201
|
Voets E, Paradé M, Lutje Hulsik D, Spijkers S, Janssen W, Rens J, Reinieren-Beeren I, van den Tillaart G, van Duijnhoven S, Driessen L, Habraken M, van Zandvoort P, Kreijtz J, Vink P, van Elsas A, van Eenennaam H. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. J Immunother Cancer 2019; 7:340. [PMID: 31801627 PMCID: PMC6894304 DOI: 10.1186/s40425-019-0772-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/05/2019] [Indexed: 11/30/2022] Open
Abstract
Background Accumulating preclinical data indicate that targeting the SIRPα/CD47 axis alone or in combination with existing targeted therapies or immune checkpoint inhibitors enhances tumor rejection. Although several CD47-targeting agents are currently in phase I clinical trials and demonstrate activity in combination therapy, high and frequent dosing was required and safety signals (acute anemia, thrombocytopenia) were recorded frequently as adverse events. Based on the restricted expression pattern of SIRPα we hypothesized that antibodies targeting SIRPα might avoid some of the concerns noted for CD47-targeting agents. Methods SIRPα-targeting antibodies were generated and characterized for binding to human SIRPα alleles and blockade of the interaction with CD47. Functional activity was established in vitro using human macrophages or neutrophils co-cultured with human Burkitt’s lymphoma cell lines. The effect of SIRPα versus CD47 targeting on human T-cell activation was studied using an allogeneic mixed lymphocyte reaction and a Staphylococcus enterotoxin B-induced T-cell proliferation assay. Potential safety concerns of the selected SIRPα-targeting antibody were addressed in vitro using a hemagglutination assay and a whole blood cytokine release assay, and in vivo in a single-dose toxicity study in cynomolgus monkeys. Results The humanized monoclonal IgG2 antibody ADU-1805 binds to all known human SIRPα alleles, showing minimal binding to SIRPβ1, while cross-reacting with SIRPγ, and potently blocking the interaction of SIRPα with CD47. Reduced FcγR binding proved critical to retaining its function towards phagocyte activation. In vitro characterization demonstrated that ADU-1805 promotes macrophage phagocytosis, with similar potency to anti-CD47 antibodies, and enhances neutrophil trogocytosis. Unlike CD47-targeting agents, ADU-1805 does not interfere with T-cell activation and is not expected to require frequent and extensive dosing due to the restricted expression of SIRPα to cells of the myeloid lineage. ADU-1805 is cross-reactive to cynomolgus monkey SIRPα and upon single-dose intravenous administration in these non-human primates (NHPs) did not show any signs of anemia, thrombocytopenia or other toxicities. Conclusions Blocking the SIRPα-CD47 interaction via SIRPα, while similarly efficacious in vitro, differentiates ADU-1805 from CD47-targeting agents with respect to safety and absence of inhibition of T-cell activation. The data presented herein support further advancement of ADU-1805 towards clinical development.
Collapse
Affiliation(s)
- Erik Voets
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | - Marc Paradé
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | | | | | | | - Joost Rens
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | | | | | | | | | | | | | | | - Paul Vink
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | - Andrea van Elsas
- Aduro Biotech Europe B.V, Oss, The Netherlands. .,Aduro Biotech, Inc., Berkeley, USA.
| | | |
Collapse
|
202
|
Pengam S, Durand J, Usal C, Gauttier V, Dilek N, Martinet B, Daguin V, Mary C, Thepenier V, Teppaz G, Renaudin K, Blancho G, Vanhove B, Poirier N. SIRPα/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells. Am J Transplant 2019; 19:3263-3275. [PMID: 31207067 DOI: 10.1111/ajt.15497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.
Collapse
Affiliation(s)
| | - Justine Durand
- OSE Immunotherapeutics, Nantes, France.,Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Claire Usal
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | | | - Nahzli Dilek
- OSE Immunotherapeutics, Nantes, France.,Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Véronique Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | | | | | | | - Karine Renaudin
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | | |
Collapse
|
203
|
Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone Pain in Cancer Patients: Mechanisms and Current Treatment. Int J Mol Sci 2019; 20:E6047. [PMID: 31801267 PMCID: PMC6928918 DOI: 10.3390/ijms20236047] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The skeletal system is the third most common site for cancer metastases, surpassed only by the lungs and liver. Many tumors, especially those of the breast, prostate, lungs, and kidneys, have a strong predilection to metastasize to bone, which causes pain, hypercalcemia, pathological skeletal fractures, compression of the spinal cord or other nervous structures, decreased mobility, and increased mortality. Metastatic cancer-induced bone pain (CIBP) is a type of chronic pain with unique and complex pathophysiology characterized by nociceptive and neuropathic components. Its treatment should be multimodal (pharmacological and non-pharmacological), including causal anticancer and symptomatic analgesic treatment to improve quality of life (QoL). The aim of this paper is to discuss the mechanisms involved in the occurrence and persistence of cancer-associated bone pain and to review the treatment methods recommended by experts in clinical practice. The final part of the paper reviews experimental therapeutic methods that are currently being studied and that may improve the efficacy of bone pain treatment in cancer patients in the future.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Wojciech Leppert
- Laboratory of Quality of Life Research, Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| |
Collapse
|
204
|
Pan Y, Lu F, Fei Q, Yu X, Xiong P, Yu X, Dang Y, Hou Z, Lin W, Lin X, Zhang Z, Pan M, Huang H. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. J Hematol Oncol 2019; 12:124. [PMID: 31771616 PMCID: PMC6880569 DOI: 10.1186/s13045-019-0822-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background Human pancreatic ductal adenocarcinoma (PDAC) responds poorly to immune checkpoint inhibitor (ICPi). While the mechanism is not completely clear, it has been recognized that tumor microenvironment (TME) plays key roles. We investigated if targeting CD47 with a monoclonal antibody could enhance the response of PDAC to ICPi by altering the TME. Methods Using immunohistochemistry, we examined tumor-infiltrating CD68+ pan-macrophages (CD68+ M) and CD163+ M2 macrophages (CD163+ M2) and tumor expression of CD47 and PD-L1 proteins in 106 cases of PDAC. The efficacy of CD47 blockade was examined in xenograft models. CD45+ immune cells from syngeneic tumor models were subjected to single-cell RNA-sequencing (scRNA-seq) by using the 10x Genomics pipeline. Results We found that CD47 expression correlated with the level of CD68+ M but not CD163+ M2. High levels of tumor-infiltrating CD68+ M, CD163+ M2, and CD47 expression were significantly associated with worse survival. CD47high/CD68+ Mhigh and CD47high/CD163+ M2high correlated significantly with shorter survival, whereas CD47low/CD68+ Mlow and CD47low/CD163+ M2low correlated with longer survival. Intriguingly, CD47 blockade decreased the tumor burden in the Panc02 but not in the MPC-83 syngeneic mouse model. Using scRNA-seq, we showed that anti-CD47 treatment significantly remodeled the intratumoral lymphocyte and macrophage compartments in Panc02 tumor-bearing mice by increasing the pro-inflammatory macrophages that exhibit anti-tumor function, while reducing the anti-inflammatory macrophages. Moreover, CD47 blockade not only increased the number of intratumoral CD8+ T cells, but also remodeled the T cell cluster toward a more activated one. Further, combination therapy targeting both CD47 and PD-L1 resulted in synergistic inhibition of PDAC growth in the MPC-83 but not in Panc02 model. MPC-83 but not Panc02 mice treated with both anti-CD47 and anti-PD-L1 showed increased number of PD-1+CD8+ T cells and enhanced expression of key immune activating genes. Conclusion Our data indicate that CD47 targeting induces compartmental remodeling of tumor-infiltrating immune cells of the TME in PDAC. Different PDAC mouse models exhibited differential response to the anti-CD47 and anti-PD-L1 blockade due to the differential effect of this combination treatment on the infiltrating immune cells and key immune activating genes in the TME established by the different PDAC cell lines.
Collapse
Affiliation(s)
- Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Qinglin Fei
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Xingxing Yu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Ping Xiong
- Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team, 156 North Xi-er Huan Road, Fuzhou, 350001, China
| | - Xunbin Yu
- Department of Pathology, Fujian provincial hospital, Fuzhou, 350001, China
| | - Yuan Dang
- Department of Comparative medicine, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University Medical College, 156 North Xi-er Huan Road, Fuzhou, 350001, China
| | - Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Wenji Lin
- Department of Radiology, Quanzhou First Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Zheyang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Minggui Pan
- Department of Oncology and Hematology and Division of Research, Kaiser Permanente, Santa Clara, CA, 95051, USA
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
205
|
Uger R, Johnson L. Blockade of the CD47-SIRPα axis: a promising approach for cancer immunotherapy. Expert Opin Biol Ther 2019; 20:5-8. [PMID: 31663384 DOI: 10.1080/14712598.2020.1685976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Robert Uger
- Trillium Therapeutics Inc., Mississaugua, Ontario, Canada
| | - Lisa Johnson
- Translational Research, Trillium Therapeutics Inc., Mississaugua, Ontario, Canada
| |
Collapse
|
206
|
Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, Kuijpers TW, van den Berg TK, Valerius T, Leusen JHW, Matlung HL. IgA-Mediated Killing of Tumor Cells by Neutrophils Is Enhanced by CD47-SIRPα Checkpoint Inhibition. Cancer Immunol Res 2019; 8:120-130. [PMID: 31690649 DOI: 10.1158/2326-6066.cir-19-0144] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Therapeutic monoclonal antibodies (mAb), directed toward either tumor antigens or inhibitory checkpoints on immune cells, are effective in cancer therapy. Increasing evidence suggests that the therapeutic efficacy of these tumor antigen-targeting mAbs is mediated-at least partially-by myeloid effector cells, which are controlled by the innate immune-checkpoint interaction between CD47 and SIRPα. We and others have previously demonstrated that inhibiting CD47-SIRPα interactions can substantially potentiate antibody-dependent cellular phagocytosis and cytotoxicity of tumor cells by IgG antibodies both in vivo and in vitro IgA antibodies are superior in killing cancer cells by neutrophils compared with IgG antibodies with the same variable regions, but the impact of CD47-SIRPα on IgA-mediated killing has not been investigated. Here, we show that checkpoint inhibition of CD47-SIRPα interactions further enhances destruction of IgA antibody-opsonized cancer cells by human neutrophils. This was shown for multiple tumor types and IgA antibodies against different antigens, i.e., HER2/neu and EGFR. Consequently, combining IgA antibodies against HER2/neu or EGFR with SIRPα inhibition proved to be effective in eradicating cancer cells in vivo In a syngeneic in vivo model, the eradication of cancer cells was predominantly mediated by granulocytes, which were actively recruited to the tumor site by SIRPα blockade. We conclude that IgA-mediated tumor cell destruction can be further enhanced by CD47-SIRPα checkpoint inhibition. These findings provide a basis for targeting CD47-SIRPα interactions in combination with IgA therapeutic antibodies to improve their potential clinical efficacy in tumor patients.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Toine Ten Broeke
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - J H Marco Jansen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Steffen Kahle
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan M Prins
- Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
207
|
Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 2019; 50:1149-1162. [PMID: 31117011 DOI: 10.1016/j.immuni.2019.04.018] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023]
Abstract
Nearly every tissue in the body undergoes routine turnover of cells as part of normal healthy living. The majority of these cells undergoing turnover die via apoptosis, and then are rapidly removed by phagocytes by the process of efferocytosis that is anti-inflammatory. However, a number of pathologies have recently been linked to defective clearance of apoptotic cells. Perturbed clearance arises for many reasons, including overwhelming of the clearance machinery, disruptions at different stages of efferocytosis, and responses of phagocytes during efferocytosis, all of which can alter the homeostatic tissue environment. This review covers linkages of molecules involved in the different phases of efferocytosis to disease pathologies that can arise due to their loss or altered function.
Collapse
|
208
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19:568-586. [PMID: 31462760 PMCID: PMC7002027 DOI: 10.1038/s41568-019-0183-z] [Citation(s) in RCA: 559] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapies targeting adaptive immune checkpoints have substantially improved patient outcomes across multiple metastatic and treatment-refractory cancer types. However, emerging studies have demonstrated that innate immune checkpoints, which interfere with the detection and clearance of malignant cells through phagocytosis and suppress innate immune sensing, also have a key role in tumour-mediated immune escape and might, therefore, be potential targets for cancer immunotherapy. Indeed, preclinical studies and early clinical data have established the promise of targeting phagocytosis checkpoints, such as the CD47-signal-regulatory protein α (SIRPα) axis, either alone or in combination with other cancer therapies. In this Review, we highlight the current understanding of how cancer cells evade the immune system by disrupting phagocytic clearance and the effect of phagocytosis checkpoint blockade on induction of antitumour immune responses. Given the role of innate immune cells in priming adaptive immune responses, an improved understanding of the tumour-intrinsic processes that inhibit essential immune surveillance processes, such as phagocytosis and innate immune sensing, could pave the way for the development of highly effective combination immunotherapy strategies that modulate both innate and adaptive antitumour immune responses.
Collapse
Affiliation(s)
- Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
209
|
Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11101472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.
Collapse
|
210
|
Yang Z, Xu J, Li R, Gao Y, He J. PD-L1 and CD47 co-expression in pulmonary sarcomatoid carcinoma: a predictor of poor prognosis and potential targets of future combined immunotherapy. J Cancer Res Clin Oncol 2019; 145:3055-3065. [PMID: 31522278 DOI: 10.1007/s00432-019-03023-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Combined immunotherapy with anti-programmed cell death-ligand 1 (PD-L1) and an inhibitor of cluster of differentiation 47 (CD47) have exhibited preliminary anti-tumor effect. Our study attempted to describe the PD-L1/CD47 expression status in pulmonary sarcomatoid carcinoma (PSC), and explore its survival impact and relevance with cytotoxic T lymphocytes and macrophages infiltration. METHODS 148 patients with PSC who underwent surgeries were retrospectively reviewed. Tissue microarrays were conducted for immunohistochemistry (IHC) of PD-L1, CD47, CD8 and CD68. RESULTS 54 (36.5%) and 78 (52.7%) cases were positive for PD-L1 and CD47, respectively, and 36 (24.3%) of them demonstrated PD-L1/CD47 co-expression. There was a significant correlation between PD-L1 and CD47 expression (P = 0.011). The median overall survival (OS) was 22.5 months (range 0.9-102.4 months). The univariate analysis demonstrated a significantly worse OS in cases with CD47 expression (hazard ratio [HR], 1.66; 95% CI, 1.14-2.42, P = 0.008) and PD-L1/CD47 co-expression (HR, 1.75; 95% CI, 1.15-2.67, P = 0.009). The multivariate analysis demonstrated PD-L1/CD47 co-expression (HR, 1.83; 95% CI, 1.17-2.87, P = 0.008), T stage, M stage, completeness of resection and adjuvant therapy were independent prognostic factors for OS. There was a significant relevance between PD-L1 expression and PD-L1/CD47 co-expression with higher densities of CD8-positive T lymphocytes (P = 0.004, 0.012, respectively) and CD68-positive macrophages (P = 0.026, 0.034, respectively). CONCLUSION We demonstrated the PD-L1/CD47 co-expression status in PSC. PD-L1 expression correlated with CD47 expression, and PD-L1/CD47 co-expression correlated with poorer prognosis and may serve as a predictive biomarker for combined dual-targeting immunotherapy in PSC patients.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
211
|
Stone ML, Beatty GL. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer. Pharmacol Ther 2019; 201:202-213. [PMID: 31158393 PMCID: PMC6708742 DOI: 10.1016/j.pharmthera.2019.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is a hallmark of cancer. For pancreatic ductal adenocarcinoma (PDAC), malignant cells arise in the context of a brisk inflammatory cell infiltrate surrounded by dense fibrosis that is seen beginning at the earliest stages of cancer conception. This inflammatory and fibrotic milieu supports cancer cell escape from immune elimination and promotes malignant progression and metastatic spread to distant organs. Targeting this inflammatory reaction in PDAC by inhibiting or depleting pro-tumor elements and by engaging the potential of inflammatory cells to acquire anti-tumor activity has garnered strong research and clinical interest. Herein, we describe the current understanding of key determinants of inflammation in PDAC; mechanisms by which inflammation drives immune suppression; the impact of inflammation on metastasis, therapeutic resistance, and clinical outcomes; and strategies to intervene on inflammation for providing therapeutic benefit.
Collapse
Affiliation(s)
- Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United states of America; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United states of America; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
212
|
Miller TW, Amason JD, Garcin ED, Lamy L, Dranchak PK, Macarthur R, Braisted J, Rubin JS, Burgess TL, Farrell CL, Roberts DD, Inglese J. Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors. PLoS One 2019; 14:e0218897. [PMID: 31276567 PMCID: PMC6611588 DOI: 10.1371/journal.pone.0218897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
CD47 is an immune checkpoint molecule that downregulates key aspects of both the innate and adaptive anti-tumor immune response via its counter receptor SIRPα, and it is expressed at high levels in a wide variety of tumor types. This has led to the development of biologics that inhibit SIRPα engagement including humanized CD47 antibodies and a soluble SIRPα decoy receptor that are currently undergoing clinical trials. Unfortunately, toxicological issues, including anemia related to on-target mechanisms, are barriers to their clinical advancement. Another potential issue with large biologics that bind CD47 is perturbation of CD47 signaling through its high-affinity interaction with the matricellular protein thrombospondin-1 (TSP1). One approach to avoid these shortcomings is to identify and develop small molecule molecular probes and pretherapeutic agents that would (1) selectively target SIRPα or TSP1 interactions with CD47, (2) provide a route to optimize pharmacokinetics, reduce on-target toxicity and maximize tissue penetration, and (3) allow more flexible routes of administration. As the first step toward this goal, we report the development of an automated quantitative high-throughput screening (qHTS) assay platform capable of screening large diverse drug-like chemical libraries to discover novel small molecules that inhibit CD47-SIRPα interaction. Using time-resolved Förster resonance energy transfer (TR-FRET) and bead-based luminescent oxygen channeling assay formats (AlphaScreen), we developed biochemical assays, optimized their performance, and individually tested them in small-molecule library screening. Based on performance and low false positive rate, the LANCE TR-FRET assay was employed in a ~90,000 compound library qHTS, while the AlphaScreen oxygen channeling assay served as a cross-validation orthogonal assay for follow-up characterization. With this multi-assay strategy, we successfully eliminated compounds that interfered with the assays and identified five compounds that inhibit the CD47-SIRPα interaction; these compounds will be further characterized and later disclosed. Importantly, our results validate the large library qHTS for antagonists of CD47-SIRPα interaction and suggest broad applicability of this approach to screen chemical libraries for other protein-protein interaction modulators.
Collapse
Affiliation(s)
- Thomas W. Miller
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua D. Amason
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elsa D. Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Catonsville, Maryland, United States of America
| | - Laurence Lamy
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Patricia K. Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ryan Macarthur
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - John Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeffrey S. Rubin
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
| | - Teresa L. Burgess
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
| | | | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
213
|
|
214
|
Sim J, Sockolosky JT, Sangalang E, Izquierdo S, Pedersen D, Harriman W, Wibowo AS, Carter J, Madan A, Doyle L, Harrabi O, Kauder SE, Chen A, Kuo TC, Wan H, Pons J. Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα. MAbs 2019; 11:1036-1052. [PMID: 31257988 PMCID: PMC6748616 DOI: 10.1080/19420862.2019.1624123] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Targeting the CD47-signal-regulatory protein α (SIRPα) pathway represents a novel therapeutic approach to enhance anti-cancer immunity by promoting both innate and adaptive immune responses. Unlike CD47, which is expressed ubiquitously, SIRPα expression is mainly restricted to myeloid cells and neurons. Therefore, compared to CD47-targeted therapies, targeting SIRPα may result in differential safety and efficacy profiles, potentially enabling lower effective doses and improved pharmacokinetics and pharmacodynamics. The development of effective SIRPα antagonists is restricted by polymorphisms within the CD47-binding domain of SIRPα, necessitating pan-allele reactive anti-SIRPα antibodies for therapeutic intervention in diverse patient populations. We immunized wild-type and human antibody transgenic chickens with a multi-allele and multi-species SIRPα regimen in order to discover pan-allelic and pan-mammalian reactive anti-SIRPα antibodies suitable for clinical translation. A total of 200 antibodies were isolated and screened for SIRPα reactivity from which approximately 70 antibodies with diverse SIRPα binding profiles, sequence families, and epitopes were selected for further characterization. A subset of anti-SIRPα antibodies bound to both human SIRPα v1 and v2 alleles with high affinity ranging from low nanomolar to picomolar, potently antagonized the CD47/SIRPα interaction, and potentiated macrophage-mediated antibody-dependent cellular phagocytosis in vitro. X-ray crystal structures of five anti-SIRPα antigen-binding fragments, each with unique epitopes, in complex with SIRPα (PDB codes 6NMV, 6NMU, 6NMT, 6NMS, and 6NMR) are reported. Furthermore, some of the anti-SIRPα antibodies cross-react with cynomolgus SIRPα and various mouse SIRPα alleles (BALB/c, NOD, BL/6), which can facilitate preclinical to clinical development. These properties provide an attractive rationale to advance the development of these anti-SIRPα antibodies as a novel therapy for advanced malignancies. Abbreviations: ADCC: antibody-dependent cellular cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; CFSE: carboxyfluorescein succinimidyl ester; Fab: fragment antigen binding; Fc: fragment crystallizable; FcγR: Fcγ receptor; Ig: immunoglobulin; IND: investigational new drug; MDM⊘: monocyte-derived macrophage; NOD: non-obese diabetic; scFv: single chain fragment variable; SCID: severe combined immunodeficiency; SIRP: signal-regulatory protein.
Collapse
Affiliation(s)
- Janet Sim
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Jonathan T Sockolosky
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Emma Sangalang
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | | | | | | | | | | | - Anup Madan
- d Covance Genomics Laboratory , Redmond , WA , USA
| | - Laura Doyle
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Ons Harrabi
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Steven E Kauder
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Amy Chen
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Tracy C Kuo
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Hong Wan
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| | - Jaume Pons
- a ALX Oncology, Departments of Protein Sciences and Translational Biology , Burlingame , CA , USA
| |
Collapse
|
215
|
Andrechak JC, Dooling LJ, Discher DE. The macrophage checkpoint CD47 : SIRPα for recognition of 'self' cells: from clinical trials of blocking antibodies to mechanobiological fundamentals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180217. [PMID: 31431181 DOI: 10.1098/rstb.2018.0217] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunotherapies against some solid tumour types have recently shown unprecedented, durable cures in the clinic, and the most successful thus far involves blocking inhibitory receptor 'checkpoints' on T cells. A similar approach with macrophages is emerging by blocking the ubiquitously expressed 'marker of self' CD47 from binding the inhibitory receptor SIRPα on macrophages. Here, we first summarize available information on the safety and efficacy of CD47 blockade, which raises some safety concerns with the clearance of 'self' cells but also suggests some success against haematological (liquid) and solid cancers. Checkpoint blockade generally benefits from parallel activation of the immune cell, which can occur for macrophages in multiple ways, such as by combination with a second, tumour-opsonizing antibody and perhaps also via rigidity sensing. Cytoskeletal forces in phagocytosis and inhibitory 'self'-signalling are thus reviewed together with macrophage mechanosensing, which extends to regulating levels of SIRPα and the nuclear protein lamin A, which affects phenotype and cell trafficking. Considerations of such physical factors in cancer and the immune system can inform the design of new immunotherapies and help to refine existing therapies to improve safety and efficacy. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Jason C Andrechak
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA.,Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence J Dooling
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
216
|
Kiss B, van den Berg NS, Ertsey R, McKenna K, Mach KE, Zhang CA, Volkmer JP, Weissman IL, Rosenthal EL, Liao JC. CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clin Cancer Res 2019; 25:3561-3571. [PMID: 30890547 PMCID: PMC7039531 DOI: 10.1158/1078-0432.ccr-18-3267] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Near-infrared photoimmunotherapy (NIR-PIT) is a localized molecular cancer therapy combining a photosensitizer-conjugated mAb and light energy. CD47 is an innate immune checkpoint widely expressed on bladder cancer cells, but absent from luminal normal urothelium. Targeting CD47 for NIR-PIT has the potential to selectively induce cancer cell death and minimize damage to normal urothelium. EXPERIMENTAL DESIGN The cytotoxic effect of NIR-PIT with anti-CD47-IR700 was investigated in human bladder cancer cell lines and primary human bladder cancer cells derived from fresh surgical samples. Phagocytosis assays were performed to evaluate macrophage activity after NIR-PIT. Anti-CD47-IR700 was administered to murine xenograft tumor models of human bladder cancer for in vivo molecular imaging and NIR-PIT. RESULTS Cytotoxicity in cell lines and primary bladder cancer cells significantly increased in a light-dose-dependent manner with CD47-targeted NIR-PIT. Phagocytosis of cancer cells significantly increased with NIR-PIT compared with antibody alone (P = 0.0002). In vivo fluorescence intensity of anti-CD47-IR700 in tumors reached a peak 24-hour postinjection and was detectable for at least 14 days. After a single round of CD47-targeted NIR-PIT, treated animals showed significantly slower tumor growth compared with controls (P < 0.0001). Repeated CD47-targeted NIR-PIT treatment further slowed tumor growth (P = 0.0104) and improved survival compared with controls. CONCLUSIONS CD47-targeted NIR-PIT increased direct cancer cell death and phagocytosis resulting in inhibited tumor growth and improved survival in a murine xenograft model of human bladder cancer.
Collapse
Affiliation(s)
- Bernhard Kiss
- Department of Urology, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Nynke S van den Berg
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert Ertsey
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | | | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Chiyuan Amy Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | | | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, California.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
217
|
Yang H, Shao R, Huang H, Wang X, Rong Z, Lin Y. Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPɑ axis. Cancer Med 2019; 8:4245-4253. [PMID: 31183992 PMCID: PMC6675709 DOI: 10.1002/cam4.2332] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022] Open
Abstract
The use of immunotherapy has achieved great advances in the treatment of cancer. Macrophages play a pivotal role in the immune defense system, serving both as phagocytes (removal of pathogens and cancer cells) and as antigen‐presenting cells (activation of T cells). However, research regarding tumor immunotherapy is mainly focused on the adaptive immune system. The usefulness of innate immune cells (eg, macrophages) in the treatment of cancer has not been extensively investigated. Recent advances in synthetic biology and the increasing understanding of the cluster of differentiation 47/signal regulatory protein alpha (CD47/SIRPɑ) axis may provide new opportunities for the clinical application of engineered macrophages. The CD47/SIRPɑ axis is a major known pathway, repressing phagocytosis and activation of macrophages. In this article, we summarize the currently available evidence regarding the CD47/SIRPɑ axis, and immunotherapies based on blockage. In addition, we propose cell therapy strategies based on macrophage engineering.
Collapse
Affiliation(s)
- Hongcheng Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ruoyang Shao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongxin Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinlong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
218
|
Macrophages in Colorectal Cancer Liver Metastases. Cancers (Basel) 2019; 11:cancers11050633. [PMID: 31067629 PMCID: PMC6562719 DOI: 10.3390/cancers11050633] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for metastasis and are concomitantly key determinants of the efficacy of anticancer strategies. TAM represent an extremely heterogeneous population in terms of cell morphology, functions, and tissue localization. Colorectal liver metastases (CLM) display a high heterogeneity, responsible for a wide array of clinical presentations and responsiveness to treatments. In the era of precision medicine, there is a critical need of reliable prognostic markers to improve patient stratification, and, for their predominance in metastatic tissues, TAMs are emerging as promising candidates.
Collapse
|
219
|
Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr Opin Oncol 2019; 30:332-337. [PMID: 29994903 DOI: 10.1097/cco.0000000000000468] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW To describe the relevance of CD47 in the tumor microenvironment and summarize data on anti-CD47 therapies, including its role in cutaneous T-cell lymphoma (CTCL). RECENT FINDINGS CD47 is expressed on all normal cells and targets SIRPα on the surface of myeloid cells. However, CD47 is found to be overexpressed on cancer cells. CD47-SIRPα interaction inhibits macrophage phagocytosis, allowing cancer cells to escape immune surveillance. Current focus in immunotherapy has been targeted toward inhibiting CD47-SIRPα interaction via anti-CD47 antibodies. This activates innate immunity, promoting cancer cell destruction by macrophages. It also activates adaptive immunity resulting in antigen-presentation, mostly by dendritic cells, leading to antitumor cytotoxic reactions. Current CD47 antagonists undergoing clinical trials include Hu5F9 (an anti-CD47 antibody that directly inhibits the CD47-SIRPα interaction) and TTI-621, (a fusion protein composed of CD47 binding domain of human SIRPα and linked to the Fc region of IgG1). These agents have continued to show strong efficacy against solid and hematological tumors. SUMMARY In the CTCL tumor microenvironment, increased immune checkpoint inhibition expression via CD47 bound to SIRPα correlates with a more advanced disease state. Continued success in treating these patients requires further studies on CD47 antagonists, specifically when combined with other antibodies.
Collapse
|
220
|
|
221
|
Wang C, Steinmetz NF. CD47 Blockade and Cowpea Mosaic Virus Nanoparticle In Situ Vaccination Triggers Phagocytosis and Tumor Killing. Adv Healthc Mater 2019; 8:e1801288. [PMID: 30838815 PMCID: PMC6633909 DOI: 10.1002/adhm.201801288] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Contemporary immunotherapies, e.g., those that target the CTLA-4 and PD-1/PD-L1 axis, act on T cells to reinstate their antitumor activity. An alternative, and possibly more powerful approach is to target and reprogram the innate immune system within the tumor microenvironment. To this end, blockade of CD47 has been demonstrated as an attractive approach. Blockade of CD47 inhibits antiphagocytic signals therefore inducing macrophage phagocytosis of cancer cells. CD47 blockade also primes antitumor T-cell responses by either activating antigen-presenting cells or inhibiting interactions between CD47 on cancer cells and the matricellular protein thrombospondin-1 on T cells. Here, a combination immunotherapy is identified using cowpea mosaic virus (CPMV) in situ vaccination and CD47-blocking antibodies. The CPMV in situ vaccine synergizes with CD47 blockade, because CPMV in situ vaccination activates the innate immune system, leading to recruitment and activation of phagocytes. Therefore, the combination therapy targets monocytes and boosts their ability of cancer cell phagocytosis, in turn priming the adaptive immune system leading to a potent antitumor immune response. This work presents a novel strategy to promote macrophage activity to kill tumor cells, and hold promise to enhance T cells targeted immunotherapies by inducing both innate and adaptive arms of immune system.
Collapse
Affiliation(s)
- Chao. Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla CA 92093, United States. Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Nicole. F. Steinmetz
- Department of Radiology, Moores Cancer Center, Department of Bioengineering, University of California, San Diego, La Jolla CA 92093, United States.
| |
Collapse
|
222
|
Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med 2019; 25:612-619. [PMID: 30833751 PMCID: PMC7025889 DOI: 10.1038/s41591-019-0356-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.
Collapse
|
223
|
Dougan M, Dranoff G, Dougan SK. Cancer Immunotherapy: Beyond Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:55-75. [PMID: 37539076 PMCID: PMC10400018 DOI: 10.1146/annurev-cancerbio-030518-055552] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Blocking antibodies to the immune checkpoint receptors or their ligands have revolutionized the treatment of diverse malignancies. Many tumors are recognized by adaptive immunity, but these adaptive responses can be inhibited by immunosuppressive mechanisms within the tumor, often through pathways outside of the currently targeted checkpoints. For this reason, only a minority of cancer patients achieve durable responses to current immunotherapies. Multiple novel approaches strive to expand immunotherapy's reach. These may include targeting alternative immune checkpoints. However, many investigational strategies look beyond checkpoint blockade. These include cellular therapies to bypass endogenous immunity and efforts to stimulate new adaptive antitumor responses using vaccines, adjuvants, and combinations with cytotoxic therapy, as well as strategies to inhibit innate immune suppression and modulate metabolism within the tumor microenvironment. The challenge for immunotherapy going forward will be to select rational strategies for overcoming barriers to effective antitumor responses from the myriad possible targets.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Stephanie K Dougan
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
224
|
Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen PJJH, Geissler J, Lissenberg-Thunnissen S, Valerius T, Peipp M, Franke K, van Bruggen R, Kuijpers TW, van Egmond M, Vidarsson G, Matlung HL, van den Berg TK. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Front Immunol 2019; 9:3124. [PMID: 30761158 PMCID: PMC6363688 DOI: 10.3389/fimmu.2018.03124] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The function of the low-affinity IgG-receptor FcγRIIIb (CD16b), which is uniquely and abundantly expressed on human granulocytes, is not clear. Unlike the other Fcγ receptors (FcγR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have intracellular signaling motifs. Nevertheless, FcγRIIIb can cooperate with other FcγR to promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we have investigated the role of FcγRIIIb during antibody-dependent cellular cytotoxicity (ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab (anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcγRIIIb using CD16-F(ab')2 blocking antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent on FcγRIIa (CD32a) and the enhanced ADCC seen after FcγRIIIb blockade therefore suggested that FcγRIIIb was competing with FcγRIIa for IgG on the opsonized target cells. Interestingly, the function of neutrophil FcγRIIIb as a decoy receptor was further supported by using neutrophils from individuals with different gene copy numbers of FCGR3B causing different levels of surface FcγRIIIb expression. Individuals with one copy of FCGR3B showed higher levels of ADCC compared to those with two or more copies. Finally, we show that therapeutic antibodies intended to improve FcγRIIIa (CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the N-linked glycan at position N297 of the IgG1 heavy chain Fc-region, show decreased ADCC as compared to regularly fucosylated antibodies. Together, these data confirm FcγRIIIb as a negative regulator of neutrophil ADCC toward tumor cells and a potential target for enhancing tumor cell destruction by neutrophils.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine W Bruggeman
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke H Heineke
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris van der Heijden
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q Nagelkerke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
225
|
Liu M, O'Connor RS, Trefely S, Graham K, Snyder NW, Beatty GL. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal. Nat Immunol 2019; 20:265-275. [PMID: 30664738 PMCID: PMC6380920 DOI: 10.1038/s41590-018-0292-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/01/2018] [Indexed: 12/12/2022]
Abstract
Macrophages enforce anti-tumor immunity by engulfing and killing tumor cells. Although these functions are determined by a balance of stimulatory and inhibitory signals, the role of macrophage metabolism is unknown. Here, we study the capacity of macrophages to circumvent inhibitory activity mediated by CD47 on cancer cells. We show that stimulation with CpG, a TLR9 agonist, evokes changes in the central carbon metabolism of macrophages that enable anti-tumor activity, including engulfment of CD47+ cancer cells. CpG activation engenders a metabolic state, that requires fatty acid oxidation and shunting of tricarboxylic acid cycle intermediates for de novo lipid biosynthesis. This integration of metabolic inputs is underpinned by carnitine palmitoyltransferase 1A and ATP citrate lyase, which together, impart macrophages with anti-tumor potential capable of overcoming inhibitory CD47 on cancer cells. Our findings identify central carbon metabolism to be a novel determinant and potential therapeutic target for stimulating anti-tumor activity by macrophages.
Collapse
Affiliation(s)
- Mingen Liu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophie Trefely
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA.,Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Graham
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
226
|
Mohanty S, Yerneni K, Theruvath JL, Graef CM, Nejadnik H, Lenkov O, Pisani L, Rosenberg J, Mitra S, Cordero AS, Cheshier S, Daldrup-Link HE. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis 2019; 10:36. [PMID: 30674867 PMCID: PMC6367456 DOI: 10.1038/s41419-018-1285-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
CD47 monoclonal antibodies (mAbs) activate tumor-associated macrophages (TAMs) in sarcomas to phagocytose and eliminate cancer cells. Though CD47 mAbs have entered clinical trials, diagnostic tests for monitoring therapy response in vivo are currently lacking. Ferumoxytol is an FDA-approved iron supplement which can be used "off label" as a contrast agent: the nanoparticle-based drug is phagocytosed by TAM and can be detected with magnetic resonance imaging (MRI). We evaluated if ferumoxytol-enhanced MRI can monitor TAM response to CD47 mAb therapy in osteosarcomas. Forty-eight osteosarcoma-bearing mice were treated with CD47 mAb or control IgG and underwent pre- and post-treatment ferumoxytol-MRI scans. Tumor enhancement, quantified as T2 relaxation times, was compared with the quantity of TAMs as determined by immunofluorescence microscopy and flow cytometry. Quantitative data were compared between experimental groups using exact two-sided Wilcoxon rank-sum tests. Compared to IgG-treated controls, CD47 mAb-treated tumors demonstrated significantly shortened T2 relaxation times on ferumoxytol-MRI scans (p < 0.01) and significantly increased F4/80+CD80+ M1 macrophages on histopathology (p < 0.01). CD47 mAb-treated F4/80+ macrophages demonstrated significantly augmented phagocytosis of ferumoxytol nanoparticles (p < 0.01). Thus, we conclude that ferumoxytol-MRI can detect TAM response to CD47 mAb in mouse models of osteosarcoma. The ferumoxytol-MRI imaging test could be immediately applied to monitor CD47 mAb therapies in clinical trials.
Collapse
Affiliation(s)
- Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Ketan Yerneni
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | | | - Claus Moritz Graef
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
| | - Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Olga Lenkov
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Jarrett Rosenberg
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Siddhartha Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alejandro Sweet Cordero
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Samuel Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
- Huntsman Cancer Institute, Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
227
|
Huang W, Wei X, Wei Y, Feng R. Biology of Tumor Associated Macrophages in Diffuse Large B Cell Lymphoma. DNA Cell Biol 2018; 37:947-952. [PMID: 30403536 DOI: 10.1089/dna.2018.4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tumor associated microenvironment is known to play a vital role during the development and progression of different malignant tumors. As a part of tumor microenvironment, tumor associated macrophages (TAMs) are crucial for the genesis, proliferation, metastasis, and survival of tumor cells. Recently, more and more studies showed that TAMs were related with poor clinical status and survival in patients with diffuse large B cell lymphoma (DLBCL). Considering the complex roles which TAMs play in the tumor microenvironment of DLBCL, the aim of this study was to review the biological mechanisms between TAMs and DLBCL cells, including extracellular matrix remodeling and angiogenesis promotion, tumor promotion, immune suppression, and phagocytosis inhibition. This review will help us to further understand the comprehensive impact of TAMs on DLBCL and explore possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
228
|
Qiu SQ, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schröder CP. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev 2018; 70:178-189. [PMID: 30227299 DOI: 10.1016/j.ctrv.2018.08.010] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023]
Abstract
Tumor-associated macrophages (TAMs) are important tumor-promoting cells in the breast tumor microenvironment. Preclinically TAMs stimulate breast tumor progression, including tumor cell growth, invasion and metastasis. TAMs also induce resistance to multiple types of treatment in breast cancer models. The underlying mechanisms include: induction and maintenance of tumor-promoting phenotype in TAMs, inhibition of CD8+ T cell function, degradation of extracellular matrix, stimulation of angiogenesis and inhibition of phagocytosis. Several studies reported that high TAM infiltration of breast tumors is correlated with a worse patient prognosis. Based on these findings, macrophage-targeted treatment strategies have been developed and are currently being evaluated in clinical breast cancer trials. These strategies include: inhibition of macrophage recruitment, repolarization of TAMs to an antitumor phenotype, and enhancement of macrophage-mediated tumor cell killing or phagocytosis. This review summarizes the functional aspects of TAMs and the rationale and current evidence for TAMs as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Si-Qi Qiu
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; The Breast Center, Cancer Hospital of Shantou University Medical College, Raoping 7, 515041 Shantou, China
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Mieke C Zwager
- Department of Pathology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
229
|
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D, Anwer F. Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev 2018; 32:480-489. [PMID: 29709247 PMCID: PMC6186508 DOI: 10.1016/j.blre.2018.04.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/17/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023]
Abstract
Hematological malignancies express high levels of CD47 as a mechanism of immune evasion. CD47-SIRPα triggers a cascade of events that inhibit phagocytosis. Preclinical research supports several models of antibody-mediated blockade of CD47-SIRPα resulting in cell death signaling, phagocytosis of cells bearing stress signals, and priming of tumor-specific T cell responses. Four different antibody molecules designed to target the CD47-SIRPα interaction in malignancy are currently being studied in clinical trials: Hu5F9-G4, CC-90002, TTI-621, and ALX-148. Hu5F9-G4, a humanized anti-CD47 blocking antibody is currently being studied in four different Phase I trials. These studies may lay the groundwork for therapeutic bispecific antibodies. Bispecific antibody (CD20-CD47SL) fusion of anti-CD20 (Rituximab) and anti-CD47 also demonstrated a synergistic effect against lymphoma in preclinical models. This review summarizes the large body of preclinical evidence and emerging clinical data supporting the use of antibodies designed to target the CD47-SIRPα interaction in leukemia, lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Atlantis Russ
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Anh B Hua
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA.
| | | | - Bushra Rahman
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Irbaz Bin Riaz
- Department of Medicine, Hematology Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Muhammad Umar Khalid
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Jennifer S Carew
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Steffan T Nawrocki
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Daniel Persky
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Faiz Anwer
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
230
|
Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, Mina L, Dragovich T, Gimbel M, Mahmoud F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 2018; 11:7095-7107. [PMID: 30410366 PMCID: PMC6200076 DOI: 10.2147/ott.s182721] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Approximately 50% of melanomas harbor an activating BRAF mutation. Combined BRAF and MEK inhibitors such as dabrafenib and trametinib, vemurafenib and cobimetinib, and encorafenib and binimetinib are US Food and Drug Administration (FDA)-approved to treat patients with BRAFV600-mutated advanced melanoma. Both genetic and epigenetic alterations play a major role in resistance to BRAF inhibitors by reactivation of the MAPK and/or the PI3K–Akt pathways. The role of BRAF inhibitors in modulating the immunomicroenvironment and perhaps enhancing the efficacy of checkpoint inhibitors is gaining interest. This article provides a comprehensive review of mechanisms of resistance to BRAF and MEK inhibitors in melanoma and summarizes landmark trials that led to the FDA approval of BRAF and MEK inhibitors in metastatic melanoma.
Collapse
Affiliation(s)
- Sunilkumar Kakadia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naveen Yarlagadda
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramez Awad
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Madappa Kundranda
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Jiaxin Niu
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Boris Naraev
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Lida Mina
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Tomislav Dragovich
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Mark Gimbel
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Fade Mahmoud
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| |
Collapse
|
231
|
Clappaert EJ, Murgaski A, Van Damme H, Kiss M, Laoui D. Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy. Front Immunol 2018; 9:2250. [PMID: 30349530 PMCID: PMC6186813 DOI: 10.3389/fimmu.2018.02250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Therapeutic approaches that engage immune cells to treat cancer are becoming increasingly utilized in the clinics and demonstrated durable clinical benefit in several solid tumor types. Most of the current immunotherapies focus on manipulating T cells, however, the tumor microenvironment (TME) is abundantly infiltrated by a heterogeneous population of tumor-associated myeloid cells, including tumor-associated macrophages (TAMs), tumor-associated dendritic cells (TADCs), tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). Educated by signals perceived in the TME, these cells often acquire tumor-promoting properties ultimately favoring disease progression. Upon appropriate stimuli, myeloid cells can exhibit cytoxic, phagocytic, and antigen-presenting activities thereby bolstering antitumor immune responses. Thus, depletion, reprogramming or reactivation of myeloid cells to either directly eradicate malignant cells or promote antitumor T-cell responses is an emerging field of interest. In this review, we briefly discuss the tumor-promoting and tumor-suppressive roles of myeloid cells in the TME, and describe potential therapeutic strategies in preclinical and clinical development that aim to target them to further expand the range of current treatment options.
Collapse
Affiliation(s)
- Emile J. Clappaert
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aleksandar Murgaski
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mate Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
232
|
Abstract
Within the course of a single minute, millions of cells in the human body will undergo programmed cell death in response to physiological or pathological cues. The diminished energetic capacity of an apoptotic cell renders the cell incapable of sustaining plasma membrane integrity. Under these circumstances, intracellular contents that might leak into the surrounding tissue microenvironment, a process referred to as secondary necrosis, could induce inflammation and tissue damage. Remarkably, in most cases of physiologically rendered apoptotic cell death, inflammation is avoided because a mechanism to swiftly remove apoptotic cells from the tissue prior to their secondary necrosis becomes activated. This mechanism, referred to as efferocytosis, uses phagocytes to precisely identify and engulf neighboring apoptotic cells. In doing so, efferocytosis mantains tissue homeostasis that would otherwise be disrupted by normal cellular turnover and exacerbated further when the burden of apoptotic cells becomes elevated due to disease or insult. Efferocytosis also supports the resolution of inflammation, restoring tissue homesostasis. The importance of efferocytosis in health and disease underlies the increasing research efforts to understand the mechanisms by which efferocytosis occurs, and how a failure in the efferocytic machinery contributes to diseases, or conversely, how cancers effectively use the existing efferocytic machinery to generate a tumor-tolerant, immunosuppressive tumor microenvironment. We discuss herein the molecular mechanisms of efferocytosis, how the process of efferocytosis might support a tumor ‘wound healing’ phenotype, and efforts to target efferocytosis as an adjunct to existing tumor treatments.
Collapse
|
233
|
Kauder SE, Kuo TC, Harrabi O, Chen A, Sangalang E, Doyle L, Rocha SS, Bollini S, Han B, Sim J, Pons J, Wan HI. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS One 2018; 13:e0201832. [PMID: 30133535 PMCID: PMC6104973 DOI: 10.1371/journal.pone.0201832] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
CD47 is a widely expressed cell surface protein that functions as an immune checkpoint in cancer. When expressed by tumor cells, CD47 can bind SIRPα on myeloid cells, leading to suppression of tumor cell phagocytosis and other innate immune functions. CD47-SIRPα signaling has also been implicated in the suppression of adaptive antitumor responses, but the relevant cellular functions have yet to be elucidated. Therapeutic blockade of the CD47 pathway may stimulate antitumor immunity and improve cancer therapy. To this end, a novel CD47-blocking molecule, ALX148, was generated by fusing a modified SIRPα D1 domain to an inactive human IgG1 Fc. ALX148 binds CD47 from multiple species with high affinity, inhibits wild type SIRPα binding, and enhances phagocytosis of tumor cells by macrophages. ALX148 has no effect on normal human blood cells in vitro or on blood cell parameters in rodent and non-human primate studies. Across several murine tumor xenograft models, ALX148 enhanced the antitumor activity of different targeted antitumor antibodies. Additionally, ALX148 enhanced the antitumor activity of multiple immunotherapeutic antibodies in syngeneic tumor models. These studies revealed that CD47 blockade with ALX148 induces multiple responses that bridge innate and adaptive immunity. ALX148 stimulates antitumor properties of innate immune cells by promoting dendritic cell activation, macrophage phagocytosis, and a shift of tumor-associated macrophages toward an inflammatory phenotype. ALX148 also stimulated the antitumor properties of adaptive immune cells, causing increased T cell effector function, pro-inflammatory cytokine production, and a reduction in the number of suppressive cells within the tumor microenvironment. Taken together, these results show that ALX148 binds and blocks CD47 with high affinity, induces a broad antitumor immune response, and has a favorable safety profile.
Collapse
Affiliation(s)
| | - Tracy C. Kuo
- ALX Oncology, Burlingame, CA, United States of America
| | - Ons Harrabi
- ALX Oncology, Burlingame, CA, United States of America
| | - Amy Chen
- ALX Oncology, Burlingame, CA, United States of America
| | | | - Laura Doyle
- ALX Oncology, Burlingame, CA, United States of America
| | - Sony S. Rocha
- ALX Oncology, Burlingame, CA, United States of America
| | | | - Bora Han
- ALX Oncology, Burlingame, CA, United States of America
| | - Janet Sim
- ALX Oncology, Burlingame, CA, United States of America
| | - Jaume Pons
- ALX Oncology, Burlingame, CA, United States of America
| | - Hong I. Wan
- ALX Oncology, Burlingame, CA, United States of America
| |
Collapse
|
234
|
Feng M, Marjon KD, Zhu F, Weissman-Tsukamoto R, Levett A, Sullivan K, Kao KS, Markovic M, Bump PA, Jackson HM, Choi TS, Chen J, Banuelos AM, Liu J, Gip P, Cheng L, Wang D, Weissman IL. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun 2018; 9:3194. [PMID: 30097573 PMCID: PMC6086865 DOI: 10.1038/s41467-018-05211-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
Macrophage-mediated programmed cell removal (PrCR) is a process essential for the clearance of unwanted (damaged, dysfunctional, aged, or harmful) cells. The detection and recognition of appropriate target cells by macrophages is a critical step for successful PrCR, but its molecular mechanisms have not been delineated. Here using the models of tissue turnover, cancer immunosurveillance, and hematopoietic stem cells, we show that unwanted cells such as aging neutrophils and living cancer cells are susceptible to "labeling" by secreted calreticulin (CRT) from macrophages, enabling their clearance through PrCR. Importantly, we identified asialoglycans on the target cells to which CRT binds to regulate PrCR, and the availability of such CRT-binding sites on cancer cells correlated with the prognosis of patients in various malignancies. Our study reveals a general mechanism of target cell recognition by macrophages, which is the key for the removal of unwanted cells by PrCR in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Mingye Feng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Fangfang Zhu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Rachel Weissman-Tsukamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Levett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Katie Sullivan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Maxim Markovic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Bump
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Hannah M Jackson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Timothy S Choi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Allison M Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Phung Gip
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Denong Wang
- SRI International, Menlo Park, CA, 94025, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
235
|
Murata Y, Saito Y, Kotani T, Matozaki T. CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Sci 2018; 109:2349-2357. [PMID: 29873856 PMCID: PMC6113446 DOI: 10.1111/cas.13663] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022] Open
Abstract
Tumor cells evade immune surveillance through direct or indirect interactions with various types of immune cell, with much recent attention being focused on modifying immune cell responses as the basis for the development of new cancer treatments. Signal regulatory protein α (SIRPα) and CD47 are both transmembrane proteins that interact with each other and constitute a cell-cell communication system. SIRPα is particularly abundant in myeloid cells such as macrophages and dendritic cells, whereas CD47 is expressed ubiquitously and its expression level is elevated in cancer cells. Recent studies have shown that blockade of CD47-SIRPα interaction enhances the phagocytic activity of phagocytes such as macrophages toward tumor cells in vitro as well as resulting in the efficient eradication of tumor cells in a variety of xenograft or syngeneic mouse models of cancer. Moreover, CD47 blockade has been shown to promote the stimulation of tumor-specific cytotoxic T cells by macrophages or dendritic cells. Biological agents, such as Abs and recombinant proteins, that target human CD47 or SIRPα have been developed and are being tested in preclinical models of human cancer or in clinical trials with cancer patients. Preclinical studies have also suggested that CD47 or SIRPα blockade may have a synergistic antitumor effect in combination with immune checkpoint inhibitors that target the adaptive immune system. Targeting of the CD47-SIRPα signaling system is thus a promising strategy for cancer treatment based on modulation of both innate and acquired immune responses to tumor cells.
Collapse
Affiliation(s)
- Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
236
|
Wu J, Wu H, An J, Ballantyne CM, Cyster JG. Critical role of integrin CD11c in splenic dendritic cell capture of missing-self CD47 cells to induce adaptive immunity. Proc Natl Acad Sci U S A 2018; 115:6786-6791. [PMID: 29891680 PMCID: PMC6042080 DOI: 10.1073/pnas.1805542115] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD11c, also known as integrin alpha X, is the most widely used defining marker for dendritic cells (DCs). CD11c can bind complement iC3b and mediate phagocytosis in vitro, for which it is also referred to as complement receptor 4. However, the functions of this prominent marker protein in DCs, especially in vivo, remain poorly defined. Here, in the process of studying DC activation and immune responses induced by cells lacking self-CD47, we found that DC capture of CD47-deficient cells and DC activation was dependent on the integrin-signaling adaptor Talin1. Specifically, CD11c and its partner Itgb2 were required for DC capture of CD47-deficient cells. CD11b was not necessary for this process but could partially compensate in the absence of CD11c. Mice with DCs lacking Talin1, Itgb2, or CD11c were defective in supporting T-cell proliferation and differentiation induced by CD47-deficient cell associated antigen. These findings establish a critical role for CD11c in DC antigen uptake and activation in vivo. They may also contribute to understanding the functional mechanism of CD47-blockade therapies.
Collapse
Affiliation(s)
- Jiaxi Wu
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Jinping An
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX 77030
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| |
Collapse
|
237
|
Yu XY, Qiu WY, Long F, Yang XP, Zhang C, Xu L, Chang HY, Du P, Hou XJ, Yu YZ, Zeng DD, Wang S, Sun ZW. A novel fully human anti-CD47 antibody as a potential therapy for human neoplasms with good safety. Biochimie 2018; 151:54-66. [PMID: 29864508 DOI: 10.1016/j.biochi.2018.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
Strategies for targeting CD47 are becoming a hot spot of cancer immunotherapy. However the ubiquitous expression of CD47, especially on the RBC, makes the targeted therapy facing safety risk issues. So, how to balance the safety and efficacy during CD47 inhibition is currently a major question. We had reported an anti-CD47 antibody ZF1 with potent anti-tumor effect. In this study, we further developed and assessed a novel fully human anti-CD47 antibody, AMMS4-G4, derived from ZF1 using affinity maturation. AMMS4-G4 exhibited equivalent anticancer effects with Hu5F9-G4, a humanized anti-CD47 antibody in clinical trial, on the potential of inducing significant phagocytosis of tumor cells in vitro and prolonging the survival of leukemia xenografted mice. Additionally, AMMS4-G4 significantly inhibited the growth of grafted solid tumors by enhancing macrophage infiltration and modestly enhanced the anti-tumor activity of opsonizing antibody and antiangiogenic therapy. In cynomolgus monkeys, AMMS4-G4 was safely administered, was well tolerated at doses of 30 and 60 mg/kg, and did not produce serious adverse events, except for the reversible anemia, which was observed after 3 days and started to recover from 9 days later. Remarkably, it was proved by in vitro assay that Hu5F9-G4 induced RBC hemagglutination which wasn't observed in AMMS4-G4. On the whole, AMMS4-G4 was demonstrated to be a promising candidate with great potential and safe profile for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiao-Yan Yu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Wei-Yi Qiu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Feng Long
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zaozhuang, 25 Wenhua East Road, Zaozhuang, 277100, China.
| | - Xiao-Peng Yang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Chang Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Lei Xu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Hong-Yan Chang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Peng Du
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Xiao-Juan Hou
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Da-di Zeng
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Shuang Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Zhi-Wei Sun
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
238
|
Buatois V, Johnson Z, Salgado-Pires S, Papaioannou A, Hatterer E, Chauchet X, Richard F, Barba L, Daubeuf B, Cons L, Broyer L, D'Asaro M, Matthes T, LeGallou S, Fest T, Tarte K, Clarke Hinojosa RK, Genescà Ferrer E, Ribera JM, Dey A, Bailey K, Fielding AK, Eissenberg L, Ritchey J, Rettig M, DiPersio JF, Kosco-Vilbois MH, Masternak K, Fischer N, Shang L, Ferlin WG. Preclinical Development of a Bispecific Antibody that Safely and Effectively Targets CD19 and CD47 for the Treatment of B-Cell Lymphoma and Leukemia. Mol Cancer Ther 2018; 17:1739-1751. [PMID: 29743205 DOI: 10.1158/1535-7163.mct-17-1095] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/15/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022]
Abstract
CD47, an ubiquitously expressed innate immune checkpoint receptor that serves as a universal "don't eat me" signal of phagocytosis, is often upregulated by hematologic and solid cancers to evade immune surveillance. Development of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hemotoxicity including anemia. To overcome such liabilities, we have developed a fully human bispecific antibody, NI-1701, designed to coengage CD47 and CD19 selectively on B cells. NI-1701 demonstrates favorable elimination kinetics with no deleterious effects seen on hematologic parameters following single or multiple administrations to nonhuman primates. Potent in vitro and in vivo activity is induced by NI-1701 to kill cancer cells across a plethora of B-cell malignancies and control tumor growth in xenograft mouse models. The mechanism affording maximal tumor growth inhibition by NI-1701 is dependent on the coengagement of CD47/CD19 on B cells inducing potent antibody-dependent cellular phagocytosis of the targeted cells. NI-1701-induced control of tumor growth in immunodeficient NOD/SCID mice was more effective than that achieved with the anti-CD20 targeted antibody, rituximab. Interestingly, a synergistic effect was seen when tumor-implanted mice were coadministered NI-1701 and rituximab leading to significantly improved tumor growth inhibition and regression in some animals. We describe herein, a novel bispecific antibody approach aimed at sensitizing B cells to become more readily phagocytosed and eliminated thus offering an alternative or adjunct therapeutic option to patients with B-cell malignancies refractory/resistant to anti-CD20-targeted therapy. Mol Cancer Ther; 17(8); 1739-51. ©2018 AACR.
Collapse
Affiliation(s)
| | - Zoë Johnson
- Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | | | | | | | | | | | | | - Laura Cons
- Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | | | - Thomas Matthes
- Medical Faculty, University of Geneva, Genève, Switzerland
| | | | - Thierry Fest
- Rennes 1 University, Inserm U1236, Rennes, France
| | - Karin Tarte
- Rennes 1 University, Inserm U1236, Rennes, France
| | - Robert K Clarke Hinojosa
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias Pujol, Badalona, Barcelona, Spain
| | - Eulàlia Genescà Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias Pujol, Badalona, Barcelona, Spain
| | - José María Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias Pujol, Badalona, Barcelona, Spain
| | - Aditi Dey
- Paul O'Gorman Building, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Katharine Bailey
- Paul O'Gorman Building, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Adele K Fielding
- Paul O'Gorman Building, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Linda Eissenberg
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Julie Ritchey
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Rettig
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | - Limin Shang
- Novimmune S.A., Plan-les-Ouates, Switzerland
| | | |
Collapse
|
239
|
Masuda J, Shigehiro T, Matsumoto T, Satoh A, Mizutani A, Umemura C, Saito S, Kijihira M, Takayama E, Seno A, Murakami H, Seno M. Cytokine Expression and Macrophage Localization in Xenograft and Allograft Tumor Models Stimulated with Lipopolysaccharide. Int J Mol Sci 2018; 19:ijms19041261. [PMID: 29690614 PMCID: PMC5979423 DOI: 10.3390/ijms19041261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
T cell-deficient mice such as nude mice are often used to generate tumor xenograft for the development of anticancer agents. However, the functionality of the other immune cells including macrophages, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs) in the xenograft are largely unknown. Macrophages and dendritic cells (DCs) acquire functionally distinct properties in response to various environmental stimuli; the interaction of these cells with MDSCs in tumor microenvironments regulates cancer progression. Nude mice are less likely to reject human cancer cells because of major histocompatibility complex (MHC) mismatches. The tumor microenvironment in a xenograft, comprising human and mouse cells, exhibits more complex bidirectional signaling and function than that of allograft. Here, we evaluated the differences of myeloid cells between them. Plasma interferon-γ and interleukin-18 concentrations in the xenograft tumor model after lipopolysaccharide (LPS) administration were significantly higher than those in the allograft tumor model. MHC class I, II, and CD80 expression levels were increased in CD11b+ and MDSC populations after LPS administration in the spleen of a xenograft tumor model but not in that of an allograft tumor model. Additionally, the number of CD80- and mannose receptor C type 1 (MRC1)-expressing cells was decreased upon LPS administration in the tumor of the xenograft tumor. These results suggest that functions of macrophages and DCs are sustained in the xenograft, whereas their functions in response to LPS were suppressed in the allograft. The findings will encourage the consideration of the effects of myeloid cells in the xenograft for drug development.
Collapse
Affiliation(s)
- Junko Masuda
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Tsukasa Shigehiro
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Takuma Matsumoto
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Ayano Satoh
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Akifumi Mizutani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Chiho Umemura
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Shoki Saito
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Mayumi Kijihira
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan.
| | - Eiji Takayama
- Department of Oral Biochemistry, School of Dentistry, Asahi University, Gifu 501-0223, Japan.
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Hiroshi Murakami
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
240
|
Cho E, Nam GH, Hong Y, Kim YK, Kim DH, Yang Y, Kim IS. Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J Control Release 2018; 279:326-335. [PMID: 29679665 DOI: 10.1016/j.jconrel.2018.04.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022]
Abstract
Exosomes are small membrane vesicles secreted by most cell types that play an important role in intercellular communication. Due to the characteristic of transferring their biomacromolecules, exosomes have potential as a new alternative for delivering protein therapeutics. Here, we investigate whether exosomes provide crucial advantages over other nanoparticles, in particular protein nanocage formulations, as a delivery system for membrane protein therapeutics. We characterized membrane-scaffold-based exosomes and protein-scaffold-based ferritin nanocages, both harboring SIRPα (signal regulatory protein α), an antagonist of CD47 on tumor cells. The efficacy of these two systems in delivering protein therapeutics was compared by testing their ability to enhance phagocytosis of tumor cells by bone-marrow-derived macrophages and subsequent inhibition of in vivo tumor growth. These analyses allowed us to comprehensively conclude that the therapeutic index of exosome-mediated CD47 blockade against tumor growth inhibition was higher than that of the same dose of ferritin-SIRPα. The results of this analysis reveal the importance of the unique characteristics of exosomes, in particular their membrane scaffold, in improving therapeutic protein delivery compared with protein-scaffold-based nanocages.
Collapse
Affiliation(s)
- Eunji Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoon Kyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
241
|
Liu R, Wei H, Gao P, Yu H, Wang K, Fu Z, Ju B, Zhao M, Dong S, Li Z, He Y, Huang Y, Yao Z. CD47 promotes ovarian cancer progression by inhibiting macrophage phagocytosis. Oncotarget 2018; 8:39021-39032. [PMID: 28380460 PMCID: PMC5503592 DOI: 10.18632/oncotarget.16547] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Targeting CD47 efficiently enhances macrophage phagocytosis in both physiological and pathological conditions. Anti-CD47 antibodies have been shown to inhibit the progression of several types of cancer. However, the mechanism of anti-CD47 monoclonal antibody (mAb) treatment remains controversial. In this study, we confirmed that CD47 protein is highly expressed in ovarian cancer, and is correlated with poor clinical characteristics and prognosis. CD47 knockdown in the ovarian cancer cell line, SK-OV-3, promoted phagocytosis by macrophages in vitro and inhibited tumor growth in vivo. These data combined suggest that CD47 inhibition is a potential strategy for cancer treatment. Using an anti-CD47 mAb, we found that CD47 inhibition in both SK-OV-3 cells and primary cancer cells was able to recapitulate our knockdown results and led to an increase in the number of infiltrating macrophages. In addition, the CD133+ tumor initiating cells expressed a high level of CD47, and anti-CD47 mAb treatment was able to trigger the phagocytosis of this cell population. In conclusion, our results indicate that CD47 inhibits macrophage phagocytosis of ovarian cancer cells, and down-regulation of CD47 or inhibiting CD47 by mAb was able to reverse the negative effect. Thus, CD47 antibody therapy may be a promising strategy to treat ovarian cancer.
Collapse
Affiliation(s)
- Ran Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Huiting Wei
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300071, China
| | - Peng Gao
- University of the District of Columbia, Washington D.C., 20008, United States
| | - Hu Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300040, China
| | - Ke Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300040, China
| | - Zheng Fu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300071, China
| | - Baohui Ju
- Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Meng Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300040, China
| | - Shangwen Dong
- Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhijun Li
- Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yifeng He
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai, 200127, China
| | - Yuting Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300040, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300071, China
| |
Collapse
|
242
|
Tong B, Wang M. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises. Future Oncol 2018; 14:2179-2188. [PMID: 29667847 DOI: 10.2217/fon-2018-0035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, many immunosuppressive checkpoints such as PD-L1, CTLA-4 and CD47, were identified in succession and serve as potential immunotherapy targets in human cancers. Among them, CD47, a 'marker-of-self' protein that is overexpressed broadly across tumor types, is emerging as a novel potent macrophage immune checkpoint for cancer immunotherapy. In this review, we highlight the prominent role of CD47 as a 'don't-eat-me' signal that inhibits macrophage phagocytosis for immune evasion of a tumor and presents the opportunities and challenges for CD47 inhibitors both as monotherapy and in combination treatments for hematological cancers and solid tumors; some of these agents are currently in clinical trials.
Collapse
Affiliation(s)
- Bing Tong
- Lung Cancer Center, Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Postal address: No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, PR China
| | - Mengzhao Wang
- Lung Cancer Center, Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Postal address: No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, PR China
| |
Collapse
|
243
|
Murata Y, Tanaka D, Hazama D, Yanagita T, Saito Y, Kotani T, Oldenborg PA, Matozaki T. Anti-human SIRPα antibody is a new tool for cancer immunotherapy. Cancer Sci 2018; 109:1300-1308. [PMID: 29473266 PMCID: PMC5980332 DOI: 10.1111/cas.13548] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 01/15/2023] Open
Abstract
Interaction of signal regulatory protein α (SIRPα) expressed on the surface of macrophages with its ligand CD47 expressed on target cells negatively regulates phagocytosis of the latter cells by the former. We recently showed that blocking Abs to mouse SIRPα enhanced both the Ab‐dependent cellular phagocytosis (ADCP) activity of mouse macrophages for Burkitt's lymphoma Raji cells opsonized with an Ab to CD20 (rituximab) in vitro as well as the inhibitory effect of rituximab on the growth of tumors formed by Raji cells in nonobese diabetic (NOD)/SCID mice. However, the effects of blocking Abs to human SIRPα in preclinical cancer models have remained unclear given that such Abs have failed to interact with endogenous SIRPα expressed on macrophages of immunodeficient mice. With the use of Rag2−/−γc−/− mice harboring a transgene for human SIRPα under the control of human regulatory elements (hSIRPα‐DKO mice), we here show that a blocking Ab to human SIRPα significantly enhanced the ADCP activity of macrophages derived from these mice for human cancer cells. The anti‐human SIRPα Ab also markedly enhanced the inhibitory effect of rituximab on the growth of tumors formed by Raji cells in hSIRPα‐DKO mice. Our results thus suggest that the combination of Abs to human SIRPα with therapeutic Abs specific for tumor antigens warrants further investigation for potential application to cancer immunotherapy. In addition, humanized mice, such as hSIRPα‐DKO mice, should prove useful for validation of the antitumor effects of checkpoint inhibitors before testing in clinical trials.
Collapse
Affiliation(s)
- Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Tanaka
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Hazama
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadahiko Yanagita
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
244
|
Yang Y, Guo R, Chen Q, Liu Y, Zhang P, Zhang Z, Chen X, Wang T. A novel bispecific antibody fusion protein co-targeting EGFR and CD47 with enhanced therapeutic index. Biotechnol Lett 2018; 40:789-795. [PMID: 29600425 DOI: 10.1007/s10529-018-2535-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To promote targeting specificity of anti-CD47 agents, we have constructed a novel bispecific antibody fusion protein against EGFR and CD47, which may minimize the "off-target" effects caused by CD47 expression on red blood cells. RESULTS The novel bispecific antibody fusion protein, denoted as Bi-SP could simultaneously bind to EGFR and CD47 and exhibited potent phagocytosis-stimulation effects in vitro. Bi-SP treatment with a low dose more effectively inhibited tumor growth than either EGFR-targeting antibody, Pan or the SIRPα variant-Fc (SIRPαV-Fc) in the A431 xenograft tumor model. In addition, the treatment with Bi-SP produced less red blood cell (RBC) losses than the SIRPαV-Fc treatment, suggesting its potential use for minimizing RBC toxicity in therapy. CONCLUSIONS Bi-SP with improved therapeutic index has the potential to treat CD47+ and EGFR+ cancers in clinics.
Collapse
Affiliation(s)
- Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Rui Guo
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Qi Chen
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Pengfei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Ziheng Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Xi Chen
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tianyun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China.
| |
Collapse
|
245
|
Yang Y, Hong Y, Cho E, Kim GB, Kim IS. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Vesicles 2018; 7:1440131. [PMID: 29535849 PMCID: PMC5844050 DOI: 10.1080/20013078.2018.1440131] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/07/2018] [Indexed: 02/08/2023] Open
Abstract
Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division for Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Eunji Cho
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
246
|
McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, Erlandson SC, Hilger D, Rasmussen SGF, Ring AM, Manglik A, Kruse AC. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 2018; 25:289-296. [PMID: 29434346 PMCID: PMC5839991 DOI: 10.1038/s41594-018-0028-6] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023]
Abstract
Camelid single-domain antibody fragments ('nanobodies') provide the remarkable specificity of antibodies within a single 15-kDa immunoglobulin VHH domain. This unique feature has enabled applications ranging from use as biochemical tools to therapeutic agents. Nanobodies have emerged as especially useful tools in protein structural biology, facilitating studies of conformationally dynamic proteins such as G-protein-coupled receptors (GPCRs). Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we report a fully in vitro platform for nanobody discovery based on yeast surface display. We provide a blueprint for identifying nanobodies, demonstrate the utility of the library by crystallizing a nanobody with its antigen, and most importantly, we utilize the platform to discover conformationally selective nanobodies to two distinct human GPCRs. To facilitate broad deployment of this platform, the library and associated protocols are freely available for nonprofit research.
Collapse
Affiliation(s)
- Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexander S Baier
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberta Pascolutti
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marcin Wegrecki
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sanduo Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Janice X Ong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | | | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
247
|
Lee EJ, Nam GH, Lee NK, Kih M, Koh E, Kim YK, Hong Y, Kim S, Park SY, Jeong C, Yang Y, Kim IS. Nanocage-Therapeutics Prevailing Phagocytosis and Immunogenic Cell Death Awakens Immunity against Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705581. [PMID: 29333661 DOI: 10.1002/adma.201705581] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/18/2017] [Indexed: 06/07/2023]
Abstract
A growing appreciation of the relationship between the immune system and the tumorigenesis has led to the development of strategies aimed at "re-editing" the immune system to kill tumors. Here, a novel tactic is reported for overcoming the activation-energy threshold of the immunosuppressive tumor microenvironment and mediating the delivery and presentation of tumor neoantigens to the host's immune system. This nature-derived nanocage not only efficiently presents ligands that enhance cancer cell phagocytosis, but also delivers drugs that induce immunogenic cancer cell death. The designed nanocage-therapeutics induce the release of neoantigens and danger signals in dying tumor cells, and leads to enhancement of tumor cell phagocytosis and cross-priming of tumor specific T cells by neoantigen peptide-loaded antigen-presenting cells. Potent inhibition of tumor growth and complete eradication of tumors is observed through systemic tumor-specific T cell responses in tumor draining lymph nodes and the spleen and further, infiltration of CD8+ T cells into the tumor site. Remarkably, after removal of the primary tumor, all mice treated with this nanocage-therapeutics are protected against subsequent challenge with the same tumor cells, suggesting development of lasting, tumor-specific responses. This designed nanocage-therapeutics "awakens" the host's immune system and provokes a durable systemic immune response against cancer.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Na Kyeong Lee
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoo Kih
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunee Koh
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Kyoung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Cherlhyun Jeong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
248
|
Zeng D, Sun Q, Chen A, Fan J, Yang X, Xu L, Du P, Qiu W, Zhang W, Wang S, Sun Z. A fully human anti-CD47 blocking antibody with therapeutic potential for cancer. Oncotarget 2018; 7:83040-83050. [PMID: 27863402 PMCID: PMC5347751 DOI: 10.18632/oncotarget.13349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023] Open
Abstract
CD47/SIRPα interaction serves as an immune checkpoint for macrophage-mediated phagocytosis. Mouse anti-CD47 blocking antibodies had demonstrated potent efficacy in the treatment of both leukemic and solid tumors in preclinical experimentations, and therefore had moved forward rapidly into clinical trials. However, a fully human blocking antibody, which meets clinical purpose better, has not been reported for CD47 up to date. In this study, we reported the isolation of a fully human anti-CD47 blocking antibody, ZF1, from a phage display library. ZF1 displayed high specificity and affinity for CD47 protein, which were comparable to those for humanized anti-CD47 blocking antibody B6H12. Importantly, ZF1 treatment could induce robust, or even stronger than B6H12, phagocytosis of leukemic cancer cells by macrophage in vitro, and protect BALB/c nude mice from cancer killing by engrafted leukemic cells (CCRF and U937) to a similar extent as B6H12 did. Thus, these data provide primary early pre-clinical support for the development of ZF1 as a fully human blocking antibody to treat human leukemia by targeting CD47 molecule.
Collapse
Affiliation(s)
- Dadi Zeng
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Ang Chen
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Jiangfeng Fan
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Xiaopeng Yang
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Lei Xu
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Peng Du
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Weiyi Qiu
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Weicai Zhang
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Shuang Wang
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| | - Zhiwei Sun
- Beijing Institute of Biotechnology, Fengtai District, Beijing 100071, China
| |
Collapse
|
249
|
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
250
|
Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G, Farkas ME, Rotello VM. CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjug Chem 2018; 29:445-450. [PMID: 29298051 DOI: 10.1021/acs.bioconjchem.7b00768] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present here an integrated nanotechnology/biology strategy for cancer immunotherapy that uses arginine nanoparticles (ArgNPs) to deliver CRISPR-Cas9 gene editing machinery into cells to generate SIRP-α knockout macrophages. The NP system efficiently codelivers single guide RNA (sgRNA) and Cas9 protein required for editing to knock out the "don't eat me signal" in macrophages that prevents phagocytosis of cancer cells. Turning off this signal increased the innate phagocytic capabilities of the macrophages by 4-fold. This improved attack and elimination of cancer cells makes this strategy promising for the creation of "weaponized" macrophages for cancer immunotherapy.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Gulen Yeşilbag Tonga
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|