201
|
Chen X, Song F, Jhamb D, Li J, Bottino MC, Palakal MJ, Stocum DL. The Axolotl Fibula as a Model for the Induction of Regeneration across Large Segment Defects in Long Bones of the Extremities. PLoS One 2015; 10:e0130819. [PMID: 26098852 PMCID: PMC4476796 DOI: 10.1371/journal.pone.0130819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022] Open
Abstract
We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry, Indiana-University-Purdue University, Indianapolis, Indiana, United States of America
| | - Deepali Jhamb
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jiliang Li
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Marco C. Bottino
- Department of Restorative Dentistry, Division of Dental Biomaterials, School of Dentistry, Indiana-University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mathew J. Palakal
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - David L. Stocum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
202
|
Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392476. [PMID: 26180588 PMCID: PMC4477255 DOI: 10.1155/2015/392476] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.
Collapse
|
203
|
McCusker C, Bryant SV, Gardiner DM. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. ACTA ACUST UNITED AC 2015; 2:54-71. [PMID: 27499868 DOI: 10.1002/reg2.32] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 12/19/2022]
Abstract
The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration-competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural-epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are "pattern-forming" or "pattern-following" cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies.
Collapse
Affiliation(s)
- Catherine McCusker
- Department of Developmental and Cell Biology University of California Irvine California USA
| | - Susan V Bryant
- Department of Developmental and Cell Biology University of California Irvine California USA
| | - David M Gardiner
- Department of Developmental and Cell Biology University of California Irvine California USA
| |
Collapse
|
204
|
Li Z, Wu Z, Chen H, Zhu Q, Gao G, Hu L, Negi H, Kamle S, Li D. Induction of anterior gradient 2 (AGR2) plays a key role in insulin-like growth factor-1 (IGF-1)-induced breast cancer cell proliferation and migration. Med Oncol 2015; 32:577. [PMID: 25956506 PMCID: PMC4451465 DOI: 10.1007/s12032-015-0577-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/08/2022]
Abstract
Anterior gradient 2 (AGR2) is a promising anti-tumor target associated with estrogen receptor expression and metastatic progression of breast cancer. Insulin-like growth factor-1 (IGF-1) is another potent factor that stimulates breast cancer progression and mediates anti-estrogen drug resistance. However, the precise mechanism and connections between these two factors in breast cancer drug resistance have not been fully elucidated. Here, for the first time, we decipher that IGF-1 remarkably induces AGR2 in the MCF7 cell line, through an estrogen response element (ERE) between −802 and −808 bp and a leucine zipper transcription factor-binding site located between −972 and −982 bp on the AGR2 promoter. We also found that the ERK1/2 and AKT pathways mediate estrogen receptor-α at the upstream of ERE and that the JNK pathway activates the leucine zipper site through the c-Jun/c-Fos complex. Additionally, our data suggest that knockdown of AGR2 reduces IGF-1-induced cell proliferation, migration and cell cycle progression. Therefore, we report that AGR2 is a key modulator involved in IGF-1-induced breast cancer development. We propose that the identification of the mechanism linking the IGF-1/insulin signal and AGR2 promoter activation is important, because it provides insights into the development of anti-breast cancer drugs.
Collapse
Affiliation(s)
- Zheqi Li
- School of Pharmacy, Shanghai Jiao Tong University, 308-Building#6, 800, Dongchuan Rd., Shanghai, 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Brychtova V, Mohtar A, Vojtesek B, Hupp TR. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin Cancer Biol 2015; 33:16-24. [PMID: 25937245 DOI: 10.1016/j.semcancer.2015.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.
Collapse
Affiliation(s)
- Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Aiman Mohtar
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Ted R Hupp
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
206
|
Lehrberg J, Gardiner DM. Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture. PLoS One 2015; 10:e0123186. [PMID: 25923915 PMCID: PMC4414535 DOI: 10.1371/journal.pone.0123186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.
Collapse
Affiliation(s)
- Jeffrey Lehrberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - David M. Gardiner
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
207
|
Hayashi S, Yokoyama H, Tamura K. Roles of Hippo signaling pathway in size control of organ regeneration. Dev Growth Differ 2015; 57:341-51. [PMID: 25867864 DOI: 10.1111/dgd.12212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/21/2015] [Accepted: 03/07/2015] [Indexed: 01/10/2023]
Abstract
Animals have an intrinsic regeneration ability for injured tissues and organs. Species that have high regeneration ability such as newts can regenerate an organ with exactly the same size and shape as those of the original one. It has been unclear how a regenerating organ grows and ceases growth at an appropriate size. Organ size control in regeneration is seen in various organs of various species that have high regeneration ability. In animal species that do not have sufficient regeneration ability, a wound heals (the injury is closed, but lost parts are not regenerated), but an organ cannot be restored to its original size. On the other hand, perturbation of regeneration sometimes results in oversized or extra structures. In this sense, organ size control plays essential roles in proper regeneration. In this article, we introduce the concept of size control in organ regeneration regulated by the Hippo signaling pathway. We focused on the transcriptional regulator Yap, which shuttles between the nuclei and cytoplasm to exert a regulatory function in a context-dependent manner. The Yap-mediated Hippo pathway is thought to sense cell density, extracellular matrix (ECM) contact and cell position and to regulate gene expression for control of organ size. This mechanism can reasonably explain size control of organ regeneration.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
208
|
Geng J, Gates PB, Kumar A, Guenther S, Garza-Garcia A, Kuenne C, Zhang P, Looso M, Brockes JP. Identification of the orphan gene Prod 1 in basal and other salamander families. EvoDevo 2015; 6:9. [PMID: 25874078 PMCID: PMC4396064 DOI: 10.1186/s13227-015-0006-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/24/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The urodele amphibians (salamanders) are the only adult tetrapods able to regenerate the limb. It is unclear if this is an ancestral property that is retained in salamanders but lost in other tetrapods or if it evolved in salamanders. The three-finger protein Prod 1 is implicated in the mechanism of newt limb regeneration, and no orthologs have been found in other vertebrates, thus providing evidence for the second viewpoint. It has also been suggested that this protein could play a role in salamander-specific aspects of limb development. There are ten families of extant salamanders, and Prod 1 has only been identified in two of them to date. It is important to determine if it is present in other families and, particularly, the basal group of two families which diverged approximately 200 MYA. FINDINGS We have used polymerase chain reaction (PCR) to identify Prod 1 in a Chinese hynobiid species Batrachuperus longdongensis. We obtained an intestinal transcriptome of the plethodontid Aneides lugubris and, from this, identified a primer which allowed PCR of two Prod 1 genes from this species. All known Prod 1 sequences from nine species in four families have been aligned, and a phylogenetic tree has been derived. CONCLUSIONS Prod 1 is found in basal salamanders of the family Hynobiidae, and in at least three other families, so it may be present in all extant salamanders. It remains a plausible candidate to have been involved in the origins of limb regeneration, as well as the apomorphic aspects of limb development.
Collapse
Affiliation(s)
- Jie Geng
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Phillip B Gates
- Institute of Structural and Molecular Biology, Division of Biosciences, UCL, Gower Street, London, WC1E 6BT UK
| | - Anoop Kumar
- Institute of Structural and Molecular Biology, Division of Biosciences, UCL, Gower Street, London, WC1E 6BT UK
| | - Stefan Guenther
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Acely Garza-Garcia
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA UK
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Jeremy P Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, UCL, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
209
|
Myofibroblast expression in skin wounds is enhanced by collagen III suppression. BIOMED RESEARCH INTERNATIONAL 2015; 2015:958695. [PMID: 25789326 PMCID: PMC4350964 DOI: 10.1155/2015/958695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 01/19/2023]
Abstract
Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities to prevent hypertrophic scars. In this paper, we injected the rabbit ear wound model of hypertrophic scarring with two doses of a protein called nAG, which is known to reduce collagen expression and to suppress hypertrophic scarring in that animal model. The higher nAG dose was associated with significantly less collagen III expression and concurrent higher degree of myofibroblast expression. We concluded that collagen III content of the extracellular matrix may have a direct or an indirect effect on myofibroblast differentiation. However, further research is required to investigate the pathogenesis of this paradoxical phenomenon.
Collapse
|
210
|
Mizuuchi Y, Aishima S, Ohuchida K, Shindo K, Fujino M, Hattori M, Miyazaki T, Mizumoto K, Tanaka M, Oda Y. Anterior gradient 2 downregulation in a subset of pancreatic ductal adenocarcinoma is a prognostic factor indicative of epithelial-mesenchymal transition. J Transl Med 2015; 95:193-206. [PMID: 25418581 DOI: 10.1038/labinvest.2014.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 08/28/2014] [Accepted: 09/22/2014] [Indexed: 12/24/2022] Open
Abstract
Anterior gradient 2 (AGR2), a member of the protein disulfide isomerase family, has been implicated in various cancers including pancreatic ductal adenocarcinoma (PDAC) and is known to promote cancer progression. However, the prognostic value of AGR2 expression and the interaction with epithelial-mesenchymal transition (EMT) remain unclear. We investigated the clinical significance of AGR2 and EMT markers in PDAC patients by immunohistochemical analyses. Although AGR2 expression was not observed in normal pancreas, all pancreatic precursor neoplastic lesions were positive for AGR2, even at the earliest stages, including pancreatic intraepithelial neoplasia-1A, AGR2 expression was reduced in 27.7% (54/195 cases) of PDAC patients. AGR2 downregulation correlated with EMT markers (vimentin overexpression and reduced membranous E-cadherin expression), high Union for International Cancer Control stage (P<0.0001), high histological cellular grade (P<0.0001), and adverse outcome (P<0.0001). In vitro, targeted silencing of AGR2 in cancer cells using siRNA reduced cell proliferation, colony formation, cell invasiveness, and migration, but did not alter EMT markers. To confer a more aggressive phenotype and induce EMT in PDAC cells, we co-cultured PDAC cell lines with primary-cultured pancreatic stellate cells (PSCs) and found that AGR2 was downregulated in co-cultured PDAC cells compared with PDAC monocultures. Treatment with transforming growth factor beta-1 (TGF-β), secreted from PSCs, decreased AGR2 expression, whereas inhibition of TGF-β signaling using recombinant soluble human TGF-β receptor type II and TGF-β-neutralizing antibodies restored AGR2 expression. We conclude that AGR2 downregulation is a useful prognostic marker, induced by EMT, and that secreted TGF-β from PSCs may partially contribute to AGR2 downregulation in PDAC patients. AGR2 downregulation does not induce EMT or a more aggressive phenotype, but is a secondary effect of these processes in advanced PDAC.
Collapse
Affiliation(s)
- Yusuke Mizuuchi
- 1] Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [2] Reserch Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- 1] Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [2] Reserch Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Minoru Fujino
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masami Hattori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuyuki Miyazaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
211
|
The secreted factor Ag1 missing in higher vertebrates regulates fins regeneration in Danio rerio. Sci Rep 2015; 5:8123. [PMID: 25630240 PMCID: PMC4309956 DOI: 10.1038/srep08123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 11/09/2022] Open
Abstract
Agr family includes three groups of genes, Ag1, Agr2 and Agr3, which encode the thioredoxin domain-containing secreted proteins and have been shown recently to participate in regeneration of the amputated body appendages in amphibians. By contrast, higher vertebrates have only Agr2 and Agr3, but lack Ag1, and have low ability to regenerate the body appendages. Thus, one may hypothesize that loss of Ag1 in evolution could be an important event that led to a decline of the regenerative capacity in higher vertebrates. To test this, we have studied now the expression and role of Ag1 in the regeneration of fins of a representative of another large group of lower vertebrates, the fish Danio rerio. As a result, we have demonstrated that amputation of the Danio fins, like amputation of the body appendages in amphibians, elicits an increase of Ag1 expression in cells of the stump. Furthermore, down-regulation of DAg1 by injections of Vivo-morpholino antisense oligonucleotides resulted in a retardation of the fin regeneration. These data are in a good agreement with the assumption that the loss of Ag1 in higher vertebrates ancestors could lead to the reduction of the regenerative capacity in their modern descendants.
Collapse
|
212
|
Obacz J, Takacova M, Brychtova V, Dobes P, Pastorekova S, Vojtesek B, Hrstka R. The role of AGR2 and AGR3 in cancer: similar but not identical. Eur J Cell Biol 2015; 94:139-47. [PMID: 25666661 DOI: 10.1016/j.ejcb.2015.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.
Collapse
Affiliation(s)
- Joanna Obacz
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Martina Takacova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Petr Dobes
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Silvia Pastorekova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
213
|
Mechanisms underlying vertebrate limb regeneration: lessons from the salamander. Biochem Soc Trans 2015; 42:625-30. [PMID: 24849229 DOI: 10.1042/bst20140002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Limb regeneration in adult salamanders proceeds by formation of a mound of progenitor cells called the limb blastema. It provides several pointers for regenerative medicine. These include the role of differentiated cells in the origin of the blastema, the role of regenerating axons of peripheral nerves and the importance of cell specification in conferring morphogenetic autonomy on the blastema. One aspect of regeneration that has received less attention is the ability to undergo multiple episodes without detectable change in the outcome, and with minimal effect of aging. We suggest that, although such pointers are valuable, it is important to understand why salamanders are the only adult tetrapod vertebrates able to regenerate their limbs. Although this remains a controversial issue, the existence of salamander-specific genes that play a significant role in the mechanism of regeneration provides evidence for the importance of local evolution, rather than a purely ancestral mechanism. The three-finger protein called Prod1 is discussed in the present article as an exemplar of this approach.
Collapse
|
214
|
Abstract
Limb regeneration of salamanders is nerve dependent, and the removal of the nerves in early stages of limb regeneration severely curtails the proliferation of the blastemal cells and growth of the regenerate. The removal of the neural tube from a developing salamander embryo results in an aneurogenic larva and the aneurogenic limb (ANL) develops independently without innervation. Paradoxically, the limb in an ANL is capable of regeneration in a nerve-independent manner. Here, we describe a detailed method for the generation of ANL in the spotted salamander, Ambystoma maculatum, for regeneration studies.
Collapse
Affiliation(s)
- Anoop Kumar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK,
| | | |
Collapse
|
215
|
Simões MG, Bensimon-Brito A, Fonseca M, Farinho A, Valério F, Sousa S, Afonso N, Kumar A, Jacinto A. Denervation impairs regeneration of amputated zebrafish fins. BMC DEVELOPMENTAL BIOLOGY 2014; 14:49. [PMID: 25551555 PMCID: PMC4333893 DOI: 10.1186/s12861-014-0049-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Zebrafish are able to regenerate many of its tissues and organs after damage. In amphibians this process is regulated by nerve fibres present at the site of injury, which have been proposed to release factors into the amputated limbs/fins, promoting and sustaining the proliferation of blastemal cells. Although some candidate factors have been proposed to mediate the nerve dependency of regeneration, the molecular mechanisms involved in this process remain unclear. RESULTS We have used zebrafish as a model system to address the role of nerve fibres in fin regeneration. We have developed a protocol for pectoral fin denervation followed by amputation and analysed the regenerative process under this experimental conditions. Upon denervation fins were able to close the wound and form a wound epidermis, but could not establish a functional apical epithelial cap, with a posterior failure of blastema formation and outgrowth, and the accumulation of several defects. The expression patterns of genes known to be key players during fin regeneration were altered upon denervation, suggesting that nerves can contribute to the regulation of the Fgf, Wnt and Shh pathways during zebrafish fin regeneration. CONCLUSIONS Our results demonstrate that proper innervation of the zebrafish pectoral fin is essential for a successful regenerative process, and establish this organism as a useful model to understand the molecular and cellular mechanisms of nerve dependence, during vertebrate regeneration.
Collapse
Affiliation(s)
- Mariana G Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Anabela Bensimon-Brito
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| | - Mariana Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Ana Farinho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Fábio Valério
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Sara Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Nuno Afonso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Anoop Kumar
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
216
|
Baumgart M, Groth M, Priebe S, Savino A, Testa G, Dix A, Ripa R, Spallotta F, Gaetano C, Ori M, Terzibasi Tozzini E, Guthke R, Platzer M, Cellerino A. RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. Aging Cell 2014; 13:965-74. [PMID: 25059688 PMCID: PMC4326923 DOI: 10.1111/acel.12257] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 11/30/2022] Open
Abstract
The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled five different time points to characterize whole-genome transcript regulation during brain aging of N. furzeri. Comparison with human datasets revealed conserved up-regulation of ribosome, lysosome, and complement activation and conserved down-regulation of synapse, mitochondrion, proteasome, and spliceosome. Down-regulated genes differ in their temporal profiles: neurogenesis and extracellular matrix genes showed rapid decay, synaptic and axonal genes a progressive decay. A substantial proportion of differentially expressed genes (∼40%) showed inversion of their temporal profiles in the last time point: spliceosome and proteasome showed initial down-regulation and stress-response genes initial up-regulation. Extensive regulation was detected for chromatin remodelers of the DNMT and CBX families as well as members of the polycomb complex and was mirrored by an up-regulation of the H3K27me3 epigenetic mark. Network analysis showed extensive coregulation of cell cycle/DNA synthesis genes with the uncharacterized zinc-finger protein ZNF367 as central hub. In situ hybridization showed that ZNF367 is expressed in neuronal stem cell niches of both embryonic zebrafish and adult N. furzeri. Other genes down-regulated with age, not previously associated with adult neurogenesis and with similar patterns of expression are AGR2, DNMT3A, KRCP, MEX3A, SCML4, and CBX1. CBX7, on the other hand, was up-regulated with age.
Collapse
Affiliation(s)
- Mario Baumgart
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI); Jena Germany
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI); Jena Germany
| | - Steffen Priebe
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI); Jena Germany
| | - Aurora Savino
- Laboratory of NeuroBiology; Scuola Normale Superiore; University of Pisa; Pisa Italy
| | - Giovanna Testa
- Laboratory of NeuroBiology; Scuola Normale Superiore; University of Pisa; Pisa Italy
- Department of Biology; University of Pisa; Pisa Italy
| | - Andreas Dix
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI); Jena Germany
| | - Roberto Ripa
- Laboratory of NeuroBiology; Scuola Normale Superiore; University of Pisa; Pisa Italy
| | | | - Carlo Gaetano
- Klinikum der Johann Wolfgang Goethe-Universität; Frankfurt am Main Germany
| | - Michela Ori
- Department of Biology; University of Pisa; Pisa Italy
| | - Eva Terzibasi Tozzini
- Laboratory of NeuroBiology; Scuola Normale Superiore; University of Pisa; Pisa Italy
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI); Jena Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI); Jena Germany
| | - Alessandro Cellerino
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI); Jena Germany
- Laboratory of NeuroBiology; Scuola Normale Superiore; University of Pisa; Pisa Italy
| |
Collapse
|
217
|
Abstract
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.
Collapse
Affiliation(s)
- John W Cassidy
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK. ; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
218
|
Al-Qattan MM, Al-Qattan AM, Al-Maged Ahmed DA, Abd Al-Wahed MM, Shier MK. Limb regeneration in salamanders and digital tip regeneration in experimental mice: implications for the hand surgeon. J Hand Surg Eur Vol 2014; 39:989-93. [PMID: 24619249 DOI: 10.1177/1753193414526109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Several lessons and observations from limb regeneration in animals could open new insights to direct related research in the field of hand surgery. This article briefly reviews the biology of limb regeneration in salamanders and experimental mice, with special emphasis on implications for hand surgery. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- M M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia
| | - A M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia
| | - D A Al-Maged Ahmed
- College of Medicine Research Center, King Saud University, Riyadh, Saudi Arabia
| | - M M Abd Al-Wahed
- College of Medicine Research Center, King Saud University, Riyadh, Saudi Arabia
| | - M K Shier
- College of Medicine Research Center, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
219
|
Makanae A, Mitogawa K, Satoh A. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians. Dev Biol 2014; 396:57-66. [PMID: 25286122 DOI: 10.1016/j.ydbio.2014.09.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.
Collapse
Affiliation(s)
- Aki Makanae
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Kazumasa Mitogawa
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Akira Satoh
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| |
Collapse
|
220
|
Ivashkin E, Voronezhskaya EE, Adameyko I. A paradigm shift in neurobiology: peripheral nerves deliver cellular material and control development. ZOOLOGY 2014; 117:293-4. [DOI: 10.1016/j.zool.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 11/26/2022]
|
221
|
Fior J. Salamander regeneration as a model for developing novel regenerative and anticancer therapies. J Cancer 2014; 5:715-9. [PMID: 25258653 PMCID: PMC4174516 DOI: 10.7150/jca.9971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/04/2014] [Indexed: 01/15/2023] Open
Abstract
Among vertebrates, urodele amphibians are the only tetrapods with the ability to regenerate complex structures such as limbs, tail, and spinal cord throughout their lives. Furthermore, the salamander regeneration process has been shown to reverse tumorigenicity. Fibroblasts are essential for salamander regeneration, but the mechanisms underlying their role in the formation of a regeneration blastema remain unclear. Here, I review the role of fibroblasts in salamander limb regeneration and how their activity compares with that of human fibroblasts. In addition, the question of whether salamander blastema tissue could induce regeneration and tumor regression in animals with a limited regeneration ability is discussed. A deeper understanding of these processes may lead to the development of novel regenerative and anticancer therapies.
Collapse
|
222
|
Looso M. Opening the genetic toolbox of niche model organisms with high throughput techniques: novel proteins in regeneration as a case study. Bioessays 2014; 36:407-18. [PMID: 24741707 DOI: 10.1002/bies.201300093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding in vivo regeneration of complex structures offers a fascinating perspective for translation into medical applications. Unfortunately, mammals in general lack large-scale regenerative capacity, whereas planarians, newts or Hydra can regenerate complete body parts. Such organisms are, however, poorly annotated because of the lack of sequence information. This leads to limited access for molecular biological investigations. In the last decade, high throughput technologies and new methods enabling the effective generation of transgenic animals have rapidly evolved. These developments have allowed the extensive use of niche model organisms as part of a trend towards the accessibility of a greater panel of model species for scientific research. The case study that follows provides an insight into the impact of high throughput techniques on the landscape of models of regeneration. The cases presented here give evidence of alternative stem cell maintenance pathways, the identification of new protein families and new stem cell markers.
Collapse
|
223
|
Rampon C, Gauron C, Meda F, Volovitch M, Vriz S. Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signal 2014; 10:595-602. [PMID: 25084769 DOI: 10.1007/s11302-014-9420-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
A major issue in regenerative medicine is the control of progenitor cell mobilisation. Apoptosis has been reported as playing a role in cell plasticity, and it has been recently shown that apoptosis is necessary for organ and appendage regeneration. In this context, we explore its possible mode of action in progenitor cell recruitment during adult regeneration in zebrafish. Here, we show that apoptosis inhibition impairs blastema formation and nerve growth, both of which can be restored by exogenous adenosine acting through its A2B receptor. Moreover, adenosine increases the number of progenitor cells. Purinergic signalling is therefore an early and essential event in the pathway from lesion to blastema formation and provides new targets for manipulating cell plasticity in the adult.
Collapse
Affiliation(s)
- Christine Rampon
- Centre Interdisciplinaire de Recherche en biologie (CIRB), CNRS UMR 7241//INSERM U1050, Collège de France, 11, Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
224
|
Rao N, Song F, Jhamb D, Wang M, Milner DJ, Price NM, Belecky-Adams TL, Palakal MJ, Cameron JA, Li B, Chen X, Stocum DL. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl. BMC DEVELOPMENTAL BIOLOGY 2014; 14:32. [PMID: 25063185 PMCID: PMC4222900 DOI: 10.1186/1471-213x-14-32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/03/2014] [Indexed: 01/01/2023]
Abstract
Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David L Stocum
- Department of Biology, and Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
225
|
Athippozhy A, Lehrberg J, Monaghan JR, Gardiner DM, Voss SR. Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs. ACTA ACUST UNITED AC 2014; 1:1-10. [PMID: 25750744 PMCID: PMC4349419 DOI: 10.1002/reg2.14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During salamander limb regeneration, nerves provide signals that induce the formation of a mass of proliferative cells called the blastema. To better understand these signals, we developed a blastema−dorsal root ganglia (DRG) co‐culture model system to test the hypothesis that nerves differentially express genes in response to cues provided by the blastema. DRG with proximal and distal nerve trunks were isolated from axolotls (Ambystoma mexicanum), cultured for 5 days, and subjected to microarray analysis. Relative to freshly isolated DRG, 1541 Affymetrix probe sets were identified as differentially expressed and many of the predicted genes are known to function in injury and neurodevelopmental responses observed for mammalian DRG. We then cultured 5‐day DRG explants for an additional 5 days with or without co‐cultured blastema cells. On day 10, we identified 27 genes whose expression in cultured DRG was significantly affected by the presence or absence of blastema cells. Overall, our study established a DRG−blastema in vitro culture system and identified candidate genes for future investigations of axon regrowth, nerve−blastema signaling, and neural regulation of limb regeneration.
Collapse
Affiliation(s)
- Antony Athippozhy
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506
| | - Jeffrey Lehrberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115
| | - David M Gardiner
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
226
|
Godwin J. The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays 2014; 36:861-71. [DOI: 10.1002/bies.201300144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Godwin
- The Australian Regenerative Medicine Institute (ARMI); Monash University; Clayton Victoria Australia
| |
Collapse
|
227
|
Jeffery WR. Closing the wounds: one hundred and twenty five years of regenerative biology in the ascidian Ciona intestinalis. Genesis 2014; 53:48-65. [PMID: 24974948 DOI: 10.1002/dvg.22799] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/08/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022]
Abstract
This year marks the 125th anniversary of the beginning of regeneration research in the ascidian Ciona intestinalis. A brief note was published in 1891, reporting the regeneration of the Ciona neural complex and siphons. This launched an active period of Ciona regeneration research culminating in the demonstration of partial body regeneration: the ability of proximal body parts to regenerate distal ones, but not vice versa. In a process resembling regeneration, wounds in the siphon tube were discovered to result in the formation of an ectopic siphon. Ciona regeneration research then lapsed into a period of relative inactivity after the purported demonstration of the inheritance of acquired characters using siphon regeneration as a model. Around the turn of the present century, Ciona regeneration research experienced a new blossoming. The current studies established the morphological and physiological integrity of the regeneration process and its resemblance to ontogeny. They also determined some of the cell types responsible for tissue and organ replacement and their sources in the body. Finally, they showed that regenerative capacity is reduced with age. Many other aspects of regeneration now can be studied at the mechanistic level because of the extensive molecular tools available in Ciona.
Collapse
Affiliation(s)
- William R Jeffery
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts; Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
228
|
Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proc Natl Acad Sci U S A 2014; 111:9846-51. [PMID: 24958860 DOI: 10.1073/pnas.1410097111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The requirement and influence of the peripheral nervous system on tissue replacement in mammalian appendages remain largely undefined. To explore this question, we have performed genetic lineage tracing and clonal analysis of individual cells of mouse hind limb tissues devoid of nerve supply during regeneration of the digit tip, normal maintenance, and cutaneous wound healing. We show that cellular turnover, replacement, and cellular differentiation from presumed tissue stem/progenitor cells within hind limb tissues remain largely intact independent of nerve and nerve-derived factors. However, regenerated digit tips in the absence of nerves displayed patterning defects in bone and nail matrix. These nerve-dependent phenotypes mimic clinical observations of patients with nerve damage resulting from spinal cord injury and are of significant interest for translational medicine aimed at understanding the effects of nerves on etiologies of human injury.
Collapse
|
229
|
Mitogawa K, Hirata A, Moriyasu M, Makanae A, Miura S, Endo T, Satoh A. Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis. ACTA ACUST UNITED AC 2014; 1:26-36. [PMID: 27499859 PMCID: PMC4895307 DOI: 10.1002/reg2.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 11/24/2022]
Abstract
Recently, the accessory limb model (ALM) has become an alternative study system for limb regeneration studies in axolotls instead of using an amputated limb. ALM progresses limb regeneration study in axolotls because of its advantages. To apply and/or to compare knowledge in axolotl ALM studies to other vertebrates is a conceivable next step. First, Xenopus laevis, an anuran amphibian, was investigated. A Xenopus frog has hypomorphic regeneration ability. Its regeneration ability has been considered intermediate between that of non‐regenerative higher vertebrates and regenerative urodele amphibians. Here, we successfully induced an accessory blastema in Xenopus by skin wounding and rerouting of brachial nerve bundles to the wound site, which is the regular ALM surgery. The induced Xenopus ALM blastemas have limited regenerative potential compared with axolotl ALM blastemas. Comparison of ALM blastemas from species with different regenerative potentials may facilitate the identification of the novel expression programs necessary for the formation of cartilage and other tissues during limb regeneration.
Collapse
Affiliation(s)
- Kazumasa Mitogawa
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Ayako Hirata
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Miyuki Moriyasu
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Aki Makanae
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| | - Shinichirou Miura
- Division of Liberal Arts, Aichi Gakuin UniversityNissinAichi470‐0195Japan
| | - Tetsuya Endo
- Division of Liberal Arts, Aichi Gakuin UniversityNissinAichi470‐0195Japan
| | - Akira Satoh
- Okayama University, Research Core for Interdisciplinary Sciences3‐1‐1 TsushimanakaKitakuOkayama700‐8530Japan
| |
Collapse
|
230
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
231
|
Abstract
Epigenetic interventions are required to induce reprogramming from one cell type to another. At present, various cellular reprogramming methods such as somatic cell nuclear transfer, cell fusion, and direct reprogramming using transcription factors have been reported. In particular, direct reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) has been achieved using defined factors that play important epigenetic roles. Although the mechanisms underlying cellular reprogramming and vertebrate regeneration, including appendage regeneration, remain unknown, dedifferentiation occurs at an early phase in both the events, and both events are contrasting with regard to cell death. We compared the current status of changes in cell fate of iPSCs with that of vertebrate regeneration and suggested that substantial insights into vertebrate regeneration should be helpful for safe applications of iPSCs to medicine.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| |
Collapse
|
232
|
Gray TA, Alsamman K, Murray E, Sims AH, Hupp TR. Engineering a synthetic cell panel to identify signalling components reprogrammed by the cell growth regulator anterior gradient-2. MOLECULAR BIOSYSTEMS 2014; 10:1409-25. [PMID: 24710632 DOI: 10.1039/c4mb00113c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AGR2 forms an ER-resident signalling axis in cell development, limb regeneration, and in human diseases like asthma and cancer, yet molecular mechanisms underlying its effects remain largely undefined. A single integrated Flippase recombination target (FRT) site was engineered within the AGR2-non expressing A375 cell line to allow integration of a constitutively expressed AGR2 alleles. This allows an analysis of how AGR2 protein expression reprogrammes intracellular signalling. The engineered expression of AGR2 had marginal impact on global transcription signalling, compared to its paralogue AGR3. However, expression of AGR2 had a significant impact on remodelling the cellular proteome using a triple-labelled SILAC protocol. 29 045 peptides were detected for the identification and relative quantitation of 3003 proteins across the experimental conditions. Ingenuity Pathway annotation highlighted the dominant pathway suppressed by wt-AGR2 was the p53-signalling axis. DNA damage induced p53 stabilization and p21 induction by cisplatin treatment confirmed that wt-AGR2 expression suppressed the p53 pathway. The furthest outlying SILAC protein expression change induced by AGR2 was the anti-viral and cell cycle regulator tumour susceptibility gene 101 (TSG101), confirmed by immunoblotting. Transfection of TSG101 into MCF7 (AGR2+, oestrogen dependent), A549 (AGR2+, oestrogen independent) or A375 (AGR2-) cells confirmed that TSG101 attenuates p53 signalling. These systems wide screens suggest that the most dominant landscape reprogrammed by low levels of AGR2 protein is the cellular proteome, rather than the transcriptome, and provide focus for evaluating its role in proteostasis.
Collapse
Affiliation(s)
- Terry A Gray
- Cell Signalling Unit, p53 Signal Transduction Laboratories, Edinburgh Cancer Research Centre, Western General Hospital, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UKEH4 2XR.
| | | | | | | | | |
Collapse
|
233
|
Fraguas S, Barberán S, Iglesias M, Rodríguez-Esteban G, Cebrià F. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development 2014; 141:1835-47. [PMID: 24700819 DOI: 10.1242/dev.101345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.
Collapse
Affiliation(s)
- Susanna Fraguas
- Departament de Genètica de la Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avenida Diagonal 643, Edifici Prevosti planta 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
234
|
Lobo D, Feldman EB, Shah M, Malone TJ, Levin M. A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration. REGENERATION (OXFORD, ENGLAND) 2014; 1:37-56. [PMID: 25729585 PMCID: PMC4339036 DOI: 10.1002/reg2.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/12/2014] [Accepted: 06/02/2014] [Indexed: 01/23/2023]
Abstract
Amphibians and molting arthropods have the remarkable capacity to regenerate amputated limbs, as described by an extensive literature of experimental cuts, amputations, grafts, and molecular techniques. Despite a rich history of experimental efforts, no comprehensive mechanistic model exists that can account for the pattern regulation observed in these experiments. While bioinformatics algorithms have revolutionized the study of signaling pathways, no such tools have heretofore been available to assist scientists in formulating testable models of large-scale morphogenesis that match published data in the limb regeneration field. Major barriers preventing an algorithmic approach are the lack of formal descriptions for experimental regenerative information and a repository to centralize storage and mining of functional data on limb regeneration. Establishing a new bioinformatics of shape would significantly accelerate the discovery of key insights into the mechanisms that implement complex regeneration. Here, we describe a novel mathematical ontology for limb regeneration to unambiguously encode phenotype, manipulation, and experiment data. Based on this formalism, we present the first centralized formal database of published limb regeneration experiments together with a user-friendly expert system tool to facilitate its access and mining. These resources are freely available for the community and will assist both human biologists and artificial intelligence systems to discover testable, mechanistic models of limb regeneration.
Collapse
Affiliation(s)
- Daniel Lobo
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Erica B. Feldman
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Michelle Shah
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Taylor J. Malone
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| |
Collapse
|
235
|
Tereshina MB, Ermakova GV, Ivanova AS, Zaraisky AG. Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. Biol Open 2014; 3:192-203. [PMID: 24570397 PMCID: PMC4001240 DOI: 10.1242/bio.20147401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer. We show that this feedback signal is transmitted by secreted Agr proteins, the expression of which is activated in the outer layer by mediation of Ras-dva1 and the homeodomain transcription factor Otx2. In turn, Agrs are essential for maintaining Fgf8 and FoxG1 expression in cells at the anterior neural plate border. Our finding reveals a novel feedback loop mechanism based on the exchange of Fgf8 and Agr signaling between neural and non-neural compartments at the anterior margin of the neural plate and demonstrates a key role of Ras-dva1 in this mechanism.
Collapse
Affiliation(s)
- Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | |
Collapse
|
236
|
Kujawski S, Lin W, Kitte F, Börmel M, Fuchs S, Arulmozhivarman G, Vogt S, Theil D, Zhang Y, Antos CL. Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins. Dev Cell 2014; 28:573-87. [PMID: 24561038 DOI: 10.1016/j.devcel.2014.01.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/03/2013] [Accepted: 01/21/2014] [Indexed: 01/11/2023]
Abstract
Vertebrates develop organs and appendages in a proportionally coordinated manner, and animals that regenerate them do so to the same dimensions as the original structures. Coordinated proportional growth involves controlled regulation between allometric and isometric growth programs, but it is unclear what executes this control. We show that calcineurin inhibition results in continued allometric outgrowth of regenerating fins beyond their original dimensions. Calcineurin inhibition also maintains allometric growth of juvenile fins and induces it in adult fins. Furthermore, calcineurin activity is low when the regeneration rate is highest, and its activity increases as the rate decreases. Growth measurements and morphometric analysis of proximodistal asymmetry indicate that calcineurin inhibition shifts fin regeneration from a distal growth program to a proximal program. This shift is associated with the promotion of retinoic acid signaling. Thus, we identified a calcineurin-mediated mechanism that operates as a molecular switch between position-associated isometric and allometric growth programs.
Collapse
Affiliation(s)
- Satu Kujawski
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Florian Kitte
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Mandy Börmel
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, 8093 Zürich, Switzerland
| | - Steffen Fuchs
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Universität Würzburg, 97072 Würzburg, Germany
| | - Guruchandar Arulmozhivarman
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Sebastian Vogt
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Denise Theil
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Christopher L Antos
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
237
|
Wang W, Wang F, Liu J, Zhao W, Zhao Q, He M, Qian BJ, Xu Y, Liu R, Liu SJ, Liu W, Liu J, Zhou XF, Wang TH. SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 2014; 50:290-304. [PMID: 24519330 DOI: 10.1007/s12035-014-8642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 02/05/2023]
Abstract
Spinal cord injury causes sensory loss below the level of lesion. Synaptosomal-associated protein 25 (SNAP25) is a t-SNARE protein essential for exocytosis and neurotransmitter release, but its role in sensory functional recovery has not been determined. The aim of the present study is therefore to investigate whether SNAP25 can promote sensory recovery. By 2D proteomics, we found a downregulation of SNAP25 and then constructed two lentiviral vectors, Lv-exSNAP25 and Lv-shSNAP25, which allows efficient and stable RNAi-mediated silencing of endogenous SNAP25. Overexpression of SNAP25 enhanced neurite outgrowth in vitro and behavior response to thermal and mechanical stimuli in vivo, while the silencing of SNAP25 had the opposite effect. These results suggest that SNAP25 plays a crucial role in sensory functional recovery following spinal cord injury (SCI). Our study therefore provides a novel target for the management of SCI for sensory dysfunction.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Institute of Neurological Disease, Translation Neuroscience Center, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Kaucká M, Adameyko I. Non-canonical functions of the peripheral nerve. Exp Cell Res 2014; 321:17-24. [DOI: 10.1016/j.yexcr.2013.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 12/24/2022]
|
239
|
Abstract
Glycans participate in many key cellular processes during development and in physiology and disease. In this review, the functional role of various glycans in the regeneration of neurons and body parts in adult metazoans is discussed. Understanding glycosylation may facilitate research in the field of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Ponnusamy Babu
- Glycomics and Glycoproteomics,
Centre for Cellular and Molecular Platforms, NCBS-TIFR, GKVK Post, Bangalore 560065, India
| |
Collapse
|
240
|
Subtractive screen of potential limb regeneration related genes from Pachytriton brevipes. Mol Biol Rep 2014; 41:1015-26. [PMID: 24390235 DOI: 10.1007/s11033-013-2946-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
Abstract
Regeneration capacity varies greatly among different animal species. In vertebrate, amphibian especially the Urodela, has been used as a powerful model system to study the mechanism of tissue regeneration because of the strong ability to regenerate their damaged or lost appendages. Pachytriton brevipes, a species of newt, which is widely distributed in south of China, can completely restore their damaged limbs within several months. In this study, we use modified suppression subtractive hybridization assay and dot-blot screening to identify candidate genes involved in tissue regeneration in P. brevipes. We successfully isolated 81 ESTs from a forward regeneration subtraction library. And we further verified the differential expression of four candidate genes, Rpl11, Cirbp, Ag2 and Trimx, between regenerating blastema and non-regeneration tissues by in situ hybridization. These genes were also be further characterized by phylogenetic and bioinformatic analysis. In general, we provided a comparative experimental approach to study the mechanisms of vertebrate regeneration.
Collapse
|
241
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
242
|
Salamander-derived, human-optimized nAG protein suppresses collagen synthesis and increases collagen degradation in primary human fibroblasts. BIOMED RESEARCH INTERNATIONAL 2013; 2013:384091. [PMID: 24288677 PMCID: PMC3833026 DOI: 10.1155/2013/384091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Unlike humans, salamanders regrow their amputated limbs. Regeneration depends on the presence of regenerating axons which upregulate the expression of newt anterior gradient (nAG) protein. We had the hypothesis that nAG might have an inhibitory effect on collagen production since excessive collagen production results in scarring, which is a major enemy to regeneration. nAG gene was designed, synthesized, and cloned. The cloned vector was then transfected into primary human fibroblasts. The results showed that the expression of nAG protein in primary human fibroblast cells suppresses the expression of collagen I and III, with or without TGF- β 1 stimulation. This suppression is due to a dual effect of nAG both by decreasing collagen synthesis and by increasing collagen degradation. Furthermore, nAG had an inhibitory effect on proliferation of transfected fibroblasts. It was concluded that nAG suppresses collagen through multiple effects.
Collapse
|
243
|
Blum N, Begemann G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell Mol Life Sci 2013; 70:3907-27. [PMID: 23479131 PMCID: PMC11113817 DOI: 10.1007/s00018-013-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
244
|
Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 2013; 1:4. [PMID: 25984323 PMCID: PMC4375925 DOI: 10.1186/2050-490x-1-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/20/2013] [Indexed: 01/24/2023] Open
Abstract
In tissues characterized by a high turnover or following acute injury, regeneration replaces damaged cells and is involved in adaptation to external cues, leading to homeostasis of many tissues during adult life. An understanding of the mechanics underlying tissue regeneration is highly relevant to regenerative medicine-based interventions. In order to investigate the existence a leitmotif of tissue regeneration, we compared the cellular aspects of regeneration of skin, nerve and skeletal muscle, three organs characterized by different types of anatomical and functional organization. Epidermis is a stratified squamous epithelium that migrates from the edge of the wound on the underlying dermis to rebuild lost tissue. Peripheral neurons are elongated cells whose neurites are organized in bundles, within an endoneurium of connective tissue; they either die upon injury or undergo remodeling and axon regrowth. Skeletal muscle is characterized by elongated syncytial cells, i.e. muscle fibers, that can temporarily survive in broken pieces; satellite cells residing along the fibers form new fibers, which ultimately fuse with the old ones as well as with each other to restore the previous organization. Satellite cell asymmetrical division grants a reservoir of undifferentiated cells, while other stem cell populations of muscle and non-muscle origin participate in muscle renewal. Following damage, all the tissues analyzed here go through three phases: inflammation, regeneration and maturation. Another common feature is the occurrence of cellular de-differentiation and/or differentiation events, including gene transcription, which are typical of embryonic development. Nonetheless, various strategies are used by different tissues to replace their lost parts. The epidermis regenerates ex novo, whereas neurons restore their missing parts; muscle fibers use a mixed strategy, based on the regrowth of missing parts through reconstruction by means of newborn fibers. The choice of either strategy is influenced by the anatomical, physical and chemical features of the cells as well as by the extracellular matrix typical of a given tissue, which points to the existence of differential, evolutionary-based mechanisms for specific tissue regeneration. The shared, ordered sequence of steps that characterize the regeneration processes examined suggests it may be possible to model this extremely important phenomenon to reproduce multicellular organisms.
Collapse
Affiliation(s)
- Dario Coletti
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France ; Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| | - Laura Teodori
- ENEA-Frascati, UTAPRAD-DIM, Diagnostics and Metrology Laboratory, 00044 Rome, Italy
| | - Zhenlin Lin
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France
| | | | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| |
Collapse
|
245
|
Nachtrab G, Kikuchi K, Tornini VA, Poss KD. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 2013; 140:3754-64. [PMID: 23924636 PMCID: PMC3754474 DOI: 10.1242/dev.098798] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues.
Collapse
Affiliation(s)
- Gregory Nachtrab
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kazu Kikuchi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A. Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
246
|
Heber-Katz E, Zhang Y, Bedelbaeva K, Song F, Chen X, Stocum DL. Cell cycle regulation and regeneration. Curr Top Microbiol Immunol 2013; 367:253-76. [PMID: 23263201 DOI: 10.1007/82_2012_294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.
Collapse
|
247
|
Wu CH, Tsai MH, Ho CC, Chen CY, Lee HS. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics 2013; 14:434. [PMID: 23815514 PMCID: PMC3702472 DOI: 10.1186/1471-2164-14-434] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 06/21/2013] [Indexed: 12/12/2022] Open
Abstract
Background Salamanders are unique among vertebrates in their ability to completely regenerate amputated limbs through the mediation of blastema cells located at the stump ends. This regeneration is nerve-dependent because blastema formation and regeneration does not occur after limb denervation. To obtain the genomic information of blastema tissues, de novo transcriptomes from both blastema tissues and denervated stump ends of Ambystoma mexicanum (axolotls) 14 days post-amputation were sequenced and compared using Solexa DNA sequencing. Results The sequencing done for this study produced 40,688,892 reads that were assembled into 307,345 transcribed sequences. The N50 of transcribed sequence length was 562 bases. A similarity search with known proteins identified 39,200 different genes to be expressed during limb regeneration with a cut-off E-value exceeding 10-5. We annotated assembled sequences by using gene descriptions, gene ontology, and clusters of orthologous group terms. Targeted searches using these annotations showed that the majority of the genes were in the categories of essential metabolic pathways, transcription factors and conserved signaling pathways, and novel candidate genes for regenerative processes. We discovered and confirmed numerous sequences of the candidate genes by using quantitative polymerase chain reaction and in situ hybridization. Conclusion The results of this study demonstrate that de novo transcriptome sequencing allows gene expression analysis in a species lacking genome information and provides the most comprehensive mRNA sequence resources for axolotls. The characterization of the axolotl transcriptome can help elucidate the molecular mechanisms underlying blastema formation during limb regeneration.
Collapse
Affiliation(s)
- Cheng-Han Wu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
248
|
Nerve independent limb induction in axolotls. Dev Biol 2013; 381:213-26. [PMID: 23769980 DOI: 10.1016/j.ydbio.2013.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 02/04/2023]
Abstract
Urodele amphibians can regenerate their limbs. During limb regeneration, dermal fibroblasts are transformed into undifferentiated cells called blastema cells. These dermis-blastema cells show multipotency. Such so-called endogenous reprogramming of cell differentiation is one of the main targets of amphibian limb regeneration studies. It is well recognized that nerve presence controls the initiation of limb regeneration. Accordingly, nerve factors have been sought in amphibian limb regeneration. To investigate it, a relatively new study system called the accessory limb model (ALM) was developed. Using ALM, two signaling cascades (Fgf and Gdf5 signaling) came under focus. In the present study, Growth and differentiation factor-5 (Gdf5) application to wounded skin initiated limb regeneration responses and resulted in induction of a blastema-like structure in the absence of a nerve. However, the Gdf5-induced structure showed defects as a regeneration blastema, such as absence of detectable Prrx1 expression by in situ hybridization. The defects could be remedied by additional Fibroblasts growth factor (Fgf) inputs. These two inputs (Gdf5 and Fgfs) were sufficient to substitute for the nerve functions in the induction of limb regeneration. Indeed, Fgf2, Fgf8, and Gdf5 applications with the contralateral skin graft resulted in limb formation without nerve supply. Furthermore, acquisition of cartilage differentiation potential of dermal fibroblasts was tested in an in vivo and in vitro combination assay. Dermal fibroblasts cultured with Gdf5 were difficult to participate in cartilage formation when the cultured cells were grafted into cartilage forming region. In contrast, dermal fibroblasts cultured with Fgf2 and Fgf8 became easier to participate into cartilage formation in the same procedure. These results contribute to our understanding of molecular mechanisms of the early phase of amphibian limb regeneration.
Collapse
|
249
|
Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzmán T, Hradlikova K, Duemmler A, Kerney R, Tanaka EM. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports 2013; 1:90-103. [PMID: 24052945 PMCID: PMC3757742 DOI: 10.1016/j.stemcr.2013.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16 (INK4a) , which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany ; Technische Universität Dresden, DFG Center for Regenerative Therapies, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Hrstka R, Murray E, Brychtova V, Fabian P, Hupp TR, Vojtesek B. Identification of an AKT-dependent signalling pathway that mediates tamoxifen-dependent induction of the pro-metastatic protein anterior gradient-2. Cancer Lett 2013; 333:187-93. [DOI: 10.1016/j.canlet.2013.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
|