201
|
Birtic S, Ksas B, Genty B, Mueller MJ, Triantaphylidès C, Havaux M. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1103-15. [PMID: 21595761 DOI: 10.1111/j.1365-313x.2011.04646.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants, like almost all living organisms, spontaneously emit photons of visible light. We used a highly sensitive, low-noise cooled charge coupled device camera to image spontaneous photon emission (autoluminescence) of plants. Oxidative stress and wounding induced a long-lasting enhancement of plant autoluminescence, the origin of which is investigated here. This long-lived phenomenon can be distinguished from the short-lived chlorophyll luminescence resulting from charge recombinations within the photosystems by pre-adapting the plant to darkness for about 2 h. Lipids in solvent were found to emit a persistent luminescence after oxidation in vitro, which exhibited the same time and temperature dependence as plant autoluminescence. Other biological molecules, such as DNA or proteins, either did not produce measurable light upon oxidation or they did produce a chemiluminescence that decayed rapidly, which excludes their significant contribution to the in vivo light emission signal. Selective manipulation of the lipid oxidation levels in Arabidopsis mutants affected in lipid hydroperoxide metabolism revealed a causal link between leaf autoluminescence and lipid oxidation. Addition of chlorophyll to oxidized lipids enhanced light emission. Both oxidized lipids and plants predominantly emit light at wavelengths higher than 600 nm; the emission spectrum of plant autoluminescence was shifted towards even higher wavelengths, a phenomenon ascribable to chlorophyll molecules acting as luminescence enhancers in vivo. Taken together, the presented results show that spontaneous photon emission imaged in plants mainly emanates from oxidized lipids. Imaging of this signal thus provides a simple and sensitive non-invasive method to selectively visualize and map patterns of lipid oxidation in plants.
Collapse
Affiliation(s)
- Simona Birtic
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | | | |
Collapse
|
202
|
The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J 2011; 437:381-7. [DOI: 10.1042/bj20110883] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The properties of a cpYFP [circularly permuted YFP (yellow fluorescent protein)] reported to act as a superoxide sensor have been re-examined in Arabidopsis mitochondria. We have found that the probe has high pH sensitivity and that dynamics in the cpYFP signal disappeared when the matrix pH was clamped by nigericin. In contrast, genetic and pharmacological manipulation of matrix superoxide had no detectable effect on the cpYFP signal. These findings question the existence of superoxide flashes in mitochondria.
Collapse
|
203
|
Bleuel C, Wesenberg D, Meyer AJ. Degradation of glutathione S-conjugates in Physcomitrella patens is initiated by cleavage of glycine. PLANT & CELL PHYSIOLOGY 2011; 52:1153-1161. [PMID: 21616930 DOI: 10.1093/pcp/pcr064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Glutathione-dependent detoxification is a key pathway that allows plants to efficiently remove toxic compounds like heavy metals or electrophilic xenobiotics. Under persistent exposure to toxins plants need to respond to continuous demand with efficient synthesis of glutathione (GSH) and ideally fast and efficient removal of potentially toxic glutathione S-conjugates. With the aim of studying the respective degradation pathway in Physcomitrella patens we initially characterized fluorescence labeling of protonema cultures with GSH-specific xenobiotic monochlorobimane (MCB). Incubation of protonema with 200 μM MCB for 24 h resulted in a steady increase of total bimane label, which was not confined to glutathione S-bimane (GS-B), but predominantly present in γ-glutamylcysteine S-bimane (γ-EC-B) and cysteine S-bimane (Cys-B). Pulse-chase experiments identified γ-EC-B and Cys-B as degradation products of GS-B, suggesting initial cleavage of the C-terminal glycine, followed by cleavage of the γ-glutamyl bond. The amount of GS-B formed, increased linearly at 90 nmol GSH g fw⁻¹ h⁻¹ for 24 h and after ∼1.5 h already surpassed the amount of GSH present in control protonema. This demand-driven biosynthesis of GSH depends on sufficient supply of sulfate in the incubation medium.
Collapse
Affiliation(s)
- Corinna Bleuel
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Division of Ecological and Plant Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
204
|
Gholizadeh A. Over-expression, purification and functional characterization of Celosia ClpS as a fused protein in Escherichia coli. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s000368381104003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
205
|
Geilfus CM, Mühling KH. Real-Time Imaging of Leaf Apoplastic pH Dynamics in Response to NaCl Stress. FRONTIERS IN PLANT SCIENCE 2011; 2:13. [PMID: 22639578 PMCID: PMC3355670 DOI: 10.3389/fpls.2011.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/16/2011] [Indexed: 05/20/2023]
Abstract
Knowledge concerning apoplastic ion concentrations is important for the understanding of many processes in plant physiology. Ion-sensitive fluorescent probes in combination with quantitative imaging techniques offer opportunities to localize, visualize, and quantify apoplastic ion dynamics in situ. The application of this technique to the leaf apoplast is complicated because of problems associated with dye loading. We demonstrate a more sophisticated dye loading procedure that enables the mapping of spatial apoplastic ion gradients over a period of 3 h. The new technique has been used for the real-time monitoring of pH dynamics within the leaf apoplast in response to NaCl stress encountered by the roots.
Collapse
Affiliation(s)
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Christian Albrechts UniversityKiel, Germany
| |
Collapse
|
206
|
Wang P, Hummel E, Osterrieder A, Meyer AJ, Frigerio L, Sparkes I, Hawes C. KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:613-28. [PMID: 21294794 DOI: 10.1111/j.1365-313x.2011.04522.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have identified two endoplasmic reticulum (ER)-associated Arabidopsis proteins, KMS1 and KMS2, which are conserved among most species. Fluorescent protein fusions of KMS1 localised to the ER in plant cells, and over-expression induced the formation of a membrane structure, identified as ER whorls by electron microscopy. Hydrophobicity analysis suggested that KMS1 and KMS2 are integral membrane proteins bearing six transmembrane domains. Membrane protein topology was assessed by a redox-based topology assay (ReTA) with redox-sensitive GFP and confirmed by a protease protection assay. A major loop domain between transmembrane domains 2 and 3, plus the N- and C-termini were found on the cytosolic side of the ER. A C-terminal di(tri)-lysine motif is involved in retrieval of KMS1 and deletion led to a reduction of the GFP-KMS1 signal in the ER. Over-expression of KMS1/KMS2 truncations perturbed ER and Golgi morphology and similar effects were also seen when KMS1/KMS2 were knocked-down by RNA interference. Microscopy and biochemical experiments suggested that expression of KMS1/KMS2 truncations inhibited ER to Golgi protein transport.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK
| | | | | | | | | | | | | |
Collapse
|
207
|
Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H. Organelles contribute differentially to reactive oxygen species-related events during extended darkness. PLANT PHYSIOLOGY 2011; 156:185-201. [PMID: 21372201 PMCID: PMC3091045 DOI: 10.1104/pp.110.169797] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/28/2011] [Indexed: 05/20/2023]
Abstract
Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program.
Collapse
|
208
|
Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 2011; 22:1440-51. [PMID: 21372177 PMCID: PMC3084667 DOI: 10.1091/mbc.e10-11-0919] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reactive oxygen species (ROS) are at once unsought by-products of metabolism and critical regulators of multiple intracellular signaling cascades. In nonphotosynthetic eukaryotic cells, mitochondria are well-investigated major sites of ROS generation and related signal initiation. Peroxisomes are also capable of ROS generation, but their contribution to cellular oxidation-reduction (redox) balance and signaling events are far less well understood. In this study, we use a redox-sensitive variant of enhanced green fluorescent protein (roGFP2-PTS1) to monitor the state of the peroxisomal matrix in mammalian cells. We show that intraperoxisomal redox status is strongly influenced by environmental growth conditions. Furthermore, disturbances in peroxisomal redox balance, although not necessarily correlated with the age of the organelle, may trigger its degradation. We also demonstrate that the mitochondrial redox balance is perturbed in catalase-deficient cells and upon generation of excess ROS inside peroxisomes. Peroxisomes are found to resist oxidative stress generated elsewhere in the cell but are affected when the burden originates within the organelle. These results suggest a potential broader role for the peroxisome in cellular aging and the initiation of age-related degenerative disease.
Collapse
Affiliation(s)
- Oksana Ivashchenko
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
209
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011; 9:e0142. [PMID: 22303267 PMCID: PMC3267239 DOI: 10.1199/tab.0142] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
- Present address: Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Plant Biotechnologyand Genetics, Gent University, 9052 Gent, Belgium
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
210
|
Armbruster U, Pesaresi P, Pribil M, Hertle A, Leister D. Update on chloroplast research: new tools, new topics, and new trends. MOLECULAR PLANT 2011; 4:1-16. [PMID: 20924030 DOI: 10.1093/mp/ssq060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
211
|
Ayer A, Tan SX, Grant CM, Meyer AJ, Dawes IW, Perrone GG. The critical role of glutathione in maintenance of the mitochondrial genome. Free Radic Biol Med 2010; 49:1956-68. [PMID: 20888410 DOI: 10.1016/j.freeradbiomed.2010.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022]
Abstract
Glutathione (GSH) is a key redox buffer and protectant. Growth (approx. one or two divisions) of cells lacking γ-glutamylcysteine synthetase (gsh1) in the absence of GSH led to irreversible respiratory incompetency in all cells, and after five divisions 75% of cells completely lacked mitochondrial DNA (mtDNA). The level of GSH required to allow continuous growth was distinct from that required to prevent loss of mtDNA. GSH limitation led to a change in the transcript levels of 190 genes, including 30 genes regulated by the Aft1p and/or Aft2p transcription factors, which regulate the cellular response to changes in iron availability. Disruption of AFT1 but not AFT2 in gsh1 cells afforded a protective effect on maintenance of respiratory competency, as did overexpression of GRX3 or GRX4 (encoding monothiol glutaredoxins that act as negative regulators of Aft1p). Importantly, an iron-independent mechanism (~30%) was also observed to mediate GSH-dependent mtDNA loss. Analysis of the redox environment in the cytosol, mitochondrial matrix, and intermembrane space (IMS) found that the cytosol was most severely and rapidly affected by GSH depletion. GSH may also modulate the redox environment of the IMS. The implications of altered GSH homeostasis for maintenance of mtDNA, compartmental redox, and the pathophysiology of certain diseases are discussed.
Collapse
Affiliation(s)
- Anita Ayer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
212
|
Damiani MJ, Nostedt JJ, O'Neill MA. Impact of the N5-proximal Asn on the thermodynamic and kinetic stability of the semiquinone radical in photolyase. J Biol Chem 2010; 286:4382-91. [PMID: 21131361 DOI: 10.1074/jbc.m110.194696] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Flavoproteins can dramatically adjust the thermodynamics and kinetics of electron transfer at their flavin cofactor. A versatile regulatory tool is proton transfer. Here, we demonstrate the significance of proton-coupled electron transfer to redox tuning and semiquinone (sq) stability in photolyases (PLs) and cryptochromes (CRYs). These light-responsive proteins share homologous overall architectures and FAD-binding pockets, yet they have evolved divergent functions that include DNA repair, photomorphogenesis, regulation of circadian rhythm, and magnetoreception. We report the first measurement of both FAD redox potentials for cyclobutane pyrimidine dimer PL (CPD-PL, Anacystis nidulans). These values, E(1)(hq/sq) = -140 mV and E(2)(sq/ox) = -219 mV, where hq is FAD hydroquinone and ox is oxidized FAD, establish that the sq is not thermodynamically stabilized (ΔE = E(2) - E(1) = -79 mV). Results with N386D CPD-PL support our earlier hypothesis of a kinetic barrier to sq oxidation associated with proton transfer. Both E(1) and E(2) are upshifted by ∼ 100 mV in this mutant; replacing the N5-proximal Asn with Asp decreases the driving force for sq oxidation. However, this Asp alleviates the kinetic barrier, presumably by acting as a proton shuttle, because the sq in N386D CPD-PL oxidizes orders of magnitude more rapidly than wild type. These data clearly reveal, as suggested for plant CRYs, that an N5-proximal Asp can switch on proton transfer and modulate sq reactivity. However, the effect is context-dependent. More generally, we propose that PLs and CRYs tune the properties of their N5-proximal residue to adjust the extent of proton transfer, H-bonding patterns, and changes in protein conformation associated with electron transfer at the flavin.
Collapse
Affiliation(s)
- Michael J Damiani
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
213
|
Vivancos PD, Dong Y, Ziegler K, Markovic J, Pallardó FV, Pellny TK, Verrier PJ, Foyer CH. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:825-38. [PMID: 21105929 DOI: 10.1111/j.1365-313x.2010.04371.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G(1) phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis.
Collapse
Affiliation(s)
- Pedro Diaz Vivancos
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 2010; 11:783-96. [PMID: 20817047 DOI: 10.1016/j.mito.2010.08.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/26/2022]
Abstract
Mammalian oocytes are long-lived cells in the human body. They initiate meiosis already in the embryonic ovary, arrest meiotically for long periods in dictyate stage, and resume meiosis only after extensive growth and a surge of luteinizing hormone which mediates signaling events that overcome meiotic arrest. Few mitochondria are initially present in the primordial germ cells while there are mitogenesis and structural and functional differentiation and stage-specific formation of functionally diverse domains of mitochondria during oogenesis. Mitochondria are most prominent cell organelles in oocytes and their activities appear essential for normal spindle formation and chromosome segregation, and they are one of the most important maternal contributions to early embryogenesis. Dysfunctional mitochondria are discussed as major factor in predisposition to chromosomal nondisjunction during first and second meiotic division and mitotic errors in embryos, and in reduced quality and developmental potential of aged oocytes and embryos. Several lines of evidence suggest that damage by oxidative stress/reactive oxygen species in dependence of age, altered antioxidative defence and/or altered environment and bi-directional signaling between oocyte and the somatic cells in the follicle contribute to reduced quality of oocytes and blocked or aberrant development of embryos after fertilization. The review provides an overview of mitogenesis during oogenesis and some recent data on oxidative defence systems in mammalian oocytes, and on age-related changes as well as novel approaches to study redox regulation in mitochondria and ooplasm. The latter may provide new insights into age-, environment- and cryopreservation-induced stress and mitochondrial dysfunction in oocytes and embryos.
Collapse
Affiliation(s)
- U Eichenlaub-Ritter
- University of Bielefeld, Faculty of Biology, Gene Technology/Microbiology, Bielefeld, Germany.
| | | | | | | |
Collapse
|
215
|
Abstract
Redox biochemistry is increasingly recognized as an integral component of cellular signal processing and cell fate decision making. Unfortunately, our capabilities to observe and measure clearly defined redox processes in the natural context of living cells, tissues, or organisms are woefully limited. The most advanced and promising tools for specific, quantitative, dynamic and compartment-specific observations are genetically encoded redox probes derived from green fluorescent protein (GFP). Within only few years from their initial introduction, redox-sensitive yellow FP (rxYFP), redox-sensitive GFPs (roGFPs), and HyPer have generated enormous interest in applying these novel tools to monitor dynamic redox changes in vivo. As genetically encoded probes, these biosensors can be specifically targeted to different subcellular locations. A critical advantage of roGFPs and HyPer is their ratiometric fluorogenic behavior. Moreover, the probe scaffold of redox-sensitive fluorescent proteins (rxYFP and roGFPs) is amenable to molecular engineering, offering fascinating prospects for further developments. In particular, the engineering of redox relays between roGFPs and redox enzymes allows control of probe specificity and enhancement of sensitivity. Genetically encoded redox probes enable the functional analysis of individual proteins in cellular redox homeostasis. In addition, redox biosensor transgenic model organisms offer extended opportunities for dynamic in vivo imaging of redox processes.
Collapse
Affiliation(s)
- Andreas J Meyer
- Heidelberg Institute for Plant Science, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
216
|
Abstract
The lumen of the endoplasmic reticulum constitutes a separate intracellular compartment with a special proteome and metabolome. The redox conditions of the organelle are also characteristically different from those of the other subcellular compartments. The luminal environment has been considered more oxidizing than the cytosol due to the presence of oxidative protein folding. However, recent observations suggest that redox systems in reduced and oxidized states are present simultaneously. The concerted action of membrane transporters and oxidoreductase enzymes maintains the oxidized state of the thiol-disulfide and the reduced state of the pyridine nucleotide redox systems, which are prerequisites for the normal redox reactions localized in the organelle. The powerful thiol-oxidizing machinery of oxidative protein folding continuously challenges the local antioxidant defense. Alterations of the luminal redox conditions, either in oxidizing or reducing direction, affect protein processing, are sensed by the accumulation of misfolded/unfolded proteins, and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce programmed cell death if these attempts fail. Recent findings strongly support the involvement of redox-based endoplasmic reticulum stress in a plethora of human diseases, either as causative agents or as complications.
Collapse
Affiliation(s)
- Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
217
|
Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J Biol Chem 2010; 285:24078-88. [PMID: 20463027 DOI: 10.1074/jbc.m110.106013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The breakdown of fatty acids, performed by the beta-oxidation cycle, is crucial for plant germination and sustainability. beta-Oxidation involves four enzymatic reactions. The final step, in which a two-carbon unit is cleaved from the fatty acid, is performed by a 3-ketoacyl-CoA thiolase (KAT). The shortened fatty acid may then pass through the cycle again (until reaching acetoacetyl-CoA) or be directed to a different cellular function. Crystal structures of KAT from Arabidopsis thaliana and Helianthus annuus have been solved to 1.5 and 1.8 A resolution, respectively. Their dimeric structures are very similar and exhibit a typical thiolase-like fold; dimer formation and active site conformation appear in an open, active, reduced state. Using an interdisciplinary approach, we confirmed the potential of plant KATs to be regulated by the redox environment in the peroxisome within a physiological range. In addition, co-immunoprecipitation studies suggest an interaction between KAT and the multifunctional protein that is responsible for the preceding two steps in beta-oxidation, which would allow a route for substrate channeling. We suggest a model for this complex based on the bacterial system.
Collapse
Affiliation(s)
- Valerie E Pye
- Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark.
| | | | | | | | | |
Collapse
|
218
|
Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC PLANT BIOLOGY 2010; 10:78. [PMID: 20426829 PMCID: PMC3095352 DOI: 10.1186/1471-2229-10-78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 04/28/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole. RESULTS In the present study, we demonstrated that the Sultr4;1 gene is expressed in developing Arabidopsis seeds to a level over 10-fold higher than the Sultr4;2 gene. A characterization of dry mature seeds from a Sultr4;1 T-DNA mutant revealed a higher sulphate content, implying a function for this transporter in developing seeds. A fine dissection of the Sultr4;1 seed proteome identified 29 spots whose abundance varied compared to wild-type. Specific metabolic features characteristic of an adaptive response were revealed, such as an up-accumulation of various proteins involved in sugar metabolism and in detoxification processes. CONCLUSIONS This study revealed a role for SULTR4;1 in determining sulphate content of mature Arabidopsis seeds. Moreover, the adaptive response of sultr4;1 mutant seeds as revealed by proteomics suggests a function of SULTR4;1 in redox homeostasis, a mechanism that has to be tightly controlled during development of orthodox seeds.
Collapse
Affiliation(s)
- Hélène Zuber
- UMR102 Genetics and Ecophysiology of Grain legumes, INRA, F-21000 Dijon, France
| | - Jean-Claude Davidian
- UMR5004 Biochemistry and Plant Molecular Physiology, Montpellier SupAgro/CNRS/INRA/Université MontpellierII, F-34060 Montpellier, France
| | - Markus Wirtz
- Heidelberg Institute of Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Rüdiger Hell
- Heidelberg Institute of Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Maya Belghazi
- Proteomic Analysis Center of Marseille, IFR Jean Roche, F-13916 Marseille Cedex 20, France
| | - Richard Thompson
- UMR102 Genetics and Ecophysiology of Grain legumes, INRA, F-21000 Dijon, France
| | - Karine Gallardo
- UMR102 Genetics and Ecophysiology of Grain legumes, INRA, F-21000 Dijon, France
| |
Collapse
|
219
|
Sparkes I, Tolley N, Aller I, Svozil J, Osterrieder A, Botchway S, Mueller C, Frigerio L, Hawes C. Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. THE PLANT CELL 2010; 22:1333-43. [PMID: 20424177 PMCID: PMC2879755 DOI: 10.1105/tpc.110.074385] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/25/2010] [Accepted: 04/03/2010] [Indexed: 05/20/2023]
Abstract
The cortical endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) epidermal cells is a network of tubules and cisternae undergoing dramatic rearrangements. Reticulons are integral membrane proteins involved in shaping ER tubules. Here, we characterized the localization, topology, effect, and interactions of five Arabidopsis thaliana reticulons (RTNs), isoforms 1-4 and 13, in the cortical ER. Our results indicate that RTNLB13 and RTNLB1-4 colocate to and constrict the tubular ER membrane. All five RTNs preferentially accumulate on ER tubules and are excluded from ER cisternae. All isoforms share the same transmembrane topology, with N and C termini facing the cytosol and four transmembrane domains. We show by Förster resonance energy transfer and fluorescence lifetime imaging microscopy that several RTNs have the capacity to interact with themselves and each other, and we suggest that oligomerization is responsible for their residence in the ER membrane. We also show that a complete reticulon homology domain is required for both RTN residence in high-curvature ER membranes and ER tubule constriction, yet it is not necessary for homotypic interactions.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Nicholas Tolley
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Isabel Aller
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
- Institute for Plant Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Julia Svozil
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
- Institute of Plant, Animal, and Agroecosystem Sciences, ETH (Swiss Federal Institute of Technology) Zurich, 8092 Zurich, Switzerland
| | - Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Stanley Botchway
- Central Laser Facility, Science and Technology Facilities Council Harwell Science Innovation Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Christopher Mueller
- Institute for Plant Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Lorenzo Frigerio
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Chris Hawes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
220
|
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31:194-223. [PMID: 20007326 PMCID: PMC2852209 DOI: 10.1210/er.2009-0026] [Citation(s) in RCA: 699] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In fact, the actions of NAD(+) have been extended from being an oxidoreductase cofactor for single enzymatic activities to acting as substrate for a wide range of proteins. These include NAD(+)-dependent protein deacetylases, poly(ADP-ribose) polymerases, and transcription factors that affect a large array of cellular functions. Through these effects, NAD(+) provides a direct link between the cellular redox status and the control of signaling and transcriptional events. Of particular interest within the metabolic/endocrine arena are the recent results, which indicate that the regulation of these NAD(+)-dependent pathways may have a major contribution to oxidative metabolism and life span extension. In this review, we will provide an integrated view on: 1) the pathways that control NAD(+) production and cycling, as well as its cellular compartmentalization; 2) the signaling and transcriptional pathways controlled by NAD(+); and 3) novel data that show how modulation of NAD(+)-producing and -consuming pathways have a major physiological impact and hold promise for the prevention and treatment of metabolic disease.
Collapse
Affiliation(s)
- Riekelt H Houtkooper
- Ecole Polytechnique Fédérale de Lausanne, Laboratory for Integrative and Systems Physiology, Building AI, Station 15, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
221
|
Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H. A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. PHYSIOLOGIA PLANTARUM 2010; 138:493-502. [PMID: 20051029 DOI: 10.1111/j.1399-3054.2009.01334.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Redox-sensitive GFP (roGFP) localized to different compartments has been shown to be suitable for determination of redox potentials in plants via imaging. Long-term measurements bring out the need for analyzing a large number of samples which are averaged over a large population of cells. Because this goal is too tedious to be achieved by confocal imaging, we have examined the possibility of using a fluorometer to monitor changes in roGFP localized to different subcellular compartments during development and dark-induced senescence. The degree of oxidations determined by a fluorometer for different probes was similar to values obtained by confocal image analysis. Comparison of young and old leaves indicated that in younger cells higher levels of H(2)O(2) were required to achieve full roGFP oxidation, a parameter which is necessary for calculation of the degree of oxidation of the probe and the actual redox potential. Therefore, it is necessary to carefully determine the H(2)O(2) concentration required to achieve full oxidation of the probe. In addition, there is an increase in autofluorescence during development and extended dark stress, which might interfere with the ability to detect changes in oxidation-reduction dependent fluorescence of roGFP. Nevertheless, it was possible to determine the full dynamic range between the oxidized and the reduced forms of the different probes in the various organelles until the third day of darkness and during plant development, thereby enabling further analysis of probe oxidation. Hence, fluorometer measurements of roGFP can be used for extended measurements enabling the processing of multiple samples. It is envisaged that this technology may be applicable to the analysis of redox changes in response to other stresses or to various mutants.
Collapse
Affiliation(s)
- Shilo Rosenwasser
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
222
|
Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Müller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JAH, Meyer AJ, Cobbett CS. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A 2010; 107:2331-6. [PMID: 20080670 PMCID: PMC2836691 DOI: 10.1073/pnas.0913689107] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis thaliana, biosynthesis of the essential thiol antioxidant, glutathione (GSH), is plastid-regulated, but many GSH functions, including heavy metal detoxification and plant defense activation, depend on cytosolic GSH. This finding suggests that plastid and cytosol thiol pools are closely integrated and we show that in Arabidopsis this integration requires a family of three plastid thiol transporters homologous to the Plasmodium falciparum chloroquine-resistance transporter, PfCRT. Arabidopsis mutants lacking these transporters are heavy metal-sensitive, GSH-deficient, and hypersensitive to Phytophthora infection, confirming a direct requirement for correct GSH homeostasis in defense responses. Compartment-specific measurements of the glutathione redox potential using redox-sensitive GFP showed that knockout of the entire transporter family resulted in a more oxidized glutathione redox potential in the cytosol, but not in the plastids, indicating the GSH-deficient phenotype is restricted to the cytosolic compartment. Expression of the transporters in Xenopus oocytes confirmed that each can mediate GSH uptake. We conclude that these transporters play a significant role in regulating GSH levels and the redox potential of the cytosol.
Collapse
Affiliation(s)
- Spencer C Maughan
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana
water-stressed plants. FEBS Lett 2010; 584:889-97. [DOI: 10.1016/j.febslet.2010.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/05/2010] [Accepted: 01/09/2010] [Indexed: 01/04/2023]
|
224
|
Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43:335-67. [PMID: 19691428 DOI: 10.1146/annurev-genet-102108-134201] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
Collapse
Affiliation(s)
- Yves Meyer
- Université de Perpignan, Génome et dévelopement des plantes, CNRS-UP-IRD UMR 5096, F 66860 Perpignan Cedex, France.
| | | | | | | |
Collapse
|
225
|
The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:9109-14. [PMID: 19451637 DOI: 10.1073/pnas.0900206106] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that approximately 65% of the total GR activity is attributed to GR1, whereas approximately 35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (E(GSH)) in the cytosol. Using this tool, it is shown that E(GSH) in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.
Collapse
|
226
|
Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge T, Fricker MD, Møller BL, Fernie AR, Sweetlove LJ, Laxa M. The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. MOLECULAR PLANT 2009; 2:390-406. [PMID: 19825624 DOI: 10.1093/mp/ssn080] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metabolic adjustments are a significant, but poorly understood, part of the response of plants to oxidative stress. In a previous study (Baxter et al., 2007), the metabolic response of Arabidopsis cells in culture to induction of oxidative stress by menadione was characterized. An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism. The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment, analyzing the transcriptome, metabolome and key metabolic fluxes with focus on primary as well as secondary metabolism. Using a redox-sensitive GFP, it was also shown that menadione causes redox perturbation, not just in the mitochondrion, but also in the cytosol and plastids of roots. In the first 30 min of treatment, the response was similar to the cell culture: there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins. After 2 and 6 h of treatment, the response of the roots was different to the cell culture. Metabolite levels did not remain depressed, but instead recovered and, in the case of pyruvate, some amino acids and aliphatic glucosinolates showed a steady increase above control levels. However, no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites. Together, the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.
Collapse
Affiliation(s)
- Martin Lehmann
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 14476, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Schwarzländer M, Fricker MD, Sweetlove LJ. Monitoring the in vivo redox state of plant mitochondria: Effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:468-75. [DOI: 10.1016/j.bbabio.2009.01.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/16/2009] [Accepted: 01/27/2009] [Indexed: 01/08/2023]
|
228
|
Ströher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:357-67. [PMID: 19825620 DOI: 10.1093/mp/ssn084] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The stress-associated protein SAP12 belongs to the stress-associated protein (SAP) family with 14 members in Arabidopsis thaliana. SAP12 contains two AN1 zinc fingers and was identified in diagonal 2D redox SDS-PAGE as a protein undergoing major redox-dependent conformational changes. Its transcript was strongly induced under cold and salt stress in a time-dependent manner similar to SAP10, with high levels after 6 h and decreasing levels after 24 and 48 h. The transcript regulation resembled those of the stress marker peroxiredoxin PrxIID at 24 and 48 h. Recombinant SAP12 protein showed redox-dependent changes in quaternary structure as visualized by altered electrophoretic mobility in non-reducing SDS polyacrylamide gel electrophoresis. The oxidized oligomer was reduced by high dithiothreitol concentrations, and also by E. coli thioredoxin TrxA with low dithiothreitol (DTT) concentrations or NADPH plus NADPH-dependent thioredoxin reductase. From Western blots, the SAP12 protein amount was estimated to be in the range of 0.5 ng mug(-1) leaf protein. SAP12 protein decreased under salt and cold stress. These data suggest a redox state-linked function of SAP12 in plant cells particularly under cold and salt stress.
Collapse
Affiliation(s)
- Elke Ströher
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
229
|
Brach T, Soyk S, Müller C, Hinz G, Hell R, Brandizzi F, Meyer AJ. Non-invasive topology analysis of membrane proteins in the secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:534-41. [PMID: 18939964 DOI: 10.1111/j.1365-313x.2008.03704.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a novel method to experimentally visualize in vivo the topology of transmembrane proteins residing in the endoplasmic reticulum (ER) membrane or passing through the secretory pathway on their way to their final destination. This approach, so-called redox-based topology analysis (ReTA), is based on fusion of transmembrane proteins with redox-sensitive GFP (roGFP) and ratiometric imaging. The ratio images provide direct information on the orientation of roGFP relative to the membrane as the roGFP fluorescence alters with changes in the glutathione redox potential across the ER membrane. As proof of concept, we produced binary read-outs using oxidized roGFP inside the ER lumen and reduced roGFP on the cytosolic side of the membrane for both N- and C-terminal fusions of single and multi-spanning membrane proteins. Further, successive deletion of hydrophobic domains from the C-terminus of the K/HDEL receptor ERD2 resulted in alternating localization of roGFP and a topology model for AtERD2 with six transmembrane domains.
Collapse
Affiliation(s)
- Thorsten Brach
- Heidelberg Institute for Plant Science, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
230
|
Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:999-1012. [PMID: 18088327 DOI: 10.1111/j.1365-313x.2007.03389.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, gamma-glutamate cysteine ligase (GSH1), responsible for synthesis of gamma-glutamylcysteine (gamma-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by gamma-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of gamma-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by gamma-EC in vitro strongly suggests export of gamma-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, gamma-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.
Collapse
Affiliation(s)
- Maciej Pasternak
- Heidelberg Institute of Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|