; Ann Arbor Michigan
| | - Sharlene M. Day
- Molecular and Integrative Physiology; University of Michigan; Ann Arbor Michigan
- Internal Medicine; University of Michigan; Ann Arbor Michigan
| | - Oliver Fiehn
- Genome Center; University of California Davis; Davis California
| | - Susan V. Brooks
- Molecular and Integrative Physiology; University of Michigan; Ann Arbor Michigan
- Department of Biomedical Engineering; University of Michigan; Ann Arbor Michigan
| | - Richard A. Miller
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| |
Collapse
|
211
|
Mitochondrial Dysfunction and Aging: Insights from the Analysis of Extracellular Vesicles. Int J Mol Sci 2019; 20:ijms20040805. [PMID: 30781825 PMCID: PMC6412692 DOI: 10.3390/ijms20040805] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
The progressive decline of cell function and integrity, manifesting clinically as increased vulnerability to adverse outcomes and death, is core to biological aging. Mitochondrial dysfunction, oxidative stress, altered intercellular communication (including chronic low-grade inflammation), genomic instability, telomere attrition, loss of proteostasis, altered nutrient sensing, epigenetic alterations, and stem cell exhaustion have been proposed as hallmarks of aging. These “aging pillars” are not mutually exclusive, making the matter intricate and leaving numerous unanswered questions. The characterization of circulating extracellular vesicles (EVs) has recently allowed specific secretory phenotypes associated with aging to be identified. As such, EVs may serve as novel biomarkers for capturing the complexity of aging. Besides the mitochondrial–lysosomal axis, EV trafficking has been proposed as an additional layer in mitochondrial quality control. Indeed, disruption of the mitochondrial–lysosomal axis coupled with abnormal EV secretion may play a role in the pathogenesis of aging and several disease conditions. Here, we discuss (1) the mechanisms of EV generation; (2) the relationship between the mitochondrial–lysosomal axis and EV trafficking in the setting of mitochondrial quality control; and (3) the prospect of using EVs as aging biomarkers and as delivery systems for therapeutics against age-related conditions.
Collapse
|
212
|
Soberanes S, Misharin AV, Jairaman A, Morales-Nebreda L, McQuattie-Pimentel AC, Cho T, Hamanaka RB, Meliton AY, Reyfman PA, Walter JM, Chen CI, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Antalek M, Abdala-Valencia H, Chiarella SE, Sun KA, Woods PS, Ghio AJ, Jain M, Perlman H, Ridge KM, Morimoto RI, Sznajder JI, Balch WE, Bhorade SM, Bharat A, Prakriya M, Chandel NS, Mutlu GM, Budinger GRS. Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metab 2019; 29:335-347.e5. [PMID: 30318339 PMCID: PMC6365216 DOI: 10.1016/j.cmet.2018.09.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/11/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
Urban particulate matter air pollution induces the release of pro-inflammatory cytokines including interleukin-6 (IL-6) from alveolar macrophages, resulting in an increase in thrombosis. Here, we report that metformin provides protection in this murine model. Treatment of mice with metformin or exposure of murine or human alveolar macrophages to metformin prevented the particulate matter-induced generation of complex III mitochondrial reactive oxygen species, which were necessary for the opening of calcium release-activated channels (CRAC) and release of IL-6. Targeted genetic deletion of electron transport or CRAC channels in alveolar macrophages in mice prevented particulate matter-induced acceleration of arterial thrombosis. These findings suggest metformin as a potential therapy to prevent some of the premature deaths attributable to air pollution exposure worldwide.
Collapse
Affiliation(s)
- Saul Soberanes
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Alexander V Misharin
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Amit Jairaman
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Luisa Morales-Nebreda
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Alexandra C McQuattie-Pimentel
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Takugo Cho
- Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637, USA
| | - Robert B Hamanaka
- Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637, USA
| | - Angelo Y Meliton
- Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637, USA
| | - Paul A Reyfman
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - James M Walter
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Ching-I Chen
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Monica Chi
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Stephen Chiu
- Department of Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Francisco J Gonzalez-Gonzalez
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Matthew Antalek
- Rice Institute for Biomedical Research, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Hiam Abdala-Valencia
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Sergio E Chiarella
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Kaitlyn A Sun
- Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637, USA
| | - Parker S Woods
- Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637, USA
| | - Andrew J Ghio
- United States Environmental Protections Agency, Chapel Hill, NC 27599, USA
| | - Manu Jain
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Harris Perlman
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Karen M Ridge
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Richard I Morimoto
- Rice Institute for Biomedical Research, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Jacob I Sznajder
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Sangeeta M Bhorade
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA
| | - Gökhan M Mutlu
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA; Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637, USA.
| | - G R Scott Budinger
- Department of Medicine and Pulmonary and Critical Care Medicine, Northwestern University, 240 E Huron Street, M300, Chicago, IL 60611, USA.
| |
Collapse
|
213
|
Vallet H, Fali T, Sauce D. Le vieillissement du système immunitaire : du fondamental à la clinique. Rev Med Interne 2019; 40:105-111. [DOI: 10.1016/j.revmed.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023]
|
214
|
Bland JS. Fasting Physiology and Therapeutic Diets: A Look Back to the Future. Integr Med (Encinitas) 2019; 18:16-21. [PMID: 31341428 PMCID: PMC6601432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The evidence presented at this event demonstrated the multiple clinical benefits of fasting physiology and points toward a future in which the clinical applications of dietary approaches will be well understood and successfully utilized. The conference reflected the scope and breadth of current research efforts in this important clinical area. Clearly, the application of the important new concepts related to fasting physiology that are emerging will require the advocacy and participation of professionals who are well trained in the fields of clinical nutrition and personalized lifestyle medicine.
Collapse
|
215
|
Zhang J, Chen Q, Du D, Wu T, Wen J, Wu M, Zhang Y, Yan W, Zhou S, Li Y, Jin Y, Luo A, Wang S. Can ovarian aging be delayed by pharmacological strategies? Aging (Albany NY) 2019; 11:817-832. [PMID: 30674710 PMCID: PMC6366956 DOI: 10.18632/aging.101784] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Aging has been regarded as a treatable condition, and delaying aging could prevent some diseases. Ovarian aging, a special type of organ senescence, is the earliest-aging organ, as ovaries exhibit an accelerated rate of aging with characteristics of gradual declines in ovarian follicle quantity and quality since birth, compared to other organs. Ovarian aging is considered as the pacemaker of female body aging, which drives the aging of multiple organs of the body. Hence, anti-ovarian aging has become a research topic broadly interesting to both biomedical scientists and pharmaceutical industry. A marked progress has been made in exploration of possible anti-ovarian agents or approaches, such as calorie restriction mimetics, antioxidants, autophagy inducers etc., over the past years. This review is attempted to discuss recent advances in the area of anti-ovarian aging pharmacology and to offer new insights into our better understanding of molecular mechanisms underlying ovarian aging, which might be informative for future prevention and treatment of ovarian aging and its related diseases.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingfu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
216
|
New drugs for pharmacological extension of replicative life span in normal and progeroid cells. NPJ Aging Mech Dis 2019; 5:2. [PMID: 30675378 PMCID: PMC6335401 DOI: 10.1038/s41514-018-0032-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
A high-throughput anti-aging drug screen was developed that simultaneously measures senescence-associated β-galactosidase activity and proliferation. Applied to replicatively pre-aged fibroblasts, this screen yielded violuric acid (VA) and 1-naphthoquinone-2-monoxime (N2N1) as its top two hits. These lead compounds extended the replicative life spans of normal and progeroid human cells in a dose-dependent manner and also extended the chronological life spans of mice and C. elegans. They are further shown here to function as redox catalysts in oxidations of NAD(P)H. They thus slow age-related declines in NAD(P)+/NAD(P)H ratios. VA participates in non-enzymatic electron transfers from NAD(P)H to oxidized glutathione or peroxides. N2N1 transfers electrons from NAD(P)H to cytochrome c or CoQ10 via NAD(P)H dehydrogenase (quinone) 1 (NQO1). Our results indicate that pharmacologic manipulation of NQO1 activity via redox catalysts may reveal mechanisms of senescence and aging. Two drugs were discovered that can extend the life spans of normally aged human cells and thus potentially slow human aging. The anti-aging drugs were identified using a novel method that screens drugs across a two-dimensional endpoint space of senescence-associated galactosidase activity as a general axis of aging and ATP as an axis representing proliferation. The two most potent substances were, likely more than coincidentally, electrons carriers that transfer electrons from NAD(P)H to molecules and cellular structures that demand reducing power to repair oxidative damage that accumulates with aging. Treatment of single cells and whole organisms with these new anti-aging drugs increased their lifespans. The mechanism of the drug action may advance our understanding of the complex, yet resolvable, biological process of aging.
Collapse
|
217
|
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39:1515-1552. [PMID: 30648267 DOI: 10.1002/med.21559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Biomedical Sciences; University of the Pacific, Arthur Dugoni School of Dentistry; San Francisco California
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University; Taoyuan Taiwan Republic of China
- Department of Microbiology and Immunology; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| |
Collapse
|
218
|
Fuentealba M, Dönertaş HM, Williams R, Labbadia J, Thornton JM, Partridge L. Using the drug-protein interactome to identify anti-ageing compounds for humans. PLoS Comput Biol 2019; 15:e1006639. [PMID: 30625143 PMCID: PMC6342327 DOI: 10.1371/journal.pcbi.1006639] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/22/2019] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
Advancing age is the dominant risk factor for most of the major killer diseases in developed countries. Hence, ameliorating the effects of ageing may prevent multiple diseases simultaneously. Drugs licensed for human use against specific diseases have proved to be effective in extending lifespan and healthspan in animal models, suggesting that there is scope for drug repurposing in humans. New bioinformatic methods to identify and prioritise potential anti-ageing compounds for humans are therefore of interest. In this study, we first used drug-protein interaction information, to rank 1,147 drugs by their likelihood of targeting ageing-related gene products in humans. Among 19 statistically significant drugs, 6 have already been shown to have pro-longevity properties in animal models (p < 0.001). Using the targets of each drug, we established their association with ageing at multiple levels of biological action including pathways, functions and protein interactions. Finally, combining all the data, we calculated a ranked list of drugs that identified tanespimycin, an inhibitor of HSP-90, as the top-ranked novel anti-ageing candidate. We experimentally validated the pro-longevity effect of tanespimycin through its HSP-90 target in Caenorhabditis elegans. Human life expectancy is continuing to increase worldwide, as a result of successive improvements in living conditions and medical care. Although this trend is to be celebrated, advancing age is the major risk factor for multiple impairments and chronic diseases. As a result, the later years of life are often spent in poor health and lowered quality of life. However, these effects of ageing are not inevitable, because very long-lived people often suffer rather little ill-health at the end of their lives. Furthermore, laboratory experiments have shown that animals fed with specific drugs can live longer and with fewer age-related diseases than their untreated companions. We therefore need to identify drugs with anti-ageing properties for humans. We have used publically available data and a computer-based approach to search for drugs that affect components and processes known to be important in human ageing. This approach worked, because it was able to re-discover several drugs known to increase lifespan in animal models, plus some new ones, including one that we tested experimentally and validated in this study. These drugs are now a high priority for animal testing and for exploring effects on human ageing.
Collapse
Affiliation(s)
- Matías Fuentealba
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Johnathan Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- * E-mail:
| |
Collapse
|
219
|
Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 2019; 10:313-338. [PMID: 30719227 PMCID: PMC6349451 DOI: 10.18632/oncotarget.26553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
220
|
Mahmoudi S, Xu L, Brunet A. Turning back time with emerging rejuvenation strategies. Nat Cell Biol 2019; 21:32-43. [PMID: 30602763 DOI: 10.1038/s41556-018-0206-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023]
Abstract
Ageing is associated with the functional decline of all tissues and a striking increase in many diseases. Although ageing has long been considered a one-way street, strategies to delay and potentially even reverse the ageing process have recently been developed. Here, we review four emerging rejuvenation strategies-systemic factors, metabolic manipulations, senescent cell ablation and cellular reprogramming-and discuss their mechanisms of action, cellular targets, potential trade-offs and application to human ageing.
Collapse
Affiliation(s)
- Salah Mahmoudi
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
221
|
Mori M, Higuchi K. [The senescence-accelerated mouse as a model for geriatrics and aging biology]. Nihon Yakurigaku Zasshi 2019; 153:179-185. [PMID: 30971658 DOI: 10.1254/fpj.153.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rapid expansion of aged population is predicted worldwide. To cope with problems expected from this situation and extend the period of active and healthy life of people as much as possible, it is important to elucidate not only the biological mechanisms of "aging", but also the etiology of various "age-related diseases". To attain this goal, extensive studies using excellent animal models are indispensable. Senescence-accelerated mouse (SAM) is a series of inbred mouse strains that includes SAMP1, SAMP6, SAMP8, SAMP10, and SAMR1. SAMP strains exhibit accelerated senescence and short lifespan. In addition, each strain shows specific age-related disease phenotypes which are similar to symptoms observed in humans, such as senile amyloidosis (SAMP1), senile osteoporosis (SAMP6), and age-dependent deficits in learning and memory (SAMP8), making SAM mice useful for an aging research. In this review, we introduce the characteristics and application of SAM in geriatrics and aging biology.
Collapse
Affiliation(s)
- Masayuki Mori
- Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Keiichi Higuchi
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
222
|
Li X, Zhang J, Sun C, Zhang Y, Cai R, Fu S, Zheng J, Huang D. Application of biological age assessment of Chinese population in potential anti-ageing technology. Immun Ageing 2018; 15:33. [PMID: 30574171 PMCID: PMC6299563 DOI: 10.1186/s12979-018-0140-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study aimed to construct a biological age assessment formula for the Chinese population and to explore the effectiveness of double filtration plasmapheresis for anti-ageing and longevity. METHODS 915 subjects were recruited, including 584 (63.8%) males and 331 females (36.2%). Male age was 50.94±10.60 (mean±SD), and female age was 51.20±11.84 (mean±SD). 34 blood markers were detected in the laboratory. The ageing biomarkers were determined by statistical correlation analysis and redundancy analysis, and the biological age assessment formula was established by multiple linear regression analysis. Paired sample T test was used to analyse the elimination effect of double filtration plasmapheresis on aging biomarkers. RESULTS Based on the comprehensive blood test and analysis, the ageing biomarkers were screened, and the male and female biological age assessment formulas were established. Then, the elimination of ageing biomarkers by double filtration plasmapheresis was examined. Double filtration plasmapheresis can eliminate ageing biomarkers, with an average of 4.47 years decrease in age for males and 8.36 years for females. CONCLUSION So, biological age provides a scientific tool for assessing ageing, and double filtration plasmapheresis is safe and might be effective for anti-ageing and longevity. However, the effect of plasmapheresis is expected to be transient, so further studies are needed to plan the number and range of the plasmapheresis procedures necessary to consistently lower the parameters under study.
Collapse
Affiliation(s)
- Xufeng Li
- Institute of Economics, School of Social Sciences, Tsinghua University, No.30 Shuangqing Road, Beijing, 100000 People’s Republic of China
| | - Jiren Zhang
- Guangdong Institute of Target Tumor Intervention and Prevention, No.1 Lions Lake Road, Qingyuan, 511500 People’s Republic of China
| | - Chen Sun
- Guangdong Institute of Target Tumor Intervention and Prevention, No.1 Lions Lake Road, Qingyuan, 511500 People’s Republic of China
| | - Yuanyuan Zhang
- Guangdong Institute of Target Tumor Intervention and Prevention, No.1 Lions Lake Road, Qingyuan, 511500 People’s Republic of China
| | - Rui Cai
- Guangdong Institute of Target Tumor Intervention and Prevention, No.1 Lions Lake Road, Qingyuan, 511500 People’s Republic of China
| | - Shilin Fu
- Guangdong Institute of Target Tumor Intervention and Prevention, No.1 Lions Lake Road, Qingyuan, 511500 People’s Republic of China
| | - Jingfen Zheng
- Guangdong Institute of Target Tumor Intervention and Prevention, No.1 Lions Lake Road, Qingyuan, 511500 People’s Republic of China
| | - Dehai Huang
- Institute of Economics, School of Social Sciences, Tsinghua University, No.30 Shuangqing Road, Beijing, 100000 People’s Republic of China
| |
Collapse
|
223
|
Maeso‐Díaz R, Ortega‐Ribera M, Fernández‐Iglesias A, Hide D, Muñoz L, Hessheimer AJ, Vila S, Francés R, Fondevila C, Albillos A, Peralta C, Bosch J, Tacke F, Cogger VC, Gracia‐Sancho J. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 2018; 17:e12829. [PMID: 30260562 PMCID: PMC6260924 DOI: 10.1111/acel.12829] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/07/2018] [Accepted: 07/08/2018] [Indexed: 12/28/2022] Open
Abstract
The socioeconomic and medical improvements of the last decades have led to a relevant increase in the median age of worldwide population. Although numerous studies described the impact of aging in different organs and the systemic vasculature, relatively little is known about liver function and hepatic microcirculatory status in the elderly. In this study, we aimed at characterizing the phenotype of the aged liver in a rat model of healthy aging, particularly focusing on the microcirculatory function and the molecular status of each hepatic cell type in the sinusoid. Moreover, major findings of the study were validated in young and aged human livers. Our results demonstrate that healthy aging is associated with hepatic and sinusoidal dysfunction, with elevated hepatic vascular resistance and increased portal pressure. Underlying mechanisms of such hemodynamic disturbances included typical molecular changes in the cells of the hepatic sinusoid and deterioration in hepatocyte function. In a specific manner, liver sinusoidal endothelial cells presented a dysfunctional phenotype with diminished vasodilators synthesis, hepatic macrophages exhibited a proinflammatory state, while hepatic stellate cells spontaneously displayed an activated profile. In an important way, major changes in sinusoidal markers were confirmed in livers from aged humans. In conclusion, our study demonstrates for the first time that aging is accompanied by significant liver sinusoidal deregulation suggesting enhanced sinusoidal vulnerability to chronic or acute injuries.
Collapse
Affiliation(s)
- Raquel Maeso‐Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
| | - Martí Ortega‐Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
| | - Anabel Fernández‐Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
| | - Diana Hide
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
| | - Leticia Muñoz
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Immune System Diseases Laboratory, Department of MedicineUniversity of AlcaláAlcalá de HenaresSpain
| | - Amelia J. Hessheimer
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Liver Surgery and Transplantation UnitIDIBAPS, Hospital Clínic de BarcelonaBarcelonaSpain
| | - Sergi Vila
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
| | - Rubén Francés
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL – Fundación FISABIO)AlicanteSpain
| | - Constantino Fondevila
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Liver Surgery and Transplantation UnitIDIBAPS, Hospital Clínic de BarcelonaBarcelonaSpain
| | - Agustín Albillos
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Immune System Diseases Laboratory, Department of MedicineUniversity of AlcaláAlcalá de HenaresSpain
- Department of Gastroenterology and HepatologyHospital Universitario Ramón y Cajal, IRYCIS, Universidad de AlcaláMadridSpain
| | - Carmen Peralta
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Protective Strategies Against Hepatic Ischemia‐Reperfusion GroupIDIBAPSBarcelonaSpain
| | - Jaime Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Hepatology, Department of Biomedical ResearchInselspital, Bern UniversityBernSwitzerland
| | - Frank Tacke
- Dept of Medicine IIIUniversity Hospital AachenAachenGermany
| | - Victoria C. Cogger
- Centre for Education and Research on Ageing & ANZAC Research InstituteUniversity of Sydney and Concord HospitalSydney Australia
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research Institute, University of Barcelona Medical SchoolBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Hepatology, Department of Biomedical ResearchInselspital, Bern UniversityBernSwitzerland
| |
Collapse
|
224
|
Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, Barzilai N, Kuchel GA. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. GeroScience 2018; 40:419-436. [PMID: 30151729 PMCID: PMC6294728 DOI: 10.1007/s11357-018-0042-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Recent advances indicate that biological aging is a potentially modifiable driver of late-life function and chronic disease and have led to the development of geroscience-guided therapeutic trials such as TAME (Targeting Aging with MEtformin). TAME is a proposed randomized clinical trial using metformin to affect molecular aging pathways to slow the incidence of age-related multi-morbidity and functional decline. In trials focusing on clinical end-points (e.g., disease diagnosis or death), biomarkers help show that the intervention is affecting the underlying aging biology before sufficient clinical events have accumulated to test the study hypothesis. Since there is no standard set of biomarkers of aging for clinical trials, an expert panel was convened and comprehensive literature reviews conducted to identify 258 initial candidate biomarkers of aging and age-related disease. Next selection criteria were derived and applied to refine this set emphasizing: (1) measurement reliability and feasibility; (2) relevance to aging; (3) robust and consistent ability to predict all-cause mortality, clinical and functional outcomes; and (4) responsiveness to intervention. Application of these selection criteria to the current literature resulted in a short list of blood-based biomarkers proposed for TAME: IL-6, TNFα-receptor I or II, CRP, GDF15, insulin, IGF1, cystatin C, NT-proBNP, and hemoglobin A1c. The present report provides a conceptual framework for the selection of blood-based biomarkers for use in geroscience-guided clinical trials. This work also revealed the scarcity of well-vetted biomarkers for human studies that reflect underlying biologic aging hallmarks, and the need to leverage proposed trials for future biomarker discovery and validation.
Collapse
Affiliation(s)
- Jamie N Justice
- Internal Medicine Section on Gerontology and Geriatrics, and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Vanita R Aroda
- Department of Medicine, Division of Diabetes, Endocrinology, and Hypertension Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Judy L Bahnson
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Santica Marcovina
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98109, USA
| | - Michael N Pollak
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H3T1E2, Canada
| | - Stephen B Kritchevsky
- Internal Medicine Section on Gerontology and Geriatrics, and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
225
|
Shamalnasab M, Gravel SP, St-Pierre J, Breton L, Jäger S, Aguilaniu H. A salicylic acid derivative extends the lifespan of Caenorhabditis elegans by activating autophagy and the mitochondrial unfolded protein response. Aging Cell 2018; 17:e12830. [PMID: 30192051 PMCID: PMC6260907 DOI: 10.1111/acel.12830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/12/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
Plant extracts containing salicylates are probably the most ancient remedies to reduce fever and ease aches of all kind. Recently, it has been shown that salicylates activate adenosine monophosphate‐activated kinase (AMPK), which is now considered as a promising target to slow down aging and prevent age‐related diseases in humans. Beneficial effects of AMPK activation on lifespan have been discovered in the model organism Caenorhabditis elegans (C. elegans). Indeed, salicylic acid and acetylsalicylic acid extend lifespan in worms by activating AMPK and the forkhead transcription factor DAF‐16/FOXO. Here, we investigated whether another salicylic acid derivative 5‐octanoyl salicylic acid (C8‐SA), developed as a controlled skin exfoliating ingredient, had similar properties using C. elegans as a model. We show that C8‐SA increases lifespan of C. elegans and that a variety of pathways and genes are required for C8‐SA‐mediated lifespan extension. C8‐SA activates AMPK and inhibits TOR both in nematodes and in primary human keratinocytes. We also show that C8‐SA can induce both autophagy and the mitochondrial unfolded protein response (UPRmit) in nematodes. This induction of both processes is fully required for lifespan extension in the worm. In addition, we found that the activation of autophagy by C8‐SA fails to occur in worms with compromised UPRmit, suggesting a mechanistic link between these two processes. Mutants that are defective in the mitochondrial unfolded protein response exhibit constitutive high autophagy levels. Taken together, these data therefore suggest that C8‐SA positively impacts longevity in worms through induction of autophagy and the UPRmit.
Collapse
Affiliation(s)
| | - Simon-Pierre Gravel
- Department of Biochemistry; McGill University; Montreal Quebec Canada
- Goodman Cancer Research Centre; McGill University; Montreal Quebec Canada
- Faculté de pharmacie; Université de Montréal; Montréal Quebec Canada
| | - Julie St-Pierre
- Department of Biochemistry; McGill University; Montreal Quebec Canada
- Goodman Cancer Research Centre; McGill University; Montreal Quebec Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Lionel Breton
- L’Oréal Research & Innovation; Aulnay-sous-Bois France
| | - Sibylle Jäger
- L’Oréal Research & Innovation; Aulnay-sous-Bois France
| | - Hugo Aguilaniu
- Instituto Serrapilheira; Rio de Janeiro Brazil
- Détaché from CNRS (section 24); Paris France
| |
Collapse
|
226
|
Abstract
Significant progress in defining the biology of aging, particularly in animal models, supports the geroscience hypothesis, which posits that by therapeutically targeting biological aging, the onset of multiple age-related diseases can be delayed "en suite". Geroscience investigators are preparing to test this hypothesis in humans for the first time. In this review, we describe development of large-scale clinical trials designed to determine if multiple age-related health conditions can be simultaneously alleviated with interventions targeting the underlying biology of aging. We describe the rationale and collaborative, consensus building approach used to design the first aging outcomes trial called Targeting Aging with Metformin (TAME). Through this case study, we outline features that could be more broadly extended to other geroscience-guided clinical trials, including a process for selecting biochemical and molecular markers of biologic age and we provide a perspective on the potential impact of clinical trials targeting aging.
Collapse
|
227
|
Abstract
The types of changes in physical appearance and behavior that occur in elderly people similarly develop in elderly animals. Signs and symptoms that might cause concern in younger people or mice may be normal in their elderly but generally healthy counterparts. Although numerous scoring methods have been developed to assess rodent health, these systems were often designed for young adults used in specific types of research, such as cancer or neurologic studies, and therefore may be suboptimal for assessing aging rodents. Approaches known as frailty assessments provide a global evaluation of the health of aged mice, rats, and people, and mouse frailty scores correlate well with the likelihood of death. Complementing frailty assessment, prediction of imminent death in aged mice can often be accomplished by focusing on 2 objective parameters-body weight and temperature. Before they die, many (but not all) mice develop marked reductions in body weight and temperature, thus providing signs that close monitoring, intervention, or preemptive euthanasia may be necessary. Timely preemptive euthanasia allows antemortem collection of data and samples that would be lost if spontaneous death occurred; preemptive euthanasia also limits terminal suffering. These approaches to monitoring declining health and predicting death in elderly research mice can aid in establishing and implementing timely interventions that both benefit the research and reduce antemortem suffering.
Collapse
Affiliation(s)
- Linda A Toth
- Emeritus Faculty, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
228
|
Dorsal-zone-specific reduction of sensory neuron density in the olfactory epithelium following long-term exercise or caloric restriction. Sci Rep 2018; 8:17300. [PMID: 30470811 PMCID: PMC6251928 DOI: 10.1038/s41598-018-35607-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/08/2018] [Indexed: 01/09/2023] Open
Abstract
Exercise (Ex) and caloric restriction (CR) reduce oxidative stress and improve organ function. For instance, voluntary Ex or CR is known to reduce age-related cochlear damage in male C57BL/6J mice. However, the effect of Ex and CR on the olfactory system is unknown. In this study, we confirmed the positive effect of Ex and CR on age-related cochlear damage, but found that Ex and CR affected negatively cell dynamics in the olfactory epithelium (OE) by reducing the number of mature olfactory sensory neurons (OSNs) and increasing the number of proliferative basal cells and apoptotic OSNs in the dorsal zone of the olfactory epithelium (OE), which contains neurons expressing NADPH quinone oxido-reductase 1 (NQO1). In addition, these interventions resulted in lower odor-induced c-fos expression in areas of the olfactory bulb receiving projections from dorsal-zone OSNs than in areas receiving ventral-zone projections. Further, we observed substantial oxidative stress in NQO1-positive cells and apoptotic OSNs in the dorsal zone in Ex and CR animals. These results suggest that, in contrast to their positive effects in other organs, Ex and CR facilitate oxidative stress and negatively impact structure and function in dorsal-zone OSNs, probably in association with NQO1 bioactivation.
Collapse
|
229
|
Liu A, Yang J, Hu Q, Dirsch O, Dahmen U, Zhang C, Gewirtz DA, Fang H, Sun J. Young plasma attenuates age-dependent liver ischemia reperfusion injury. FASEB J 2018; 33:3063-3073. [PMID: 30383439 DOI: 10.1096/fj.201801234r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging is often associated with a decreased autophagic activity that contributes to the high sensitivity of aged livers to ischemia reperfusion injury (IRI). Blood from young animals can positively affect aged animals. This study was designed to evaluate the effect of young plasma in a model of liver IRI in aged rats. Aged rats were treated with pooled plasma collected from young rats before ischemia. Administration of young plasma restored aging-induced suppression in hepatic autophagic activity and reduced liver IRI. Inhibition of the young-plasma-restored autophagic activity abrogated the beneficial effect of young plasma against liver IRI. Similarly, young serum restored autophagic activity and reduced cellular injury after hypoxia/reoxygenation (H/R) in primary old rat hepatocytes. Mechanistic studies showed thatadministration of young plasma increased AMPK phosphorylation and led to unc-51-like autophagy activating kinase (ULK)1 activation. Furthermore, AMPK-inhibition abrogated the young serum-induced ULK1 activation and autophagic activity and diminished the protective action of young serum against H/R injury in primary old rat hepatocytes, whereas AMPK-activation potentiated the effects of young serum. Young plasma could restore age-impaired autophagy, at least in part, via AMPK/ULK1 signaling. Restoration of age-impaired autophagic activity may be a critical contributing mechanism to young-plasma-afforded protection against liver IRI in aged rats.-Liu, A., Yang, J., Hu, Q., Dirsch, O., Dahmen, U., Zhang, C., Gewirtz, D. A., Fang, H., Sun, J. Young plasma attenuates age-dependent liver ischemia reperfusion injury.
Collapse
Affiliation(s)
- Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, Jena, Germany
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Jian Sun
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
230
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
231
|
Sheinerman K, Tsivinsky V, Mathur A, Kessler D, Shaz B, Umansky S. Age- and sex-dependent changes in levels of circulating brain-enriched microRNAs during normal aging. Aging (Albany NY) 2018; 10:3017-3041. [PMID: 30383539 PMCID: PMC6224262 DOI: 10.18632/aging.101613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Aging is a major risk factor for many common and life-threatening pathologies. The development of reliable biomarkers of aging should lead to a better understanding of aging-associated processes and facilitate the development of therapeutic regimens that delay aging. Levels of 38 brain-enriched microRNAs (miRNA) circulating in plasma were measured by quantitative RT-PCR in two age groups: 26-35 and 56-65 years old. An miRNA-pair approach was used for data normalization and determination of effective miRNA biomarker ratios. Nineteen miRNAs, comprising miRNA pairs and pair combinations (classifiers) that effectively differentiated the age and sex (individual pairs: 74-95% and 68-95%, respectively; classifiers: up to 100% accuracy) groups, were selected for further analysis of plasma samples from 5 donor age groups: 26-35, 36-45, 46-55, 56-65 and 66-75 years old. Dynamic changes in the plasma concentrations of certain miRNAs occurred at different ages in females and males, with peaks in the 46-55-year-old and 56-65-year-old groups, respectively. This finding suggests that the changes in miRNA levels can reflect centrally regulated processes, including changes in hormone levels during menopause. Certain miRNAs and miRNA pairs correlated with age in the sex-stratified groups at different ages and should be investigated further as potentially promising biomarkers of brain aging.
Collapse
Affiliation(s)
| | | | | | | | - Beth Shaz
- New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
232
|
Age- and Genotype-Specific Effects of the Angiotensin-Converting Enzyme Inhibitor Lisinopril on Mitochondrial and Metabolic Parameters in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19113351. [PMID: 30373167 PMCID: PMC6274988 DOI: 10.3390/ijms19113351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme (ACE) is a peptidase that is involved in the synthesis of Angiotensin II, the bioactive component of the renin-angiotensin system. A growing body of literature argues for a beneficial impact of ACE inhibitors (ACEi) on age-associated metabolic disorders, mediated by cellular changes in reactive oxygen species (ROS) that improve mitochondrial function. Yet, our understanding of the relationship between ACEi therapy and metabolic parameters is limited. Here, we used three genetically diverse strains of Drosophila melanogaster to show that Lisinopril treatment reduces thoracic ROS levels and mitochondrial respiration in young flies, and increases mitochondrial content in middle-aged flies. Using untargeted metabolomics analysis, we also showed that Lisinopril perturbs the thoracic metabolic network structure by affecting metabolic pathways involved in glycogen degradation, glycolysis, and mevalonate metabolism. The Lisinopril-induced effects on mitochondrial and metabolic parameters, however, are genotype-specific and likely reflect the drug's impact on nutrient-dependent fitness traits. Accordingly, we found that Lisinopril negatively affects survival under nutrient starvation, an effect that can be blunted by genotype and age in a manner that partially mirrors the drug-induced changes in mitochondrial respiration. In conclusion, our results provide novel and important insights into the role of ACEi in cellular metabolism.
Collapse
|
233
|
de Medina P. Deciphering the metabolic secret of longevity through the analysis of metabolic response to stress on long-lived species. Med Hypotheses 2018; 122:62-67. [PMID: 30593426 DOI: 10.1016/j.mehy.2018.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/30/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Despite intensive research, no satisfactory therapeutic options have been found for aging and age-related diseases. The British scientist Leslie Orgel stated that evolution is cleverer than we are. This assumption seems correct considering that some species are naturally able to resist the age-related diseases that remain unsolved by our modern medicine. Indeed, bowhead whales can live for more than two hundred years and are suspected to possess efficient antitumor mechanisms. Naked mole-rats are exceptionally long-lived compared to similar-sized mammals and are protected from senescence and age-related diseases. Consequently, the characterization of protective molecular mechanisms in long-lived species (i.e. bowhead whale, naked mole-rat, microbat) could be of great interest for therapeutic applications in human. Cellular stress response is considered to be an anti-aging process dedicated to the prevention of damage accumulation and the maintenance of homeostasis. Interestingly, cellular stress response in plants and animals involves the production of health-promoting metabolites such as resveratrol, nicotinamide adenine dinucleotide and spermidine. Do anti-aging metabolites formed during stress exposure differ between human and extreme longevity species in terms of their nature, their quantity or their production? These questions remain unsolved and deserve to be considered. Indeed, the mimicking of anti-aging strategies selected throughout evolution in long-lived species could be of high therapeutic value for humans. This paper suggests that metabolomic studies on extreme longevity species cells exposed to mild stressors may lead to the characterization of health-promoting metabolites. If confirmed, this would provide new avenues of research for the development of innovative anti-aging strategies for humans.
Collapse
|
234
|
Sharma K, Darvas M, Keene CD, Niedernhofer LJ, Ladiges W. Modeling Alzheimer's disease in progeria mice. An age-related concept. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1524815. [PMID: 30319737 PMCID: PMC6179061 DOI: 10.1080/20010001.2018.1524815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of Alzheimer’s disease (AD) is expected to dramatically increase in older people worldwide. Efforts to find disease-modifying treatments have been largely unsuccessful because of the focus on disease-specific pathogenesis, and lack of animal models to study AD in the context of aging and age-related co-morbidities. The geroscience approach to studying AD would suggest that modulation of aging per se would be a useful strategy, but a mammalian model system that combines both aging and AD is not available. One approach to study old age and AD is to utilize murine models of progeroid syndrome, which can provide a number of advantages not only for basic aging biology but also for preclinical drug testing. A progeria background, such as the Ercc1 mutant mouse (Ercc1−/Δ), provides an aging component not seen in current murine models of AD that lack age-related co-morbidities typical of AD patients. Ercc1−/Δ mice experience the same types of stochastic endogenous DNA damage as WT mice, but accumulate lesions faster due to impaired DNA repair, which accelerates the normal aging process by 6-fold. These mice do not show frank AD pathology but represent a predisposed or hypersensitive environment for AD pathology, where pathogenic elements of AD can be introduced, either by crossing with well-established AD transgenic mouse lines, or transcranial stereotaxic delivery directly into the brain. Since Ercc1−/Δ mice age five to six times faster than WT mice, very rapid characterization and testing of therapeutic interventions is possible. Studies are urgently needed to capitalize on the highly informative potential of this novel AD mouse model.
Collapse
Affiliation(s)
- Kavita Sharma
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Martin Darvas
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
235
|
Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L, Cazenave-Gassiot A, Wenk MR, Tolwinski NS, Gruber J. Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Dev Cell 2018; 47:67-79.e5. [DOI: 10.1016/j.devcel.2018.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
|
236
|
Duran-Ortiz S, Bell S, Kopchick JJ. Standardizing protocols dealing with growth hormone receptor gene disruption in mice using the Cre-lox system. Growth Horm IGF Res 2018; 42-43:52-57. [PMID: 30195091 PMCID: PMC9704043 DOI: 10.1016/j.ghir.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Mice and humans with reduced growth hormone (GH) action before birth are conferred positive health- and life-span advantages. However, little work has been performed to study the effect of conditional disruption of GH action in adult life. With this as our objective, we sought to elucidate a reproducible protocol that allows generation of adult mice with a global disruption of the GH receptor (Ghr) gene, using the tamoxifen (TAM)-inducible Cre-lox system, driven by the ROSA26 enhancer/promoter. Here we report the optimum conditions for the gene disruption. DESIGN Six month old mice, homozygous for the ROSA26-Cre and the Ghr-floxed gene, were injected, once daily for five days with four distinct TAM doses (from 0.08 to 0.32 mg of TAM/g of body weight). To evaluate the most effective TAM dose that leads to global disruption of the GHR, mRNA expression of the Ghr and insulin growth factor-1 (Igf1) genes were assessed in liver, adipose tissue, kidney, and skeletal and cardiac muscles of experimental and control mice. Additionally, serum GH and IGF-1 levels were evaluated one month after TAM injections in both, TAM-treated and TAM-untreated control mice. RESULTS A dose of 0.25 mg of TAM/g of body weight was sufficient to significantly reduce the Ghr and Igf1 expression levels in the liver, fat, kidney, and skeletal and cardiac muscle of six-month old mice that are homozygous for the Ghr floxed gene and Cre recombinase. The reduction of the Ghr mRNA levels of the TAM-treated mice was variable between tissues, with liver and adipose tissue showing the lowest and skeletal and cardiac muscle the highest levels of Ghr gene expression when compared to control mice. Moreover, liver tissue showed the 'best' Ghr gene disruption, resulting in decreased total circulating IGF-1 levels while GH levels were increased versus control mice. CONCLUSION The results show that in mice at six months of age, a total TAM dose of at least 0.25 mg of TAM/g of body weight is needed for a global downregulation of Ghr gene expression with a regimen of 100 μL intraperitoneal (ip) TAM injections, once daily for five consecutive days. Furthermore, we found that even though this system does not achieve an equivalent disruption of the Ghr between tissues, the circulating IGF-1 is >95% decreased. This work helped to create adult mice with a global GHR knockdown.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Department of Biological Sciences, College of Arts and Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Stephen Bell
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
237
|
Singh T, Lee EH, Hartman TR, Ruiz-Whalen DM, O'Reilly AM. Opposing Action of Hedgehog and Insulin Signaling Balances Proliferation and Autophagy to Determine Follicle Stem Cell Lifespan. Dev Cell 2018; 46:720-734.e6. [PMID: 30197240 PMCID: PMC6159899 DOI: 10.1016/j.devcel.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Egg production declines with age in many species, a process linked with stem cell loss. Diet-dependent signaling has emerged as critical for stem cell maintenance during aging. Follicle stem cells (FSCs) in the Drosophila ovary are exquisitely responsive to diet-induced signals including Hedgehog (Hh) and insulin-IGF signaling (IIS), entering quiescence in the absence of nutrients and initiating proliferation rapidly upon feeding. Although highly proliferative FSCs generally exhibit an extended lifespan, we find that constitutive Hh signaling drives FSC loss and premature sterility despite high proliferative rates. This occurs due to Hh-mediated induction of autophagy in FSCs via a Ptc-dependent, Smo-independent mechanism. Hh-dependent autophagy increases during aging, triggering FSC loss and consequent reproductive arrest. IIS is necessary and sufficient to suppress Hh-induced autophagy, promoting a stable proliferative state. These results suggest that opposing action of diet-responsive IIS and Hh signals determine reproductive lifespan by modulating the proliferation-autophagy balance in FSCs during aging.
Collapse
Affiliation(s)
- Tanu Singh
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19111, USA
| | - Eric H Lee
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tiffiney R Hartman
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Dara M Ruiz-Whalen
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Alana M O'Reilly
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
238
|
Caprara G. Diet and longevity: The effects of traditional eating habits on human lifespan extension. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2018. [DOI: 10.3233/mnm-180225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the dawn of time human beings have been trying to improve the quality of the existence and extend their lifespan. Genetic, environmental, behavioral and dietary factors influence the pathways that regulate aging and life expectancy, thus rendering longevity a very complex phenomenon. Although a long-lived elixir has not yet been found, physicians and scientists agree that nutrition has a major impact on the overall mortality and morbidity, hence becoming the subject of a widespread scientific research. This review describes, analyzes and compares the effects of different types of diets in reducing the onset of typical Western countries non-communicable diseases (NCDs) (cardiovascular diseases, tumors, chronic respiratory diseases, diabetes, etc.), thus increasing the average lifespan. It will first depict the most relevant characteristics, nutraceutical properties and effects on the populations of the Mediterranean, Japanese, Vegetarian and New Nordic Diet. Finally, it will describe the impact of different dietary restrictions in modulating the genetic pathways that regulate metabolism and aging. Overall, this work reinforces the evidence that specific eating habits, in addition to healthy and active lifestyles, are crucial to increase people’s health span and to achieve an optimal longevity.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
239
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|
240
|
Royal Jelly Delays Motor Functional Impairment During Aging in Genetically Heterogeneous Male Mice. Nutrients 2018; 10:nu10091191. [PMID: 30200401 PMCID: PMC6164577 DOI: 10.3390/nu10091191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Aging is associated with motor disorders that decrease the quality of life (QOL). Royal jelly (RJ), used as a dietary supplement, has shown various health benefits and, therefore, it has the potential to improve the QOL during aging. We have previously developed protease enzyme-treated RJ to avoid the anaphylactic response induced by RJ supplementation. However, the effects of a lifelong treatment with RJ on normal aging have not been fully clarified. In this study, we investigated the effects of enzyme-untreated RJ (NRJ) and enzyme-treated RJ (ERJ) on the aging process focusing on motor functions, by using a genetically heterogeneous (HET) mouse model experimentally endowed with genetic diversity. We performed four different physical performance tests (grip strength, wire hang, horizontal bar, and rotarod). We showed that the age-related impairment of the motor functions was significantly delayed in RJ-treated mice. Both NRJ and ERJ were similarly effective against these types of aging-associated declines. Histological analyses revealed that the RJ treatment affected the muscle fiber size at an advanced age. We also demonstrated that age-related changes in muscle satellite cell markers and catabolic genes were affected in RJ-treated mice. These results suggest that non-protein components of RJ improved the motor function in aging mice. These findings indicate that RJ has the potential to change the QOL during aging by regulating the motor function.
Collapse
|
241
|
Shintani T, Kosuge Y, Ashida H. Glucosamine Extends the Lifespan of Caenorhabditis elegans via Autophagy Induction. J Appl Glycosci (1999) 2018; 65:37-43. [PMID: 34354511 PMCID: PMC8056925 DOI: 10.5458/jag.jag.jag-2018_002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.
Collapse
Affiliation(s)
- Tomoya Shintani
- 1 Graduate School of Biostudies, Kyoto University.,2 United Graduate School of Agriculture, Ehime University
| | - Yuhei Kosuge
- 1 Graduate School of Biostudies, Kyoto University
| | - Hisashi Ashida
- 3 Faculty of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
242
|
Yoshida S, Yamahara K, Kume S, Koya D, Yasuda-Yamahara M, Takeda N, Osawa N, Chin-Kanasaki M, Adachi Y, Nagao K, Maegawa H, Araki SI. Role of dietary amino acid balance in diet restriction-mediated lifespan extension, renoprotection, and muscle weakness in aged mice. Aging Cell 2018; 17:e12796. [PMID: 29943496 PMCID: PMC6052467 DOI: 10.1111/acel.12796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/13/2018] [Accepted: 05/27/2018] [Indexed: 12/20/2022] Open
Abstract
Extending healthy lifespan is an emerging issue in an aging society. This study was designed to identify a dietary method of extending lifespan, promoting renoprotection, and preventing muscle weakness in aged mice, with a focus on the importance of the balance between dietary essential (EAAs) and nonessential amino acids (NEAAs) on the dietary restriction (DR)‐induced antiaging effect. Groups of aged mice were fed ad libitum, a simple DR, or a DR with recovering NEAAs or EAAs. Simple DR significantly extended lifespan and ameliorated age‐related kidney injury; however, the beneficial effects of DR were canceled by recovering dietary EAA but not NEAA. Simple DR prevented the age‐dependent decrease in slow‐twitch muscle fiber function but reduced absolute fast‐twitch muscle fiber function. DR‐induced fast‐twitch muscle fiber dysfunction was improved by recovering either dietary NEAAs or EAAs. In the ad libitum‐fed and the DR plus EAA groups, the renal content of methionine, an EAA, was significantly higher, accompanied by lower renal production of hydrogen sulfide (H2S), an endogenous antioxidant. Finally, removal of methionine from the dietary EAA supplement diminished the adverse effects of dietary EAA on lifespan and kidney injury in the diet‐restricted aged mice, which were accompanied by a recovery in H2S production capacity and lower oxidative stress. These data imply that a dietary approach could combat kidney aging and prolong lifespan, while preventing muscle weakness, and suggest that renal methionine metabolism and the trans‐sulfuration pathway could be therapeutic targets for preventing kidney aging and subsequently promoting healthy aging.
Collapse
Affiliation(s)
- Shohei Yoshida
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
| | - Kosuke Yamahara
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
- Department of Medicine IV; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Shinji Kume
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology; Kanazawa Medical University; Kahoku-Gun Ishikawa Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
- Department of Medicine IV; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Naoko Takeda
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
| | - Norihisa Osawa
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
| | | | - Yusuke Adachi
- Frontier Research Labs; Institute for Innovation; Ajinomoto Co., Inc.; Kawasaki Kanagawa Japan
| | - Kenji Nagao
- Frontier Research Labs; Institute for Innovation; Ajinomoto Co., Inc.; Kawasaki Kanagawa Japan
| | - Hiroshi Maegawa
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
| | - Shin-ichi Araki
- Department of Medicine; Shiga University of Medical Science; Otsu Shiga Japan
| |
Collapse
|
243
|
Fang J, Yang J, Wu X, Zhang G, Li T, Wang X, Zhang H, Wang C, Liu G, Wang L. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018; 17:e12765. [PMID: 29659168 PMCID: PMC6052468 DOI: 10.1111/acel.12765] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Metformin, an FDA-approved antidiabetic drug, has been shown to elongate lifespan in animal models. Nevertheless, the effects of metformin on human cells remain unclear. Here, we show that low-dose metformin treatment extends the lifespan of human diploid fibroblasts and mesenchymal stem cells. We report that a low dose of metformin upregulates the endoplasmic reticulum-localized glutathione peroxidase 7 (GPx7). GP×7 expression levels are decreased in senescent human cells, and GPx7 depletion results in premature cellular senescence. We also indicate that metformin increases the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which binds to the antioxidant response elements in the GPX7 gene promoter to induce its expression. Moreover, the metformin-Nrf2-GPx7 pathway delays aging in worms. Our study provides mechanistic insights into the beneficial effects of metformin on human cellular aging and highlights the importance of the Nrf2-GPx7 pathway in pro-longevity signaling.
Collapse
Affiliation(s)
- Jingqi Fang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jiping Yang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xun Wu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Gangming Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Tao Li
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xi'e Wang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hong Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Chih‐chen Wang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guang‐Hui Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- National Clinical Research Center for Geriatric DisordersXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Lei Wang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
244
|
Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 2018; 21:1038-1048. [PMID: 30038280 PMCID: PMC6095477 DOI: 10.1038/s41593-018-0194-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
Transposable elements, known colloquially as “jumping genes,” constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. Here we identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi/piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi/piRNA depletion and consequent transposable element dysregulation as a novel, pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.
Collapse
|
245
|
|
246
|
Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 2018; 9:2394. [PMID: 29921922 PMCID: PMC6008442 DOI: 10.1038/s41467-018-04805-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/16/2018] [Indexed: 01/16/2023] Open
Abstract
Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes. Here we show that L2-Cmu preferentially improves female healthspan and increases median lifespan by 9% (P = 0.03) in females, along with a reduction in neoplasms and inflammation (P ≤ 0.05). Thus, consistent with other models, targeting IGF-1R signaling appears to be most beneficial to females. Importantly, these effects could be achieved at advanced ages, suggesting that IGF-1R mAbs could represent a promising therapeutic candidate to delay aging.
Collapse
|
247
|
Baccolo G, Stamerra G, Coppola DP, Orlandi I, Vai M. Mitochondrial Metabolism and Aging in Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:1-33. [PMID: 30072089 DOI: 10.1016/bs.ircmb.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial functionality is one of the main factors involved in cell survival, and mitochondrial dysfunctions have been identified as an aging hallmark. In particular, the insurgence of mitochondrial dysfunctions is tightly connected to mitochondrial metabolism. During aging, both mitochondrial oxidative and biosynthetic metabolisms are progressively altered, with the development of malfunctions, in turn affecting mitochondrial functionality. In this context, the relation between mitochondrial pathways and aging is evolutionarily conserved from single-celled organisms, such as yeasts, to complex multicellular organisms, such as humans. Useful information has been provided by the yeast Saccharomyces cerevisiae, which is being increasingly acknowledged as a valuable model system to uncover mechanisms underlying cellular longevity in humans. On this basis, we review the impact of specific aspects of mitochondrial metabolism on aging supported by the contributions brought by numerous studies performed employing yeast. Initially, we will focus on the tricarboxylic acid cycle and oxidative phosphorylation, describing how their modulation has consequences on cellular longevity. Afterward, we will report information regarding the importance of nicotinamide adenine dinucleotide (NAD) metabolism during aging, highlighting its relation with mitochondrial functionality. The comprehension of these key points regarding mitochondrial metabolism and their physiological importance is an essential first step for the development of therapeutic interventions that point to increase life quality during aging, therefore promoting "healthy aging," as well as lifespan itself.
Collapse
Affiliation(s)
- Giacomo Baccolo
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Giulia Stamerra
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | - Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
248
|
Sanders JL, Guo W, O’Meara ES, Kaplan RC, Pollak MN, Bartz TM, Newman AB, Fried LP, Cappola AR. Trajectories of IGF-I Predict Mortality in Older Adults: The Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2018; 73:953-959. [PMID: 28977343 PMCID: PMC6001890 DOI: 10.1093/gerona/glx143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Background Disruption of insulin-like growth factor-I (IGF-I) increases health and life span in animal models, though this is unconfirmed in humans. If IGF-I stability indicates homeostasis, the absolute level of IGF-I may be less clinically relevant than maintaining an IGF-I setpoint. Methods Participants were 945 U.S. community-dwelling individuals aged ≥65 years enrolled in the Cardiovascular Health Study with IGF-I levels at 3-6 timepoints. We examined the association of baseline IGF-I level, trajectory slope, and variability around the trajectory with mortality. Results There were 633 deaths over median 11.3 years of follow-up. Lower IGF-I levels, declining or increasing slope, and increasing variability were each individually associated with higher mortality (all p < .001). In an adjusted model including all three trajectory parameters, baseline IGF-I levels <70 ng/mL (hazard ratio [HR] 1.58, 95% CI 1.28-1.96 relative to IGF-I levels of 170 ng/mL), steep declines and steep increases in trajectory slope (HR 2.22, 1.30-3.80 for a 15% decline; HR 1.40, 1.07-1.84 for a 10% decline; HR 1.80, 1.12-2.89 for a 15% increase; HR 1.31, 1.00-1.72 for a 10% increase, each vs no change), and variability ≥10% (HR 1.59, 1.09-2.32 for ≥ 30%; HR 1.36, 1.06-1.75 for 20%; and HR 1.17, 1.03-1.32 for 10% variability, each vs 0%) in IGF-I levels were independently associated with mortality. Conclusions In contrast to data from animal models, low IGF-I levels are associated with higher mortality in older humans. Irrespective of the actual IGF-I level, older individuals with stability of IGF-I levels have lower mortality than those whose IGF-I levels fluctuate over time.
Collapse
Affiliation(s)
- Jason L Sanders
- Department of Medicine, Massachusetts General Hospital, Boston
| | - Wensheng Guo
- Division of Biostatistics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Ellen S O’Meara
- Kaiser Permanente Washington Health Research Institute, Seattle
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Michael N Pollak
- Cancer Prevention Research Unit, Departments of Medicine and Oncology, Lady Davis Research Institute of Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pennsylvania
| | - Linda P Fried
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
249
|
Charles KN, Li MD, Engin F, Arruda AP, Inouye K, Hotamisligil GS. Uncoupling of Metabolic Health from Longevity through Genetic Alteration of Adipose Tissue Lipid-Binding Proteins. Cell Rep 2018; 21:393-402. [PMID: 29020626 DOI: 10.1016/j.celrep.2017.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/10/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022] Open
Abstract
Deterioration of metabolic health is a hallmark of aging and generally assumed to be detrimental to longevity. Exposure to a high-calorie diet impairs metabolism and accelerates aging; conversely, calorie restriction (CR) prevents age-related metabolic diseases and extends lifespan. However, it is unclear whether preservation of metabolic health is sufficient to extend lifespan. We utilized a genetic mouse model lacking Fabp4/5 that confers protection against metabolic diseases and shares molecular and lipidomic features with CR to address this question. Fabp-deficient mice exhibit extended metabolic healthspan, with protection against insulin resistance and glucose intolerance, inflammation, deterioration of adipose tissue integrity, and fatty liver disease. Surprisingly, however, Fabp-deficient mice did not exhibit any extension of lifespan. These data indicate that extension of metabolic healthspan in the absence of CR can be uncoupled from lifespan, indicating the potential for independent drivers of these pathways, at least in laboratory mice.
Collapse
Affiliation(s)
- Khanichi N Charles
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Min-Dian Li
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Feyza Engin
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ana Paula Arruda
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Karen Inouye
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
250
|
D'Aquila P, Crocco P, De Rango F, Indiveri C, Bellizzi D, Rose G, Passarino G. A Genetic Variant of ASCT2 Hampers In Vitro RNA Splicing and Correlates with Human Longevity. Rejuvenation Res 2018; 21:193-199. [DOI: 10.1089/rej.2017.1948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| |
Collapse
|