201
|
Wang J, Wu Q, Yu J, Cao X, Xu Z. miR-125a-5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox-LDL. Exp Ther Med 2019; 18:1645-1652. [PMID: 31410121 PMCID: PMC6676174 DOI: 10.3892/etm.2019.7717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/31/2019] [Indexed: 12/04/2022] Open
Abstract
Recent findings have revealed that aberrant miR-125a-5p expression is involved in the development of atherosclerosis. The present study aimed to investigate the precise mechanism of microRNA (miR)-125a-5p in atherosclerosis. Human vascular smooth muscle cells (HVSMCs) were treated with 20 µg/ml oxidized low-density lipoprotein (ox-LDL) for 24 h and were employed as in vitro models of atherosclerosis. Reverse transcription quantitative (RT-qPCR) assays were used to detect miR-125a-5p levels. Immunofluorescence analysis was conducted to assess α-smooth muscle actin (α-SMA) expression. Western blotting and RT-qPCR assays were performed to measure the expression levels of NACHT, LRR and PYD domains-containing protein 3 (NLRP3), apoptosis associated speck-like protein (ASC), caspase-1, active interleukin (IL)-1β and C-C motif chemokine 4-like (CCL4). Furthermore, the association between miR-125a-5p and CCL4 was assessed using a double luciferase analysis. In addition, VSMCs were transfected with miR-125a-5p mimics (30 nM), miR-125a-5p inhibitor (100 nM) or small interfering RNA against CCL4 (si-CCL4, 50 pM), respectively to further investigate the function of miR-125a-5p in ox-LDL-treated HVSMCs. The present study found that the expression levels of miR-125a-5p were significantly downregulated in HVSMCs, whereas the expression levels of α-SMA, NLRP3, ASC, caspase-1, IL-1β and CCL4 were markedly upregulated following ox-LDL treatment. Overexpression of miR-125a-5p in the absence of ox-LDL treatment decreased NLRP3, IL-1β and CCL4 expression, whereas inhibition of miR-125a-5p exhibited the opposite effects. The results of double luciferase analysis confirmed that CCL4 was a direct target of miR-125a-5p. Moreover, transfection of si-CCL4 into HVSMCs significantly decreased the ox-LDL-induced expression of NLRP3, ASC, caspase-1 and IL-1β proteins. Taken collectively, the results of the present study suggested that miR-125a-5p could negatively regulate the NLRP3 inflammasome by targeting CCL4 in ox-LDL-treated HVSMCs. The data provide new insight to the inhibition of atherosclerosis progression.
Collapse
Affiliation(s)
- Jiawang Wang
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Qiong Wu
- Department of Clinical Laboratory, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jing Yu
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Zesheng Xu
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
202
|
Huang LH, Han J, Ouyang JM, Gui BS. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J Cell Physiol 2019; 235:465-479. [PMID: 31222743 DOI: 10.1002/jcp.28987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The interaction between nanohydroxyapatite (HAP) and smooth muscle cells is an important step in vascular calcification. However, the effect of the shape of HAP on adhesion and endocytosis to aortic smooth muscle cells has been rarely reported. Four different morphological HAP crystals (H-Rod, H-Needle, H-Sphere, and H-Plate) were selected to interact with rat aortic smooth muscle cells (A7R5). Fluorescence-labeled HAP was used to detect crystal adhesion and endocytosis and then pretreated with different endocytic inhibitors to explore the pathway of endocytotic crystals. The distribution of crystals inside and outside the cells and the crystal localization in lysosomes was observed through laser confocal microscopy. The effect of crystal on the cell cycle and the changes in the expression of phosphatidylserine, osteopontin, α-actin, core binding factor alpha 1, and osterix on the surface of A7R5 cells were detected. The adhesion and endocytosis of HAP on A7R5 cells were closely related to crystal shapes and ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. H-Sphere and H-Needle were internalized into the cells mainly via the clathrin-mediated pathway, whereas H-Plate and H-Rod were internalized into the cells mainly via macropinocytosis. The endocytosed nano-HAP was mainly distributed in the cell lysosome. The adhesion and endocytosis of HAP to A7R5 cells were positively correlated with the specific surface area, and contact area of HAP and negatively correlated with the absolute value of Zeta and contact angle of HAP. This study provided insights into the effect of crystal morphology on vascular calcification and its mechanism.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jin Han
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Bao-Song Gui
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
203
|
MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: Therapeutic implication for atherosclerosis. Life Sci 2019; 232:116590. [PMID: 31228514 DOI: 10.1016/j.lfs.2019.116590] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) apoptosis is fundamental for the pathophysiology of atherosclerosis, in which microRNAs (miRNAs) emerge as critical regulators. miR-122 has been shown to regulate the apoptosis of various cell types, however, whether miR-122 is associated with atherosclerosis and EC apoptosis remains unknown. In this study, we found that miR-122 expression was increased in the aortic ECs of ApoE-/- mice fed with a high-fat diet (HFD), as compared to normal-diet (ND), implying a potential association between miR-122 elevation and atherogenesis. In addition, in vitro, miR-122 expression was also induced in human aortic ECs (HAECs) by the treatment of oxidized low-density lipoprotein (ox-LDL), a common atherogenic factor. Functionally, miR-122 knockdown suppressed ox-LDL-induced apoptosis of HAECs, suggesting a pro-apoptotic role of miR-122 in HAECs under this pro-atherogenic condition. Further evidence revealed that the X-linked inhibitor-of-apoptosis protein (XIAP) was directly targeted and suppressed by miR-122 in HAECs, and more importantly, XIAP knockdown diminished miR-122 effect on apoptosis, thus establishing XIAP as a prominent target that mediates miR-122 regulation of the apoptosis of HAECs. Together, these results may identify miR-122 as a novel regulator in EC apoptosis, which offers it as a possible target for therapeutic interventions of atherosclerosis.
Collapse
|
204
|
He WM, Dai T, Chen J, Wang JA. Leukocyte cell-derived chemotaxin 2 inhibits development of atherosclerosis in mice. Zool Res 2019; 40:317-323. [PMID: 31310065 PMCID: PMC6680125 DOI: 10.24272/j.issn.2095-8137.2019.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2), a multifunctional hepatokine, is involved in many pathological conditions. However, its role in atherosclerosis remains undefined. In this study, we administered vehicle or LECT2 to male Apoe-/- mice fed a Western diet for 15 weeks. Atherosclerotic lesions were visualized and quantified with Oil-red O and hematoxylin staining. The mRNA expression levels of MCP-1, MMP-1, IL-8, IL-1β, and TNF-α were analyzed by quantitative real-time polymerase chain reaction. Serum TNF-α, IL-1β, IL-8, MCP-1, and MMP-1 concentrations were measured by enzyme-linked immunosorbent assay. CD68, CD31, and α-SMA, markers of macrophages, endothelial cells, and smooth muscle cells, respectively, were detected by immunostaining. Results showed that LECT2 reduced total cholesterol and low-density lipoprotein concentrations in serum and inhibited the development of atherosclerotic lesions, accompanied by reductions in inflammatory cytokines and lower MCP-1, MMP-1, TNF-α, IL-8, and IL-1β mRNA abundance. Furthermore, LECT2 decreased CD68, but increased α-SMA in atherosclerotic lesions, suggesting an increase in smooth muscle cells and reduction in macrophages. In summary, LECT2 inhibited the development of atherosclerosis in mice, accompanied by reduced serum total cholesterol concentration and lower inflammatory responses.
Collapse
Affiliation(s)
- Wen-Ming He
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang 310009, China.,Department of Cardiology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo Zhejiang 315010, China
| | - Ting Dai
- Department of Cardiology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo Zhejiang 315010, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo Zhejiang 315832, China
| | - Jian-An Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang 310009, China
| |
Collapse
|
205
|
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci 2019; 20:ijms20112706. [PMID: 31159449 PMCID: PMC6600262 DOI: 10.3390/ijms20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is a risk factor for cardiovascular diseases (e.g., atherosclerosis) and chronic inflammatory diseases (CID). The excessive proliferation of vascular smooth muscle cells (VSMCs) plays a pivotal role in the progression of atherosclerosis. Hypoxia-inducible factor-1 and nuclear factor-κB are thought to be the main factors involved in responses to IH and in regulating adaptations or inflammation pathways, however, further evidence is needed to demonstrate the underlying mechanisms of this process in VSMCs. Furthermore, few studies of IH have examined smooth muscle cell responses. Our previous studies demonstrated that increased interleukin (IL)-6, epidermal growth factor family ligands, and erbB2 receptor, some of which amplify inflammation and, consequently, induce CID, were induced by IH and were involved in the proliferation of VSMCs. Since IH increased IL-6 and epiregulin expression in VSMCs, the same phenomenon may also occur in other smooth muscle cells, and, consequently, may be related to the incidence or progression of several diseases. In the present review, we describe how IH can induce the excessive proliferation of VSMCs and we develop the suggestion that other CID may be related to the effects of IH on other smooth muscle cells.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| |
Collapse
|
206
|
Zheng CG, Chen BY, Sun RH, Mou XZ, Han F, Li Q, Huang HJ, Liu JQ, Tu YX. miR-133b Downregulation Reduces Vulnerable Plaque Formation in Mice with AS through Inhibiting Macrophage Immune Responses. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:745-757. [PMID: 31146256 PMCID: PMC6539412 DOI: 10.1016/j.omtn.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by accumulating deposition of lipids in the arterial intima. Notably, macrophages participate centrally in the pathogenesis of this deadly disease. In this study, we established AS mouse models in order to investigate the effect of microRNA-133b (miR-133b) on vulnerable plaque formation and vascular remodeling in AS and explore the potential functional mechanisms. The expression of miR-133b was altered or the Notch-signaling pathway was blocked in the AS mouse models in order to evaluate the proliferation, migration, and apoptosis of macrophages. It was observed that miR-133b was upregulated in AS, which might target MAML1 to regulate the Notch-signaling pathway. AS mice with downregulated miR-133b or inhibited Notch-signaling pathway presented with a reduced AS plaque area, a decreased positive rate of macrophages, and an increased positive rate of vascular smooth muscle cells. Moreover, Notch-signaling pathway blockade or miR-133b downregulation inhibited the macrophage viability and migration and accelerated the apoptosis. This study provides evidence that downregulated miR-133b expression may inhibit the immune responses of macrophages and attenuate the vulnerable plaque formation and vascular remodeling in AS mice through the MAML1-mediated Notch-signaling pathway, highlighting miR-133b as a novel therapeutic target for AS.
Collapse
Affiliation(s)
- Cheng-Gen Zheng
- Department of Cardiology, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou 311700, P.R. China
| | - Bing-Yu Chen
- Centre of Laboratory Medicine, Chun'an First People's Hospital, Hangzhou 311700, China; Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Ren-Hua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310000, P.R. China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Hai-Jun Huang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Jing-Quan Liu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China.
| |
Collapse
|
207
|
Wang J, Zhang C, Li C, Zhao D, Li S, Ma L, Cui Y, Wei X, Zhao Y, Gao Y. MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway. J Cell Mol Med 2019; 23:3696-3710. [PMID: 30907506 PMCID: PMC6484312 DOI: 10.1111/jcmm.14274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 12/31/2022] Open
Abstract
To identify the interaction between known regulators of atherosclerosis, microRNA-92a (miR-92a), Rho-associated coiled-coil-forming kinase (ROCK) and myosin light chain kinase (MLCK), we examined their expressions during proliferation and migration of platelet-derived growth factor-BB (PDGF-BB)-regulated vascular smooth muscle cells (VSMCs), both in vivo and in vitro. During the formation of atherosclerosis plaque in mice, a parallel increase in expression levels of MLCK and miR-92a was observed while miR-92a expression was reduced in ML-7 (an inhibitor of MLCK) treated mice and in MLCK-deficient VSMCs. In vitro results indicated that both MLCK and miR-92a shared the same signalling pathway. Transfection of miR-92a mimic partially restored the effect of MLCK's deficiency and antagonized the effect of Y27632 (an inhibitor of ROCK) on the down-regulation of VSMCs activities. ML-7 increased the expression of Kruppel-like factor 4 (KLF4, a target of miR-92a), and siRNA-KLF4 increased VSMCs' activity level. Consistently, inhibition of either MLCK or ROCK enhanced the KLF4 expression. Moreover, we observed that ROCK/MLCK up-regulated miR-92a expression in VSMCs through signal transducer and activator of transcription 3 (STAT3) activation. In conclusion, the activation of ROCK/STAT3 and/or MLCK/STAT3 may up-regulate miR-92a expression, which subsequently inhibits KLF4 expression and promotes PDGF-BB-mediated proliferation and migration of VSMCs. This new downstream node in the ROCK/MLCK signalling pathway may offer a potential intervention target for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chenxu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Cai Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Dandan Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Shuyao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Le Ma
- College of StomatologyDalian Medical UniversityDalianChina
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Xiaoqing Wei
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| |
Collapse
|
208
|
Zhao Q, Sun D, Li Y, Qin J, Yan J. Integrated analyses of lncRNAs microarray profiles and mRNA-lncRNA coexpression in smooth muscle cells under hypoxic and normoxic conditions. Biosci Rep 2019; 39:BSR20181783. [PMID: 30850398 PMCID: PMC6443952 DOI: 10.1042/bsr20181783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/23/2023] Open
Abstract
Hypoxia may cause abnormal proliferation and migration of the vascular smooth muscle cells (VSMCs) from the media to the intima. This contributes to vessel narrowing and accelerates the process of atherosclerosis. The association of the aberrant expression of long noncoding RNAs (lncRNAs) with the development and progression of atherosclerosis is well known; however, it is not well investigated in hypoxic VSMCs. Using a microarray approach, we identified 1056 and 2804 differentially expressed lncRNAs and mRNAs, respectively, in hypoxic and normoxic mouse aorta smooth muscle (MOVAS) cells. Of them, we randomly chose several lncRNAs and validated the microarray data using the quantitative PCR (qPCR) assay. Advanced bioinformatics analyses indicated that the up-regulated mRNAs were mainly involved in inflammatory responses, lipid metabolism, clearance of amyloid-β peptide, citrate cycle (TCA cycle), TGF-β signaling, and chemokine signaling. The down-regulated mRNAs were mainly involved in the apoptosis pathway, glycerolipid metabolism, Wnt signaling pathway, and MAPK signaling pathway. The constructed coexpression network indicated interactions between 87 lncRNAs and ten mRNAs. In addition, we demonstrated that the silence of lncRNA NONMMUT002434 expression could abrogate the migration and proliferation of smooth muscle cells dramatically. Our data provide comprehensive evidence on the differential expression of lncRNAs and mRNAs in hypoxic MOVAS cells, which may be valuable biomarkers for atherosclerotic diseases, and thereby facilitating diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Qinshuo Zhao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dating Sun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Li
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jin Qin
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - JiangTao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
209
|
Ni T, Gao F, Zhang J, Lin H, Luo H, Chi J, Guo H. Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching. J Mol Histol 2019; 50:305-314. [PMID: 31028566 DOI: 10.1007/s10735-019-09827-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/22/2019] [Indexed: 01/07/2023]
Abstract
Hyperhomocysteinemia (HHcy) is a highly-related risk factor in vascular smooth muscle cell (VSMC) phenotypic modulation and atherosclerosis. Growing evidence indicated that autophagy is involved in pathological arterial changes. However, the risk mechanisms by which homocysteine and VSMC autophagy interact with cardiovascular disease are poorly understood. This study verified the homocysteine-responsive endoplasmic reticulum protein promotion of VSMC phenotypic switching, and the formation of atherosclerotic plaque in vitro. We found that impaired autophagy, as evidenced by decreased levels of MAP1LC3B II/MAP1LC3B I, has a vital role in HHcy-induced human aortic (HA)-VSMC phenotypic switching, with a decrease in contractile proteins (SM α-actin and calponin) and an increase in osteopontin. Knockdown of the essential autophagy gene Atg7 by small interfering RNA promoted HA-VSMC phenotypic switching, indicating that impaired autophagy induces phenotypic switching in these cells. HHcy co-treatment with rapamycin triggered autophagy, which alleviated HA-VSMC phenotypic switching. Finally, we found that Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor for maintaining genomic stability by resisting oxidative stress and restoring autophagy, is closely involved in this process. HHcy clearly decreased KLF4 expression. KLF4-specific siRNA aggravated defective autophagy and phenotypic switching. Mechanistically, KLF4 regulated the HHcy-induced decrease in HA-VSMC autophagy via the m-TOR signaling pathway. In conclusion, these results demonstrated that the KLF4-dependent rapamycin signaling pathway is a novel mechanism underlying HA-VSMC phenotypic switching and is crucial for HHcy-induced HA-VSMCs with defective autophagy to accelerate early atherosclerosis.
Collapse
Affiliation(s)
- Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou, 310012, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hui Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
210
|
Tang Y, Huang Q, Liu C, Ou H, Huang D, Peng F, Liu C, Mo Z. p22phox promotes Ang-II-induced vascular smooth muscle cell phenotypic switch by regulating KLF4 expression. Biochem Biophys Res Commun 2019; 514:280-286. [PMID: 31030942 DOI: 10.1016/j.bbrc.2019.04.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
NADPH oxidase (Nox) is the main source of reactive oxygen species in vascular diseases, which have been implicated in promoting VSMCs phenotypic switch. P22phox, the indispensable component of the complex Nox, is required for their activity and stability. Krüppel-like factor 4 (KLF4) is an important transcriptional regulator of VSMCs phenotypic switch. Both KLF4 and p22phox are involved in the proliferation, migration and differentiation of VSMC. This study aims to determine whether and how p22phox regulates KLF4 expression in phenotypic switching of VSMCs. In cultured primary rat VSMCs, we noticed that the expression of P22phox was significantly increased in combination with VSMCs phenotypic switch and up-regulated KLF4 expression in Ang-II-treated cells. Ang-II-induced VSMC dedifferentiation, proliferation, migration, KLF4 expression, H2O2 production and the phosphorylation of AKT, ERK1/2 were all inhibited by knockdown of P22phox. Furthermore, H2O2 treatment effectively enhanced the phosphorylation of AKT, ERK1/2 and the expression of KLF4, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) significantly attenuated the H2O2-induced up-regulation of KLF4. In conclusion, these results demonstrated that p22phox promotes Ang-II-induced VSMC phenotypic switch via the H2O2-ERK1/2/AKT-KLF4 signaling pathway.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaoyan Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongji Ou
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengling Peng
- Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Changhui Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
211
|
Cai C, Zhu H, Ning X, Li L, Yang B, Chen S, Wang L, Lu X, Gu D. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019; 285:31-39. [PMID: 31003090 DOI: 10.1016/j.atherosclerosis.2019.04.204] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Long non-coding RNAs (lncRNAs) have proven to be involved in the progression of atherosclerosis and dyslipidemia. In addition, vascular smooth muscle cells (VSMCs) phenotype switching, including VSMCs-derived foam cells formation, plays a key role in the pathogenesis of atherosclerosis. LncRNA ENST00000602558.1, one of the differentially expressed lncRNAs between coronary artery disease (CAD) patients and healthy controls identified by our previous study, was located to TG and HDL susceptibility loci, but its role and underlying mechanism in the pathogenesis of atherosclerosis remain unclear. The present study aims to explore the role and underlying mechanism of ENST00000602558.1 in the regulation of cholesterol efflux from VSMCs. METHODS ABCG1 mRNA and protein expression in VSMCs was detected using qRT-PCR and Western blot, respectively. ABCG1-mediated cholesterol efflux to HDL from VSMCs was measured by means of NBD-cholesterol fluorescence intensity. The binding of ENST00000602558.1 to p65 and p65 to ABCG1 promoter region was detected by RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay, respectively. RESULTS Overexpression of ENST00000602558.1 downregulated ABCG1 mRNA and protein expression, while knockdown of ENST00000602558.1 upregulated ABCG1 mRNA and protein expression. Consistently, ENST00000602558.1 overexpression decreased ABCG1-mediated cholesterol efflux to HDL from VSMCs by 30.38% (p < 0.001), and knockdown of ENST00000602558.1 increased ABCG1-mediated cholesterol efflux to HDL from VSMCs by 30.41% (p = 0.001). In addition to cholesterol efflux, overexpression of ENST00000602558.1 increased lipid accumulation and TC/TG levels, while knockdown of ENST00000602558.1 decreased lipid accumulation and TC/TG levels in VSMCs. Furthermore, we confirmed that ENST00000602558.1 regulated ABCG1 expression and ABCG1-mediated cholesterol efflux from VSMCs through binding to p65. CONCLUSIONS In conclusion, ENST00000602558.1 played an important role in mediating cholesterol efflux to HDL from VSMCs by regulating ABCG1 expression through binding to p65.
Collapse
Affiliation(s)
- Can Cai
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Huijuan Zhu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Xiaotong Ning
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Lin Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| |
Collapse
|
212
|
Jang EJ, Baek SE, Kim EJ, Park SY, Kim CD. HMGB1 enhances AGE-mediated VSMC proliferation via an increase in 5-LO-linked RAGE expression. Vascul Pharmacol 2019; 118-119:106559. [PMID: 30954689 DOI: 10.1016/j.vph.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/28/2019] [Accepted: 04/02/2019] [Indexed: 01/11/2023]
Abstract
Receptors for advanced glycation end-product (RAGE) play a pivotal role in the progression of proliferative vascular diseases. However, the precise mechanisms regulating RAGE expression in vascular smooth muscle cells (VSMCs) of the injured vasculatures is unclear. Given the potential importance of 5-lipoxygenase (5-LO) derived mediators in cellular responses mediated by RAGE, this study aimed to evaluate in VSMCs treated with high mobility group box 1 (HMGB1): 1) the RAGE expression; 2) the AGE-induced VSMC proliferation; 3) the role of 5-LO signaling in HMGB1-induced RAGE expression. In cultured human VSMCs stimulated with HMGB1 (100 ng/ml), RAGE mRNA and protein expression were markedly increased along with an increase in AGE-mediated VSMC proliferation. Both of these effects were markedly attenuated in cells pretreated with zileuton (1-10 μM), a 5-LO inhibitor, as well as in cells transfected with 5-LO siRNA, suggesting a potential involvement of 5-LO signaling in HMGB1-mediated RAGE expression in VSMCs. Moreover, 5-LO expression, accompanied by production of leukotrienes was markedly increased in HMGB1-stimulated VSMCs, which was attenuated in cells deficient of TLR2 or RAGE. Taken together, our results suggest that HMGB1-induced increase in 5-LO expression enhances RAGE expression in VSMCs, which stimulates AGE-mediated VSMC proliferation. Thus, the 5-LO-RAGE signaling axis in VSMCs might serve as a potential therapeutic target for vascular remodeling in the injured vasculature.
Collapse
Affiliation(s)
- Eun Jeong Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Eun Jung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 50612, Republic of Korea.
| |
Collapse
|
213
|
Gao F, Huang Y, Zhang L, Liu W. Involvement of estrogen receptor and GPER in bisphenol A induced proliferation of vascular smooth muscle cells. Toxicol In Vitro 2019; 56:156-162. [DOI: 10.1016/j.tiv.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|
214
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
215
|
Wang Y, Wang X, Chen S, Tian X, Zhang L, Huang Y, Tang C, Du J, Jin H. Sulfur Dioxide Activates Cl -/HCO 3 - Exchanger via Sulphenylating AE2 to Reduce Intracellular pH in Vascular Smooth Muscle Cells. Front Pharmacol 2019; 10:313. [PMID: 30971931 PMCID: PMC6446831 DOI: 10.3389/fphar.2019.00313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Sulfur dioxide (SO2) is a colorless and irritating gas. Recent studies indicate that SO2 acts as the gas signal molecule and inhibits vascular smooth muscle cell (VSMC) proliferation. Cell proliferation depends on intracellular pH (pHi). Transmembrane cystein mutation of Na+- independent Cl-/HCO3 - exchanger (anion exchanger, AE) affects pHi. However, whether SO2 inhibits VSMC proliferation by reducing pHi is still unknown. Here, we investigated whether SO2 reduced pHi to inhibit the proliferation of VSMCs and explore its molecular mechanisms. Within a range of 50-200 μM, SO2 was found to lower the pHi in VSMCs. Concurrently, NH4Cl pre-perfusion showed that SO2 significantly activated AE, whereas the AE inhibitor 4,4'-diisothiocyanatostilbene- 2,20-disulfonic acid (DIDS) significantly attenuated the effect of SO2 on pHi in VSMCs. While 200 μM SO2 sulphenylated AE2, while dithiothreitol (DTT) blocked the sulphenylation of AE2 and subsequent AE activation by SO2, thereby restoring the pHi in VSMCs. Furthermore, DIDS pretreatment eliminated SO2-induced inhibition of PDGF-BB-stimulated VSMC proliferation. We report for the first time that SO2 inhibits VSMC proliferation in part by direct activation of the AE via posttranslational sulphenylation and induction of intracellular acidification.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
216
|
Girona J, Rosales R, Saavedra P, Masana L, Vallvé JC. Palmitate decreases migration and proliferation and increases oxidative stress and inflammation in smooth muscle cells: role of the Nrf2 signaling pathway. Am J Physiol Cell Physiol 2019; 316:C888-C897. [PMID: 30865473 DOI: 10.1152/ajpcell.00293.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fatty acids are essential to cell functionality and may exert diverging vascular effects including migration, proliferation, oxidative stress, and inflammation. This study examined the effect of palmitate on human coronary artery smooth muscle cell (HCASMC) function. An in vitro wound-healing assay indicated that palmitate decreased HCASMC migration in dose- and time-dependent manners. Furthermore, bromodeoxyuridine incorporation assays indicated that palmitate decreased HCASMC proliferation in a dose-response manner. Palmitate also increased reactive oxygen species formation, malondialdehyde content, and intracellular lipid droplets accompanied with increased fatty acid binding protein 4 expression. Moreover, palmitate induced gene expression (monocyte chemoattractant protein 1, matrix metalloproteinase-2, IL-1β, IL-6, IL-8, and TNF-α) and intracellular protein content (plasminogen activator inhibitor-1 and urokinase plasminogen activator) of inflammatory mediators. Finally, we showed that palmitate activates the transcription factor Nrf2 and the upstream kinases ERK1/2 and Akt in HCASMCs. The inhibitor of Nrf2, trigonelline, significantly attenuated palmitate-induced HCASMC expression of the Nrf2 target gene NQO1. These findings indicate that palmitate might be critically related to HCASMC function by slowing cell migration and proliferation and inducing lipid-laden cells, oxidative stress, and inflammation in part by activation of the Nrf2 transcription factor. Palmitate's activation of proinflammatory Nrf2 signaling may represent a novel mechanism mediating the proatherogenic actions of saturated fatty acids.
Collapse
Affiliation(s)
- Josefa Girona
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Roser Rosales
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Paula Saavedra
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Lluís Masana
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Joan-Carles Vallvé
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| |
Collapse
|
217
|
Overexpression of UHRF1 promoted the proliferation of vascular smooth cells via the regulation of Geminin protein levels. Biosci Rep 2019; 39:BSR20181341. [PMID: 30710064 PMCID: PMC6390124 DOI: 10.1042/bsr20181341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Geminin is an inhibitor of DNA replication licensing and cell cycle. Our previous study demonstrates that Geminin plays an important role in regulating phenotypic diversity and growth of vascular smooth cells (VSMCs). Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an epigenetic coordinator, whose RING domain confers intrinsic E3 ligase activity, mediating the ubiquitination of several proteins and the protein-protein interaction. Aberrant expression of UHRF1 was related to aggressiveness of multiple human malignancies, where knockdown of UHRF1 led to decreased proliferation of cancer cells. However, it is unclear whether proper UHRF1 function is involved in aberrant proliferation and phenotypic switching of VSMCs via altering Geminin protein levels. In present study, in UHRF1-overexpressing A10 cells, 3H-thymidine and 5-ethynyl-20-deoxyuridine (EdU) and CCK8 were used to examine the proliferation of VSMCs. RT-PCR and Western blot analyses were performed to investigate whether UHRF1-mediated effects were achieved by altering Geminin expression in VSMCs. RNA-seq analysis was performed to dissect related mechanisms or signaling pathways of these effects. The results of in vitro experiments suggested that UHRF1 prompted proliferation and cell cycle of VSMCs via the down-regulation of Geminin protein levels with no change in Geminin mRNA expression. Besides, PI3K-Akt signaling pathway was increased upon UHRF1 up-regulation. Our study demonstrated that overexpressing UHRF1 was involved in VSMCs proliferation through reducing inhibitory Geminin protein levels to promote cell cycle as well as activating PI3K-Akt signaling. This may provide key knowledge for the development of better strategies to prevent diseases related to VSMCs abnormal proliferation.
Collapse
|
218
|
Meng Z, Si CY, Teng S, Yu XH, Li HY. Tanshinone IIA inhibits lipopolysaccharide‑induced inflammatory responses through the TLR4/TAK1/NF‑κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 2019; 43:1847-1858. [PMID: 30816448 DOI: 10.3892/ijmm.2019.4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
To aim of the present study was to determine whether Tanshinone IIA (Tan IIA) inhibits lipopolysaccharide (LPS)‑induced inflammation in vascular smooth muscle cells (VSMCs) from rats and elucidate the underlying molecular mechanism. VSMCs were primarily cultured and then treated with LPS (1 µg/l) and Tan IIA (25, 50 and 100 µmol/l) for 24 h. Monocyte chemoattractant protein (MCP)‑1, interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α levels were detected by ELISA and reverse transcription‑quantitative polymerase chain reaction. Nitric oxide (NO) production was measured using the Griess reaction. The expression of Toll‑like receptor 4 (TLR4), nuclear factor (NF)‑κB (p65), and inducible NO synthase (iNOS), and the phosphorylation of transforming growth factor‑β‑activated kinase 1 (TAK1) were detected by western blot analysis. Tan IIA inhibited the LPS‑induced expression of MCP‑1, IL‑6, and TNF‑α in a concentration‑dependent manner and inhibited iNOS‑mediated NO production. In addition, Tan IIA suppressed the expression of TLR4, the phosphorylation of TAK1, and the nuclear translocation of NF‑κB (p65). The anti‑TLR4 antibody and TAK1 inhibitor 5Z‑7‑oxozeaenol partially attenuated the LPS‑induced expression of proinflammatory cytokines. In conclusion, Tan IIA inhibits LPS‑induced inflammatory responses in VSMCs in vitro through the partial suppression of the TLR4/TAK1/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chun-Ying Si
- Department of Cardiology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan 450003, P.R. China
| | - Shuai Teng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin-Hui Yu
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 210023, P.R. China
| | - Hai-Yu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
219
|
Cao L, Zhao C, Cong H, Hou K, Wan L, Wang J, Zhao L, Yan H. The effect of Telmisartan on the expression of connexin43 and neointimal hyperplasia in a rabbit iliac artery restenosis model. Heart Vessels 2019; 34:1230-1239. [PMID: 30671641 DOI: 10.1007/s00380-018-01338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
We established a rabbit iliac artery restenosis model to explore the impact of Telmisartan on the expression of Connexin43 (Cx43) and neointimal hyperplasia. Thirty New Zealand white rabbits were randomly divided into three groups: control group (n = 10), restenosis group (n = 10), and Telmisartan group (n = 10). The restenosis model was established by high-cholesterol diet combined with double-balloon injury of iliac arteries. In addition, Telmisartan at 5 mg/(kg day) was administered to the rabbits of Telmisartan group on the second day after the second balloon injury. All rabbits were killed at the end of the experiment followed by institution policy. Before sacrifice, blood samples were obtained to test serum angiotensinII (AngII). Iliac arteries were isolated for morphological analysis and determining the expression of Cx43 by HE staining, immunohistochemical analysis, reverse transcription-polymerase chain reaction (RT-PCR), and Western Blotting analysis. Then, the local AngII levels of arteries were measured by radioimmunoassay. As compared with controls, the expression of Cx43 mRNA (0.98 ± 0.08) vs. (1.27 ± 0.17), P < 0.01), and Cx43 protein [(0.75 ± 0.08) vs. (0.90 ± 0.08), P < 0.05] of restenosis group were increased, which were significantly higher than those of Telmisartan group [Cx43 mRNA: (1.27 ± 0.17) vs. (1.00 ± 0.20), P < 0.01; Cx43 protein: (0.90 ± 0.08) vs. (0.82 ± 0.05), P < 0.05]. Furthermore, The intima thickness [(266.12 ± 70.27) vs. (2.85 ± 0.19) μm, P < 0.01] and the local AngII [(115.6 ± 15.7) vs. (90.1 ± 7.7), P < 0.05] of restenosis group were raised when compared with controls. Telmisartan group exhibited thinner intima compared with restenosis group [(68.22 ± 24.37) vs. (266.12 ± 70.27), P < 0.01]. However, the local AngII levels between these two groups were approximate. In addition, the plasma concentration of AngII was not significantly different among three groups. In conclusion, Telmisartan can inhibit the expression of connexin43 and neointimal hyperplasia in iliac artery restenosis model.
Collapse
Affiliation(s)
- Lu Cao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China.
| | - Cui Zhao
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hongliang Cong
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Kai Hou
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lianghui Wan
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Jixiang Wang
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Lili Zhao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Haiyang Yan
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| |
Collapse
|
220
|
Liu H, Li X, Yan G, Lun R. Knockdown of USP14 inhibits PDGF-BB-induced vascular smooth muscle cell dedifferentiation via inhibiting mTOR/P70S6K signaling pathway. RSC Adv 2019; 9:36649-36657. [PMID: 35539036 PMCID: PMC9075170 DOI: 10.1039/c9ra04726c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic progressive cardiovascular disease, which may result in many clinical consequences. Ubiquitin-specific protease 14 (USP14), a member of the USP family, has been found to be involved in cardiovascular disease. In the present study, we aimed to explore the role of USP14 in atherosclerosis. The results showed that USP14 expression was markedly increased in atherosclerotic tissues as compared to control tissues. Then we next examined the role of USP14 in primary human aortic smooth muscle cells (HASMCs) in response to PDGF-BB stimulation. The results demonstrated that PDGF-BB induced the USP14 expression in a dose- and time-dependent manner. Knockdown of USP14 in HASMCs suppressed PDGF-BB-induced proliferation and migration of HASMCs. The expressions of VSMCs markers including α-SMA, calponin and SM-MHC were markedly increased by knockdown of USP14, indicating that USP14 knockdown suppressed phenotypic modulation of HASMCs. However, USP14 overexpression exhibited the opposite effects. Furthermore, PDGF-BB-induced phosphorylation of mTOR and P70S6K in HASMCs was prevented by knockdown of USP14. In addition, MHY-1485, an activator of mTOR signaling, reversed the effects of USP14 knockdown on PDGF-BB-induced HASMCs. These data suggested that knockdown of USP14 prevented PDGF-BB-induced proliferation, migration, and phenotypic modulation of HASMCs via inhibiting the mTOR/P70S6K signaling pathway. Atherosclerosis is a chronic progressive cardiovascular disease, which may result in many clinical consequences.![]()
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Laboratory
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454001
- P. R. China
| | - Xiaoliang Li
- Department of Laboratory
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454001
- P. R. China
| | - Guobei Yan
- Department of Laboratory
- The First Affiliated Hospital of Henan Polytechnic University
- The Second People's Hospital of Jiaozuo
- Jiaozuo 454001
- P. R. China
| | - Ruihua Lun
- Department of Laboratory
- Jiaozuo Maternal and Children's Hospital
- Jiaozuo 454001
- P. R. China
| |
Collapse
|
221
|
Kato R, Hayashi M, Aiuchi T, Sawada N, Obama T, Itabe H. Temporal and spatial changes of peroxiredoxin 2 levels in aortic media at very early stages of atherosclerotic lesion formation in apoE-knockout mice. Free Radic Biol Med 2019; 130:348-360. [PMID: 30395970 DOI: 10.1016/j.freeradbiomed.2018.10.458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023]
Abstract
The events that trigger early onset of atherosclerotic lesion formation are poorly understood. Initially, microscopic atherosclerotic lesions appear in the aortic root in 10-week-old apoE-knockout mice that are fed normal chow. Using proteome and immunohistochemical analyses, we investigated proteins in aortic media whose expression changes in athero-prone regions at the beginning of lesion formation. Protein profiles of the root/arch and thoracic/abdominal regions of aortas in 10-week-old apoE-knockout mice were analyzed using 2D-gel electrophoresis. Proteins in 81 spots with different abundance were identified. Among them, we focused on proteins related to oxidative stress and smooth muscle cells (SMCs). The level of peroxiredoxin 2 (Prx2), a major cellular antioxidant enzyme that reduces hydrogen peroxide, was lower in aortic root/arch compared with thoracic/abdominal aorta. Immunohistochemical staining demonstrated that Prx2 expression in SMCs in the aortic root was high at 4 weeks and decreased at 10 weeks in apoE-knockout mice, while Prx2 expression in the aorta was unchanged in wild-type mice. The level of Prx2 expression correlated positively with the SMC differentiation markers, α-smooth muscle actin and transgelin, suggesting that a decline in Prx2 expression accompanies SMC dedifferentiation. Accumulated acrolein-modified proteins and the infiltration of macrophages in aortic media were observed in areas with low Prx2 expression. These results showed that Prx2 expression declines in athero-prone aortic root before lesion formation, and this reduction in Prx2 expression correlates with lipid peroxidation, SMC dedifferentiation, and macrophage recruitment.
Collapse
Affiliation(s)
- Rina Kato
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masataka Hayashi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
222
|
Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int 2018; 95:506-517. [PMID: 30598193 DOI: 10.1016/j.kint.2018.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
The past two decades have witnessed tremendous progress in our understanding of the mechanisms underlying wasting and cachexia in chronic kidney disease (CKD) and in other chronic illnesses, such as cancer and heart failure. In all these conditions wasting is an effect of the activation of protein degradation in muscle, a response that increases the risk of morbidity and mortality. Major recent advances in our knowledge on how CKD and inflammation affect cellular signaling include the identification of the myostatin (MSTN)/activin system, and its related transcriptional program that promotes protein degradation. In addition, the identification of the role of MSTN/activin in the vascular wall shows premise that its inhibition can better control or prevent some effects of CKD on vessels, such as accelerated atherosclerosis and vascular calcifications. In this review, we summarize the expanding role of MSTN activation in promoting muscle atrophy and the recent clinical studies that investigated the efficacy of MSTN/activin pathway antagonism in sarcopenic patients. Moreover, we also review the utility of MSTN inhibition in the experimental models of CKD and its potential advantages in CKD patients. Lessons learned from clinical studies on MSTN antagonism in sarcopenic patients tell us that the anabolic intervention is likely better if we use a block of the two ActRII receptors. At the same time, however, it is becoming clear that MSTN-targeted therapies should not be seen as a substitute for physical activity and nutritional supplementation which are mandatory to successfully manage patients with wasting.
Collapse
|
223
|
Xi G, Shen X, Wai C, White MF, Clemmons DR. Hyperglycemia induces vascular smooth muscle cell dedifferentiation by suppressing insulin receptor substrate-1-mediated p53/KLF4 complex stabilization. J Biol Chem 2018; 294:2407-2421. [PMID: 30578299 DOI: 10.1074/jbc.ra118.005398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia and insulin resistance accelerate atherosclerosis by an unclear mechanism. The two factors down-regulate insulin receptor substrate-1 (IRS-1), an intermediary of the insulin/IGF-I signaling system. We previously reported that IRS-1 down-regulation leads to vascular smooth muscle cell (VSMC) dedifferentiation and that IRS-1 deletion from VSMCs in normoglycemic mice replicates this response. However, we did not determine IRS-1's role in mediating differentiation. Here, we sought to define the mechanism by which IRS-1 maintains VSMC differentiation. High glucose or IRS-1 knockdown decreased p53 levels by enhancing MDM2 proto-oncogene (MDM2)-mediated ubiquitination, resulting in decreased binding of p53 to Krüppel-like factor 4 (KLF4). Exposure to nutlin-3, which dissociates MDM2/p53, decreased p53 ubiquitination and enhanced the p53/KLF4 association and differentiation marker protein expression. IRS-1 overexpression in high glucose inhibited the MDM2/p53 association, leading to increased p53 and p53/KLF4 levels, thereby increasing differentiation. Nutlin-3 treatment of diabetic or Irs1 -/- mice enhanced p53/KLF4 and the expression of p21, smooth muscle protein 22 (SM22), and myocardin and inhibited aortic VSMC proliferation. Injecting normoglycemic mice with a peptide disrupting the IRS-1/p53 association reduced p53, p53/KLF4, and differentiation. Analyzing atherosclerotic lesions in hypercholesterolemic, diabetic pigs, we found that p53, IRS-1, SM22, myocardin, and KLF4/p53 levels are significantly decreased compared with their expression in nondiabetic pigs. We conclude that IRS-1 is critical for maintaining VSMC differentiation. Hyperglycemia- or insulin resistance-induced IRS-1 down-regulation decreases the p53/KLF4 association and enhances dedifferentiation and proliferation. Our results suggest that enhancing IRS-1-dependent p53 stabilization could attenuate the progression of atherosclerotic lesions in hyperglycemia and insulin-resistance states.
Collapse
Affiliation(s)
- Gang Xi
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Xinchun Shen
- the College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China, and
| | - Christine Wai
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Morris F White
- the Division of Endocrinology, Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - David R Clemmons
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,
| |
Collapse
|
224
|
Garoffolo G, Madonna R, de Caterina R, Pesce M. Cell based mechanosensing in vascular patho-biology: More than a simple go-with the flow. Vascul Pharmacol 2018; 111:7-14. [DOI: 10.1016/j.vph.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
|
225
|
Liu Y, Jia L, Min D, Xu Y, Zhu J, Sun Z. Baicalin inhibits proliferation and promotes apoptosis of vascular smooth muscle cells by regulating the MEG3/p53 pathway following treatment with ox‑LDL. Int J Mol Med 2018; 43:901-913. [PMID: 30535498 PMCID: PMC6317676 DOI: 10.3892/ijmm.2018.4009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 11/15/2022] Open
Abstract
Atherosclerosis (AS) is a systemic disease associated with lipid metabolic disorders and abnormal proliferation of smooth muscle cells. Baicalin is a flavonoid compound isolated from the dry roots of Scutellaria baicalensis Georgi and exerts anti-proliferative effects in various types of cells. However, the effect of baicalin on AS remains unclear. In the present study, serum samples were collected from patients with AS and an in vitro model of AS was established using oxidized low-density lipoprotein (ox-LDL)-treated human aorta vascular smooth muscle cells (HA-VSMCs). The siRNA transfection and overexpression efficiency of endogenous maternally expressed gene 3 (MEG3) and the expression level of MEG3 were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of alterations in expression levels of MEG3 were assessed by MTT assay, bromodeoxyuridine incorporation assay, 5-ethynyl-2′-deoxyuridine staining, wound healing assay, immunofluorescence and western blotting in HA-VSMCs. qPCR indicated that the expression of MEG3 was reduced in serum samples from patients with AS and ox-LDL-treated HA-VSMCs, compared with serum samples from healthy patients and untreated HA-VSMCs, respectively. Further experiments indicated that ox-LDL-induced decrease of MEG3 expression was reversed by treatment with baicalin in a concentration-dependent manner. Following treatment with ox-LDL, decreased expression of MEG3 promoted proliferation and migration, and suppressed apoptosis in HA-VSMCs. Furthermore, treatment with baicalin reversed these effects on proliferation and apoptosis in ox-LDL-treated HA-VSMCs. The current study indicated that downregulated expression of MEG3 increased cell cycle-associated protein expression. However, treatment with baicalin inhibited the expression of cell-cycle associated proteins in HA-VSMCs with MEG3 knockdown. In addition, baicalin activated the p53 signaling pathway and promoted the expression and transport of p53 from the cytoplasm to nucleus following MEG3 knockdown in ox-LDL-treated HA-VSMCs. Baicalin inhibited proliferation and promoted apoptosis by regulating the expression of MEG3/p53, indicating that baicalin may serve a role in AS by activating the MEG3/p53 signaling pathway. The present study suggested a potential mechanism underlying the protective role of baicalin in the in vitro model of AS, and these results may be used to develop novel therapeutic approaches for the affected patients.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Dongyu Min
- Traditional Chinese Medicine Experimental Center, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Yi Xu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Jinquan Zhu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Zengxian Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
226
|
Zhang Y, Ding J, Xu C, Yang H, Xia P, Ma S, Chen H. rBMSCs/ITGA5B1 Promotes Human Vascular Smooth Muscle Cell Differentiation via Enhancing Nitric Oxide Production. Int J Stem Cells 2018; 11:168-176. [PMID: 30497129 PMCID: PMC6285296 DOI: 10.15283/ijsc18079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Previous studies have shown that integrins alpha5beta1 (ITGA5B1) gene-modified rat bone marrow mesenchymal stem cells (rBMSCs) could prevent cell anoikis and increase the nitric oxide (NO) production. Here we examined the capability of rBMSCs/ITGA5B1 on the phenotype modulation of Human Pulmonary Artery Smooth Muscle Cell (HPASMC) in vitro. Methods and Results The synthetic (dedifferentiated) phenotype of HPASMC was induced by monocrotaline (MCT, 1μM) for 24 h and then co-cultured with rBMSCs/ITGA5B1 in a transwell culture system. The activation of NO/cGMP (nitric oxide/Guanosine-3', 5'-cyclic monophosphate) signaling was investigated in HPASMC. The changes of pro-inflammatory factors, oxidative stress, vasodilator, vasoconstrictor, contractile and synthetic genes, and the morphological changes of HPASMC were investigated. The results of this study showed that the NO/cGMP signal, endothelial nitric oxide synthase (eNOS) expression, the expression of the vasoprotective genes heme oxygenase-1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2) were increased, but the expression of transforming growth factor-β1 (TGF-β1), CCAAT/enhancer-binding proteins delta (Cebpd), Krüppel-like factor 4 (KLF4), and activating transcription factor 4 (ATF4) were reduced in MCT treated HPASMC co-cultured with rBMSCs/ITGA5B1. The synthetic smooth muscle cells (SMCs) phenotype markers thrombospondin-1, epiregulin and the vasoconstrictor endothelin (ET)-1, thromboxane A2 receptor (TbxA2R) were down-regulated, whereas the contractile SMCs phenotype marker transgelin expression was up-regulated by rBMSCs/ITGA5B1. Furthermore, rBMSCs/ITGA5B1 promoted the morphological restoration from synthetic (dedifferentiation) to contractile (differentiation) phenotype in MCT treated HPASMC. Conclusions rBMSCs/ITGA5B1 could inhibit inflammation and oxidative stress related genes to promote the HPASMC cell differentiation by activation NO/cGMP signal.
Collapse
Affiliation(s)
- Yingxin Zhang
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jie Ding
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Cong Xu
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Hongli Yang
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Peng Xia
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Shengjun Ma
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Haiying Chen
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
227
|
Association between CTSS gene polymorphism and the risk of acute atherosclerotic cerebral infarction in Chinese population: a case-control study. Biosci Rep 2018; 38:BSR20180586. [PMID: 30341237 PMCID: PMC6301210 DOI: 10.1042/bsr20180586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/30/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Objective: To investigate the association between the gene polymorphisms of rs774320676, rs768437857, rs928508030, and rs2275235 loci of Cathepsin S (CTSS) and risk of acute atherosclerotic cerebral infarction. Methods: A total of 315 patients with acute atherosclerotic cerebral infarction (study group) and 220 healthy subjects (control group) were enrolled in the present study. The genetic polymorphism of rs774320676, rs768437857, rs928508030, and rs2275235 loci of CTSS of subjects was analyzed by PCR-Sanger sequencing. Results: The proportion of carriers with mutant T allele at rs774320676 locus and mutant G allele at rs928508030 locus of CTSS in study group was significantly higher than the proportion in control group (P=0.000, adjusted odds ratio (OR) = 1.332, 95% confidence interval (CI) = 1.200-1.460; P<0.001, adjusted OR = 1.185, 95% CI = 1.055-1.314; P=0.002). The T allele at rs774320676 locus and the G allele at rs928508030 locus of CTSS were independent risk factors for acute atherosclerotic cerebral infarction (OR = 2.534, 95% CI = 1.020-4.652, P=0.006; OR = 2.016, 95% CI = 1.031-4.385, P=0.031). Conclusion: The single nucleotide polymorphisms (SNPs) of rs774320676 and rs928508030 of CTSS gene were related with risk for acute atherosclerotic cerebral infarction. The T allele at rs774320676 locus and G allele at rs928508030 locus of CTSS were genetic susceptibility genes of acute atherosclerotic cerebral infarction.
Collapse
|
228
|
Sowers T, Emelianov S. Exogenous imaging contrast and therapeutic agents for intravascular photoacoustic imaging and image-guided therapy. Phys Med Biol 2018; 63:22TR01. [PMID: 30403195 DOI: 10.1088/1361-6560/aae62b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intravascular photoacoustic (IVPA) imaging has been developed in recent years as a viable imaging modality for the assessment of atherosclerotic plaques. Exogenous imaging contrast and therapeutic agents further enhance this imaging modality and provide significant benefits. Imaging contrast agents can significantly increase photoacoustic signal, resulting in enhanced plaque detection and characterization. The ability to use these particles to molecularly target markers of disease progression makes it possible to determine patient-specific levels of risk and plan treatments accordingly. With improved diagnosis, clinicians will be able to use therapeutic agents that are synergistic with IVPA imaging to treat atherosclerotic patients. Pre-clinical and clinical studies with relevance to IVPA imaging have shown promise in the area of diagnosis and therapeutics. In this review, we present a variety of imaging contrast agents that are either designed for or are compatible with IVPA imaging, cover uses of therapeutic agents that compliment this imaging modality, and discuss future directions of research in the field.
Collapse
Affiliation(s)
- Timothy Sowers
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | | |
Collapse
|
229
|
Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells. Oncotarget 2018; 9:34595-34616. [PMID: 30349652 PMCID: PMC6195385 DOI: 10.18632/oncotarget.26191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Aberrant proliferation and migration of vascular smooth muscle cells (VSMC) have been closely linked to the development and progression of cardiovascular and cancer diseases. The cytoprotective enzyme heme oxygenase-1 (HO-1) has been shown to mediate anti-proliferative and anti-migratory effects in VSMC. This study investigates the effect of cannabidiol (CBD), a non-psychoactive cannabinoid, on HO-1 expression and disease-associated functions of human umbilical artery smooth muscle cells (HUASMC). HO-1 protein and mRNA were significantly increased by CBD in a time- and concentration-dependent manner. Although the expression of several cannabinoid-activated receptors (CB1, CB2, G protein-coupled receptor 55, transient receptor potential vanilloid 1) was verified in HUASMC, CBD was shown to induce HO-1 via none of these targets. Instead, the CBD-mediated increase in HO-1 protein was reversed by the glutathione precursor N-acetylcysteine, indicating the participation of reactive oxygen species (ROS) signaling; this was confirmed by flow cytometry-based ROS detection. CBD-induced HO-1 expression was accompanied by inhibition of growth factor-mediated proliferation and migration of HUASMC. However, neither inhibition of HO-1 activity nor knockdown of HO-1 protein attenuated CBD-mediated anti-proliferative and anti-migratory effects. Indeed, inhibition or depletion of HO-1 resulted in induction of apoptosis and intensified CBD-mediated effects on proliferation and migration. Collectively, this work provides the first indication of CBD-mediated enhancement of HO-1 in VSMC and potential protective effects against aberrant VSMC proliferation and migration. On the other hand, our data argue against a role of HO-1 in CBD-mediated inhibition of proliferation and migration while substantiating its anti-apoptotic role in oxidative stress-mediated cell fate.
Collapse
|
230
|
Gutiérrez-Vidal R, Delgado-Coello B, Méndez-Acevedo KM, Calixto-Tlacomulco S, Damián-Zamacona S, Mas-Oliva J. Therapeutic Intranasal Vaccine HB-ATV-8 Prevents Atherogenesis and Non-alcoholic Fatty Liver Disease in a Pig Model of Atherosclerosis. Arch Med Res 2018; 49:456-470. [DOI: 10.1016/j.arcmed.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
|
231
|
Tang ZH, Li TH, Peng J, Zheng J, Li TT, Liu LS, Jiang ZS, Zheng XL. PCSK9: A novel inflammation modulator in atherosclerosis? J Cell Physiol 2018; 234:2345-2355. [PMID: 30246446 DOI: 10.1002/jcp.27254] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is the ninth member of the secretory serine protease family. It binds to low-density lipoprotein receptor (LDLR) for endocytosis and lysosome degradation in the liver, resulting in an increasing in circulating LDL-cholesterol (LDL-c) level. Since a PCSK9 induced increase in plasma LDL-c contributes to atherosclerosis, PCSK9 inhibition has become a new strategy in preventing and treating atherosclerosis. However, in addition to the effect of PCSK9 on elevating blood LDL-c levels, accumulating evidence shows that PCSK9 plays an important role in inflammation, likely representing another major mechanism for PCSK9 to promote atherosclerosis. In this review, we discuss the association of PCSK9 and inflammation, and highlight the specific effects of PCSK9 on different vascular cellular components involved in the atherosclerotic inflammation. We also discuss the clinical evidence for the association between PCSK9 and inflammation in atherosclerotic cardiovascular disease. A better understanding of the direct association of PCSK9 with atherosclerotic inflammation might help establish a new role for PCSK9 in vascular biology and identify a novel molecular mechanism for PCSK9 therapy.
Collapse
Affiliation(s)
- Zhi-Han Tang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Tao-Hua Li
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Juan Peng
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Jie Zheng
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Ting-Ting Li
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Lu-Shan Liu
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhi-Sheng Jiang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| |
Collapse
|
232
|
Qiao L, Chen W. Atheroprotective effects and molecular targets of bioactive compounds from traditional Chinese medicine. Pharmacol Res 2018; 135:212-229. [PMID: 30107203 DOI: 10.1016/j.phrs.2018.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023]
Abstract
Traditional Chinese medicine (TCM) has served the Chinese people since antiquity, and is playing an important role in today's healthcare. However, there has been controversy in the use of these traditional herbs due to unclear components and absence of scientific proof. As China plans to modernize traditional medicine, successful attempts to better understand the molecular mechanisms of TCM have been made by focusing on isolating active ingredients from these remedies. In this review, we critically examined the current evidence on atheroprotective effects of bioactive compounds from TCM using in vitro or in vivo models in the past two decades. A total of 47 active compounds were included in our review, which were introduced in the order of chemical structures, source, model, efficacy and mechanism. Notablely, this review highlighted the cellular and molecular mechanisms of these active compounds in prevention and treatment of atherosclerosis. Two compounds were also involved in double-blind, randomized, placebo-controlled clinical trials (RCTs). Besides, we introduced the legislations of the People's Republic of China ensuring quality and safety of products used in TCM. In summary, studies on bioactive compounds from TCM will provide a new approach for better management of atherosclerosis.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
233
|
Wang T, Ouyang H, Zhou H, Xia L, Wang X, Wang T. Pro‑atherogenic activation of A7r5 cells induced by the oxLDL/β2GPI/anti‑β2GPI complex. Int J Mol Med 2018; 42:1955-1966. [PMID: 30085340 PMCID: PMC6108850 DOI: 10.3892/ijmm.2018.3805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
A previous study has revealed that oxidized low‑density lipoprotein (oxLDL)/β2‑glycoprotein I (β2GPI)/anti‑β2‑glycoprotein I (anti‑β2GPI), an immune complex, is able to activate the Toll‑like receptor 4 (TLR4)/nuclear factor κβ (NF‑κβ) inflammatory signaling pathway in macrophages, and consequently enhance foam cell formation and the secretion of prothrombin activators. However, the effects of the oxLDL/β2GPI/anti‑β2GPI complex on vascular smooth muscle cells have yet to be investigated. The present study investigated whether the oxLDL/β2GPI/anti‑β2GPI complex was able to reinforce the pro‑atherogenic activities of a rat thoracic aorta smooth muscle cell line (A7r5) and examined the underlying molecular mechanisms. The results revealed that the oxLDL/β2GPI/anti‑β2GPI complex treatment significantly (P<0.05 vs. the media, oxLDL, oxLDL/β2GPI and β2GPI/anti‑β2GPI groups) enhanced the pro‑atherogenic activation of A7r5 cells, including intracellular lipid loading, Acyl‑coenzyme A cholesterol acyltransferase mRNA expression, migration, matrix metalloproteinase‑9 and monocyte chemoattractant protein 1 secretion, all via TLR4. In addition, the expression of TLR4 and the phosphorylation of NF‑κβ p65, p38 and ERK1/2 were also upregulated in oxLDL/β2GPI/anti‑β2GPI complex‑treated A7r5 cells. Pre‑treatment with TAK‑242, a TLR4 inhibitor, was able to partly attenuate the oxLDL/β2GPI/anti‑β2GPI complex‑induced phosphorylation of NF‑κβ p65; however, it had no effect on the phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and p38. Meanwhile, the NF‑κβ p65 inhibitor ammonium pyrrolidinedithiocarbamate and the ERK1/2 inhibitor U0126, but not the p38 inhibitor SB203580, were able to block oxLDL/β2GPI/anti‑β2GPI complex‑induced foam cell formation and migration in A7r5 cells. Hence, it was demonstrated that the oxLDL/β2GPI/anti‑β2GPI complex is able to enhance the lipid uptake, migration and active molecule secretion of A7r5 cells via TLR4, and finally deteriorate atherosclerosis plaques. Additionally, it was demonstrated that oxLDL/β2GPI/anti‑β2GPI complex‑induced foam cell formation and migration may be partly mediated by the TLR4/NF‑κβ signaling pathway and that ERK1/2 may also participate in the process.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hang Ouyang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong Zhou
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Longfei Xia
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Wang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
234
|
Wu XD, Zhang N, Liang M, Liu WL, Lin BB, Xiao YR, Li YZ, Zeng K, Lin CZ. Gender-specific association between Apelin/APJ gene polymorphisms and hypertension risk in Southeast China. Gene 2018; 669:63-68. [DOI: 10.1016/j.gene.2018.05.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
235
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
236
|
Rosàs-Canyelles E, Dai T, Li S, Herr AE. Mouse-to-mouse variation in maturation heterogeneity of smooth muscle cells. LAB ON A CHIP 2018; 18:1875-1883. [PMID: 29796562 PMCID: PMC6019577 DOI: 10.1039/c8lc00216a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Smooth muscle cell (SMC) heterogeneity plays an important role in vascular remodeling, a life-threatening hallmark of many vascular diseases. However, the characterization of SMCs at the single-cell level is stymied by drawbacks of contemporary single-cell protein measurements, including antibody probe cross-reactivity, chemical fixation artifacts, limited isoform-specific probes, low multiplexing and difficulty sampling cells with irregular morphologies. To scrutinize healthy vessels for subpopulations of SMCs with proliferative-like phenotypes, we developed a high-specificity, multiplexed single-cell immunoblotting cytometry tool for unfixed, uncultured primary cells. We applied our assay to demonstrate maturation stage profiling of aortic SMCs freshly isolated from individual mice. After ensuring unbiased sampling of SMCs (80-120 μm in length), we performed single-SMC electrophoretic protein separations, which resolve protein signal from off-target antibody binding, and immunoblotted for differentiation markers α-SMA, CNN-1 and SMMHC (targets ranging from 34 kDa to 227 kDa). We identified a subpopulation of immature-like SMCs, supporting the recently-established mechanism that only a subset of SMCs is responsible for vascular remodeling. Furthermore, the low sample requirements of our assay enable single-mouse resolution studies, which minimizes animal sacrifice and experimental costs while reporting animal-to-animal phenotypic variation, essential for achieving reproducibility and surmounting the drawbacks of pooling primary cells from different animals.
Collapse
|
237
|
Jones SM, Mann A, Conrad K, Saum K, Hall DE, McKinney LM, Robbins N, Thompson J, Peairs AD, Camerer E, Rayner KJ, Tranter M, Mackman N, Owens AP. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2018; 38:1271-1282. [PMID: 29599135 PMCID: PMC6324171 DOI: 10.1161/atvbaha.117.310082] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/15/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. APPROACH AND RESULTS PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient (Ldlr-/-) mice (8-12 weeks old) that were Par2+/+ or Par2-/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. CONCLUSIONS Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2- and Cxcl1-induced monocyte infiltration.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/pathology
- Cell Movement
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokine CXCL1/genetics
- Chemokine CXCL1/metabolism
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Lipids/blood
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptor, PAR-1/deficiency
- Receptor, PAR-1/genetics
- Receptor, PAR-2/deficiency
- Receptor, PAR-2/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Shannon M Jones
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Adrien Mann
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Kelsey Conrad
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- Pathobiology and Molecular Medicine Program (K.C., M.T., A.P.O.)
| | - Keith Saum
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- University of Cincinnati Medical Scientist Training Program (K.S.)
| | - David E Hall
- Department of Nutritional Sciences, College of Allied Health (D.E.H., A.D.P.)
- Department of Internal Medicine (D.E.H., A.D.P.), University of Cincinnati College of Medicine, OH
| | - Lisa M McKinney
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Nathan Robbins
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Joel Thompson
- Division of Endocrinology and Molecular Medicine, Department of Internal Medicine, University of Kentucky, Lexington (J.T.)
| | - Abigail D Peairs
- Department of Nutritional Sciences, College of Allied Health (D.E.H., A.D.P.)
- Department of Internal Medicine (D.E.H., A.D.P.), University of Cincinnati College of Medicine, OH
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, France (E.C.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Michael Tranter
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- Pathobiology and Molecular Medicine Program (K.C., M.T., A.P.O.)
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill (N.M.)
| | - A Phillip Owens
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- Pathobiology and Molecular Medicine Program (K.C., M.T., A.P.O.)
| |
Collapse
|
238
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
239
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
240
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
241
|
Chen J, Cao Z, Guan J. SHP2 inhibitor PHPS1 protects against atherosclerosis by inhibiting smooth muscle cell proliferation. BMC Cardiovasc Disord 2018; 18:72. [PMID: 29703160 PMCID: PMC5923012 DOI: 10.1186/s12872-018-0816-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Smooth muscle cells play an important role in the development of atherosclerosis. SHP2 is known to regulate the proliferation and migration of smooth muscle cells. The purpose of this study was to determine whether the SHP2 inhibitor PHPS1 has a pro-atherosclerotic or an atheroprotective effect in vivo and in vitro. METHODS After exposure to a high-cholesterol diet for 4 weeks, LDL receptor-deficient (Ldlr-/-) mice were exposed to the SHP2 inhibitor PHPS1 or vehicle. Body weight, serum glucose and lipid levels were determined. The size and composition of atherosclerotic plaques were measured by en face analysis, Movat staining and immunohistochemistry. The phosphorylation of SHP2 and related signaling molecules was analyzed by Western blot. Mechanistic analyses were performed in oxLDL-stimulated cultured vascular smooth muscle cells (VSMCs) with or without 10 mM PHPS1 pretreatment. Protein phosphorylation levels were detected by Western blot, and VSMC proliferation was assessed by BrdU staining. RESULTS PHPS1 decreased the number of atherosclerotic plaques without significantly affecting body weight, serum glucose levels or lipid metabolism. Plaque composition analysis showed a significant decrease in the number of VSMCs in atherosclerotic lesions of Ldlr-/- mice treated with PHPS1. Stimulation with oxLDL induced a dose-dependent increase in the number of VSMCs and in SHP2 and ERK phosphorylation levels, and these effects were blocked by PHPS1. CONCLUSION The SHP2 inhibitor PHPS1 exerts a protective effect against atherosclerosis by reducing VSMC proliferation via SHP2/ERK pathway activation.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Benzenesulfonates/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hydrazones/pharmacology
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Plaque, Atherosclerotic
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jia Chen
- Department of Cardiology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Friendship Road 181, Baoshan District, Shanghai, China
| | - Zhiyong Cao
- Department of Cardiology, Shanghai Navy 411 Hospital, Shanghai, China
| | - Jingshu Guan
- Department of Cardiology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Friendship Road 181, Baoshan District, Shanghai, China
| |
Collapse
|
242
|
Park HS, Han JH, Jung SH, Lee DH, Heo KS, Myung CS. Anti-apoptotic effects of autophagy via ROS regulation in microtubule-targeted and PDGF-stimulated vascular smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:349-360. [PMID: 29719457 PMCID: PMC5928348 DOI: 10.4196/kjpp.2018.22.3.349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 01/09/2023]
Abstract
Autophagy has been studied as a therapeutic strategy for cardiovascular diseases. However, insufficient studies have been reported concerning the influence of vascular smooth muscle cells (VSMCs) through autophagy regulation. The aim of the present study was to determine the effects of VSMCs on the regulation of autophagy under in vitro conditions similar to vascular status of the equipped microtubule target agent-eluting stent and increased release of platelet-derived growth factor-BB (PDGF-BB). Cell viability and proliferation were measured using MTT and cell counting assays. Immunofluorescence using an anti-α-tubulin antibody was performed to determine microtubule dynamic formation. Cell apoptosis was measured by cleavage of caspase-3 using western blot analysis, and by nuclear fragmentation using a fluorescence assay. Autophagy activity was assessed by microtubule-associated protein light chain 3-II (LC-II) using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured using H2DCFDA. The proliferation and viability of VSMCs were inhibited by microtubule regulation. Additionally, microtubule-regulated and PDGF-BB-stimulated VSMCs increased the cleavage of caspase-3 more than only the microtubule-regulated condition, similar to that of LC3-II, implying autophagy. Inhibitory autophagy of microtubule-regulated and PDGF-BB-stimulated VSMCs resulted in low viability. However, enhancement of autophagy maintained survival through the reduction of ROS. These results suggest that the apoptosis of conditioned VSMCs is decreased by the blocking generation of ROS via the promotion of autophagy, and proliferation is also inhibited. Thus, promoting autophagy as a therapeutic target for vascular restenosis and atherosclerosis may be a good strategy.
Collapse
Affiliation(s)
- Hyun-Soo Park
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Korea
| | - Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Korea
| | - Sang-Hyuk Jung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Korea
| | - Do-Hyung Lee
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Korea.,Institute of Drug Research & Development, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
243
|
Dong X, Hu H, Fang Z, Cui J, Liu F. CTRP6 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Biomed Pharmacother 2018; 103:844-850. [PMID: 29710500 DOI: 10.1016/j.biopha.2018.04.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play critical roles in the development and progression of atherosclerosis. C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs family, was involved in cardiovascular diseases, inflammatory reaction and adipogenesis. However, the role of CTRP6 in VSMCs remains largely unknown. The purpose of this study is to investigate the effects of CTRP6 on VSMC proliferation and migration and explore the possible mechanism. Our results indicated that CTRP6 expression was dramatically down-regulated in human atherosclerotic tissues and in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB). In addition, CTRP6 overexpression significantly inhibited the proliferation and migration of VSMCs exposed to PDGF-BB, as well as increased expression of α-SMA and SM22α in PDGF-BB-stimulated VSMCs. Furthermore, CTRP6 overexpression efficiently prevented the activation of PI3K/Akt/mTOR in VSMCs in response to PDGF-BB. In conclusion, these findings showed that CTRP6 inhibits PDGF-BB-induced VSMC proliferation and migration, at least in part, through suppressing the PI3K/Akt/mTOR signaling pathway. Therefore, CTRP6 may be a potential target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xunzhong Dong
- Department of Vascular Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, Anhui Province, China; Department of Vascular Surgery, The People's Hospital of Bozhou, Clinical College of Anhui Medical University, Bozhou, 236800, Anhui Province, China
| | - Hejie Hu
- Department of Vascular Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, Anhui Province, China.
| | - Zhengdong Fang
- Department of Vascular Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, Anhui Province, China
| | - Jian Cui
- Department of Vascular Surgery, The People's Hospital of Bozhou, Clinical College of Anhui Medical University, Bozhou, 236800, Anhui Province, China
| | - Fangxin Liu
- Department of Ultrasound, The People's Hospital of Bozhou, Clinical College of Anhui Medical University, Bozhou, 236800, Anhui Province, China
| |
Collapse
|
244
|
Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul Pharmacol 2018; 107:S1537-1891(17)30464-0. [PMID: 29684642 DOI: 10.1016/j.vph.2018.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/03/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder of the large and medium-size arteries characterized by the subendothelial accumulation of cholesterol, immune cells, and extracellular matrix. At the early onset of atherogenesis, endothelial dysfunction takes place. Atherogenesis is further triggered by the accumulation of cholesterol-carrying low-density lipoproteins, which acquire properties of damage-associated molecular patterns and thereby trigger an inflammatory response. Following activation of the innate immune response, mainly governed by monocytes and macrophages, the adaptive immune response is started which further promotes atherosclerotic plaque formation. In this review, an overview is given describing the role of damage-associated molecular patterns, NLRP3 inflammasome activation, and innate and adaptive immune cells in the atherogenesis process.
Collapse
Affiliation(s)
- Kapka Miteva
- Department of Biomedical Sciences, Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milano, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
245
|
Lu QB, Wang HP, Tang ZH, Cheng H, Du Q, Wang YB, Feng WB, Li KX, Cai WW, Qiu LY, Sun HJ. Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSMCs in hypertensive vascular remodeling. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2154-2168. [PMID: 29627363 DOI: 10.1016/j.bbadis.2018.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The phenotypic transformation from differentiated to dedifferentiated vascular smooth muscle cells (VSMCs) plays a crucial role in VSMC proliferation and vascular remodeling in many cardiovascular diseases including hypertension. Nesfatin-1, a multifunctional adipocytokine, is critically involved in the regulation of blood pressure. However, it is still largely unexplored whether nesfatin-1 is a potential candidate in VSMC phenotypic switch and proliferation in hypertension. Experiments were carried out in Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), human VSMCs and primary rat aortic VSMCs. We showed that the expression of nesfatin-1 was upregulated in media layer of the aorta in SHR and SHR-derived VSMCs. Nesfatin-1 promoted VSMC phenotypic transformation, accelerated cell cycle progression and proliferation. Knockdown of nesfatin-1 inhibited the VSMC phenotype switch from a contractile to a synthetic state, attenuated cell cycle progression and retarded VSMC proliferation in SHR-derived VSMCs. Moreover, nesfatin-1-activated PI3K/Akt/mTOR signaling was abolished by JAK/STAT inhibitor WP1066, and the increased phosphorylation levels of JAK2/STAT3 in response to nesfatin-1 were suppressed by inhibition of PI3K/Akt/mTOR in VSMCs. Pharmacological blockade of the forming feedback loop between PI3K/Akt/mTOR and JAK2/STAT3 prevented the proliferation of nesfatin-1-incubated VSMCs and primary VSMCs from SHR. Chronic intraperitoneal injection of nesfatin-1 caused severe hypertension and cardiovascular remodeling in normal rats. In contrast, silencing of nesfatin-1 gene ameliorated hypertension, phenotype switching, and vascular remodeling in the aorta of SHR. Therefore, our data identified nesfatin-1 as a key modulator in hypertension and vascular remodeling by facilitating VSMC phenotypic switching and proliferation.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zi-Han Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Han Cheng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qiong Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuan-Ben Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wu-Bing Feng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
246
|
Liu R, Heiss EH, Waltenberger B, Blažević T, Schachner D, Jiang B, Krystof V, Liu W, Schwaiger S, Peña-Rodríguez LM, Breuss JM, Stuppner H, Dirsch VM, Atanasov AG. Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor. Mol Nutr Food Res 2018; 62:e1700860. [PMID: 29405576 DOI: 10.1002/mnfr.201700860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/23/2018] [Indexed: 12/15/2022]
Abstract
SCOPE Aberrant vascular smooth muscle cell (VSMC) proliferation is involved in atherosclerotic plaque formation and restenosis. Mediterranean spices have been reported to confer cardioprotection, but their direct influence on VSMCs has largely not been investigated. This study aims at examining rosmarinic acid (RA) and 11 related constituents for inhibition of VSMC proliferation in vitro, and at characterizing the most promising compound for their mode of action and influence on neointima formation in vivo. METHODS AND RESULTS RA, rosmarinic acid methyl ester (RAME), and caffeic acid methyl ester inhibit VSMC proliferation in a resazurin conversion assay with IC50 s of 5.79, 3.12, and 6.78 µm, respectively. RAME significantly reduced neointima formation in vivo in a mouse femoral artery cuff model. Accordingly, RAME leads to an accumulation of VSMCs in the G0 /G1 cell-cycle phase, as indicated by blunted retinoblastoma protein phosphorylation upon mitogen stimulation and inhibition of cyclin-dependent kinase 2 in vitro. CONCLUSION RAME represses PDGF-induced VSMC proliferation in vitro and reduces neointima formation in vivo. These results recommend RAME as an interesting compound with VSMC-inhibiting potential. Future metabolism and pharmacokinetics studies might help to further evaluate the potential relevance of RAME and other spice-derived polyphenolics for vasoprotection.
Collapse
MESH Headings
- Animals
- Cardiovascular Agents/adverse effects
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/therapeutic use
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Cinnamates/administration & dosage
- Cinnamates/adverse effects
- Cinnamates/pharmacology
- Cinnamates/therapeutic use
- Depsides/administration & dosage
- Depsides/adverse effects
- Depsides/pharmacology
- Depsides/therapeutic use
- Diet, Mediterranean
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Human Umbilical Vein Endothelial Cells/cytology
- Humans
- Male
- Mediterranean Region
- Methylation
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Random Allocation
- Rats
- Retinoblastoma Protein/metabolism
- Rosmarinus/chemistry
- Rosmarinus/growth & development
- Spices/analysis
- Rosmarinic Acid
Collapse
Affiliation(s)
- Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, University of Yantai, Yantai, China
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Tina Blažević
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Daniel Schachner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Baohong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Vladimir Krystof
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany AS CR, Olomouc, Czech Republic
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, University of Yantai, Yantai, China
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Luis M Peña-Rodríguez
- Unidad de Biotecnología, Centro de investigación Científica de Yucatán, Mérida, México
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| |
Collapse
|
247
|
Pan S, Liu H, Gao F, Luo H, Lin H, Meng L, Jiang C, Guo Y, Chi J, Guo H. Folic acid delays development of atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cell Mol Med 2018; 22:3183-3191. [PMID: 29571225 PMCID: PMC5980198 DOI: 10.1111/jcmm.13599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
Many studies support the cardioprotective effects of folic acid (FA). We aimed to evaluate the utility of FA supplementation in preventing the development of atherosclerotic in low‐density lipoprotein receptor‐deficient (LDLR−/−) mice and to elucidate the molecular processes underlying this effect. LDLR−/− mice were randomly distributed into four groups: control group, HF group, HF + FA group and the HF + RAPA group. vascular smooth muscle cells (VSMCs) were divided into the following four groups: control group, PDGF group, PDGF + FA group and PDGF + FA + RAPA group. Blood lipid levels, oxidative stress and inflammatory cytokines were measured. Atherosclerosis severity was evaluated with oil red O staining. Haematoxylin and eosin (H&E) staining was used to assess atherosclerosis progression. Immunohistochemical staining was performed with antismooth muscle α‐actin (α‐SMA) antibodies and anti‐osteopontin (OPN) antibodies that demonstrate VSMC dedifferentiation. The protein expression of α‐SMA, OPN and mechanistic target of rapamycin (mTOR)/p70S6K signalling was detected by Western blot analysis. FA and rapamycin reduced serum levels of total cholesterol, triacylglycerol, LDL, inhibiting oxidative stress and the inflammatory response. Oil red O and H&E staining demonstrated that FA and rapamycin inhibited atherosclerosis. FA and rapamycin treatment inhibited VSMC dedifferentiation in vitro and in vivo, and FA and rapamycin attenuated the mTOR/p70S6K signalling pathway. Our findings suggest that FA attenuates atherosclerosis development and inhibits VSMC dedifferentiation in high‐fat‐fed LDLR−/− mice by reduced lipid levels and inhibiting oxidative stress and the inflammatory response through mTOR/p70S6K signalling pathway.
Collapse
Affiliation(s)
- Sunlei Pan
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Huahua Liu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hui Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Chengjian Jiang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Yan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jufang Chi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
248
|
Zhang DQ, Li JS, Zhang YM, Gao F, Dai RZ. Astragaloside IV inhibits Angiotensin II-stimulated proliferation of rat vascular smooth muscle cells via the regulation of CDK2 activity. Life Sci 2018; 200:105-109. [PMID: 29567075 DOI: 10.1016/j.lfs.2018.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 11/30/2022]
Abstract
AIMS Astragaloside IV (AS-IV) is the central active component extracted from Radix astragali, an herbal remedy widely used in traditional Chinese medicine for the treatment of cardiovascular diseases. Aberrant proliferation of vascular smooth muscle cells (VSMCs) is closely involved in the initiation and progression of cardiovascular complications, such as atherosclerosis. Here we investigated whether AS-IV inhibited agonist-induced vascular smooth muscle cells (VSMCs) proliferation and the underlying mechanism. MAIN METHODS Quiescent cultured A10 cells (adult rat VSMCs) were treated with Angiotensin II (AngII) or AngII plus AS-IV for 48 h. The growth rate of A10 cells was analyzed by CCK8 assay. RT-PCR analysis was carried out to examine the expression of α-smooth muscle actin (α-SMA), an important phenotypic modulation marker. In addition, whether the interference of AS-IV on AngII-mediated growth of VSMCs via regulation of cell cycle was evaluated by flow cytometry. In order to explore the role of cell cycle machinery, we measured kinase activity of CDK2 by Kinase assay and the protein level of Cdc25 by western blot, respectively. KEY FINDINGS These data suggested that AS-IV exerted beneficial effects on AngII -induced abnormal growth in rat VSMCs through disturbing cell cycle, especially block G1/S transition by attenuating CDK2 activity, which may hinder the process of pathological vascular remodeling during atherosclerosis.
Collapse
Affiliation(s)
- Deng-Qing Zhang
- Jinjiang Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Jinjiang, Fujian, China
| | - Jin-Song Li
- Jinjiang Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Jinjiang, Fujian, China
| | - Yu-Mei Zhang
- Jinjiang Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Jinjiang, Fujian, China
| | - Feng Gao
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.
| | - Ruo-Zhu Dai
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
249
|
Lu X, Xu X, Zhang Y, Zhang Y, Wang C, Huo X. Elevated inflammatory Lp-PLA2 and IL-6 link e-waste Pb toxicity to cardiovascular risk factors in preschool children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:601-609. [PMID: 29223817 DOI: 10.1016/j.envpol.2017.11.094] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
Cardiovascular toxicity of lead (Pb) manifests primarily as an effect on blood pressure and eventual increased risk of atherosclerosis and cardiovascular events. Therefore, we investigated vascular inflammatory biomarkers and cardiovascular effects of Pb-exposed children. A total of 590 children (3-7 years old) were recruited from Guiyu (n = 337), an electronic waste (e-waste)-exposed group, and Haojiang (n = 253), a reference group, from November to December 2016. We measured child blood Pb levels (BPbs), and systolic and diastolic blood pressure. Pulse pressure was calculated for the latter two. Serum biomarkers including lipid profiles and inflammatory cytokines, and plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) were detected. Unadjusted regression analysis illustrated that higher ln-transformed BPb associated with lower systolic blood pressure and pulse pressure. After adjustment for various confounders, the relational degree of lnBPb and blood pressure measures became slightly attenuated or not significant. Elevated BPb was associated with higher Lp-PLA2, interleukin (IL)-6, triglycerides (TG) and lower high-density lipoprotein (HDL). Lp-PLA2 remained inversely associated with pulse pressure and HDL, but positively with ratios of total cholesterol to HDL (Tc/HDL) and low-density lipoprotein to HDL (LDL/HDL). IL-6 was associated negatively with systolic blood pressure, pulse pressure and HDL, and positively associated with TG, Tc/HDL and LDL/HDL. The mediation effect of biomarkers on the association of BPb with pulse pressure was insignificant except for Lp-PLA2. Available data supports the conclusion that e-waste-exposed children with higher BPbs and concomitant abnormal measures of cardiovascular physiology have an augmented prevalence of vascular inflammation, as well as lipid disorder.
Collapse
Affiliation(s)
- Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041 Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041 Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Chenyang Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632 Guangdong, China.
| |
Collapse
|
250
|
H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci 2018; 25:11. [PMID: 29415742 PMCID: PMC5804091 DOI: 10.1186/s12929-018-0418-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been identified as critical regulators in the development of atherosclerosis (AS). Here, we focused on discussing roles and molecular mechanisms of lncRNA H19 in vascular smooth muscle cells (VSMCs) progression. Methods RT-qPCR assay was used to detect the expression patterns of H19 and miR-148b in clinical samples and cells. Cell proliferative ability was evaluated by CCK-8 and colony formation assays. Cell apoptotic capacity was assessed by apoptotic cell percentage and the caspase-3 activity. Bioinformatics analysis, luciferase and RNA immunoprecipitation (RIP) assays were employed to demonstrate cell percentage and the relationship among H19, miR-148b and wnt family member 1 (WNT1). Western blot assay was performed to determine expressions of proliferating cell nuclear antigen (PCNA), ki-67, Bax, Bcl-2, WNT1, β-catenin, C-myc and E-cadherin. Results The level of H19 was increased and miR-148b expression was decreased in human AS patient serums and oxidized low-density lipoprotein (ox-LDL)-stimulated human aorta vascular smooth muscle cells (HA-VSMCs). H19 knockdown suppressed proliferation and promoted apoptosis in HA-VSMCs following the treatment of ox-LDL. H19 inhibited miR-148b expression by direct interaction. Moreover, miR-148b inhibitor could reverse the effects of H19 depletion on proliferation and apoptosis in ox-LDL-stimulated HA-VSMCs. Further mechanical explorations showed that WNT1 was a target of miR-148b and H19 acted as a competing endogenous RNA (ceRNA) of miR-148b to enhance WNT1 expression. Furthermore, miR-148 inhibitor exerted its pro-proliferation and anti-apoptosis effects through activating WNT/β-catenin signaling in ox-LDL-stimulated HA-VSMCs. Conclusion H19 facilitated proliferation and inhibited apoptosis through modulating WNT/β-catenin signaling pathway via miR-148b in ox-LDL-stimulated HA-VSMCs, implicating the potential values of H19 in AS therapy.
Collapse
|