201
|
Ejiri M, Sawazaki Y, Shiono K. Some Accessions of Amazonian Wild Rice ( Oryza glumaepatula) Constitutively Form a Barrier to Radial Oxygen Loss along Adventitious Roots under Aerated Conditions. PLANTS 2020; 9:plants9070880. [PMID: 32668711 PMCID: PMC7412225 DOI: 10.3390/plants9070880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/05/2023]
Abstract
A barrier to radial oxygen loss (ROL), which reduces the loss of oxygen transported via the aerenchyma to the root tips, enables the roots of wetland plants to grow into anoxic/hypoxic waterlogged soil. However, little is known about its genetic regulation. Quantitative trait loci (QTLs) mapping can help to understand the factors that regulate barrier formation. Rice (Oryza sativa) inducibly forms an ROL barrier under stagnant conditions, while a few wetland plants constitutively form one under aerated conditions. Here, we evaluated the formation of a constitutive ROL barrier in a total of four accessions from two wild rice species. Three of the accessions were wetland accessions of O. glumaepatula, and the fourth was a non-wetland species of O. rufipogon. These species have an AA type genome, which allows them to be crossed with cultivated rice. The three O. glumaepatula accessions (W2165, W2149, and W1183) formed an ROL barrier under aerated conditions. The O. rufipogon accession (W1962) did not form a constitutive ROL barrier, but it formed an inducible ROL barrier under stagnant conditions. The three O. glumaepatula accessions should be useful for QTL mapping to understand how a constitutive ROL barrier forms. The constitutive barrier of W2165 was closely associated with suberization and resistance to penetration by an apoplastic tracer (periodic acid) at the exodermis but did not include lignin at the sclerenchyma.
Collapse
|
202
|
Wang X, Ye L, Lyu M, Ursache R, Löytynoja A, Mähönen AP. An inducible genome editing system for plants. NATURE PLANTS 2020; 6:766-772. [PMID: 32601420 PMCID: PMC7611339 DOI: 10.1038/s41477-020-0695-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/17/2020] [Indexed: 05/02/2023]
Abstract
Conditional manipulation of gene expression is a key approach to investigating the primary function of a gene in a biological process. While conditional and cell-type-specific overexpression systems exist for plants, there are currently no systems available to disable a gene completely and conditionally. Here, we present a new tool with which target genes can efficiently and conditionally be knocked out by genome editing at any developmental stage. Target genes can also be knocked out in a cell-type-specific manner. Our tool is easy to construct and will be particularly useful for studying genes having null alleles that are non-viable or show pleiotropic developmental defects.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Robertas Ursache
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Ari Löytynoja
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
203
|
Laccase3-based extracellular domain provides possible positional information for directing Casparian strip formation in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:15400-15402. [PMID: 32571955 PMCID: PMC7355012 DOI: 10.1073/pnas.2005429117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Casparian strip (CS) is a tight junction-like structure formed by lignin impregnation on the walls of endodermal cells in plant roots. The CS membrane domain (CSDM), demarked by the CASP proteins, is important for orienting lignification enzymes. Here, we report that an endodermis-expressed multicopper oxidase, LACCASE3 (LAC3) in Arabidopsis, locates to the interface between lignin domains and the cell wall during early CS development prior to CASP1 localizing to CSDM and eventually flanks the mature CS. Pharmacological perturbation of LAC3 causes dispersed localization of CASP1 and compensatory ectopic lignification. These results support the existence of a LAC3-based CS wall domain which coordinates with CSDM to provide bidirectional positional information that guides precise CS lignification.
Collapse
|
204
|
Neumann U, Hay A. Seed coat development in explosively dispersed seeds of Cardamine hirsuta. ANNALS OF BOTANY 2020; 126:39-59. [PMID: 31796954 PMCID: PMC7304473 DOI: 10.1093/aob/mcz190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Seeds are dispersed by explosive coiling of the fruit valves in Cardamine hirsuta. This rapid coiling launches the small seeds on ballistic trajectories to spread over a 2 m radius around the parent plant. The seed surface interacts with both the coiling fruit valve during launch and subsequently with the air during flight. We aim to identify features of the seed surface that may contribute to these interactions by characterizing seed coat differentiation. METHODS Differentiation of the outermost seed coat layers from the outer integuments of the ovule involves dramatic cellular changes that we characterize in detail at the light and electron microscopical level including immunofluorescence and immunogold labelling. KEY RESULTS We found that the two outer integument (oi) layers of the seed coat contributed differently to the topography of the seed surface in the explosively dispersed seeds of C. hirsuta vs. the related species Arabidopsis thaliana where seed dispersal is non-explosive. The surface of A. thaliana seeds is shaped by the columella and the anticlinal cell walls of the epidermal oi2 layer. In contrast, the surface of C. hirsuta seeds is shaped by a network of prominent ridges formed by the anticlinal walls of asymmetrically thickened cells of the sub-epidermal oi1 layer, especially at the seed margin. Both the oi2 and oi1 cell layers in C. hirsuta seeds are characterized by specialized, pectin-rich cell walls that are deposited asymmetrically in the cell. CONCLUSIONS The two outermost seed coat layers in C. hirsuta have distinct properties: the sub-epidermal oi1 layer determines the topography of the seed surface, while the epidermal oi2 layer accumulates mucilage. These properties are influenced by polar deposition of distinct pectin polysaccharides in the cell wall. Although the ridged seed surface formed by oi1 cell walls is associated with ballistic dispersal in C. hirsuta, it is not restricted to explosively dispersed seeds in the Brassicaceae.
Collapse
Affiliation(s)
- Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
205
|
Araki S, Le NT, Koizumi K, Villar-Briones A, Nonomura KI, Endo M, Inoue H, Saze H, Komiya R. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat Commun 2020; 11:3115. [PMID: 32561756 PMCID: PMC7305157 DOI: 10.1038/s41467-020-16637-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
Reproduction-specific small RNAs are vital regulators of germline development in animals and plants. MicroRNA2118 (miR2118) is conserved in plants and induces the production of phased small interfering RNAs (phasiRNAs). To reveal the biological functions of miR2118, we describe here rice mutants with large deletions of the miR2118 cluster. Our results demonstrate that the loss of miR2118 causes severe male and female sterility in rice, associated with marked morphological and developmental abnormalities in somatic anther wall cells. Small RNA profiling reveals that miR2118-dependent 21-nucleotide (nt) phasiRNAs in the anther wall are U-rich, distinct from the phasiRNAs in germ cells. Furthermore, the miR2118-dependent biogenesis of 21-nt phasiRNAs may involve the Argonaute proteins OsAGO1b/OsAGO1d, which are abundant in anther wall cell layers. Our study highlights the site-specific differences of phasiRNAs between somatic anther wall and germ cells, and demonstrates the significance of miR2118/U-phasiRNA functions in anther wall development and rice reproduction. MicroRNA2118 induces the production of phased small interfering RNAs (phaisRNAs) in plants. Here the authors show that rice miR2118 is required for both male and female fertility and supports the production of atypical U-rich 21 nt phasiRNAs that are abundant in anther walls.
Collapse
Affiliation(s)
- Saori Araki
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Ngoc Tu Le
- Plant Epigenetics Unit, OIST, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Koji Koizumi
- Imaging Section, OIST, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | | | - Ken-Ichi Nonomura
- Plant Cytogenetics, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Life Science, Graduate University for Advanced Studies/Sokendai, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, OIST, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Reina Komiya
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
206
|
Levin KA, Tucker MR, Bird DM, Mather DE. Infection by cyst nematodes induces rapid remodelling of developing xylem vessels in wheat roots. Sci Rep 2020; 10:9025. [PMID: 32493993 PMCID: PMC7270153 DOI: 10.1038/s41598-020-66080-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 11/09/2022] Open
Abstract
Cyst nematodes induce host-plant root cells to form syncytia from which the nematodes feed. Comprehensive histological investigation of these feeding sites is complicated by their variable shape and their positions deep within root tissue. Using tissue clearing and confocal microscopy, we examined thick (up to 150 μm) sections of wheat roots infected by cereal cyst nematodes (Heterodera avenae). This approach provided clear views of feeding sites and surrounding tissues, with resolution sufficient to reveal spatial relationships among nematodes, syncytia and host vascular tissues at the cellular level. Regions of metaxylem vessels near syncytia were found to have deviated from classical developmental patterns. Xylem vessel elements in these regions had failed to elongate but had undergone radial expansion, becoming short and plump rather than long and cylindrical. Further investigation revealed that vessel elements cease to elongate shortly after infection and that they later experience delays in secondary thickening (lignification) of their outer cell walls. Some of these elements were eventually incorporated into syncytial feeding sites. By interfering with a developmental program that normally leads to programmed cell death, H. avenae may permit xylem vessel elements to remain alive for later exploitation by the parasite.
Collapse
Affiliation(s)
- Kara A Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB 1, Glen Osmond, 5064, South Australia, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB 1, Glen Osmond, 5064, South Australia, Australia
| | - David McK Bird
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB 1, Glen Osmond, 5064, South Australia, Australia.
| |
Collapse
|
207
|
Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery. Nat Chem Biol 2020; 16:740-748. [PMID: 32424305 DOI: 10.1038/s41589-020-0541-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Abstract
Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.
Collapse
|
208
|
Ho WWH, Hill CB, Doblin MS, Shelden MC, van de Meene A, Rupasinghe T, Bacic A, Roessner U. Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms. PLANT COMMUNICATIONS 2020; 1:100031. [PMID: 33367236 PMCID: PMC7748018 DOI: 10.1016/j.xplc.2020.100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/02/2020] [Accepted: 02/06/2020] [Indexed: 05/02/2023]
Abstract
The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3). Based on pathway over-representation of the DEGs and DAMs, phenylpropanoid biosynthesis is the most statistically enriched biological pathway among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, compared with a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on the global correlation network of the DEGs and DAMs, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization.
Collapse
Affiliation(s)
- William Wing Ho Ho
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Camilla B. Hill
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Megan C. Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thusitha Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Metabolomics Australia, The University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author
| |
Collapse
|
209
|
Salvi E, Rutten JP, Di Mambro R, Polverari L, Licursi V, Negri R, Dello Ioio R, Sabatini S, Ten Tusscher K. A Self-Organized PLT/Auxin/ARR-B Network Controls the Dynamics of Root Zonation Development in Arabidopsis thaliana. Dev Cell 2020; 53:431-443.e23. [PMID: 32386600 DOI: 10.1016/j.devcel.2020.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes. We show that after germination, cell division causes a drop in distal PLT2 levels that enables transition zone formation and ARR12 activation. The resulting PLT2-ARR12 antagonism controls expansion of the division zone (the meristem). The successive ARR1 activation antagonizes PLT2 through inducing the cell-cycle repressor KRP2, thus setting final meristem size. Our work indicates a key role for the interplay between cell division dynamics and regulatory networks in root zonation and transition zone patterning.
Collapse
Affiliation(s)
- Elena Salvi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Jacob Pieter Rutten
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Di Mambro
- Department of Biology, University of Pisa - via L. Ghini, 13, 56126 Pisa, Italy
| | - Laura Polverari
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Sabrina Sabatini
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy.
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
210
|
Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:431-447. [PMID: 32027440 DOI: 10.1111/tpj.14711] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 05/11/2023]
Abstract
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Collapse
Affiliation(s)
- Hagai Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vadim Fedyuk
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Chunhua Wang
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
211
|
Correia S, Santos M, Glińska S, Gapińska M, Matos M, Carnide V, Schouten R, Silva AP, Gonçalves B. Effects of exogenous compound sprays on cherry cracking: skin properties and gene expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2911-2921. [PMID: 32034777 DOI: 10.1002/jsfa.10318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cherry fruit cracking is a costly problem for cherry growers. The effect of repeated sprayings (gibberellic acid - GA3 ; abscisic acid - ABA; salicylic acid - SA; glycine betaine - GB, and Ascophyllum nodosum - AN) combined with CaCl2 , on 'Sweetheart' cherry fruit-cracking characteristics was investigated. Cracking was quantified in terms of cracking incidence, crack morphology, confocal scanning laser microscopy, cuticular wax content, cell-wall modification, and cuticular wax gene expression. RESULTS All spray treatments reduced cracking compared with an untreated control (H2 O), with fewer cheek cracks. The least cracking incidence was observed for ABA + CaCl2 - and GB + CaCl2 -treated fruits, indicating an added benefit compared to spraying with CaCl2 alone. In addition, GB + CaCl2 -treated fruits showed higher fruit diameter. ABA + CaCl2 and GB + CaCl2 sprays showed higher wax content and higher cuticle and epidermal thickness compared with the control, including increased expression of wax synthase (ABA + CaCl2 ) and expansin 1 (GB + CaCl2 ). CONCLUSION In general, factors that improve the cuticle thickness appear to be important at the fruit-coloring stage. At the fruit-ripening stage, larger cell sizes of the epidermis, hypodermis, and parenchyma cells lower cracking incidence, indicating the importance of flexibility and elasticity of the epidermis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marlene Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Manuela Matos
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Sciences Faculty, University of Lisbon, Lisbon, Portugal
| | - Valdemar Carnide
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rob Schouten
- Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
212
|
Abstract
There have been exciting new results in phloem research in recent years, at least in part made possible by the rapid advancement of microscopic techniques. Several methods for visualizing phloem cells are available. The suitability of each method depends on the organ and species being studied, and on the scientific question being addressed. This review will briefly explain the specific challenges associated with phloem cell visualization. It will then focus on common methods currently being used for studying phloem anatomy, development, and function. Emphasis will be placed on the most recent improvements in imaging techniques which had, or most certainly will have, an impact on phloem research.
Collapse
|
213
|
Fujita S, De Bellis D, Edel KH, Köster P, Andersen TG, Schmid-Siegert E, Dénervaud Tendon V, Pfister A, Marhavý P, Ursache R, Doblas VG, Barberon M, Daraspe J, Creff A, Ingram G, Kudla J, Geldner N. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J 2020; 39:e103894. [PMID: 32187732 PMCID: PMC7196915 DOI: 10.15252/embj.2019103894] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX‐dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well‐understood ROS action in plants is to provide the co‐substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer‐scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co‐substrate.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | | | | | - Alexandre Pfister
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Peter Marhavý
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Verónica G Doblas
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Marie Barberon
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
214
|
Abstract
There are various preparatory techniques for light microscopy permitting access to the inner structure of plant body and its development. Minute objects might be processed as whole-mount preparations, while voluminous ones should be separated into smaller pieces. Here we summarize some of the "classical" techniques to cut more voluminous objects into slices and access their inner structure either for simple anatomical analysis or for further processing (e.g., histochemistry, immunohistochemistry, in situ hybridization, enzyme histochemistry).
Collapse
Affiliation(s)
- Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Edita Tylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
215
|
Doll NM, Bovio S, Gaiti A, Marsollier AC, Chamot S, Moussu S, Widiez T, Ingram G. The Endosperm-Derived Embryo Sheath Is an Anti-adhesive Structure that Facilitates Cotyledon Emergence during Germination in Arabidopsis. Curr Biol 2020; 30:909-915.e4. [PMID: 32155415 DOI: 10.1016/j.cub.2019.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022]
Abstract
Germination sensu stricto in Arabidopsis involves seed-coat and endosperm rupture by the emerging seedling root. Subsequently, the cotyledons emerge rapidly from the extra-embryonic tissues of the seed, allowing autotrophic seedling establishment [1, 2]. Seedling survival depends upon the presence of an intact seedling cuticle that prevents dehydration, which has hitherto been assumed to form the interface between the newly germinated seedling and its environment [3-5]. Here, we show that in Arabidopsis, this is not the case. The primary interface between the emerging seedling and its environment is formed by an extra-cuticular endosperm-derived glycoprotein-rich structure called the sheath, which is maintained as a continuous layer at seedling surfaces during germination and becomes fragmented as cotyledons expand. Mutants lacking an endosperm-specific cysteine-rich peptide (KERBEROS [KRS]) show a complete loss of sheath production [6]. Although krs mutants have no defects in germination sensu stricto, they show delayed cotyledon emergence, a defect not observed in seedlings with defects in cuticle biosynthesis. Biophysical analyses reveal that the surfaces of wild-type cotyledons show minimal adhesion to silica beads in an aqueous environment at cotyledon emergence but that adhesion increases as cotyledons expand. In contrast, krs mutant cotyledons show enhanced adhesion at germination. Mutants with defects in cuticle biosynthesis, but no sheath defects, show a similar adhesion profile to wild-type seedlings at germination. We propose that the sheath reduces the adhesiveness of the cotyledon surface under the humid conditions necessary for seed germination and thus promotes seed-coat shedding and rapid seedling establishment.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Angelo Gaiti
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Anne-Charlotte Marsollier
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France.
| |
Collapse
|
216
|
Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W, Estelle M. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 2020; 9:54740. [PMID: 32067636 PMCID: PMC7048394 DOI: 10.7554/elife.54740] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/04/2020] [Indexed: 01/03/2023] Open
Abstract
The TIR1/AFB auxin co-receptors mediate diverse responses to the plant hormone auxin. The Arabidopsis genome encodes six TIR1/AFB proteins representing three of the four clades that were established prior to angiosperm radiation. To determine the role of these proteins in plant development we performed an extensive genetic analysis involving the generation and characterization of all possible multiply-mutant lines. We find that loss of all six TIR1/AFB proteins results in early embryo defects and eventually seed abortion, and yet a single wild-type allele of TIR1 or AFB2 is sufficient to support growth throughout development. Our analysis reveals extensive functional overlap between even the most distantly related TIR1/AFB genes except for AFB1. Surprisingly, AFB1 has a specialized function in rapid auxin-dependent inhibition of root growth and early phase of root gravitropism. This activity may be related to a difference in subcellular localization compared to the other members of the family.
Collapse
Affiliation(s)
- Michael J Prigge
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Matthieu Platre
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Nikita Kadakia
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Yi Zhang
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Kathleen Greenham
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Whitnie Szutu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Bipin Kumar Pandey
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Rahul Arvind Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| |
Collapse
|
217
|
Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J Adv Res 2020; 23:101-111. [PMID: 32089878 PMCID: PMC7025959 DOI: 10.1016/j.jare.2020.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Broccoli root vesicles showed stability and high entrapment efficiency. Nanoencapsulation with membrane vesicles provide an efficient system for keratinocytes cell delivery. Effectivity is probed by penetrating in skin layers.
During the last few years, membrane vesicles (as exovesicles) have emerged as potential nanocarriers for therapeutic applications. They are receiving attention due to their proteo-lipid nature, size, biocompatibility and biodegradability. In this work, we investigated the potential use of isolated root plasma membrane vesicles from broccoli plants as nanocarriers. For that, the entrapment efficiency and integrity of the vesicles were determined. Also, the delivery of keratinocytes and penetrability through skin were studied. The results show that the broccoli vesicles had high stability, in relation to their proteins, and high entrapment efficiency. Also, the interaction between the vesicles and keratinocytes was proven by the delivery of an encapsulated fluorescent product into cells and by the detection of plant proteins in the keratinocyte plasma membrane, showing the interactions between the membranes of two species of distinct biological kingdoms. Therefore, these results, together with the capacity of brassica vesicles to cross the skin layers, detected by fluorescent penetration, enable us to propose a type of nanocarrier obtained from natural plant membranes for use in transdermal delivery.
Collapse
Affiliation(s)
- Lucía Yepes-Molina
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, E-30100 Murcia, Spain
| | - Maria Carmen Martínez-Ballesta
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, E-30100 Murcia, Spain
| | - Micaela Carvajal
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
218
|
Nurani AM, Ozawa Y, Furuya T, Sakamoto Y, Ebine K, Matsunaga S, Ueda T, Fukuda H, Kondo Y. Deep Imaging Analysis in VISUAL Reveals the Role of YABBY Genes in Vascular Stem Cell Fate Determination. PLANT & CELL PHYSIOLOGY 2020; 61:255-264. [PMID: 31922574 DOI: 10.1093/pcp/pcaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Stem cells undergo cell division and differentiation to ensure organized tissue development. Because plant cells are immobile, plant stem cells ought to decide their cell fate prior to differentiation, to locate specialized cells in the correct position. In this study, based on a chemical screen, we isolated a novel secondary cell wall indicator BF-170, which binds to lignin and can be used to image in vitro and in situ xylem development. Use of BF-170 to observe the vascular differentiation pattern in the in vitro vascular cell induction system, VISUAL, revealed that adaxial mesophyll cells of cotyledons predominantly generate ectopic xylem cells. Moreover, phloem cells are abundantly produced on the abaxial layer, suggesting the involvement of leaf adaxial-abaxial polarity in determining vascular cell fate. Analysis of abaxial polarity mutants highlighted the role of YAB3, an abaxial cell fate regulator, in suppressing xylem and promoting phloem differentiation on the abaxial domains in VISUAL. Furthermore, YABBY family genes affected in vivo vascular development during the secondary growth. Our results denoted the possibility that such mediators of spatial information contribute to correctly determine the cell fate of vascular stem cells, to conserve the vascular pattern of land plants.
Collapse
Affiliation(s)
- Alif Meem Nurani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasuko Ozawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomoyuki Furuya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
219
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
220
|
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, Stintzi A, Widiez T, Hothorn M, Schaller A, Geldner N, Ingram G. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 2020; 367:431-435. [PMID: 31974252 DOI: 10.1126/science.aaz4131] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2023]
Abstract
The plant embryonic cuticle is a hydrophobic barrier deposited de novo by the embryo during seed development. At germination, it protects the seedling from water loss and is, thus, critical for survival. Embryonic cuticle formation is controlled by a signaling pathway involving the ABNORMAL LEAF SHAPE1 subtilase and the two GASSHO receptor-like kinases. We show that a sulfated peptide, TWISTED SEED1 (TWS1), acts as a GASSHO ligand. Cuticle surveillance depends on the action of the subtilase, which, unlike the TWS1 precursor and the GASSHO receptors, is not produced in the embryo but in the neighboring endosperm. Subtilase-mediated processing of the embryo-derived TWS1 precursor releases the active peptide, triggering GASSHO-dependent cuticle reinforcement in the embryo. Thus, a bidirectional molecular dialogue between embryo and endosperm safeguards cuticle integrity before germination.
Collapse
Affiliation(s)
- N M Doll
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - S Royek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - S Fujita
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - S Okuda
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - S Chamot
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - A Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - T Widiez
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - M Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - A Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - N Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - G Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.
| |
Collapse
|
221
|
Shao Y, Cheng Y, Pang H, Chang M, He F, Wang M, Davis DJ, Zhang S, Betz O, Fleck C, Dai T, Madahhosseini S, Wilkop T, Jernstedt J, Drakakaki G. Investigation of Salt Tolerance Mechanisms Across a Root Developmental Gradient in Almond Rootstocks. FRONTIERS IN PLANT SCIENCE 2020; 11:595055. [PMID: 33469461 PMCID: PMC7813803 DOI: 10.3389/fpls.2020.595055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/23/2020] [Indexed: 05/09/2023]
Abstract
The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response.
Collapse
Affiliation(s)
- Yuhang Shao
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yukun Cheng
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongguang Pang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Mingqin Chang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Fang He
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Minmin Wang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Destiny J. Davis
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shuxiao Zhang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Oliver Betz
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Chuck Fleck
- Sierra Gold Nurseries, Yuba City, CA, United States
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shahab Madahhosseini
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Genetic and Plant Production Department, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Thomas Wilkop
- Light Microscopy Core, University of Kentucky, Lexington, KY, United States
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Georgia Drakakaki,
| |
Collapse
|
222
|
Parker TA, Berny Mier Y Teran JC, Palkovic A, Jernstedt J, Gepts P. Pod indehiscence is a domestication and aridity resilience trait in common bean. THE NEW PHYTOLOGIST 2020; 225:558-570. [PMID: 31486530 DOI: 10.1111/nph.16164] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Plant domestication has strongly modified crop morphology and development. Nevertheless, many crops continue to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency and genetic redundancy can explain the maintenance of atavistic traits under domestication.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Jorge C Berny Mier Y Teran
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Antonia Palkovic
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Judy Jernstedt
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Paul Gepts
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| |
Collapse
|
223
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 DOI: 10.1101/474981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 05/26/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
224
|
Holbein J, Franke RB, Marhavý P, Fujita S, Górecka M, Sobczak M, Geldner N, Schreiber L, Grundler FMW, Siddique S. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:221-236. [PMID: 31322300 DOI: 10.1111/tpj.14459] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 05/08/2023]
Abstract
Plant-parasitic nematodes (PPNs) cause tremendous yield losses worldwide in almost all economically important crops. The agriculturally most important PPNs belong to a small group of root-infecting sedentary endoparasites that includes cyst and root-knot nematodes. Both cyst and root-knot nematodes induce specialized long-term feeding structures in root vasculature from which they obtain their nutrients. A specialized cell layer in roots called the endodermis, which has cell walls reinforced with suberin deposits and a lignin-based Casparian strip (CS), protects the vascular cylinder against abiotic and biotic threats. To date, the role of the endodermis, and especially of suberin and the CS, during plant-nematode interactions was largely unknown. Here, we analyzed the role of suberin and CS during interaction between Arabidopsis plants and two sedentary root-parasitic nematode species, the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. We found that nematode infection damages the endodermis leading to the activation of suberin biosynthesis genes at nematode infection sites. Although feeding sites induced by both cyst and root-knot nematodes are surrounded by endodermis during early stages of infection, the endodermis is degraded during later stages of feeding site development, indicating periderm formation or ectopic suberization of adjacent tissue. Chemical suberin analysis showed a characteristic suberin composition resembling peridermal suberin in nematode-infected tissue. Notably, infection assays using Arabidopsis lines with CS defects and impaired compensatory suberization, revealed that the CS and suberization impact nematode infectivity and feeding site size. Taken together, our work establishes the role of the endodermal barrier system in defence against a soil-borne pathogen.
Collapse
Affiliation(s)
- Julia Holbein
- INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Rochus B Franke
- IZMB - Ecophysiology, Rheinische Friedrich-Wilhelms-University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Peter Marhavý
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Satoshi Fujita
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mirosława Górecka
- Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lukas Schreiber
- IZMB - Ecophysiology, Rheinische Friedrich-Wilhelms-University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Florian M W Grundler
- INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Shahid Siddique
- INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
225
|
Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 2019; 10:4020. [PMID: 31488841 PMCID: PMC6728379 DOI: 10.1038/s41467-019-12045-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.
Collapse
|
226
|
Evolution, Initiation, and Diversity in Early Plant Embryogenesis. Dev Cell 2019; 50:533-543. [DOI: 10.1016/j.devcel.2019.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
|
227
|
Goh T. Long-term live-cell imaging approaches to study lateral root formation in Arabidopsis thaliana. Microscopy (Oxf) 2019; 68:4-12. [PMID: 30476201 DOI: 10.1093/jmicro/dfy135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022] Open
Abstract
Lateral roots comprise the majority of the branching root system and are important for acquiring nutrients and water from soil in addition to providing anchorage. Lateral roots develop post-embryonically from existing root parts and originate from a subset of specified pericycle cells (lateral root founder cells) located deep inside roots. Small numbers of these specified pericycle cells undergo several rounds of cell division to create a dome-shaped primordium, which eventually organizes a meristem, an essential region for plant growth with active cell division, and emerges from its parental root as a lateral root. Observing cellular and molecular processes for an extended time at various scales are crucial for understanding biological processes during organogenesis. Lateral root formation is an example of the successful application of live-cell imaging approaches to understand various aspects of developmental events in plants, including cell fate determination, cell proliferation, cell-to-cell interaction and cell wall modification. Here I review the recent progress in understanding the molecular mechanisms of lateral root formation and the contribution of live-cell imaging approaches.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan
| |
Collapse
|
228
|
Selected Simple Methods of Plant Cell Wall Histochemistry and Staining for Light Microscopy. Methods Mol Biol 2019. [PMID: 31148029 DOI: 10.1007/978-1-4939-9469-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Histochemical methods allow for identification and localization of various components within the tissue. Such information on the spatial heterogeneity is not available with biochemical methods. However, there is limitation of the specificity of such detection in context of complex tissue, which is important to consider, and interpretations of the results should regard suitable control treatments if possible. Such methods are valuable extension to specific optical and spectroscopic analytical methods. Here we present a set of selected simple methods of staining and histochemical tests with comments based on our laboratory experience.
Collapse
|
229
|
Marhavý P, Kurenda A, Siddique S, Dénervaud Tendon V, Zhou F, Holbein J, Hasan MS, Grundler FM, Farmer EE, Geldner N. Single-cell damage elicits regional, nematode-restricting ethylene responses in roots. EMBO J 2019; 38:embj.2018100972. [PMID: 31061171 DOI: 10.15252/embj.2018100972] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Plants are exposed to cellular damage by mechanical stresses, herbivore feeding, or invading microbes. Primary wound responses are communicated to neighboring and distal tissues by mobile signals. In leaves, crushing of large cell populations activates a long-distance signal, causing jasmonate production in distal organs. This is mediated by a cation channel-mediated depolarization wave and is associated with cytosolic Ca2+ transient currents. Here, we report that much more restricted, single-cell wounding in roots by laser ablation elicits non-systemic, regional surface potential changes, calcium waves, and reactive oxygen species (ROS) production. Surprisingly, laser ablation does not induce a robust jasmonate response, but regionally activates ethylene production and ethylene-response markers. This ethylene activation depends on calcium channel activities distinct from those in leaves, as well as a specific set of NADPH oxidases. Intriguingly, nematode attack elicits very similar responses, including membrane depolarization and regional upregulation of ethylene markers. Moreover, ethylene signaling antagonizes nematode feeding, delaying initial syncytial-phase establishment. Regional signals caused by single-cell wounding thus appear to constitute a relevant root immune response against small invaders.
Collapse
Affiliation(s)
- Peter Marhavý
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Andrzej Kurenda
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Shahid Siddique
- Department of Molecular Phytomedizin, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Valerie Dénervaud Tendon
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Feng Zhou
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Julia Holbein
- Department of Molecular Phytomedizin, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - M Shamim Hasan
- Department of Molecular Phytomedizin, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Florian Mw Grundler
- Department of Molecular Phytomedizin, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Edward E Farmer
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
230
|
Creff A, Brocard L, Joubès J, Taconnat L, Doll NM, Marsollier AC, Pascal S, Galletti R, Boeuf S, Moussu S, Widiez T, Domergue F, Ingram G. A stress-response-related inter-compartmental signalling pathway regulates embryonic cuticle integrity in Arabidopsis. PLoS Genet 2019; 15:e1007847. [PMID: 30998684 PMCID: PMC6490923 DOI: 10.1371/journal.pgen.1007847] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/30/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an “auto-immune” type interaction. Plant embryogenesis occurs deep within the tissues of the developing seed, and leads to the production of the mature embryo. In Arabidopsis and many other plant species embryo-derive structure (such as the cotyledons) are suddenly exposed to environmental stresses such as low humidity. In these species the embryonic cuticle provides a primary defence against environmental stress, and particularly dehydration, at germination. The formation of an intact and functional cuticle during embryogenesis is thus of key importance for seedling survival. Our work shows that a signalling pathway involving receptor-kinases expressed in the embryo epidermis, and a protease expressed in the endosperm tissue surrounding the embryo, is critical for ensuring the production of an intact cuticle. Furthermore, we show that a component of stress-related MAP-Kinase signalling in plants acts downstream in this pathway, possibly to mediate transcriptional responses characteristic of responses to stress. We propose that plants have redeployed a signalling pathway associated with stress resistance to ensure the formation of an intact embryonic cuticle prior to germination, and thus ensure seedling survival at germination.
Collapse
Affiliation(s)
- Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Lysiane Brocard
- Pôle d'Imagerie du Végétal, UMS3420-Université de Bordeaux, CNRS, INSERM, Domaine de la Grande Ferrade, Villenave d'Ornon, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université de Bordeaux, Villenave d'Ornon, France
| | - Ludivine Taconnat
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 0rsay, France
| | - Nicolas M. Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Anne-Charlotte Marsollier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Stéphanie Pascal
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Sophy Boeuf
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Villenave d'Ornon, France
- * E-mail: (FD); (GI)
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
- * E-mail: (FD); (GI)
| |
Collapse
|
231
|
Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci Rep 2019; 9:4227. [PMID: 30862916 PMCID: PMC6414709 DOI: 10.1038/s41598-019-40588-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/18/2019] [Indexed: 01/25/2023] Open
Abstract
The endodermis is a key cell layer in plant roots that contributes to the controlled uptake of water and mineral nutrients into plants. In order to provide such functionality the endodermal cell wall has specific chemical modifications consisting of lignin bands (Casparian strips) that encircle each cell, and deposition of a waxy-like substance (suberin) between the wall and the plasma membrane. These two extracellular deposits provide control of diffusion enabling the endodermis to direct the movement of water and solutes into and out of the vascular system in roots. Loss of integrity of the Casparian strip-based apoplastic barrier is sensed by the leakage of a small peptide from the stele into the cortex. Here, we report that such sensing of barrier integrity leads to the rebalancing of water and mineral nutrient uptake, compensating for breakage of Casparian strips. This rebalancing involves both a reduction in root hydraulic conductivity driven by deactivation of aquaporins, and downstream limitation of ion leakage through deposition of suberin. These responses in the root are also coupled to a reduction in water demand in the shoot mediated by ABA-dependent stomatal closure.
Collapse
|
232
|
The Root Cap Cuticle: A Cell Wall Structure for Seedling Establishment and Lateral Root Formation. Cell 2019; 176:1367-1378.e8. [PMID: 30773319 DOI: 10.1016/j.cell.2019.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/23/2018] [Accepted: 01/02/2019] [Indexed: 11/21/2022]
Abstract
The root cap surrounding the tip of plant roots is thought to protect the delicate stem cells in the root meristem. We discovered that the first layer of root cap cells is covered by an electron-opaque cell wall modification resembling a plant cuticle. Cuticles are polyester-based protective structures considered exclusive to aerial plant organs. Mutations in cutin biosynthesis genes affect the composition and ultrastructure of this cuticular structure, confirming its cutin-like characteristics. Strikingly, targeted degradation of the root cap cuticle causes a hypersensitivity to abiotic stresses during seedling establishment. Furthermore, lateral root primordia also display a cuticle that, when defective, causes delayed outgrowth and organ deformations, suggesting that it facilitates lateral root emergence. Our results show that the previously unrecognized root cap cuticle protects the root meristem during the critical phase of seedling establishment and promotes the efficient formation of lateral roots.
Collapse
|
233
|
A Simple Protocol for Imaging Floral Tissues of Arabidopsis with Confocal Microscopy. Methods Mol Biol 2019. [PMID: 30701501 DOI: 10.1007/978-1-4939-9042-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We present a simple protocol to image floral tissues with confocal laser scanning microscopy (CLSM). Recently, new imaging techniques have emerged that improve the image quality of plant tissues. In this protocol, as an example, we focus on the fluorescence detection of the miRNA MIR164c precursor. Briefly, the method involves tissue clearing, cell wall staining, and the visualization of fluorescence in tissues in young floral buds of Arabidopsis with CLSM with the use of water dipping lenses.
Collapse
|
234
|
DOF2.1 Controls Cytokinin-Dependent Vascular Cell Proliferation Downstream of TMO5/LHW. Curr Biol 2019; 29:520-529.e6. [PMID: 30686737 PMCID: PMC6370950 DOI: 10.1016/j.cub.2018.12.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/12/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
To create a three-dimensional structure, plants rely on oriented cell divisions and cell elongation. Oriented cell divisions are specifically important in procambium cells of the root to establish the different vascular cell types [1, 2]. These divisions are in part controlled by the auxin-controlled TARGET OF MONOPTEROS5 (TMO5) and LONESOME HIGHWAY (LHW) transcription factor complex [3, 4, 5, 6, 7]. Loss-of-function of tmo5 or lhw clade members results in strongly reduced vascular cell file numbers, whereas ectopic expression of both TMO5 and LHW can ubiquitously induce periclinal and radial cell divisions in all cell types of the root meristem. TMO5 and LHW interact only in young xylem cells, where they promote expression of two direct target genes involved in the final step of cytokinin (CK) biosynthesis, LONELY GUY3 (LOG3) and LOG4 [8, 9] Therefore, CK was hypothesized to act as a mobile signal from the xylem to trigger divisions in the neighboring procambium cells [3, 6]. To unravel how TMO5/LHW-dependent cytokinin regulates cell proliferation, we analyzed the transcriptional responses upon simultaneous induction of both transcription factors. Using inferred network analysis, we identified AT2G28510/DOF2.1 as a cytokinin-dependent downstream target gene. We further showed that DOF2.1 controls specific procambium cell divisions without inducing other cytokinin-dependent effects such as the inhibition of vascular differentiation. In summary, our results suggest that DOF2.1 and its closest homologs control vascular cell proliferation, thus leading to radial expansion of the root. DOF2.1 acts as a major transcriptional hub downstream of TMO5/LHW The CK-inducible DOF2.1 is sufficient to trigger periclinal and radial cell divisions DOF transcription factors redundantly regulate specific procambium divisions
Collapse
|
235
|
Shi D, Lebovka I, López-Salmerón V, Sanchez P, Greb T. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 2019; 146:146/1/dev171355. [PMID: 30626594 PMCID: PMC6340147 DOI: 10.1242/dev.171355] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
A reduced rate of stem cell division is considered a widespread feature which ensures the integrity of genetic information during somatic development of plants and animals. Radial growth of plant shoots and roots is a stem cell-driven process that is fundamental for the mechanical and physiological support of enlarging plant bodies. In most dicotyledonous species, the underlying stem cell niche, the cambium, generates xylem inwards and phloem outwards. Despite the importance and intriguing dynamics of the cambium, the functional characterization of its stem cells is hampered by the lack of experimental tools for accessing distinct cambium sub-domains. Here, we use the hypocotyl of Arabidopsis thaliana to map stem cell activity in the proliferating cambium. Through pulse labeling and genetically encoded lineage tracing, we find that a single bifacial stem cell generates both xylem and phloem cell lineages. This cell is characterized by a specific combination of PXY (TDR), SMXL5 and WOX4 gene activity and a high division rate in comparison with tissue-specific progenitors. Our analysis provides a cellular fate map of radial plant growth, and suggests that stem cell quiescence is not a general prerequisite for life-long tissue production. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: A single bifacial stem cell that is characterized by the combined activity of PXY (TDR), SMXL5 and WOX4 genes generates both wood and bast during radial plant growth.
Collapse
Affiliation(s)
- Dongbo Shi
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ivan Lebovka
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Vadir López-Salmerón
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Pablo Sanchez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
236
|
Tofanelli R, Vijayan A, Scholz S, Schneitz K. Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. PLANT METHODS 2019; 15:120. [PMID: 31673277 PMCID: PMC6814113 DOI: 10.1186/s13007-019-0505-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. RESULTS We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. CONCLUSIONS The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.
Collapse
Affiliation(s)
- Rachele Tofanelli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Athul Vijayan
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Present Address: EU Research Lab, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
237
|
Felipo-Benavent A, Úrbez C, Blanco-Touriñán N, Serrano-Mislata A, Baumberger N, Achard P, Agustí J, Blázquez MA, Alabadí D. Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development 2018; 145:dev.164962. [PMID: 30389856 DOI: 10.1242/dev.164962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
The thickening of plant organs is supported by secondary growth, a process by which new vascular tissues (xylem and phloem) are produced. Xylem is composed of several cell types, including xylary fibers, parenchyma and vessel elements. In Arabidopsis, it has been shown that fibers are promoted by the class-I KNOX gene KNAT1 and the plant hormones gibberellins, and are repressed by a small set of receptor-like kinases; however, we lack a mechanistic framework to integrate their relative contributions. Here, we show that DELLAs, negative elements of the gibberellin signaling pathway, physically interact with KNAT1 and impair its binding to KNAT1-binding sites. Our analysis also indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Moreover, the promotion by constitutive overexpression of KNAT1 of fiber formation and the expression of genes required for fiber differentiation were still reverted by DELLA accumulation, in agreement with post-translational regulation of KNAT1 by DELLA proteins. These results suggest that gibberellins enhance fiber development by promoting KNAT1 activity.
Collapse
Affiliation(s)
- Amelia Felipo-Benavent
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes (CNRS-Université de Strasbourg), Strasbourg 67084, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes (CNRS-Université de Strasbourg), Strasbourg 67084, France
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia 46022, Spain
| |
Collapse
|
238
|
The Casparian strip-one ring to bring cell biology to lignification? Curr Opin Biotechnol 2018; 56:121-129. [PMID: 30502636 DOI: 10.1016/j.copbio.2018.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Lignin research has long been motivated by the outstanding importance of wood for human societies. The annual, non-woody Arabidopsis thaliana, has nevertheless contributed greatly to our understanding of lignification, due to its unrivalled genetic resources. Arabidopsis is also great for cell and developmental biology, allowing precise imaging and tracking of cell types. Root endodermis differentiation involves the precise lignification of the Casparian Strip, as an apoplastic barrier; while barrier damage triggers a less localized, compensatory lignification. Transcriptional reprogramming and peptide-induced signalling emerge as promising tools for the study of endodermal lignification. We argue that endodermis lignification is an attractive model complementary to equally powerful, cellular xylem differentiation systems, as it might better represent the restricted - often localized - lignification seen in non-vascular cells.
Collapse
|
239
|
Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A 2018; 115:10178-10183. [PMID: 30228123 PMCID: PMC6176584 DOI: 10.1073/pnas.1807049115] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous modes of long-distance electrical signaling exist in nature. The best known of these, axonal conduction, requires one primary cell population, i.e., neurons. In contrast, the cell types that mediate leaf-to-leaf electrical signaling in wounded plants have not been defined rigorously. Using genetic approaches, we find that two distinct populations of cells in the vasculature matrix are needed to perform this function. Surprisingly, these cells do not contact each other directly. As we further defined the plant wound response, we found that wound-induced membrane depolarizations preceded large intravasculature calcium fluxes. We reveal a two-cell-type mode of electrical signaling in leaves and discuss parallels and differences in electrical signaling outside the plant kingdom. The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. In Arabidopsis, wounding initiates the glutamate receptor-like (GLR)–dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling. glr3.3 mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca2+ transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca2+ maxima. The axial and radial distributions of calcium fluxes were differentially affected in each glr mutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process.
Collapse
|
240
|
Drapek C, Sparks EE, Marhavy P, Taylor I, Andersen TG, Hennacy JH, Geldner N, Benfey PN. Minimum requirements for changing and maintaining endodermis cell identity in the Arabidopsis root. NATURE PLANTS 2018; 4:586-595. [PMID: 30061749 PMCID: PMC6135099 DOI: 10.1038/s41477-018-0213-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/03/2018] [Indexed: 05/18/2023]
Abstract
Changes in gene regulation during differentiation are governed by networks of transcription factors. The Arabidopsis root endodermis is a tractable model to address how transcription factors contribute to differentiation. We used a bottom-up approach to understand the extent to which transcription factors that are required for endodermis differentiation can confer endodermis identity to a non-native cell type. Our results show that the transcription factors SHORTROOT and MYB36 alone have limited ability to induce ectopic endodermal features in the absence of additional cues. The stele-derived signalling peptide CIF2 stabilizes SHORTROOT-induced endodermis identity acquisition. The outcome is a partially impermeable barrier deposited in the subepidermal cell layer, which has a transcriptional signature similar to the endodermis. These results demonstrate that other root cell types can be forced to differentiate into the endodermis and highlight a previously unappreciated role for receptor kinase signalling in maintaining endodermis identity.
Collapse
Affiliation(s)
- Colleen Drapek
- Biology Department, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Peter Marhavy
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Isaiah Taylor
- Biology Department, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Tonni G Andersen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Jessica H Hennacy
- Biology Department, Duke University, Durham, NC, USA
- Princeton University, Princeton, NJ, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Philip N Benfey
- Biology Department, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
241
|
Wakatake T, Yoshida S, Shirasu K. Induced cell fate transitions at multiple cell layers configure haustorium development in parasitic plants. Development 2018; 145:dev164848. [PMID: 29950390 PMCID: PMC6078332 DOI: 10.1242/dev.164848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/18/2018] [Indexed: 01/20/2023]
Abstract
The haustorium in parasitic plants is an organ specialized for invasion and nutrient uptake from host plant tissues. Despite its importance, the developmental processes of haustoria are mostly unknown. To understand the dynamics of cell fate change and cellular lineage during haustorium development, we performed live imaging-based marker expression analysis and cell-lineage tracing during haustorium formation in the model facultative root parasite Phtheirospermum japonicum Our live-imaging analysis revealed that haustorium formation was associated with induction of simultaneous cell division in multiple cellular layers, such as epidermis, cortex and endodermis. In addition, we found that procambium-like cells, monitored by cell type-specific markers, emerged within the central region of the haustorium before xylem connection to the host plant. Our clonal analysis of cell lineages showed that cells in multiple cellular layers differentiated into procambium-like cells, whereas epidermal cells eventually transitioned into specialized cells interfacing with the host plant. Thus, our data provide a cell fate transition map during de novo haustorium organogenesis in parasitic plants.
Collapse
Affiliation(s)
- Takanori Wakatake
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
242
|
Lee Y, Yoon TH, Lee J, Jeon SY, Lee JH, Lee MK, Chen H, Yun J, Oh SY, Wen X, Cho HK, Mang H, Kwak JM. A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell 2018; 173:1468-1480.e9. [PMID: 29731167 DOI: 10.1016/j.cell.2018.03.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.
Collapse
Affiliation(s)
- Yuree Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea.
| | - Taek Han Yoon
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jiyoun Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - So Yeon Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jae Ho Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Mi Kyoung Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Huize Chen
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Ju Yun
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Se Yun Oh
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Xiaohong Wen
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Hui Kyung Cho
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Hyunggon Mang
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - June M Kwak
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
243
|
Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W, De Rybel B, Vermeer JE, Geldner N. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 2018. [PMID: 29539635 PMCID: PMC6054302 DOI: 10.1038/nature25976;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells.
Collapse
Affiliation(s)
- Tonni Grube Andersen
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland,Correspondence and requests for materials should be addressed to or
| | - Sadaf Naseer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wouter Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium,Wageningen University, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium,Wageningen University, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Joop E.M. Vermeer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland,Correspondence and requests for materials should be addressed to or
| |
Collapse
|
244
|
Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W, De Rybel B, Vermeer JEM, Geldner N. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 2018. [PMID: 29539635 PMCID: PMC6054302 DOI: 10.1038/nature25976] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells.
Collapse
Affiliation(s)
- Tonni Grube Andersen
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sadaf Naseer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wouter Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Wageningen University, Laboratory of Biochemistry, 6708 WE Wageningen, The Netherlands
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Wageningen University, Laboratory of Biochemistry, 6708 WE Wageningen, The Netherlands
| | - Joop E M Vermeer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|