201
|
Altizer S, Becker DJ, Epstein JH, Forbes KM, Gillespie TR, Hall RJ, Hawley DM, Hernandez SM, Martin LB, Plowright RK, Satterfield DA, Streicker DG. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531154 DOI: 10.1098/rstb.2017.0102] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA .,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Biology, The Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, College of Veterinary Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Daniel G Streicker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
202
|
Thomas JP, Jung TS. Life in a northern town: rural villages in the boreal forest are islands of habitat for an endangered bat. Ecosphere 2019. [DOI: 10.1002/ecs2.2563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Julie P. Thomas
- Department of Environment Government of Yukon 419 Range Road, Whitehorse Whitehorse Yukon Y1A 3V1 Canada
- Department of Biological Sciences University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Thomas S. Jung
- Department of Environment Government of Yukon 419 Range Road, Whitehorse Whitehorse Yukon Y1A 3V1 Canada
- Department of Renewable Resources University of Alberta 116 St. & 85 Ave., Edmonton Edmonton Alberta T6G 2R3 Canada
| |
Collapse
|
203
|
GENETIC DIVERSITY OF YELLOW-BILLED MAGPIES ( PICA NUTALLI) BEFORE AND AFTER A WEST NILE VIRUS EPIDEMIC. J Wildl Dis 2019; 55:316-324. [PMID: 30628856 DOI: 10.7589/2018-01-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The appearance of West Nile virus (WNV) coincided with declines in California, US bird populations beginning in 2004, and particularly affected corvid populations, including Yellow-billed Magpies ( Pica nutalli), an endemic species to California. Our objective was to determine if the timing of the WNV epidemic correlated with changes in the genetic diversity or population structure of magpies. We hypothesized the declines in magpie abundance from WNV would lead to genetic bottlenecks and reduced genetic diversity, but not to changes in population genetic structure. To test these hypotheses, we genetically typed magpie samples collected during the Dead Bird Survey before WNV arrived (2002-04), immediately after WNV arrived in late 2004 (2006-08), and several generations after the onset of the epidemic (2009-11). For each of these three time periods, we tested for genetic bottlenecks, estimated genetic heterozygosity, allelic richness, relatedness, effective population sizes, and genetic structure, with the use of 10 nuclear microsatellite loci. Although there was no evidence for spatial or temporal genetic structure, genetic-diversity estimates were similar or below estimates for endangered corvid species. Measures of genetic diversity were consistent across time periods. In contrast to our expectation, we detected a genetic bottleneck prior to the WNV epidemic, which may have coincided with severe drought conditions in California, increasing human population size in magpie range, and an estimated 33% decrease in population size. We found weak evidence to support a bottleneck after the introduction of WNV in California. Our results suggest the WNV epidemic did not have additional catastrophic effects on the neutral genetic diversity of P. nutalli in the sampled areas. However, because we detected lower heterozygosity in Yellow-billed Magpies than has been reported in closely related endangered species, this species is of conservation concern and should be monitored to detect further population declines or loss of genetic diversity.
Collapse
|
204
|
Abstract
White-nose syndrome (WNS) affects bats primarily in winter, with Pseudogymnoascus destructans, the fungus that causes WNS, growing on bats in colder climates as they are hibernating. As a result, nearly all disease investigations have been conducted on bats in the winter or as they are emerging in spring. Although P. destructans has been detected on bats during the summer season, the seasonal dynamics of infection during this period remain poorly understood. To test for the presence of P. destructans during the summer season, we sampled bats that were free flying from June 2017 to September 2017 and also sampled bats from a maternity roost in August and outside a known hibernaculum in September. We collected skin swabs from the muzzle and forearm of bats, and using real-time PCR methods, we detected P. destructans DNA on 16% (12/76) of bats sampled in Wisconsin, US, including juvenile little brown bats (Myotis lucifugus) from bat house maternity roosts, and free-flying adult bats of two species captured in June, the little brown bat and the migratory eastern red bat (Lasiurus borealis). These data illustrated the potential for P. destructans to be transferred and dispersed among bats during the summer and highlighted the complex seasonal dynamics associated with this pathogen.
Collapse
|
205
|
Abstract
This article summarizes current knowledge about the migratory behavior of temperate and tropical bats. A close association between migration and hibernation exists in temperate, but not in tropical, bats. Compared with birds, bats are relatively short-distance migrators, with maximum migration distances being <2000 km; intercontinental migration is likely to be uncommon in bats. Migratory bats have lower levels of population subdivision and larger genetically effective population sizes than nonmigratory bats. A variety of methods, including banding, genetic analyses, stable isotope analyses, and tracking with radio or satellite transmitters, are currently being used to study bat migration. The conservation of migratory bats poses special challenges that require national and international efforts. Migratory bats sometimes harbor pathogens that can be transmitted to humans. Overall, the beneficial aspects of migratory bats, including control of insect populations and dispersal of pollen and seeds over broad areas, far outweigh their negative aspects.
Collapse
|
206
|
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, Botvinkin AD, Brichta J, Dundarova H, Kokurewicz T, Irwin NR, Linhart P, Orlov OL, Piacek V, Škrabánek P, Tiunov MP, Zahradníková A. Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence 2018; 9:1734-1750. [PMID: 36595968 PMCID: PMC10022473 DOI: 10.1080/21505594.2018.1548685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Alexander D Botvinkin
- Epidemiology Department, Irkutsk State Medical University, Irkutsk, Russian Federation
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Tyumen, Russian Federation.,Department of Biochemistry, Ural State Medical University, Ekaterinburg, Russian Federation
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Škrabánek
- Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czech Republic.,Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
207
|
Effectiveness of Acoustic Lures for Increasing Indiana Bat Captures in Mist-Nets. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2018. [DOI: 10.3996/122017-jfwm-101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
As bat (Chiroptera) populations continue to decline in the eastern United States due to threats such as white-nose syndrome and interactions with wind facilities, capturing already rare species such as the federally endangered Indiana bat Myotis sodalis to assess health and demographics has become increasingly difficult. Mist-nets are a standard method for capturing and studying bats, but bats have the ability to escape from or avoid mist-nets. Past research has shown that the use of acoustic lures may increase mist-net capture success. Using prerecorded Indiana bat social calls, we tested the effectiveness of acoustic lures on capture rates across 24 nights at 37 sites in summers 2013 and 2014 in north-central Kentucky. Each site consisted of two nets (treatment and control) placed >35 m apart: we placed an acoustic lure set 1 m in front of the treatment net, whereas the control net received no lure. At the species level, we recorded significantly more captures in treatment nets (n = 262) than in control nets [n = 128; t(36) = 5.08, P < 0.001]. However, although we found a trend toward higher Indiana bat captures, the only species' with significant positive responses were evening bats Nycticeius humeralis [t(15) = 6.25, P < 0.001] and eastern red bats Lasiurus borealis [t(36) = 3.60, P < 0.001]. Further study is required to determine whether modifications to lure settings or call types result in increased Indiana bat captures.
Collapse
|
208
|
Anthony CR, Sanchez DM. Resource selection and space use ofMyotis evotisin a western juniper woodland in Oregon. J Mammal 2018. [DOI: 10.1093/jmammal/gyy150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
209
|
Weller TJ, Rodhouse TJ, Neubaum DJ, Ormsbee PC, Dixon RD, Popp DL, Williams JA, Osborn SD, Rogers BW, Beard LO, McIntire AM, Hersey KA, Tobin A, Bjornlie NL, Foote J, Bachen DA, Maxell BA, Morrison ML, Thomas SC, Oliver GV, Navo KW. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS One 2018; 13:e0205647. [PMID: 30379854 PMCID: PMC6209190 DOI: 10.1371/journal.pone.0205647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/30/2018] [Indexed: 01/24/2023] Open
Abstract
Efforts to conserve bats in the western United States have long been impeded by a lack of information on their winter whereabouts, particularly bats in the genus Myotis. The recent arrival of white-nose syndrome in western North America has increased the urgency to characterize winter roost habitats in this region. We compiled 4,549 winter bat survey records from 2,888 unique structures across 11 western states. Myotis bats were reported from 18.5% of structures with 95% of aggregations composed of ≤10 individuals. Only 11 structures contained ≥100 Myotis individuals and 6 contained ≥500 individuals. Townsend’s big-eared bat (Corynorhinus townsendii) were reported from 38% of structures, with 72% of aggregations composed of ≤10 individuals. Aggregations of ≥100 Townsend’s big-eared bats were observed at 41 different caves or mines across 9 states. We used zero-inflated negative binomial regression to explore biogeographic patterns of winter roost counts. Myotis counts were greater in caves than mines, in more recent years, and in more easterly longitudes, northerly latitudes, higher elevations, and in areas with higher surface temperatures and lower precipitation. Townsend’s big-eared bat counts were greater in caves, during more recent years, and in more westerly longitudes. Karst topography was associated with higher Townsend’s big-eared bat counts but did not appear to influence Myotis counts. We found stable or slightly-increasing trends over time in counts for both Myotis and Townsend’s big-eared bats from 82 hibernacula surveyed ≥5 winters since 1990. Highly-dispersed winter roosting of Myotis in the western USA complicates efforts to monitor population trends and impacts of disease. However, our results reveal opportunities to monitor winter population status of Townsend’s big-eared bats across this region.
Collapse
Affiliation(s)
- Theodore J. Weller
- USDA Forest Service, Pacific Southwest Research Station, Arcata, California, United States of America
- * E-mail:
| | - Thomas J. Rodhouse
- National Park Service Upper Columbia Basin Network, Bend, Oregon, United States of America
| | - Daniel J. Neubaum
- Colorado Parks and Wildlife, Terrestrial Section, Grand Junction, Colorado, United States of America
| | - Patricia C. Ormsbee
- USDA Forest Service, Pacific Northwest Region, Eugene, Oregon, United States of America
| | - Rita D. Dixon
- Idaho Department of Fish and Game, Boise, Idaho, United States of America
| | - Diana L. Popp
- Oregon State University – Cascades Campus, Human & Ecosystem Resiliency & Sustainability Lab, Bend, Oregon, United States of America
| | - Jason A. Williams
- Nevada Department of Wildlife, Ely, Nevada, United States of America
| | - Scott D. Osborn
- California Department of Fish and Wildlife, Nongame Wildlife Program, Wildlife Branch, Sacramento, California, United States of America
| | - Bruce W. Rogers
- Western Cave Conservancy, Newcastle, California, United States of America
| | - Laura O. Beard
- Wyoming Game and Fish Department, Nongame Program, Lander, Wyoming, United States of America
| | - Angela M. McIntire
- Arizona Game and Fish Department, Phoenix, Arizona, United States of America
| | - Kimberly A. Hersey
- Utah Division of Wildlife Resources, Salt Lake City, Utah, United States of America
| | - Abigail Tobin
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Nichole L. Bjornlie
- Wyoming Game and Fish Department, Nongame Program, Lander, Wyoming, United States of America
| | - Jennifer Foote
- National Speleological Society, Santa Fe, New Mexico, United States of America
| | - Dan A. Bachen
- Montana Natural Heritage Program, Helena, Montana, United States of America
| | - Bryce A. Maxell
- Montana Natural Heritage Program, Helena, Montana, United States of America
| | - Michael L. Morrison
- Texas A&M University, Department of Wildlife and Fisheries Sciences, College Station, Texas, United States of America
| | - Shawn C. Thomas
- Bat Conservation International, Subterranean Program, Olympia, Washington, United States of America
| | - George V. Oliver
- Utah Division of Wildlife Resources, Salt Lake City, Utah, United States of America
| | - Kirk W. Navo
- Colorado Division of Wildlife, Monte Vista, Colorado, United States of America
| |
Collapse
|
210
|
Huyvaert KP, Russell RE, Patyk KA, Craft ME, Cross PC, Garner MG, Martin MK, Nol P, Walsh DP. Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Vet Sci 2018; 5:E92. [PMID: 30380736 PMCID: PMC6313884 DOI: 10.3390/vetsci5040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface.
Collapse
Affiliation(s)
- Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robin E Russell
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| | - Kelly A Patyk
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.
| | - M Graeme Garner
- European Commission for the Control of Foot-and-Mouth Disease-Food and Agriculture Organization of the United Nations, 00153 Roma RM, Italy.
| | - Michael K Martin
- Livestock Poultry Health Division, Clemson University, Columbia, SC 29224, USA.
| | - Pauline Nol
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| |
Collapse
|
211
|
Frick WF, Cheng TL, Langwig KE, Hoyt JR, Janicki AF, Parise KL, Foster JT, Kilpatrick AM. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence. Ecology 2018; 98:624-631. [PMID: 27992970 DOI: 10.1002/ecy.1706] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations.
Collapse
Affiliation(s)
- Winifred F Frick
- Department of Ecology and Evolutionary Biology, University of California, 1156 High St, Santa Cruz, California, 95064, USA.,Bat Conservation International, PO Box 162603, Austin, Texas, 78716, USA
| | - Tina L Cheng
- Department of Ecology and Evolutionary Biology, University of California, 1156 High St, Santa Cruz, California, 95064, USA
| | - Kate E Langwig
- Department of Ecology and Evolutionary Biology, University of California, 1156 High St, Santa Cruz, California, 95064, USA.,Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Joseph R Hoyt
- Department of Ecology and Evolutionary Biology, University of California, 1156 High St, Santa Cruz, California, 95064, USA
| | - Amanda F Janicki
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, Tennessee, 37996, USA
| | - Katy L Parise
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Department of Molecular, Cellular & Biomedical Science, University of New Hampshire, 46 College Road, Durham, New Hampshire, 03824, USA
| | - Jeffrey T Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Department of Molecular, Cellular & Biomedical Science, University of New Hampshire, 46 College Road, Durham, New Hampshire, 03824, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, 1156 High St, Santa Cruz, California, 95064, USA
| |
Collapse
|
212
|
Perry RW. Migration and recent range expansion of Seminole bats (Lasiurus seminolus) in the United States. J Mammal 2018. [DOI: 10.1093/jmammal/gyy135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roger W Perry
- Southern Research Station, U.S. Forest Service, Hot Springs, AR, USA
| |
Collapse
|
213
|
White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. Sci Rep 2018; 8:15508. [PMID: 30341341 PMCID: PMC6195612 DOI: 10.1038/s41598-018-33975-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
Spillover of viruses from bats to other animals may be associated with increased contact between them, as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats (Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P. destructans. We took advantage of the natural persistence of Myl-CoV in bats that were experimentally inoculated with P. destructans in a previous study. Here, we show that the intestines of virus-infected bats that were also infected with fungus contained on average 60-fold more viral RNA than bats with virus alone. Increased viral RNA in the intestines correlated with the severity of fungus-related pathology. Additionally, the intestines of bats infected with fungus exhibited different expression of mitogen-activated protein kinase pathway and cytokine related transcripts, irrespective of viral presence. Levels of coronavirus antibodies were also higher in fungal-infected bats. Our results suggest that the systemic effects of WNS may down-regulate anti-viral responses in bats persistently infected with M. lucifugus coronavirus and increase the potential of virus shedding.
Collapse
|
214
|
Lind C, Moore IT, Akçay Ç, Vernasco BJ, Lorch JM, Farrell TM. Patterns of Circulating Corticosterone in a Population of Rattlesnakes Afflicted with Snake Fungal Disease: Stress Hormones as a Potential Mediator of Seasonal Cycles in Disease Severity and Outcomes. Physiol Biochem Zool 2018; 91:765-775. [PMID: 29286254 DOI: 10.1086/695747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Snake fungal disease (SFD) is an emerging threat to snake populations in the United States. Fungal pathogens are often associated with a physiological stress response mediated by the hypothalamo-pituitary-adrenal axis (HPA), and afflicted individuals may incur steep coping costs. The severity of SFD can vary seasonally; however, little is known regarding (1) how SFD infection relates to HPA activity and (2) how seasonal shifts in environment, life history, or HPA activity may interact to drive seasonal patterns of infection severity and outcomes. To test the hypothesis that SFD is associated with increased HPA activity and to identify potential environmental or physiological drivers of seasonal infection, we monitored baseline corticosterone, SFD infection severity, foraging success, body condition, and reproductive status in a field-active population of pigmy rattlesnakes. Both plasma corticosterone and the severity of clinical signs of SFD peaked in the winter. Corticosterone levels were also elevated in the fall before the seasonal rise in SFD severity. Severely symptomatic snakes were in low body condition and had elevated corticosterone levels compared to moderately infected and uninfected snakes. The monthly mean severity of SFD in the population was negatively related to population-wide estimates of body condition and temperature measured in the precedent month and positively correlated with corticosterone levels measured in the precedent month. Symptomatic females were less likely to enter reproductive bouts compared to asymptomatic females. We propose the hypothesis that the seasonal interplay among environment, host energetics, and HPA activity initiates trade-offs in the fall that drive the increase in SFD prevalence, symptom severity, and decline in condition observed in the population through winter.
Collapse
|
215
|
Mistur EM, Kingsley G, Matisoff DC, An Y. Let sleeping bats lie: Analyzing institutional adaptation to environmental regulatory change through Adaptive Management theory. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:254-263. [PMID: 29933141 DOI: 10.1016/j.jenvman.2018.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Employing a case of a state transportation agency, we examine how complex institutions which integrate outsourcing within a bureaucratic process adapt to environmental regulatory changes. In 2012, two endangered species of bats were located outside of their established ranges in northern Georgia. These discoveries required the Georgia Department of Transportation (GDOT) to comply with a new set of federal regulations relating to those species when developing its projects. This article examines how GDOT adapted to new and unforeseen regulations in the face of environmental uncertainty. Using archival and interview data, we describe how GDOT engaged in Adaptive Management (AM) to internalize environmental changes (i.e. sufficiently stabilize the situation so that the project can get back on track). We also examine the role of outsourcing in bureaucratic agencies as an avenue for AM and suggest extending the AM model to describe mediating actors in the adaptive process. Furthermore, we investigate the impact adaptation had on project outcomes by analyzing 81 bridge projects, which are most susceptible to these environmental shocks, from a sample of 429 transportation projects using multivariate regression. We show that GDOT engaged in initial decision-making, iterative learning, and collaboration through a multi-tiered communication structure. We then present evidence supporting the narrative that these strategies helped it mitigate the impact of subsequent environmental shocks and improve project outcomes over time through adaptation.
Collapse
Affiliation(s)
- Evan M Mistur
- School of Public Policy, Georgia Institute of Technology, 685 Cherry Street NW, Atlanta, GA 30313, United States.
| | - Gordon Kingsley
- School of Public Policy, Georgia Institute of Technology, 685 Cherry Street NW, Atlanta, GA 30313, United States.
| | - Daniel C Matisoff
- School of Public Policy, Georgia Institute of Technology, 685 Cherry Street NW, Atlanta, GA 30313, United States.
| | - Yehyun An
- Korea Research Institute for Human Settlements, 5 Gukchaegyeonguwon-ro, Sejong-si, 30149, Republic of Korea.
| |
Collapse
|
216
|
Abstract
Mammals evolved in a microbial world, and consequently, microbial symbionts have played a role in their evolution. An exciting new subdiscipline of metagenomics considers the ways in which microbes, particularly those found in the gut, have facilitated the ecological and phylogenetic radiation of mammals. However, the vast majority of such studies focus on domestic animals, laboratory models, or charismatic megafauna (e.g., pandas and chimpanzees). The result is a plethora of studies covering few taxa across the mammal tree of life, leaving broad patterns of microbiome function and evolution unclear. Wildlife microbiome research urgently needs a model system in which to test hypotheses about metagenomic involvement in host ecology and evolution. We propose that bats (Order: Chiroptera) represent a model system ideal for comparative microbiome research, affording opportunities to examine host phylogeny, diet, and other natural history characteristics in relation to the evolution of the gut microbiome.
Collapse
Affiliation(s)
- Melissa R Ingala
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Nancy B Simmons
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Susan L Perkins
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
217
|
Dowling ZR, O'Dell DI. Bat Use of an Island off the Coast of Massachusetts. Northeast Nat (Steuben) 2018. [DOI: 10.1656/045.025.0302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Zara R. Dowling
- Department of Environmental Conservation, University of Massachusetts-Amherst, Room 225, 160 Holdsworth Way, Amherst, MA 01003-9285
| | | |
Collapse
|
218
|
Harazim M, Horáček I, Jakešová L, Luermann K, Moravec JC, Morgan S, Pikula J, Sosík P, Vavrušová Z, Zahradníková A, Zukal J, Martínková N. Natural selection in bats with historical exposure to white-nose syndrome. BMC ZOOL 2018. [DOI: 10.1186/s40850-018-0035-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
219
|
Whiting JC, Doering B, Wright G, Englestead DK, Frye JA, Stefanic T, Sewall BJ. Long-term bat abundance in sagebrush steppe. Sci Rep 2018; 8:12288. [PMID: 30115979 PMCID: PMC6095839 DOI: 10.1038/s41598-018-30402-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023] Open
Abstract
Bats of western North America face many threats, but little is known about current population changes in these mammals. We compiled 283 surveys from 49 hibernacula over 32 years to investigate population changes of Townsend's big-eared bats (Corynorhinus townsendii townsendii) and western small-footed myotis (Myotis ciliolabrum) in Idaho, USA. This area comprises some of the best bat habitat in the western USA, but is threatened by land-use change. Bats in this area also face invasion by the pathogen causing white-nose syndrome. Little is known about long-term trends of abundance of these two species. In our study, estimated population changes for Townsend's big-eared bats varied by management area, with relative abundance increasing by 186% and 326% in two management areas, but decreasing 55% in another. For western small-footed myotis, analysis of estimated population trend was complicated by an increase in detection of 141% over winter. After accounting for differences in detection, this species declined region-wide by 63% to winter of 1998-1999. The population fully recovered by 2013-2014, likely because 12 of 23 of its hibernacula were closed to public access from 1994 to 1998. Our data clarify long-term population patterns of two bat species of conservation concern, and provide important baseline understanding of western small-footed myotis prior to the arrival of white-nose syndrome in this area.
Collapse
Affiliation(s)
- Jericho C Whiting
- Department of Biology, Brigham Young University-Idaho, 116 Benson Building, Rexburg, Idaho, USA.
| | - Bill Doering
- Wastren Advantage Inc., 120 Technology Drive, Idaho Falls, Idaho, USA
| | - Gary Wright
- U. S. Bureau of Land Management, 400 West F Street, Shoshone, Idaho, USA
| | - Devin K Englestead
- U. S. Bureau of Land Management, 1405 Hollipark Drive, Idaho Falls, Idaho, USA
| | - Justin A Frye
- U. S. Bureau of Land Management, 1405 Hollipark Drive, Idaho Falls, Idaho, USA
| | - Todd Stefanic
- Craters of the Moon National Monument and Preserve, P.O. Box 29, Arco, Idaho, USA
| | - Brent J Sewall
- Department of Biology, Temple University, 1900 N. 12th St, Philadelphia, Pennsylvania, USA
| |
Collapse
|
220
|
Singh A, Lasek-Nesselquist E, Chaturvedi V, Chaturvedi S. Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes. MICROBIOME 2018; 6:139. [PMID: 30089518 PMCID: PMC6083572 DOI: 10.1186/s40168-018-0512-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/02/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), has led to the deaths of millions of hibernating bats in the United States of America (USA) and Canada. Efficient strategies are needed to decontaminate Pd from the bat hibernacula to interrupt the disease transmission cycle without affecting the native microbes. Previously, we discovered a novel Trichoderma polysporum (Tp) strain (WPM 39143), which inhibited the growth of Pd in autoclaved soil samples. In the present investigation, we used culture-based approaches to determine Tp-induced killing of native and enriched Pd in the natural soil of two bat hibernacula. We also assessed the impact of Tp treatment on native microbial communities by metagenomics. RESULTS Our results demonstrated that Tp at the concentration of 105 conidia/g soil caused 100% killing of native Pd in culture within 5 weeks of incubation. A 10-fold higher concentration of Tp (106 conidia/g soil) killed an enriched Pd population (105 conidia/g soil). The 12,507 fungal operational taxonomic units (OTUs, dominated by Ascomycota and Basidiomycota) and 27,427 bacterial OTUs (dominated by Acidobacteria and Proteobacteria) comprised the native soil microbes of the two bat hibernacula. No significant differences in fungal and bacterial relative abundances were observed between untreated and Tp-treated soil (105 Tp conidia/g soil, p ≤ 0.05). CONCLUSIONS Our results suggest that Tp-induced killing of Pd is highly specific, with minimal to no impact on the indigenous microbes present in the soil samples. These findings provide the scientific rationale for the field trials of Tp in the WNS-affected hibernacula for the effective decontamination of Pd and the control of WNS.
Collapse
Affiliation(s)
- Amanpreet Singh
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
| | | | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
221
|
Phenotypic Divergence along Geographic Gradients Reveals Potential for Rapid Adaptation of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans, in North America. Appl Environ Microbiol 2018; 84:AEM.00863-18. [PMID: 29915107 DOI: 10.1128/aem.00863-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
White-nose syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungus Pseudogymnoascus destructans Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains was investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of time. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion.IMPORTANCE The causal agent of white-nose syndrome in bats is Pseudogymnoascus destructans, a filamentous fungus recently introduced from its native range in Europe. Infections caused by P. destructans have progressed across the eastern parts of Canada and the United States over the last 10 years. It is not clear how the disease is spread, as the pathogen is unable to grow above 23°C and ambient temperature can act as a barrier when hosts disperse. Here, we explore the patterns of phenotypic diversity and the germination of the fungal asexual spores, arthroconidia, from strains across a sizeable area of the epizootic range. Our analyses revealed evidence of adaptation along geographic gradients during its expansion. The results have implications for understanding the diversification of P. destructans and the limits of WNS spread in North America. Given the rapidly expanding distribution of WNS, a detailed understanding of the genetic bases for phenotypic variations in growth, reproduction, and dispersal of P. destructans is urgently needed to help control this disease.
Collapse
|
222
|
Lilley TM, Anttila J, Ruokolainen L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas M. Lilley
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Finnish Museum of Natural HistoryUniversity of Helsinki Helsinki Finland
| | - Jani Anttila
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | | |
Collapse
|
223
|
de Jong MS, van Dyk R, Weldon C. Antifungal efficacy of F10SC veterinary disinfectant against Batrachochytrium dendrobatidis. Med Mycol 2018; 56:60-68. [PMID: 28371902 DOI: 10.1093/mmy/myx023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
The Infectious disease chytridiomycosis, which is caused by the fungal pathogen Batrachochytrium dendrobatidis, has been identified as one of the most important drivers of amphibian declines and extinction. In vitro B. dendrobatidis is susceptible to a range of disinfectants, but not all have been tested on animals and some that have been proven effective have harmful side effects on the surrounding environment or the animals being treated. We tested the efficacy of F10SC veterinary disinfectant to treat B. dendrobatidis in experimentally infected tadpole and juvenile Sclerophrys gutturalis and tadpoles of Sclerophrys poweri and Amietia hymenopus. The minimum inhibitory concentration for F10SC on in vitro B. dendrobatidis ranged between 1:7000 for 5-min contact time and 1:10000 for 10-min contact time. Based on the survival data of test animals the no observed effect concentration for 15-min contact time was estimated to be 1:2000 dilution for juveniles, and 1:10000 for tadpoles. In S. gutturalis juveniles an 86% infection clearance rate was achieved after five 15-min doses of 1:3000 dilution. A 100% clearance was achieved in A. hymenopus tadpoles after seven 15-min doses of 1:10000 dilution, and after nine doses of the same treatment in S. poweri tadpoles. F10SC has the benefit of being a concentrated compound that provides a treatment protocol which is nontoxic to tadpoles and post-metamorphic individuals, has a short half-life and is effective against B. dendrobatidis during short contact times, but further testing on different species of amphibians is advised.
Collapse
Affiliation(s)
- M S de Jong
- Unit for Environmental Research and Management, North-West University, Potchefstroom 2520, South Africa
| | - R van Dyk
- Unit for Environmental Research and Management, North-West University, Potchefstroom 2520, South Africa
| | - C Weldon
- Unit for Environmental Research and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
224
|
The global biogeography of avian haemosporidian parasites is characterized by local diversification and intercontinental dispersal. Parasitology 2018; 146:213-219. [PMID: 30009719 DOI: 10.1017/s0031182018001130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biogeographic histories of parasites and pathogens are infrequently compared with those of free-living species, including their hosts. Documenting the frequency with which parasites and pathogens disperse across geographic regions contributes to understanding not only their evolution, but also the likelihood that they may become emerging infectious diseases. Haemosporidian parasites of birds (parasite genera Plasmodium, Haemoproteus and Leucocytozoon) are globally distributed, dipteran-vectored parasites. To date, over 2000 avian haemosporidian lineages have been designated by molecular barcoding methods. To achieve their current distributions, some lineages must have dispersed long distances, often over water. Here we quantify such events using the global avian haemosporidian database MalAvi and additional records primarily from the Americas. We scored lineages as belonging to one or more global biogeographic regions based on infection records. Most lineages were restricted to a single region but some were globally distributed. We also used part of the cytochrome b gene to create genus-level parasite phylogenies and scored well-supported nodes as having descendant lineages in regional sympatry or allopatry. Descendant sister lineages of Plasmodium, Haemoproteus and Leucocytozoon were distributed in allopatry in 11, 16 and 15% of investigated nodes, respectively. Although a small but significant fraction of the molecular variance in cytochrome b of all three genera could be explained by biogeographic region, global parasite dispersal likely contributed to the majority of the unexplained variance. Our results suggest that avian haemosporidian parasites have faced few geographic barriers to dispersal over their evolutionary history.
Collapse
|
225
|
Zhang T, Ren P, De Jesus M, Chaturvedi V, Chaturvedi S. Green Fluorescent Protein Expression in Pseudogymnoascus destructans to Study Its Abiotic and Biotic Lifestyles. Mycopathologia 2018; 183:805-814. [PMID: 29987576 DOI: 10.1007/s11046-018-0285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Pseudogymnoascus destructans (Pd) is the etiologic agent of bat White-nose syndrome, a disease that has caused the unprecedented reduction in the hibernating bat populations across eastern North America. The Pd pathogenesis appears to be a complex adaptation of fungus in its abiotic (caves and mines) and biotic (bats) environments. There is a general lack of experimental tools for the study of Pd biology. We described the successful expression of codon-optimized synthetic green fluorescent protein sGFP in Pd. The sGFP(S65T) gene was first fused in frame with the Aspergillus nidulans promoter in the tumor-inducing plasmid pRF-HUE, and the resulting plasmid pHUE-sGFP(S65T) was transformed into Pd by Agrobacterium tumefaciens-mediated transformation system. The integration of sGFP(S65T) in Pd genome was analyzed by PCR, and single integration frequency of approximately 66% was confirmed by Southern hybridization. Fluorescent microscopy and flow cytometric analyses of two randomly selected transformants with single integration revealed high expression of sGFP in both spores and hyphal structures. The biology of mutants as judged by sporulation, growth rate, and urease production was not altered indicating sGFP is not toxic to Pd. Thus, we have generated a valuable tool that will facilitate the elucidation of Pd biology, ecology, and pathogenicity in real time.
Collapse
Affiliation(s)
- Tao Zhang
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Magdia De Jesus
- Immunology and Infectious Disease Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
226
|
Hileman ET, King RB, Faust LJ. Eastern massasauga demography and extinction risk under prescribed-fire scenarios. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eric T. Hileman
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115 USA
| | - Richard B. King
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115 USA
| | - Lisa J. Faust
- Department of Conservation and Science; Lincoln Park Zoo; Chicago IL 60614 USA
| |
Collapse
|
227
|
Kovacova V, Zukal J, Bandouchova H, Botvinkin AD, Harazim M, Martínková N, Orlov OL, Piacek V, Shumkina AP, Tiunov MP, Pikula J. White-nose syndrome detected in bats over an extensive area of Russia. BMC Vet Res 2018; 14:192. [PMID: 29914485 PMCID: PMC6007069 DOI: 10.1186/s12917-018-1521-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. Results We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. Conclusions To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate. Electronic supplementary material The online version of this article (10.1186/s12917-018-1521-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexander D Botvinkin
- Irkutsk State Medical University, Krasnogo Vosstania street 1, Irkutsk, Russian Federation, 664003
| | - Markéta Harazim
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia.,Department of Biochemistry, Ural State Medical University, Repina 3, 620014, Ekaterinburg, Russia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexandra P Shumkina
- Western Baikal protected areas, Federal State Budgetary Institution "Zapovednoe Pribaikalye", Baikalskaya st. 291B, 664050, Irkutsk, Russia
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Pr-t 100-letiya Vladivostoka 159, 690022, Vladivostok, Russia
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
228
|
Activity of Southeastern Bats Along Sandstone Cliffs Used for Rock Climbing. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2018. [DOI: 10.3996/032017-jfwm-020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Bats in the eastern United States are facing numerous threats and many species are in decline. Although several species of bats commonly roost in cliffs, researchers know little about use of cliffs for foraging and roosting. Because rock climbing is a rapidly growing sport and may cause disturbance to bats, our objectives were to examine use of cliff habitats by bats and to assess the effects of climbing on their activity. We used radiotelemetry to track small-footed bats Myotis leibii to day roosts, and Anabat SD2 detectors to compare bat activity between climbed and unclimbed areas of regularly climbed cliff faces, and between climbed and unclimbed cliffs. We tracked four adult male small-footed bats to nine day roosts, all of which were in various types of crevices including five cliff-face roosts (three on climbed and two on unclimbed faces). Bat activity was high along climbed cliffs and did not differ between climbed and unclimbed areas of climbed cliffs. In contrast, overall bat activity was significantly higher along climbed cliffs than unclimbed cliffs; species richness did not differ between climbed and unclimbed cliffs or areas. Lower activity along unclimbed cliffs may have been related to lower cliff heights and more clutter along these cliff faces. Due to limited access to unclimbed cliffs of comparable size to climbed cliffs, we could not thoroughly test the effects of climbing on bat foraging and roosting activity. However, the high overall use of climbed and unclimbed cliff faces for foraging and commuting that we observed suggests that cliffs may be important habitat for a number of bat species. Additional research on bats' use of cliff faces will improve our understanding of the factors that affect their use of this habitat including the impacts of climbing.
Collapse
|
229
|
Call RS, Whiting JC, Doering B, Lowe J, Englestead D, Frye J, Stefanic T, Wright G. Maternity Roosts of Townsend's Big-Eared Bats in Lava Tube Caves of Southern Idaho. NORTHWEST SCIENCE 2018. [DOI: 10.3955/046.092.0201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryan S. Call
- Department of Plant and Wildlife Sciences, Brigham Young University, 701 East University Parkway Dr., Provo, Utah 84602
| | - Jericho C. Whiting
- Department of Biology, Brigham Young University-Idaho, 116 Benson Bld., Rexburg, Idaho 83460
| | - Bill Doering
- Wastren Advantage Inc., 120 Technology Drive, Idaho Falls, Idaho 83401
| | - Joe Lowe
- U.S. Bureau of Land Management, 1405 Hollipark Drive, Idaho Falls, Idaho 83401
| | - Devin Englestead
- U.S. Bureau of Land Management, 1405 Hollipark Drive, Idaho Falls, Idaho 83401
| | - Justin Frye
- U.S. Bureau of Land Management, 1405 Hollipark Drive, Idaho Falls, Idaho 83401
| | - Todd Stefanic
- U.S. National Park Service, Craters of the Moon National Monument and Preserve, 1266 Craters Loop Rd, Arco, Idaho 83213
| | - Gary Wright
- U.S. Bureau of Land Management, 400 West F Street, Shoshone, Idaho 83352
| |
Collapse
|
230
|
Restoration of Legacy Trees as Roosting Habitat for Myotis Bats in Eastern North American Forests. DIVERSITY 2018. [DOI: 10.3390/d10020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
231
|
Kemenesi G, Kurucz K, Dallos B, Zana B, Földes F, Boldogh S, Görföl T, Carroll MW, Jakab F. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg Microbes Infect 2018; 7:66. [PMID: 29670087 PMCID: PMC5906664 DOI: 10.1038/s41426-018-0067-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | - Fanni Földes
- Szentágothai Research Centre, Pécs, H-7624, Hungary
| | - Sándor Boldogh
- Aggtelek National Park Directorate, Jósvafő, H-3758, Hungary
| | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Museum, Budapest, H-1083, Hungary
| | | | - Ferenc Jakab
- Szentágothai Research Centre, Pécs, H-7624, Hungary
| |
Collapse
|
232
|
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 2018; 8:6067. [PMID: 29666436 PMCID: PMC5904171 DOI: 10.1038/s41598-018-24461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
233
|
Padhi S, Dias I, Korn VL, Bennett JW. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds. J Fungi (Basel) 2018; 4:jof4020048. [PMID: 29642609 PMCID: PMC6023378 DOI: 10.3390/jof4020048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans, a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans. The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol) for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde (trans-2-hexenal), a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans-2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans.
Collapse
Affiliation(s)
- Sally Padhi
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Itamar Dias
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Victoria L Korn
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
234
|
BATS RECOVERING FROM WHITE-NOSE SYNDROME ELEVATE METABOLIC RATE DURING WING HEALING IN SPRING. J Wildl Dis 2018; 54:480-490. [PMID: 29617187 DOI: 10.7589/2017-08-195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.
Collapse
|
235
|
Webber QMR, Willis CKR. An experimental test of effects of ambient temperature and roost quality on aggregation by little brown bats (Myotis lucifugus). J Therm Biol 2018; 74:174-180. [PMID: 29801624 DOI: 10.1016/j.jtherbio.2018.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Environmental factors, such as ambient temperature (Ta) or roost/nest quality, can influence social behaviour of small-bodied endotherms because individuals may aggregate for social thermoregulation when Ta is low or select the warmest possible sites for roosting. Female temperate bats form maternity colonies in spring to communally raise pups and exploit social thermoregulation. They also select roosts with warm microclimates because low roost temperature (Troost) delays juvenile development. We studied captive female little brown bats (Myotis lucifugus) to test the hypothesis that variation in Ta and Troost influence social group size. First, we predicted that female bats would preferentially select artificially heated roosts over unheated roosts. Second, we predicted that, as Ta decreased, group size would increase because bats would rely more heavily on social thermoregulation. Third, we predicted that experimentally increasing Troost (i.e., roost quality) above Ta would result in larger group sizes due to greater aggregation in high quality roosts. We captured 34 females from a maternity colony and housed them in a flight-tent provisioned with four bat boxes. Each box was outfitted with a heating pad and thermostat. Over the course of eight-days we heated each roost box in sequence to near thermoneutral Troost for two days. Bats preferentially selected heated roosts over unheated roosts but, contrary to our prediction, group size decreased when Troost was much greater than Ta (i.e., when the benefits of a warm roost should have been highest). Our results suggest that social thermoregulation and the availability of warm roosts influence aggregation in bats and have implications for the potential of summer habitat protection and enhancement to help bat populations in the face of threats like white-nose syndrome.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, MB, Canada.
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, MB, Canada.
| |
Collapse
|
236
|
Observed Resiliency of Little Brown Myotis to Long-Term White-Nose Syndrome Exposure. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2018. [DOI: 10.3996/102017-jfwm-080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
White-nose syndrome (WNS) is a disease that has killed millions of bats in eastern North America and has steadily been spreading across the continent. Little brown myotis Myotis lucifugus populations have experienced extensive declines; however, some localized populations have remained resilient, with bats surviving multiple years past initial WNS exposure. These persistent populations may be critical to species recovery, and understanding mechanisms leading to this long-term survival and persistence may provide insight into overall bat and disease management. We monitored a maternity colony of little brown myotis on Fort Drum Military Installation in northern New York between 2006 and 2017 to determine basic demographic parameters and find evidence of what may be leading to resiliency and persistence at this site. Total colony size declined by approximately 88% from 2008 to 2010 due primarily to impacts of WNS. Counts of all adults returning to the colony stabilized during 2010–2014 (mean = 94, range 84–101) and increased after 2014 (mean = 132, range = 108–166). We captured 727 little brown myotis (575 females, 152 males) and banded 534 individuals (389 females, 145 males) at the colony. The majority of sampled bats showed evidence of recent past WNS infection and exposure to Pseudogymnoascus destructans, and we documented pervasive presence and limited viability of the fungus within the colony's main roosting structure. We recaptured 98 individually marked females in years after initial banding, and some individuals survived at least 6 y. Ninety-one percent of all adult females, 93% of recaptured bats, and 90% of 1-y-old females (i.e., bats recaptured the first year after initial capture as juveniles) showed evidence of reproduction during the monitoring period. Using mark–recapture models, we estimated annual survival rates of juvenile and adult little brown myotis during 2009–2016 and examined whether reproductive condition or evidence of recent infection of WNS had any effect on survival. Annual survival rates were similar between juveniles and adults, but highly variable, ranging from 41.0 to 86.5%. Models indicated that neither evidence of recent past exposure to WNS nor reproductive status were related to survival. No one parameter stood out as being responsible for this colony's continued existence, and it is likely that many interwoven factors were responsible for the observed resilience. Although relatively high reproductive effort from all females (i.e., both1-y-old and >1-y-old ) and intermittently suitable survival rates have led to the continued persistence of, and population increases in, this summer colony, mortality from WNS and inherently low reproductive potential still seemed to be limiting population growth. Until there is a better understanding of this overall potential resiliency in little brown myotis, we recommend considering minimizing disturbance and direct human involvement within these persisting populations to allow whatever natural recovery that may be occurring to evolve uninterrupted.
Collapse
|
237
|
McKenzie VJ, Kueneman JG, Harris RN. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann N Y Acad Sci 2018; 1429:18-30. [PMID: 29479716 DOI: 10.1111/nyas.13617] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/05/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
The use of beneficial microbes to improve host attributes, referred to as probiotic therapy, has been increasingly applied to industries, including aquaculture, agriculture, and human medicine, and is emerging in the field of wildlife medicine. However, there is a general lack of shared knowledge regarding successful practices as well as ecological processes that underlie host-microbe interactions. Presently, probiotics are being developed specifically for preventing and treating particular infectious diseases as an alternative to antibiotic treatments and chemotherapy. We review research on probiotics developed for mitigation of infectious disease in the aforementioned industries to gain insight into how probiotics may be effective in reducing wildlife disease risk. We examine the trends of successful in vivo probiotic applications for disease systems and identify common objectives to reduce intestinal pathogens and sexually transmitted and respiratory diseases, inhibit skin pathogens, and serve as environmental prophylaxis to reduce pathogen loads in the environment. We conclude by highlighting the frontier of wildlife probiotics research and identifying knowledge gaps where research is needed.
Collapse
Affiliation(s)
- Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado
| | - Jordan G Kueneman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, Virginia.,Amphibian Survival Alliance, London, United Kingdom
| |
Collapse
|
238
|
Valenzuela-Sánchez A, Schmidt BR, Uribe-Rivera DE, Costas F, Cunningham AA, Soto-Azat C. Cryptic disease-induced mortality may cause host extinction in an apparently stable host-parasite system. Proc Biol Sci 2018; 284:rspb.2017.1176. [PMID: 28954907 DOI: 10.1098/rspb.2017.1176] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/25/2017] [Indexed: 11/12/2022] Open
Abstract
The decline of wildlife populations due to emerging infectious disease often shows a common pattern: the parasite invades a naive host population, producing epidemic disease and a population decline, sometimes with extirpation. Some susceptible host populations can survive the epidemic phase and persist with endemic parasitic infection. Understanding host-parasite dynamics leading to persistence of the system is imperative to adequately inform conservation practice. Here we combine field data, statistical and mathematical modelling to explore the dynamics of the apparently stable Rhinoderma darwinii-Batrachochytrium dendrobatidis (Bd) system. Our results indicate that Bd-induced population extirpation may occur even in the absence of epidemics and where parasite prevalence is relatively low. These empirical findings are consistent with previous theoretical predictions showing that highly pathogenic parasites are able to regulate host populations even at extremely low prevalence, highlighting that disease threats should be investigated as a cause of population declines even in the absence of an overt increase in mortality.
Collapse
Affiliation(s)
- Andrés Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile .,ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile.,Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Info Fauna KARCH, Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland
| | | | | | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
239
|
Hernandez H, Martinez LR. Relationship of environmental disturbances and the infectious potential of fungi. MICROBIOLOGY-SGM 2018; 164:233-241. [PMID: 29458659 DOI: 10.1099/mic.0.000620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fungi are critical organisms for the environment and offer many benefits to modern society through their application in the pharmaceutical, beverage and food industries. In contrast, fungal pathogens are emerging threats to humans, animals, plants and insects with potential to cause devastating mortality, morbidity and economic loss. Outbreaks associated with anthropogenic alterations of the environment, including climate change-related events such as natural disasters, are responsible for human, animal and plant disease. Similarly, fungi and their metabolites also have a negative impact in agriculture, posing a serious threat to our food supplies. Here, we describe the existing knowledge and importance of understanding the relationship of fungi and the environment in the context of human, animal and plant disease. Our goal is to encourage communication between scientists and the general public to create informed awareness about the impact of fungi in their daily lives and their environment.
Collapse
Affiliation(s)
- Hazael Hernandez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, TX, USA
| | - Luis R Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, TX, USA
| |
Collapse
|
240
|
Karraker NE, Fischer S, Aowphol A, Sheridan J, Poo S. Signals of forest degradation in the demography of common Asian amphibians. PeerJ 2018; 6:e4220. [PMID: 29404203 PMCID: PMC5797445 DOI: 10.7717/peerj.4220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Lowland areas in tropical East and Southeast Asia have a long history of conversion from forestland to agricultural land, with many remaining forests being chronically degraded by wood cutting, livestock grazing, and burning. Wetland-breeding amphibians that have evolved in lowland forests in the region have adjusted to changes in habitat composition caused by humans' activities, and populations continue to persist. However, we have little understanding of the impacts of forest disturbance on these species beyond assessments of abundance and distribution, and species considered to be common and widespread have been largely neglected. METHODS We examined body condition and sex ratios of toads (Duttaphrynus melanostictus), predation risk in treefrogs (2 Polypedates spp.), and growth and survival of leaf litter frogs (2 Microhyla spp.) in agricultural land, degraded forest, and intact forest in two study areas, Thailand and Hong Kong. RESULTS Toad populations exhibited higher body condition and female-biased sex ratios in intact forest. Predation of treefrog embryos by flies was lower in intact and degraded forests than in agricultural land. Embryonic survival and larval growth and survival in leaf litter frogs were lower in intact forests than in agricultural land. Results for each study were similar between study areas. DISCUSSION For three of five of these common amphibian species, we documented signals of forest loss and disturbance in their populations. Although these species occur in disturbed habitats, loss of forest cover continues to degrade aspects of their population demography. We urge conservation biologists to consider that populations of species appearing to be common, widespread, and tolerant of human disturbance may be eroding over time.
Collapse
Affiliation(s)
- Nancy E. Karraker
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States of America
| | - Samantha Fischer
- Natural Resources Institute, University of Manitoba, Winnipeg, Canada
| | | | | | - Sinlan Poo
- Department of Conservation and Research, Memphis Zoo, Memphis, TN, United States of America
| |
Collapse
|
241
|
Lilley TM, Prokkola JM, Johnson JS, Rogers EJ, Gronsky S, Kurta A, Reeder DM, Field KA. Immune responses in hibernating little brown myotis ( Myotis lucifugus) with white-nose syndrome. Proc Biol Sci 2018; 284:rspb.2016.2232. [PMID: 28179513 DOI: 10.1098/rspb.2016.2232] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 12/30/2022] Open
Abstract
White-nose syndrome (WNS) is a fungal disease responsible for decimating many bat populations in North America. Pseudogymnoascus destructans (Pd), the psychrophilic fungus responsible for WNS, prospers in the winter habitat of many hibernating bat species. The immune response that Pd elicits in bats is not yet fully understood; antibodies are produced in response to infection by Pd, but they may not be protective and indeed may be harmful. To understand how bats respond to infection during hibernation, we studied the effect of Pd inoculation on the survival and gene expression of captive hibernating Myotis lucifugus with varying pre-hibernation antifungal antibody titres. We investigated gene expression through the transcription of selected cytokine genes (Il6, Il17a, Il1b, Il4 and Ifng) associated with inflammatory, Th1, Th2 and Th17 immune responses in wing tissue and lymph nodes. We found no difference in survival between bats with low and high anti-Pd titres, although anti-Pd antibody production during hibernation differed significantly between infected and uninfected bats. Transcription of Il6 and Il17a was higher in the lymph nodes of infected bats compared with uninfected bats. Increased transcription of these cytokines in the lymph node suggests that a pro-inflammatory immune response to WNS is not restricted to infected tissues and occurs during hibernation. The resulting Th17 response may be protective in euthermic bats, but because it may disrupt torpor, it could be detrimental during hibernation.
Collapse
Affiliation(s)
- T M Lilley
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA.,Biodiversity Unit, University of Turku, 20014 Turku, Finland
| | - J M Prokkola
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA
| | - J S Johnson
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA.,Center for Ecology and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - E J Rogers
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA
| | - S Gronsky
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA
| | - A Kurta
- Biology Department, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - D M Reeder
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA
| | - K A Field
- Biology Department, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA
| |
Collapse
|
242
|
Verant ML, Bohuski EA, Richgels KLD, Olival KJ, Epstein JH, Blehert DS. Determinants of Pseudogymnoascus destructans within bat hibernacula: implications for surveillance and management of white-nose syndrome. J Appl Ecol 2018; 55:820-829. [PMID: 29610540 DOI: 10.1111/1365-2664.13070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.
Collapse
Affiliation(s)
- Michelle L Verant
- School of Veterinary Medicine, University of Wisconsin-Madison and U.S. Geological Survey - National Wildlife Health Center
| | | | | | | | | | | |
Collapse
|
243
|
Palmer JM, Drees KP, Foster JT, Lindner DL. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat Commun 2018; 9:35. [PMID: 29295979 PMCID: PMC5750222 DOI: 10.1038/s41467-017-02441-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023] Open
Abstract
Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential “Achilles’ heel” of P. destructans that might be exploited for treatment of bats with WNS. White-nose syndrome, caused by the fungus Pseudogymnoascus destructans, is decimating North American bats. Here, Palmer et al. use comparative genomics to examine the evolutionary history of this pathogen, and show that it has lost a crucial DNA repair enzyme and is extremely sensitive to UV light.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, 53726, USA
| | - Kevin P Drees
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Jeffrey T Foster
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, 53726, USA.
| |
Collapse
|
244
|
Demkowska-Kutrzepa M, Studzińska M, Roczeń-Karczmarz M, Tomczuk K, Abbas Z, Różański P. A review of the helminths co-introduced with Trachemys scripta elegans – a threat to European native turtle health. AMPHIBIA-REPTILIA 2018. [DOI: 10.1163/15685381-17000159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In the 20th century large numbers of exotic turtles Trachemys scripta elegans have been imported into Europe as pets and this has led to frequent introductions into many freshwater ecosystems. Nowadays, established populations of red-eared slider, coexist and compete with the native in Europe species of turtles in the wild. Invasive turtles are a threat to indigenous species because of carriage of many parasites, which are often considered to cause disease emergence and produce high mortality in native hosts. Helminths are the most prominent group introduced with T. s. elegans and due to their host-switching ability have become important co-invaders, a potential threat to indigenous turtle health. The aim of this review was to assess the risks of the transfer of helminths co-introduced with T. s. elegans to native species of European turtles.
Collapse
Affiliation(s)
- Marta Demkowska-Kutrzepa
- 1Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Maria Studzińska
- 1Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Monika Roczeń-Karczmarz
- 1Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Krzysztof Tomczuk
- 1Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Zahrai Abbas
- 2Department of Microbiology, Faculty of Medicine, Al Muthanna University, Samawa Muthanna, Iraq
| | - Paweł Różański
- 3Department of Animal and Environmental Hygiene, Faculty of Animal Breeding and Biology, University of Life Sciences in Lublin, Poland
| |
Collapse
|
245
|
Abstract
With over 1200 species identified, bats represent almost one quarter of the world’s mammals. Bats provide crucial environmental services, such as insect control and pollination, and inhabit a wide variety of ecological niches on all continents except Antarctica. Despite their ubiquity and ecological importance, relatively little has been published on diseases of bats, while much has been written on bats’ role as reservoirs in disease transmission. This chapter will focus on diseases and pathologic processes most commonly reported in captive and free-ranging bats. Unique anatomical and histological features and common infectious and non-infectious diseases will be discussed. As recognition of both the importance and vulnerability of bats grows, particularly following population declines in North America due to the introduction of the fungal disease white-nose syndrome, efforts should be made to better understand threats to the health of this unique group of mammals.
Collapse
|
246
|
Korstian JM, Chumchal MM, Bennett VJ, Hale AM. Mercury contamination in bats from the central United States. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:160-165. [PMID: 28792083 DOI: 10.1002/etc.3940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) is a highly toxic metal that has detrimental effects on wildlife. We surveyed Hg concentrations in 10 species of bats collected at wind farms in the central United States and found contamination in all species. Mercury concentration in fur was highly variable both within and between species (range: 1.08-10.52 µg/g). Despite the distance between sites (up to 1200 km), only 2 of the 5 species sampled at multiple locations had fur Hg concentrations that differed between sites. Mercury concentrations observed in the present study all fell within the previously reported ranges for bats collected from the northeastern United States and Canada, although many of the bats we sampled had lower maximum Hg concentrations. Juvenile bats had lower concentrations of Hg in fur compared with adult bats, and we found no significant effect of sex on Hg concentrations in fur. For a subset of 2 species, we also measured Hg concentration in muscle tissue; concentrations were much higher in fur than in muscle, and Hg concentrations in the 2 tissue types were weakly correlated. Abundant wind farms and ongoing postconstruction fatality surveys offer an underutilized opportunity to obtain tissue samples that can be used to assess Hg contamination in bats. Environ Toxicol Chem 2018;37:160-165. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Victoria J Bennett
- School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, Texas, USA
| | - Amanda M Hale
- Biology Department, Texas Christian University, Fort Worth, Texas, USA
| |
Collapse
|
247
|
Richardson CS, Heeren T, Kunz TH. Seasonal and Sexual Variation in Metabolism, Thermoregulation, and Hormones in the Big Brown Bat (Eptesicus fuscus). Physiol Biochem Zool 2018; 91:705-715. [DOI: 10.1086/695424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
248
|
Thalken MM, Lacki MJ. Tree roosts of northern long-eared bats following white-nose syndrome. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marissa M. Thalken
- Department of Forestry and Natural Resources; University of Kentucky; Lexington KY 40546 USA
| | - Michael J. Lacki
- Department of Forestry and Natural Resources; University of Kentucky; Lexington KY 40546 USA
| |
Collapse
|
249
|
Maslo B, Stringham OC, Bevan AJ, Brumbaugh A, Sanders C, Hall M, Fefferman NH. High annual survival in infected wildlife populations may veil a persistent extinction risk from disease. Ecosphere 2017. [DOI: 10.1002/ecs2.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers; The State University of New Jersey; 14 College Farm Road New Brunswick New Jersey 08901 USA
- Rutgers Cooperative Extension; New Jersey Agricultural Experiment Station, Rutgers; The State University of New Jersey; 88 Lipman Drive New Brunswick New Jersey 08901 USA
| | - Oliver C. Stringham
- Department of Ecology, Evolution and Natural Resources, Rutgers; The State University of New Jersey; 14 College Farm Road New Brunswick New Jersey 08901 USA
| | - Amanda J. Bevan
- Department of Ecology, Evolution and Natural Resources, Rutgers; The State University of New Jersey; 14 College Farm Road New Brunswick New Jersey 08901 USA
| | - Amanda Brumbaugh
- Sanders Environmental, Inc.; 322 Borealis Way Bellefonte Pennsylvania 16823 USA
| | - Chris Sanders
- Sanders Environmental, Inc.; 322 Borealis Way Bellefonte Pennsylvania 16823 USA
| | - MacKenzie Hall
- Endangered and Nongame Species Program; NJ Division of Fish and Wildlife; 1 Van Syckels Road Clinton New Jersey 08809 USA
| | - Nina H. Fefferman
- Ecology & Evolutionary Biology; The University of Tennessee; 1416 Circle Drive Knoxville Tennessee 37996 USA
| |
Collapse
|
250
|
Abstract
Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans. Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. This phylogenetic study of the bat white-nose syndrome agent, P. destructans, uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.
Collapse
|