201
|
Chen H, Zhou A, Sun D, Zhao Y, Wang Y. Theoretical Investigation on the Elusive Reaction Mechanism of Spirooxindole Formation Mediated by Cytochrome P450s: A Nascent Feasible Charge-Shift C-O Bond Makes a Difference. J Phys Chem B 2021; 125:8419-8430. [PMID: 34313131 DOI: 10.1021/acs.jpcb.1c04088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spirooxindoles are pivotal biofunctional groups widely distributed in natural products and clinic drugs. However, construction of such subtle chiral skeletons is a long-standing challenge to both organic and bioengineering scientists. The knowledge of enzymatic spirooxindole formation in nature may inspire rational design of new catalysts. To this end, we presented a theoretical investigation on the elusive mechanism of the spiro-ring formation at the 3-position of oxindole mediated by cytochrome P450 enzymes (P450). Our calculated results demonstrated that the electrophilic attack of CpdI, the active species of P450, to the substrate, shows regioselectivity, i.e., the attack at the C9 position forms a tetrahedral intermediate involving an unusual feasible charge-shift C9δ+-Oδ- bond, while the attack at the C1 position forms an epoxide intermediate. The predominant route is the first route with the charge-shift bonding intermediate due to holding a relatively lower barrier by >5 kcal mol-1 than the epoxide route, which fits the experimental observations. Such a delocalized charge-shift bond facilitates the formation of a spiro-ring mainly through elongation of the C1-C9 bond to eliminate the aromatization of the tricyclic beta-carboline. Our theoretical results shed profound mechanistic insights for the first time into the elusive spirooxindole formation mediated by P450s.
Collapse
Affiliation(s)
- Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
202
|
Latifi R, Palluccio TD, Ye W, Minnick JL, Glinton KS, Rybak-Akimova EV, de Visser SP, Tahsini L. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorg Chem 2021; 60:13821-13832. [PMID: 34291939 DOI: 10.1021/acs.inorgchem.1c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Taryn D Palluccio
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Wanhua Ye
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Kwame S Glinton
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Elena V Rybak-Akimova
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
203
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
204
|
Suzuki Y, Hada M, Fujii H. Synthesis, characterization, and reactivity of oxoiron(IV) porphyrin π-cation radical complexes bearing cationic N-methyl-2-pyridinium group. J Inorg Biochem 2021; 223:111542. [PMID: 34293682 DOI: 10.1016/j.jinorgbio.2021.111542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
Electronic charge near the active site is an important factor for controlling the reactivity of metalloenzymes. Here, to investigate the effect of the cationic charge near the heme in heme proteins, we synthesized new iron porphyrin complexes (1 and 2) having cationic 3-methyl-N-methyl-2-pyrdinium group and N-methyl-2-pyridinium group at one of the four meso-positions, respectively. The N-methyl-2-pyridinium groups could be introduced by Stille coupling used palladium catalysts. Oxoiron(IV) porphyrin π-cation radical complexes (Compound I) of 1 (1-CompI) and 2 (2-CompI) are soluble in most organic solvents, allowing direct comparison of their electronic structure and reactivity with Compound I of tetramesitylporphyrin (3-CompI) and tetrakis-(2,6-dichlorophenyl)porphyrin (4-CompI) under the same conditions. Spectroscopic data for 1-CompI are close to those for 3-CompI, but the redox potential for 1-CompI is close to that of 4-CompI. Kinetic analysis of the epoxidation reactions shows that 1-CompI and 2-CompI are (~250-fold) more reactive than 3-CompI, and comparable to 4-CompI. DFT calculations allow to propose that the positive shift of the redox potential and the enhanced reactivity of 1-CompI and 2-CompI is induced by the intramolecular electric field effect of N-methyl-2-pyridinium cation, not by the electron-withdrawing effect.
Collapse
Affiliation(s)
- Yuna Suzuki
- Department of Chemistry, Biology, and Environmental Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan.
| |
Collapse
|
205
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
206
|
Wei J, Liu Y. Mechanistic Insights into the P450 TleB-Catalyzed Unusual Intramolecular C-N Bond Formation Involved in the Biosynthesis of Indolactam V. J Chem Inf Model 2021; 61:3638-3648. [PMID: 34240606 DOI: 10.1021/acs.jcim.1c00542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indolactam V, a known biosynthetic precursor of indolactam alkaloids, is the main pharmacophore of this family and exhibits potential protein kinase C activation. A key step in the biosynthesis of indolactam V is the formation of an indole-fused nine-membered lactam core by intramolecular C-N bond formation. In this work, we report a computational study of the unique cytochrome P450 TleB enzyme-catalyzed direct and selective C-H bond amination reaction that can generate indolactam V from the dipeptide N-methylvalyl-tryptophanol. By performing molecular dynamics simulations and quantum-mechanical/molecular-mechanical calculations, we revealed that the C-H bond amination involves one step of proton transfer from N1-H of the indole ring to the FeIV═O unit, one step of hydrogen abstraction of N13-H in the side chain of the substrate by the FeIV-OH unit, and diradical coupling, in which two conformational changes of the side chain of the substrate are necessary. In the enzyme-substrate complex of TleB, the N-H bond of the indole ring of the substrate forms a strong hydrogen bond with the FeIV═O unit in compound I, and the porphyrin radical cation accepts an electron from the substrate to form the closed-shell electronic configuration. Thus, compound I in the enzyme-substrate complex cannot be described as FeIV═O coupled to a porphyrin radical cation, which is different from those of other P450 enzymes. Besides, two stages of conformational changes of the side chains of the substrate may increase the relative energies of reaction intermediates by 10-12 kcal/mol. From the structure point of view, it is the rotatable long side chain of the substrate and the large flexible active pocket of TleB that make the intramolecular diradical coupling feasible. Our findings may provide useful information to further understand the Tleb-catalyzed intramolecular C-H bond amination and the other bio-catalyzed intramolecular diradical coupling.
Collapse
Affiliation(s)
- Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
207
|
Ueno K, Ishimizu Y, Fujii H. Significant Solvent Effect on Reactivity of Oxoiron(IV) Porphyrin π-Cation Radical Complex: Activation in n-Alkane Solvent. Inorg Chem 2021; 60:9243-9247. [PMID: 34125512 DOI: 10.1021/acs.inorgchem.1c01018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvent effect on the reactivity of high-valent metal oxo complexes has not been studied well, because of their solubility and stability. We synthesize oxoiron(IV) porphyrin π-cation radical complexes (1-CompI and 2-CompI) having the n-hexyl side chains. 1-CompI and 2-CompI are soluble in various solvents, even in hexane, at -80 °C, allowing for the study of their reactivity in various organic solvents. We show that pentane, hexane, heptane, and tert-butyl methyl ether significantly increase the reactivity of 1-CompI and 2-CompI, but dichloromethane, the most frequently used solvent in previous studies, is the worst for increasing the reactivity among the solvents. 1H NMR and EPR spectroscopies show no significant change in hexane, but the Eyring plots for the epoxidation reactions indicate that the entropies of activation in n-alkane solvents are larger than those in dichloromethane. The observed solvent effect can be rationalized with reorganization energy of the solvent in the reaction.
Collapse
Affiliation(s)
- Kanako Ueno
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan
| | - Yuri Ishimizu
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan
| |
Collapse
|
208
|
Zhang X, Jiang Y, Chen Q, Dong S, Feng Y, Cong Z, Shaik S, Wang B. H-Bonding Networks Dictate the Molecular Mechanism of H2O2 Activation by P450. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
209
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
210
|
Ma N, Fang W, Liu C, Qin X, Wang X, Jin L, Wang B, Cong Z. Switching an Artificial P450 Peroxygenase into Peroxidase via Mechanism-Guided Protein Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhan Fang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Longyi Jin
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Binju Wang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
211
|
Machalz D, Pach S, Bermudez M, Bureik M, Wolber G. Structural insights into understudied human cytochrome P450 enzymes. Drug Discov Today 2021; 26:2456-2464. [PMID: 34161845 DOI: 10.1016/j.drudis.2021.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Human cytochrome P450 (CYP) enzymes are widely known for their pivotal role in the metabolism of drugs and other xenobiotics as well as of endogenous chemicals. In addition, CYPs are involved in numerous pathophysiological pathways and, hence, are therapeutically relevant. Remarkably, a portion of promising CYP targets is still understudied and, as a consequence, untargeted, despite their huge therapeutic potential. An increasing number of X-ray and cryo-electron microscopy (EM) structures for CYPs have recently provided new insights into the structural basis of CYP function and potential ligand binding. This structural knowledge of CYP functionality is essential for both understanding metabolism and exploiting understudied CYPs as drug targets. In this review, we summarize and highlight structural knowledge about this enzyme class, with a focus on understudied CYPs and resulting opportunities for structure-based drug design. Teaser: This review summarizes recent structural insights into understudied cytochrome P450 enzymes. We highlight the impact of molecular modeling for mechanistically explaining pathophysiological effects establishing understudied CYPs as promising drug targets.
Collapse
Affiliation(s)
- David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Szymon Pach
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, China.
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
212
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. Angew Chem Int Ed Engl 2021; 60:14578-14585. [PMID: 33826799 PMCID: PMC8251747 DOI: 10.1002/anie.202103010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|
213
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:14699-14706. [PMID: 38505375 PMCID: PMC10947387 DOI: 10.1002/ange.202103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 03/21/2024]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV=O or FeIV-OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV=O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|
214
|
Wu T, Musgrove J, Siegler MA, Garcia-Bosch I. Mononuclear and Dinuclear Copper Complexes of Tridentate Redox-active Ligands with Tunable H-bonding Donors: Structure, Spectroscopy and H + /e - Reactivity. Chem Asian J 2021; 16:1608-1618. [PMID: 33929787 DOI: 10.1002/asia.202100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Indexed: 11/06/2022]
Abstract
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding "high-valent" intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O-H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the "high-valent" CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e- acceptor.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| | - Justin Musgrove
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| |
Collapse
|
215
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
216
|
Faponle AS, Roy A, Adelegan AA, Gauld JW. Molecular Dynamics Simulations of a Cytochrome P450 from Tepidiphilus thermophilus (P450-TT) Reveal How Its Substrate-Binding Channel Opens. Molecules 2021; 26:molecules26123614. [PMID: 34204747 PMCID: PMC8231624 DOI: 10.3390/molecules26123614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl’s side chain tightens and relaxes the opening to the channel in conjunction with the arginyl’s, though the latter’s side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.
Collapse
Affiliation(s)
- Abayomi S. Faponle
- Department of Biochemistry, Faculty of Basic Medical Sciences, Sagamu Campus, Olabisi Onabanjo University, Ago-Iwoye, Nigeria; (A.S.F.); (A.A.A.)
| | - Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada;
| | - Ayodeji A. Adelegan
- Department of Biochemistry, Faculty of Basic Medical Sciences, Sagamu Campus, Olabisi Onabanjo University, Ago-Iwoye, Nigeria; (A.S.F.); (A.A.A.)
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada;
- Correspondence: ; Tel.: +1-519-253-3000 (ext. 3992); Fax: +1-519-973-7098
| |
Collapse
|
217
|
Bím D, Alexandrova AN. Local Electric Fields as a Natural Switch of Heme-Iron Protein Reactivity. ACS Catal 2021; 11:6534-6546. [PMID: 34413991 DOI: 10.1021/acscatal.1c00687] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heme-iron oxidoreductases operating through the high-valent FeIVO intermediates perform crucial and complicated transformations, such as oxidations of unreactive saturated hydrocarbons. These enzymes share the same Fe coordination, only differing by the axial ligation, e.g., Cys in P450 oxygenases, Tyr in catalases, and His in peroxidases. By examining ~200 heme-iron proteins, we show that the protein hosts exert highly specific intramolecular electric fields on the active sites, and there is a strong correlation between the direction and magnitude of this field and the protein function. In all heme proteins, the field is preferentially aligned with the Fe-O bond ( Fz ). The Cys-ligated P450 oxygenases have the highest average Fz of 28.5 MV cm-1, i.e., most enhancing the oxyl-radical character of the oxo group, and consistent with the ability of these proteins to activate strong C-H bonds. In contrast, in Tyr-ligated proteins, the average Fz is only 3.0 MV cm-1, apparently suppressing single-electron off-pathway oxidations, and in His-ligated proteins, Fz is -8.7 MV cm-1. The operational field range is given by the trade-off between the low reactivity of the FeIVO Compound I at the more negative Fz , and the low selectivity at the more positive Fz . Consequently, a heme-iron site placed in the field characteristic of another heme-iron protein class loses its canonical function, and gains an adverse one. Thus, electric fields produced by the protein scaffolds, together with the nature of the axial ligand, control all heme-iron chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
218
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
219
|
Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid. Biochem J 2021; 478:1795-1808. [PMID: 33821889 PMCID: PMC10071548 DOI: 10.1042/bcj20210091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WT (E° = -260 mV) and mutant Mb (E° = -300 mV), w.r.t. Ag/AgCl reference electrode, in the presence of hydrogen peroxide, indicated an additional H-bonding in the mutant protein, which is responsible for the peroxidase activity of the mutant Mb. We observed that in the presence of 5 mM H2O2, H64DOPA Mb oxidizes thioanisole and benzaldehyde with a 10 and 54 folds higher rate, respectively, as opposed to WT Mb. Based on spectroscopic, kinetic, and electrochemical studies, we deduce that DOPA residue, when present within the distal pocket of mutant Mb, alone serves the role of His/Arg-pair of peroxidases.
Collapse
|
220
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
221
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
222
|
Xu Q, Zhao L, Ma Y, Yuan R, Liu M, Xue Z, Li H, Zhang J, Qiu X. Substituents and the induced partial charge effects on cobalt porphyrins catalytic oxygen reduction reactions in acidic medium. J Colloid Interface Sci 2021; 597:269-277. [PMID: 33872883 DOI: 10.1016/j.jcis.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Charge states at the catalytic interface can intensely alter the charge transfer mechanism and thus the oxygen reduction performance. Two symmetric cobalt porphyrins with electron deficient 2,1,3-benzothiadiazole (BTD) and electron-donating propeller-like triphenylamine (TPA) derivatives have been designed firstly, to rationally generate intramolecular partial charges, and secondly, to utilize the more exposed molecular orbitals on TPA for enhancing the charge transfer kinetics. The catalytic performance of the two electrocatalysts was examined for oxygen reduction reactions (ORR) in acidic electrolyte. It was found that BCP1/C with two BTD groups showed greater reduction potential but less limiting current density as compared to BCP2/C bearing BTD-TPA units. The reduced potential of BCP2/C was proposed to the introduction of the electron-donating ability of TPA, which may decrease the adsorption affinity of oxygen to the cobalt center. Both dipole-induced partial charge effect and the more exposed cation orbitals of the 3D structural TPA were proposed to contribute to the increased response current of BCP2/C. In addition, BCP2/C attained more than 80% of H2O2 generation in acidic solution, which may also relate to the structural effect. These findings may provide new insight into the structural design of organic electrocatalysts and deep understanding on the interfacial charge transfer mechanism for ORR.
Collapse
Affiliation(s)
- Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuhan Ma
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Yuan
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Maosong Liu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianming Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xinping Qiu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
223
|
Behrendorff JBYH. Reductive Cytochrome P450 Reactions and Their Potential Role in Bioremediation. Front Microbiol 2021; 12:649273. [PMID: 33936006 PMCID: PMC8081977 DOI: 10.3389/fmicb.2021.649273] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 enzymes, or P450s, are haem monooxygenases renowned for their ability to insert one atom from molecular oxygen into an exceptionally broad range of substrates while reducing the other atom to water. However, some substrates including many organohalide and nitro compounds present little or no opportunity for oxidation. Under hypoxic conditions P450s can perform reductive reactions, contributing electrons to drive reductive elimination reactions. P450s can catalyse dehalogenation and denitration of a range of environmentally persistent pollutants including halogenated hydrocarbons and nitroamine explosives. P450-mediated reductive dehalogenations were first discovered in the context of human pharmacology but have since been observed in a variety of organisms. Additionally, P450-mediated reductive denitration of synthetic explosives has been discovered in bacteria that inhabit contaminated soils. This review will examine the distribution of P450-mediated reductive dehalogenations and denitrations in nature and discuss synthetic biology approaches to developing P450-based reagents for bioremediation.
Collapse
Affiliation(s)
- James B. Y. H. Behrendorff
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| |
Collapse
|
224
|
Zhang H, Sanidad KZ, Zhu L, Parsonnet J, Haggerty TD, Zhang G, Cai Z. Frequent occurrence of triclosan hydroxylation in mammals: A combined theoretical and experimental investigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124803. [PMID: 33338815 DOI: 10.1016/j.jhazmat.2020.124803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/07/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is a widespread antimicrobial agent with many adverse health risks. Its hepatoxicity invariably points to the activation of constitutive androstane receptor (CAR), which regulates cytochrome P450 (CYP) genes that are critical for oxidative metabolism. Here, we provide the theoretical and experimental evidences showing that metabolic activation of TCS frequently occurs through aromatic hydroxylation in mammals. CYP-mediated oxidation was predicted to take place at each aromatic C‒H bond. Molecular docking and in vitro approaches reveal oxidative reaction could be efficiently catalyzed by CAR-regulated CYP2B6 enzyme. Parallel reaction monitoring (PRM) high-resolution mass spectrometry was utilized to identify and profile TCS oxidative metabolites in paired mouse liver, bile, feces, plasma and urine. We found multiple hydroxylated isomers including the products generated via the NIH shift of chlorine, as well as their subsequent conjugates. These metabolites showed isomer-specific retention in mice. Glucuronide conjugates are more readily excreted than the sulfates. Moreover, for the first time, isomeric hydroxylated metabolites were detected in the urine and stool of human subjects used TCS-contained household and personal care products. Collectively, these findings suggest that hydroxylation is an important, yet often underestimated element that worth considering to fully evaluate the biological fates and health risks of TCS.
Collapse
Affiliation(s)
- Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077 Hong Kong, China.
| |
Collapse
|
225
|
Deutscher J, Gerschel P, Warm K, Kuhlmann U, Mebs S, Haumann M, Dau H, Hildebrandt P, Apfel UP, Ray K. A bioinspired oxoiron(IV) motif supported on a N 2S 2 macrocyclic ligand. Chem Commun (Camb) 2021; 57:2947-2950. [PMID: 33621306 DOI: 10.1039/d1cc00250c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.
Collapse
Affiliation(s)
- Jennifer Deutscher
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Philipp Gerschel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Uwe Kuhlmann
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Haumann
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Ulf-Peter Apfel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany and Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
226
|
Li XX, Xue SS, Lu X, Seo MS, Lee YM, Kim WS, Cho KB, Nam W. Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorg Chem 2021; 60:4058-4067. [PMID: 33645218 DOI: 10.1021/acs.inorgchem.1c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head" part of the TAML framework; one has a phenyl group at the "Head" part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
227
|
Bagha UK, Satpathy JK, Mukherjee G, Sastri CV, de Visser SP. A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Org Biomol Chem 2021; 19:1879-1899. [PMID: 33406196 DOI: 10.1039/d0ob02204g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde deformylation is an important reaction in biology, organic chemistry and inorganic chemistry and the process has been widely applied and utilized. For instance, in biology, the aldehyde deformylation reaction has wide differences in biological function, whereby cyanobacteria convert aldehydes into alkanes or alkenes, which are used as natural products for, e.g., defense mechanisms. By contrast, the cytochromes P450 catalyse the biosynthesis of hormones, such as estrogen, through an aldehyde deformylation reaction step. In organic chemistry, the aldehyde deformylation reaction is a common process for replacing functional groups on a molecule, and as such, many different synthetic methods and procedures have been reported that involve an aldehyde deformylation step. In bioinorganic chemistry, a variety of metal(iii)-peroxo complexes have been synthesized as biomimetic models and shown to react efficiently with aldehydes through deformylation reactions. This review paper provides an overview of the various aldehyde deformylation reactions in organic chemistry, biology and biomimetic model systems, and shows a broad range of different chemical reaction mechanisms for this process. Although a nucleophilic attack at the carbonyl centre is the consensus reaction mechanism, several examples of an alternative electrophilic reaction mechanism starting with hydrogen atom abstraction have been reported as well. There is still much to learn and to discover on aldehyde deformylation reactions, as deciphered in this review paper.
Collapse
Affiliation(s)
- Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and the Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
228
|
Zhao R, Chen XY, Wang ZX. Insight into the Selective Methylene Oxidation Catalyzed by Mn(CF 3-PDP)(SbF 6) 2/H 2O 2/CH 2ClCO 2H) System: A DFT Mechanistic Study. Org Lett 2021; 23:1535-1540. [PMID: 33587643 DOI: 10.1021/acs.orglett.0c04102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DFT study was employed to gain insight into methylene oxidation catalyzed by Mn(CF3-PDP)(NCMe)2 (SbF6)2/H2O2/HOAcCl(OACCl ═OC(O)CH2Cl). The active catalyst was characterized to be [Mn](O)OAcCl ([Mn]═Mn(CF3-PDP)2+) which is generated via a sequence from [Mn] to [Mn]OH to [Mn]OAcCl to [Mn]OOH. With the active catalyst, the methylene group is sequentially oxidized to an alcohol and then to a carbonyl group via rebound mechanism. The mechanism explains the observed site selectivity.
Collapse
Affiliation(s)
- Ruihua Zhao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
229
|
Zhu L, Zhou J, Zhang Q, Li Y, Wang W. Computational study on the metabolic activation mechanism of PeCDD by Cytochrome P450 1A1. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124276. [PMID: 33158646 DOI: 10.1016/j.jhazmat.2020.124276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 enzymes (CYPs) are crucial for metabolizing dioxin compounds such as 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD). Here we have applied molecular dynamic simulations (MD), quantum mechanics/molecular mechanics methods (QM/MM) and density functional theory (DFT) to investigate the metabolic activation and transformation of PeCDD catalyzed by CYP1A1. Our QM/MM calculations highlight that PeCDD can be activated by P450s through the well-known electrophilic addition mechanism with an average energy barrier of 20.9 kcal/mol. Based on the results of previous experimental studies, further conversions of ketone products and epoxidation products that are mediated by P450 enzymes were investigated through DFT calculations. Analysis of the structures via the noncovalent interactions (NCI) method and the distortion-interaction model suggests that amino acids Ser122, Ala317, Ile386 and Leu496 play important roles in the metabolic process.
Collapse
Affiliation(s)
- Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jie Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
230
|
Yang Y, Arnold FH. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Acc Chem Res 2021; 54:1209-1225. [PMID: 33491448 PMCID: PMC7931446 DOI: 10.1021/acs.accounts.0c00591] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Despite the astonishing diversity of naturally
occurring biocatalytic
processes, enzymes do not catalyze many of the transformations favored
by synthetic chemists. Either nature does not care about the specific
products, or if she does, she has adopted a different synthetic strategy.
In many cases, the appropriate reagents used by synthetic chemists
are not readily accessible to biological systems. Here, we discuss
our efforts to expand the catalytic repertoire of enzymes to encompass
powerful reactions previously known only in small-molecule catalysis:
formation and transfer of reactive carbene and nitrene intermediates
leading to a broad range of products, including products with bonds
not known in biology. In light of the structural similarity of iron
carbene (Fe=C(R1)(R2)) and iron nitrene
(Fe=NR) to the iron oxo (Fe=O) intermediate involved
in cytochrome P450-catalyzed oxidation, we have used synthetic carbene
and nitrene precursors that biological systems have not encountered
and repurposed P450s to catalyze reactions that are not known in the
natural world. The resulting protein catalysts are fully genetically
encoded and function in intact microbial cells or cell-free lysates,
where their performance can be improved and optimized by directed
evolution. By leveraging the catalytic promiscuity of P450 enzymes,
we evolved a range of carbene and nitrene transferases exhibiting
excellent activity toward these new-to-nature reactions. Since our
initial report in 2012, a number of other heme proteins including
myoglobins, protoglobins, and cytochromes c have
also been found and engineered to promote unnatural carbene and nitrene
transfer. Due to the altered active-site environments, these heme
proteins often displayed complementary activities and selectivities
to P450s. Using wild-type and engineered heme proteins, we and
others have
described a range of selective carbene transfer reactions, including
cyclopropanation, cyclopropenation, Si–H insertion, B–H
insertion, and C–H insertion. Similarly, a variety of asymmetric
nitrene transfer processes including aziridination, sulfide imidation,
C–H amidation, and, most recently, C–H amination have
been demonstrated. The scopes of these biocatalytic carbene and nitrene
transfer reactions are often complementary to the state-of-the-art
processes based on small-molecule transition-metal catalysts, making
engineered biocatalysts a valuable addition to the synthetic chemist’s
toolbox. Moreover, enabled by the exquisite regio- and stereocontrol
imposed by the enzyme catalyst, this biocatalytic platform provides
an exciting opportunity to address challenging problems in modern
synthetic chemistry and selective catalysis, including ones that have
eluded synthetic chemists for decades.
Collapse
Affiliation(s)
- Yang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 210-41, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 210-41, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
231
|
Karuppasamy P, Thiruppathi D, Sundar JV, Ganesan M, Rajendran T, Meena SS, Rajagopal S, Sivasubramanian VK, Rajapandian V. Insight into structural aspects and study of reaction kinetics of model [oxo(salen)iron(IV)] complexes with dipeptides. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
232
|
Shumayrikh NM, Warren JJ, Bennet AJ, Sen D. A heme•DNAzyme activated by hydrogen peroxide catalytically oxidizes thioethers by direct oxygen atom transfer rather than by a Compound I-like intermediate. Nucleic Acids Res 2021; 49:1803-1815. [PMID: 33476369 PMCID: PMC7913675 DOI: 10.1093/nar/gkab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Hemin [Fe(III)-protoporphyrin IX] is known to bind tightly to single-stranded DNA and RNA molecules that fold into G-quadruplexes (GQ). Such complexes are strongly activated for oxidative catalysis. These heme•DNAzymes and ribozymes have found broad utility in bioanalytical and medicinal chemistry and have also been shown to occur within living cells. However, how a GQ is able to activate hemin is poorly understood. Herein, we report fast kinetic measurements (using stopped-flow UV-vis spectrophotometry) to identify the H2O2-generated activated heme species within a heme•DNAzyme that is active for the oxidation of a thioether substrate, dibenzothiophene (DBT). Singular value decomposition and global fitting analysis was used to analyze the kinetic data, with the results being consistent with the heme•DNAzyme's DBT oxidation being catalyzed by the initial Fe(III)heme-H2O2 complex. Such a complex has been predicted computationally to be a powerful oxidant for thioether substrates. In the heme•DNAzyme, the DNA GQ enhances both the kinetics of formation of the active intermediate as well as the oxidation step of DBT by the active intermediate. We show, using both stopped flow spectrophotometry and EPR measurements, that a classic Compound I is not observable during the catalytic cycle for thioether sulfoxidation.
Collapse
Affiliation(s)
- Nisreen M Shumayrikh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dipankar Sen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
233
|
Hong YH, Jang Y, Ezhov R, Seo MS, Lee YM, Pandey B, Hong S, Pushkar Y, Fukuzumi S, Nam W. A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bhawana Pandey
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
234
|
Fukui N, Ueno K, Hada M, Fujii H. meso-Substitution Activates Oxoiron(IV) Porphyrin π-Cation Radical Complex More Than Pyrrole-β-Substitution for Atom Transfer Reaction. Inorg Chem 2021; 60:3207-3217. [DOI: 10.1021/acs.inorgchem.0c03548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nami Fukui
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Kanako Ueno
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| |
Collapse
|
235
|
Oohora K, Hayashi T. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Dalton Trans 2021; 50:1940-1949. [PMID: 33433532 DOI: 10.1039/d0dt03597a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metalloenzymes naturally achieve various reactivities by assembling limited types of cofactors with endogenous amino acid residues. Enzymes containing metal porphyrinoid cofactors such as heme, cobalamin and F430 exert precise control over the reactivities of the cofactors with protein matrices. This perspective article focuses on our recent efforts to assemble metal complexes of non-natural porphyrinoids within the protein matrix of myoglobin, an oxygen storage hemoprotein. Engineered myoglobins with suitable metal complexes as artificial cofactors demonstrate unique reactivities toward C-H bond hydroxylation, olefin cyclopropanation, methyl group transfer and methane generation. In these cases, the protein matrix enhances the catalytic activities of the cofactors and allows us to monitor the active intermediates. The present findings indicate that placing artificial cofactors in protein matrices provides a useful strategy for creating artificial metalloenzymes that catalyse otherwise unfavourable reactions and providing enzyme models for elucidating the complicated reaction mechanisms of natural enzymes.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| | | |
Collapse
|
236
|
Weldemichael DM, Zhou K, Su SJ, Zhao L, Marchisio MA, Bureik M. Futile cycling by human microsomal cytochrome P450 enzymes within intact fission yeast cells. Arch Biochem Biophys 2021; 701:108791. [PMID: 33592181 DOI: 10.1016/j.abb.2021.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Human cytochrome P450 enzymes (CYPs or P450s) are known to be reduced by their electron transfer partners in the absence of substrate and in turn to reduce other acceptor molecules such as molecular oxygen, thereby creating superoxide anions (O2-•). This process is known as futile cycling. Using our previously established fission yeast expression system we have monitored cells expressing each one of the 50 human microsomal CYPs in the absence of substrate for oxidation of dihydroethidium in living cells by flow cytometry. It was found that 38 of these display a statistically significant increase in O2-• production. More specifically, cells expressing some CYPs were found to be intermediate strength O2-• producers, which means that their effect was comparable to that of treatment with 3 mM H2O2. Cells expressing other CYPs had an even stronger effect, with those expressing CYP2B6, CYP5A1, CYP2A13, CYP51A1, or CYP1A2, respectively, being the strongest producers of O2-•.
Collapse
Affiliation(s)
- Dawit M Weldemichael
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Shi-Jia Su
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Lin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
237
|
Investigating reactivity and electronic structure of copper(II)-polypyridyl complexes and hydrogen peroxide. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
238
|
Coleman T, Kirk AM, Chao RR, Podgorski MN, Harbort JS, Churchman LR, Bruning JB, Bernhardt PV, Harmer JR, Krenske EH, De Voss JJ, Bell SG. Understanding the Mechanistic Requirements for Efficient and Stereoselective Alkene Epoxidation by a Cytochrome P450 Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tom Coleman
- Department of Chemistry, University Adelaide, Adelaide, South Australia 5005, Australia
| | - Alicia M. Kirk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca R. Chao
- Department of Chemistry, University Adelaide, Adelaide, South Australia 5005, Australia
| | - Matthew N. Podgorski
- Department of Chemistry, University Adelaide, Adelaide, South Australia 5005, Australia
| | - Joshua S. Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Luke R. Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
239
|
|
240
|
Keshari K, Bera M, Velasco L, Munshi S, Gupta G, Moonshiram D, Paria S. Characterization and reactivity study of non-heme high-valent iron-hydroxo complexes. Chem Sci 2021; 12:4418-4424. [PMID: 34163706 PMCID: PMC8179568 DOI: 10.1039/d0sc07054h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A terminal FeIIIOH complex, [FeIII(L)(OH)]2− (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at −45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)]− (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pKa value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2. One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.![]()
Collapse
Affiliation(s)
- Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Lucía Velasco
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia Calle Faraday, 9 28049 Madrid Spain
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia Calle Faraday, 9 28049 Madrid Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
241
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2021; 60:1897-1902. [PMID: 33045127 PMCID: PMC8086810 DOI: 10.1002/anie.202011602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/09/2022]
Abstract
(NDI)Ni2 catalysts (NDI=naphthyridine-diimine) promote cyclopropanation reactions of 1,3-dienes using (Me3 Si)CHN2 . Mechanistic studies reveal that a metal carbene intermediate is not part of the catalytic cycle. The (NDI)Ni2 (CHSiMe3 ) complex was independently synthesized and found to be unreactive toward dienes. Based on DFT models, we propose an alternative mechanism that begins with a Ni2 -mediated coupling of (Me3 Si)CHN2 and the diene. N2 extrusion followed by radical C-C bond formation generates the cyclopropane product. This model reproduces the experimentally observed regioselectivity and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Annah E. Kalb
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| |
Collapse
|
242
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
243
|
Wang Z, Shaik S, Wang B. Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450 TT. J Am Chem Soc 2021; 143:1005-1016. [PMID: 33426875 DOI: 10.1021/jacs.0c11279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts used in natural products biosynthesis, xenobiotic metabolisms, and biotechnologies. In P450s, the electrons required for O2 activation are supplied by NAD(P)H through stepwise electron transfers (ETs) mediated by redox partners. While much is known about the machinery of the catalytic cycle of P450s, the mechanisms of long-range ET are largely unknown. Very recently, the first crystal structure of full-length P450TT was solved. This enables us to decipher the interdomain ET mechanism between the [2Fe-2S]-containing ferredoxin and the heme, by use of molecular dynamics simulations. In contrast to the "distal" conformation characterized in the crystal structure where the [2Fe-2S] cluster is ∼28 Å away from heme-Fe, our simulations demonstrated a "proximal" conformation of [2Fe-2S] that is ∼17 Å [and 13.7 Å edge-to-edge] away from heme-Fe, which may enable the interdomain ET. Key residues involved in ET pathways and interdomain complexation were identified, some of which have already been verified by recent mutation studies. The conformational transit of ferredoxin between "distal" and "proximal" was found to be controlled mostly by the long-range electrostatic interactions between the ferredoxin domain and the other two domains. Furthermore, our simulations show that the full-length P450TT utilizes a flexible ET pathway that resembles either P450Scc or P450cam. Thus, this study provides a uniform picture of the ET process between reductase domains and heme domain.
Collapse
Affiliation(s)
- Zhanfeng Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
244
|
Chowdhury AS, Ali HS, Faponle AS, de Visser SP. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT JE. Phys Chem Chem Phys 2021; 22:27178-27190. [PMID: 33226036 DOI: 10.1039/d0cp05169a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 enzymes are versatile biocatalysts found in most forms of life. Generally, the cytochrome P450s react with dioxygen and hence are haem-based mono-oxygenases; however, in specific isozymes, H2O2 rather than O2 is used and these P450s act as peroxygenases. The P450 OleTJE is a peroxygenase that binds long to medium chain fatty acids and converts them to a range of products originating from Cα-hydroxylation, Cβ-hydroxylation, Cα-Cβ desaturation and decarboxylation of the substrate. There is still controversy regarding the details of the reaction mechanism of P450 OleTJE; how the products are formed and whether the product distributions can be influenced by external perturbations. To gain further insights into the structure and reactivity of P450 OleTJE, we set up a range of large active site model complexes as well as full enzymatic structures and did a combination of density functional theory studies and quantum mechanics/molecular mechanics calculations. In particular, the work focused on the mechanisms leading to these products under various reaction conditions. Thus, for a small cluster model, we find a highly selective Cα-hydroxylation pathway that is preferred over Cβ-H hydrogen atom abstraction by at least 10 kcal mol-1. Introduction of polar residues to the model, such as an active site protonated histidine residue or through external electric field effects, lowers the Cβ-H hydrogen atom abstraction barriers are lowered, while a full QM/MM model brings the Cα-H and Cβ-H hydrogen atom abstraction barriers within 1 kcal mol-1. Our studies; therefore, implicate that environmental effects in the second-coordination sphere can direct and guide selectivities in enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Ahmed Shahria Chowdhury
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
245
|
Kim Y, Kim J, Nguyen LK, Lee YM, Nam W, Kim SH. EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00522g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
Collapse
Affiliation(s)
- Yujeong Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| | - Jin Kim
- Department of Chemistry
- Sunchon National University
- Suncheon 57922
- Rep. of Korea
| | - Linh K. Nguyen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Sun Hee Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| |
Collapse
|
246
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
247
|
Miyagawa K, Isobe H, Shoji M, Kawakami T, Yamanaka S, Yamaguchi K. A three states model for hydrogen abstraction reactions with the cytochrome P450 compound I is revisited. Isolobal and isospin analogy among Fe(IV)=O, O = O and O. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
248
|
Yamaguchi K, Miyagawa K, Isobe H, Shoji M, Kawakami T, Yamanaka S. Isolobal and isospin analogy between organic and inorganic open-shell molecules—Application to oxygenation reactions by active oxygen and oxy-radicals and water oxidation in the native and artificial photosynthesis. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
249
|
Don CG, Smieško M. Deciphering Reaction Determinants of Altered-Activity CYP2D6 Variants by Well-Tempered Metadynamics Simulation and QM/MM Calculations. J Chem Inf Model 2020; 60:6642-6653. [PMID: 33269921 DOI: 10.1021/acs.jcim.0c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The xenobiotic metabolizing enzyme CYP2D6 is the P450 cytochrome family member with the highest rate of polymorphism. This causes changes in the enzyme activity and specificity, which can ultimately lead to adverse reactions during drug treatment. To avoid or lower CYP-related toxicity risks, prediction of the most likely positions within a molecule where a metabolic reaction might occur is paramount. In order to obtain accurate predictions, it is crucial to understand all phenomena within the active site of the enzyme that contribute to an efficient substrate recognition and the subsequent catalytic reaction together with their relative weight within the overall thermodynamic context. This study aims to define the weight of the driving forces upon the C-H bond activation within CYP2D6 wild-type and a clinically relevant allelic variant with increased activity (CYP2D6*53) featuring two amino acid mutations in close vicinity of the heme. First, we investigated the steric and electrostatic complementarity of the substrate bufuralol using well-tempered metadynamics simulations with the aim to obtain the free energy profiles for each site of metabolism (SoM) within the different active sites. Second, the stereoelectronic complementarity was determined for each SoM within the two different active-site environments. Relying on the well-tempered metadynamics simulation energy profiles of each SoM, we identified the binding mode that was closest to the preferred transition-state geometry for efficient C-H bond activation. The binding modes were then used as starting structures for the quantum mechanics/molecular mechanics calculations performed to quantify the corresponding activation barriers. Our results show the relevance of the steric component in orienting the SoM in an energetically accessible position toward the heme. However, the corresponding intrinsic reactivity and electronic complementarity within the active site must be accurately evaluated in order to obtain a meaningful reaction prediction, from which the predominant SoM can be determined. The F120I mutation lowered the activation barrier for the major site and one of the minor SoMs. However, it had an impact neither on the CYP2D6 enantioselectivity preference of the oxidation reaction nor on the stereoselectivity from the substrate point of view.
Collapse
Affiliation(s)
- Charleen G Don
- Computational Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
250
|
Pochapsky TC. A dynamic understanding of cytochrome P450 structure and function through solution NMR. Curr Opin Biotechnol 2020; 69:35-42. [PMID: 33360373 DOI: 10.1016/j.copbio.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Many economically important biosyntheses incorporate regiospecific and stereospecific oxidations at unactivated carbons. Such oxidations are commonly catalyzed by cytochrome P450 monooxygenases, heme-containing enzymes that activate molecular oxygen while selectively binding and orienting the substrate for reaction. Despite the plethora of P450-catalyzed reactions, the P450 fold is highly conserved, and static structures are often insufficient for characterizing conformational states that contribute to specificity. High-resolution solution nuclear magnetic resonance (NMR) offers insights into dynamic processes and conformational changes that are required of a P450 in order to attain the combination of specificity and efficiency required for these reactions.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Departments of Chemistry, Biochemistry and The Rosenstiel Institute for Basic Medical Research, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| |
Collapse
|