201
|
Madalan A, Yang X, Ferris J, Zhang S, Roman G. G(o) activation is required for both appetitive and aversive memory acquisition in Drosophila. Learn Mem 2011; 19:26-34. [PMID: 22190729 DOI: 10.1101/lm.024802.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in Drosophila. G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory memory. We demonstrate here that the induction of PTX within the α/β and γ lobe MB neurons leads to impaired memory acquisition without affecting memory stability. The induction of PTX within these MB neurons also leads to a significant defect in an optimized positively reinforced short-term memory paradigm; however, this PTX-induced learning deficit is noticeably less severe than found with the negatively reinforced paradigm. Both negatively and positively reinforced memory phenotypes are rescued by the constitutive expression of G(o)α transgenes bearing the Cys(351)Ile mutation. Since this mutation renders the G(o) molecule insensitive to PTX, the results isolate the effect of PTX on both forms of olfactory associative learning to the inhibition of the G(o) activation.
Collapse
Affiliation(s)
- Adrian Madalan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | | | | | |
Collapse
|
202
|
Shuai Y, Hu Y, Qin H, Campbell RAA, Zhong Y. Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proc Natl Acad Sci U S A 2011; 108:20201-6. [PMID: 22123966 PMCID: PMC3250181 DOI: 10.1073/pnas.1107489109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory "sensory buffer" that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events.
Collapse
Affiliation(s)
- Yichun Shuai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ying Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongtao Qin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
| | | | - Yi Zhong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
203
|
The hector G-protein coupled receptor is required in a subset of fruitless neurons for male courtship behavior. PLoS One 2011; 6:e28269. [PMID: 22140564 PMCID: PMC3227663 DOI: 10.1371/journal.pone.0028269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Male courtship behavior in Drosophila melanogaster is controlled by two main regulators, fruitless (fru) and doublesex (dsx). Their sex-specific expression in brain neurons has been characterized in detail, but little is known about the downstream targets of the sex-specific FRU and DSX proteins and how they specify the function of these neurons. While sexual dimorphism in the number and connections of fru and dsx expressing neurons has been observed, a majority of the neurons that express the two regulators are present in both sexes. This poses the question which molecules define the sex-specific function of these neurons. Signaling molecules are likely to play a significant role. We have identified a predicted G-protein coupled receptor (GPCR), CG4395, that is required for male courtship behavior. The courtship defect in the mutants can be rescued by expression of the wildtype protein in fru neurons of adult males. The GPCR is expressed in a subset of fru-positive antennal glomeruli that have previously been shown to be essential for male courtship. Expression of 4395-RNAi in GH146 projection neurons lowers courtship. This suggests that signaling through the CG4395 GPCR in this subset of fru neurons is critical for male courtship behavior.
Collapse
|
204
|
Tomosyn-dependent regulation of synaptic transmission is required for a late phase of associative odor memory. Proc Natl Acad Sci U S A 2011; 108:18482-7. [PMID: 22042858 DOI: 10.1073/pnas.1110184108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicle secretion requires the assembly of fusogenic SNARE complexes. Consequently proteins that regulate SNARE complex formation can significantly impact synaptic strength. The SNARE binding protein tomosyn has been shown to potently inhibit exocytosis by sequestering SNARE proteins in nonfusogenic complexes. The tomosyn-SNARE interaction is regulated by protein kinase A (PKA), an enzyme implicated in learning and memory, suggesting tomosyn could be an important effector in PKA-dependent synaptic plasticity. We tested this hypothesis in Drosophila, in which the role of the PKA pathway in associative learning has been well established. We first determined that panneuronal tomosyn knockdown by RNAi enhanced synaptic strength at the Drosophila larval neuromuscular junction, by increasing the evoked response duration. We next assayed memory performance 3 min (early memory) and 3 h (late memory) after aversive olfactory learning. Whereas early memory was unaffected by tomosyn knockdown, late memory was reduced by 50%. Late memory is a composite of stable and labile components. Further analysis determined that tomosyn was specifically required for the anesthesia-sensitive, labile component, previously shown to require cAMP signaling via PKA in mushroom bodies. Together these data indicate that tomosyn has a conserved role in the regulation of synaptic transmission and provide behavioral evidence that tomosyn is involved in a specific component of late associative memory.
Collapse
|
205
|
Trannoy S, Redt-Clouet C, Dura JM, Preat T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr Biol 2011; 21:1647-53. [PMID: 21962716 DOI: 10.1016/j.cub.2011.08.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 11/26/2022]
Abstract
It is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1-5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11-14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel.
Collapse
Affiliation(s)
- Séverine Trannoy
- Genes and Dynamics of Memory Systems Group, Neurobiology Unit, CNRS, ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| | | | | | | |
Collapse
|
206
|
Abstract
Plastic changes at the presynaptic sites of the mushroom body (MB) principal neurons called Kenyon cells (KCs) are considered to represent a neuronal substrate underlying olfactory learning and memory. It is generally believed that presynaptic and postsynaptic sites of KCs are spatially segregated. In the MB calyx, KCs receive olfactory input from projection neurons (PNs) on their dendrites. Their presynaptic sites, however, are thought to be restricted to the axonal projections within the MB lobes. Here, we show that KCs also form presynapses along their calycal dendrites, by using novel transgenic tools for visualizing presynaptic active zones and postsynaptic densities. At these presynapses, vesicle release following stimulation could be observed. They reside at a distance from the PN input into the KC dendrites, suggesting that regions of presynaptic and postsynaptic differentiation are segregated along individual KC dendrites. KC presynapses are present in γ-type KCs that support short- and long-term memory in adult flies and larvae. They can also be observed in α/β-type KCs, which are involved in memory retrieval, but not in α'/β'-type KCs, which are implicated in memory acquisition and consolidation. We hypothesize that, as in mammals, recurrent activity loops might operate for memory retrieval in the fly olfactory system. The newly identified KC-derived presynapses in the calyx are, inter alia, candidate sites for the formation of memory traces during olfactory learning.
Collapse
|
207
|
LaFerriere H, Speichinger K, Stromhaug A, Zars T. The radish gene reveals a memory component with variable temporal properties. PLoS One 2011; 6:e24557. [PMID: 21912703 PMCID: PMC3166323 DOI: 10.1371/journal.pone.0024557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 08/14/2011] [Indexed: 11/23/2022] Open
Abstract
Memory phases, dependent on different neural and molecular mechanisms, strongly influence memory performance. Our understanding, however, of how memory phases interact is far from complete. In Drosophila, aversive olfactory learning is thought to progress from short-term through long-term memory phases. Another memory phase termed anesthesia resistant memory, dependent on the radish gene, influences memory hours after aversive olfactory learning. How does the radish-dependent phase influence memory performance in different tasks? It is found that the radish memory component does not scale with the stability of several memory traces, indicating a specific recruitment of this component to influence different memories, even within minutes of learning.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Katherine Speichinger
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Astrid Stromhaug
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
208
|
Neely GG, Keene AC, Duchek P, Chang EC, Wang QP, Aksoy YA, Rosenzweig M, Costigan M, Woolf CJ, Garrity PA, Penninger JM. TrpA1 regulates thermal nociception in Drosophila. PLoS One 2011; 6:e24343. [PMID: 21909389 PMCID: PMC3164203 DOI: 10.1371/journal.pone.0024343] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/09/2011] [Indexed: 01/02/2023] Open
Abstract
Pain is a significant medical concern and represents a major unmet clinical need. The ability to perceive and react to tissue-damaging stimuli is essential in order to maintain bodily integrity in the face of environmental danger. To prevent damage the systems that detect noxious stimuli are therefore under strict evolutionary pressure. We developed a high-throughput behavioral method to identify genes contributing to thermal nociception in the fruit fly and have reported a large-scale screen that identified the Ca2+ channel straightjacket (stj) as a conserved regulator of thermal nociception. Here we present the minimal anatomical and neuronal requirements for Drosophila to avoid noxious heat in our novel behavioral paradigm. Bioinformatics analysis of our whole genome data set revealed 23 genes implicated in Ca2+ signaling that are required for noxious heat avoidance. One of these genes, the conserved thermoreceptor TrpA1, was confirmed as a bona fide “pain” gene in both adult and larval fly nociception paradigms. The nociceptive function of TrpA1 required expression within the Drosophila nervous system, specifically within nociceptive multi-dendritic (MD) sensory neurons. Therefore, our analysis identifies the channel TRPA1 as a conserved regulator of nociception.
Collapse
Affiliation(s)
- G Gregory Neely
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
LaFerriere H, Ostrowski D, Guarnieri DJ, Zars T. The arouser EPS8L3 gene is critical for normal memory in Drosophila. PLoS One 2011; 6:e22867. [PMID: 21818402 PMCID: PMC3144953 DOI: 10.1371/journal.pone.0022867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 07/07/2011] [Indexed: 11/21/2022] Open
Abstract
The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru8–128 insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Daniela Ostrowski
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Douglas J. Guarnieri
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
210
|
Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci U S A 2011; 108:E646-54. [PMID: 21795607 DOI: 10.1073/pnas.1106411108] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABA(A) receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.
Collapse
|
211
|
Panov AA. Longicorn beetles (Coleoptera: Cerambycidae) differ considerably in the degree of their mushroom body development. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011040145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
212
|
Farris SM. Are mushroom bodies cerebellum-like structures? ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:368-79. [PMID: 21371566 DOI: 10.1016/j.asd.2011.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/08/2011] [Accepted: 02/19/2011] [Indexed: 05/20/2023]
Abstract
The mushroom bodies are distinctive neuropils in the protocerebral brain segments of many protostomes. A defining feature of mushroom bodies is their intrinsic neurons, masses of cytoplasm-poor globuli cells that form a system of lobes with their densely-packed, parallel-projecting axon-like processes. In insects, the role of the mushroom bodies in olfactory processing and associative learning and memory has been studied in depth, but several lines of evidence suggest that the function of these higher brain centers cannot be restricted to these roles. The present account considers whether insight into an underlying function of mushroom bodies may be provided by cerebellum-like structures in vertebrates, which are similarly defined by the presence of masses of tiny granule cells that emit thin parallel fibers forming a dense molecular layer. In vertebrates, the shared neuroarchitecture of cerebellum-like structures has been suggested to underlie a common functional role as adaptive filters for the removal of predictable sensory elements, such as those arising from reafference, from the total sensory input. Cerebellum-like structures include the vertebrate cerebellum, the electrosensory lateral line lobe, dorsal and medial octavolateral nuclei of fish, and the dorsal cochlear nucleus of mammals. The many architectural and physiological features that the insect mushroom bodies share with cerebellum-like structures suggest that it might be fruitful to consider mushroom body function in light of a possible role as adaptive sensory filters. The present account thus presents a detailed comparison of the insect mushroom bodies with vertebrate cerebellum-like structures.
Collapse
Affiliation(s)
- Sarah M Farris
- Department of Biology, West Virginia University, 3139 Life Sciences Building, 53 Campus Drive, Morgantown, WV 26505, USA.
| |
Collapse
|
213
|
Young JM, Wessnitzer J, Armstrong JD, Webb B. Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem 2011; 96:339-52. [PMID: 21742045 DOI: 10.1016/j.nlm.2011.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 06/05/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Brain complexity varies across many orders of magnitude between animals, and it is often assumed that complexity underpins cognition. It is thus important to explore the cognitive capacity of widely used model organisms such as Drosophila. We systematically investigated the fly's ability to learn discriminations involving compound olfactory stimuli associated with shock. Flies could distinguish binary mixtures (AB+ CD-), including overlapping mixtures (AB+ BC-). They could learn positive patterning (AB+A- B-) but could not learn negative patterning (A+ B+ AB-) or solve a biconditional discrimination task (AB+ CD+ AC- BD-). Learning about the elements of a compound (AB+) was not affected by prior conditioning of one of the elements (A+ AB+): flies do not exhibit blocking in this task. We compare these results with the predictions from simulation of several well-known theoretical models of learning, and find none are fully consistent with the overall pattern of observed behaviour.
Collapse
Affiliation(s)
- J M Young
- Institute for Perception, Action & Behaviour, University of Edinburgh, EH8 9AB, United Kingdom.
| | | | | | | |
Collapse
|
214
|
Siller SS, Broadie K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis Model Mech 2011; 4:673-85. [PMID: 21669931 PMCID: PMC3180232 DOI: 10.1242/dmm.008045] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner.
Collapse
Affiliation(s)
- Saul S Siller
- Department of Biological Sciences and Department of Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
215
|
The long-term memory trace formed in the Drosophila α/β mushroom body neurons is abolished in long-term memory mutants. J Neurosci 2011; 31:5643-7. [PMID: 21490205 DOI: 10.1523/jneurosci.3190-10.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A prior screen identified dozens of Drosophila melanogaster mutants that possess defective long-term memory (LTM). Using spaced olfactory conditioning, we trained 26 of these mutant lines to associate an odor cue with electric shock and then examined the memory of this conditioning 24 h later. All of the mutants tested revealed a deficit in LTM compared to the robust LTM observed in control flies. We used in vivo functional optical imaging to measure the magnitude of a previously characterized LTM trace, which is manifested as increased calcium influx into the axons of α/β mushroom body neurons in response to the conditioned odor. This memory trace was defective in all 26 of the LTM mutants. These observations elevate the significance of this LTM trace given that 26 independent mutants all exhibit a defect in the trace, and further suggest that the calcium trace is a fundamental mechanism underlying Drosophila LTM.
Collapse
|
216
|
Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Delvadia R, Desai A, Vinokur M, Melicharek DJ, Utreja S, Khandelwal P, Ansaloni S, Goldstein LE, Moir RD, Lee JC, Tabb LP, Saunders AJ, Marenda DR. Characterization of a Drosophila Alzheimer's disease model: pharmacological rescue of cognitive defects. PLoS One 2011; 6:e20799. [PMID: 21673973 PMCID: PMC3108982 DOI: 10.1371/journal.pone.0020799] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/13/2011] [Indexed: 02/07/2023] Open
Abstract
Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ(40) and Aβ(42), the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.
Collapse
Affiliation(s)
- Ranjita Chakraborty
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Vidya Vepuri
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Siddhita D. Mhatre
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brie E. Paddock
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sean Miller
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sarah J. Michelson
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Radha Delvadia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Arkit Desai
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Marianna Vinokur
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - David J. Melicharek
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Suruchi Utreja
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Preeti Khandelwal
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lee E. Goldstein
- Department of Psychiatry, Boston University, Boston, Massachusetts, United States of America
| | - Robert D. Moir
- Genetics and Aging Research Unit, MIND, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy C. Lee
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel R. Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
217
|
Lin MJ, Cheng CW, Shen CKJ. Neuronal function and dysfunction of Drosophila dTDP. PLoS One 2011; 6:e20371. [PMID: 21673800 PMCID: PMC3105987 DOI: 10.1371/journal.pone.0020371] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 05/01/2011] [Indexed: 12/12/2022] Open
Abstract
Background TDP-43 is an RNA- and DNA-binding protein well conserved in animals including the mammals, Drosophila, and C. elegans. In mammals, the multi-function TDP-43 encoded by the TARDBP gene is a signature protein of the ubiquitin-positive inclusions (UBIs) in the diseased neuronal/glial cells of a range of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Methodology/Principal Findings We have studied the function and dysfunction of the Drosophila ortholog of the mammalian TARDBP gene, dTDP, by genetic, behavioral, molecular, and cytological analyses. It was found that depletion of dTDP expression caused locomotion defect accompanied with an increase of the number of boutons at the neuromuscular junctions (NMJ). These phenotypes could be rescued by overexpression of Drosophila dTDP in the motor neurons. In contrast, overexpression of dTDP in the motor neurons also resulted in reduced larval and adult locomotor activities, but this was accompanied by a decrease of the number of boutons and axon branches at NMJ. Significantly, constitutive overexpression of dTDP in the mushroom bodies caused smaller axonal lobes as well as severe learning deficiency. On the other hand, constitutive mushroom body-specific knockdown of dTDP expression did not affect the structure of the mushroom bodies, but it impaired the learning ability of the flies, albeit moderately. Overexpression of dTDP also led to the formation of cytosolic dTDP (+) aggregates. Conclusion/Significance These data together demonstrate the neuronal functions of dTDP, and by implication the mammalian TDP-43, in learning and locomotion. The effects of mis-expression of dTDP on Drosophila NMJ suggest that eukaryotic TDP-43 guards against over development of the synapses. The conservation of the regulatory pathways of functions and dysfunctions of Drosophila dTDP and mammalian TDP-43 also shows the feasibility of using the flies as a model system for studying the normal TDP-43 function and TDP-43 proteinopathies in the vertebrates including human.
Collapse
Affiliation(s)
- Meng-Jau Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Wei Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - C.-K. James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
218
|
Abstract
In Drosophila, aversive associative memory of an odor consists of heterogeneous components with different stabilities. Here we report that Bruchpilot (Brp), a ubiquitous presynaptic active zone protein, is required for olfactory memory. Brp was shown before to facilitate efficient vesicle release, particularly at low stimulation frequencies. Transgenic knockdown in the Kenyon cells of the mushroom body, the second-order olfactory interneurons, revealed that Brp is required for olfactory memory. We further demonstrate that Brp in the Kenyon cells preferentially functions for anesthesia-resistant memory. Another presynaptic protein, Synapsin, was shown previously to be required selectively for the labile anesthesia-sensitive memory, which is less affected in brp knockdown. Thus, consolidated and labile components of aversive olfactory memory can be dissociated by the function of different presynaptic proteins.
Collapse
|
219
|
Michels B, Chen YC, Saumweber T, Mishra D, Tanimoto H, Schmid B, Engmann O, Gerber B. Cellular site and molecular mode of synapsin action in associative learning. Learn Mem 2011; 18:332-44. [PMID: 21518740 DOI: 10.1101/lm.2101411] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synapsin is an evolutionarily conserved, presynaptic vesicular phosphoprotein. Here, we ask where and how synapsin functions in associative behavioral plasticity. Upon loss or reduction of synapsin in a deletion mutant or via RNAi, respectively, Drosophila larvae are impaired in odor-sugar associative learning. Acute global expression of synapsin and local expression in only the mushroom body, a third-order "cortical" brain region, fully restores associative ability in the mutant. No rescue is found by synapsin expression in mushroom body input neurons or by expression excluding the mushroom bodies. On the molecular level, we find that a transgenically expressed synapsin with dysfunctional PKA-consensus sites cannot rescue the defect of the mutant in associative function, thus assigning synapsin as a behaviorally relevant effector of the AC-cAMP-PKA cascade. We therefore suggest that synapsin acts in associative memory trace formation in the mushroom bodies, as a downstream element of AC-cAMP-PKA signaling. These analyses provide a comprehensive chain of explanation from the molecular level to an associative behavioral change.
Collapse
Affiliation(s)
- Birgit Michels
- Universität Würzburg, Biozentrum, Neurobiologie und Genetik, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U. A Drosophila model for alcohol reward. Nat Neurosci 2011; 14:612-9. [PMID: 21499254 PMCID: PMC4249630 DOI: 10.1038/nn.2805] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/09/2011] [Indexed: 11/09/2022]
Abstract
The rewarding properties of drugs contribute to the development of abuse and addiction. We developed a new assay for investigating the motivational properties of ethanol in the genetically tractable model Drosophila melanogaster. Flies learned to associate cues with ethanol intoxication and, although transiently aversive, the experience led to a long-lasting attraction for the ethanol-paired cue, implying that intoxication is rewarding. Temporally blocking transmission in dopaminergic neurons revealed that flies require activation of these neurons to express, but not develop, conditioned preference for ethanol-associated cues. Moreover, flies acquired, consolidated and retrieved these rewarding memories using distinct sets of neurons in the mushroom body. Finally, mutations in scabrous, encoding a fibrinogen-related peptide that regulates Notch signaling, disrupted the formation of memories for ethanol reward. Our results thus establish that Drosophila can be useful for understanding the molecular, genetic and neural mechanisms underling the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
221
|
Abstract
STUDY OBJECTIVES Sleep is a fundamental physiological process and its biological mechanisms are poorly understood. In Drosophila melanogaster, heterotrimeric Go protein is abundantly expressed in the brain. However, its post-developmental function has not been extensively explored. DESIGN Locomotor activity was measured using the Drosophila Activity Monitoring System under a 12:12 LD cycle. Sleep was defined as periods of 5 min with no recorded activity. RESULTS Pan-neuronal elevation of Go signaling induced quiescence accompanied by an increased arousal threshold in flies. By screening region-specific GAL4 lines, we mapped the sleep-regulatory function of Go signaling to mushroom bodies (MBs), a central brain region which modulates memory, decision making, and sleep in Drosophila. Up-regulation of Go activity in these neurons consolidated sleep while inhibition of endogenous Go via expression of Go RNAi or pertussis toxin reduced and fragmented sleep, indicating that the Drosophila sleep requirement is affected by levels of Go activity in the MBs. Genetic interaction results showed that Go signaling serves as a neuronal transmission inhibitor in a cAMP-independent pathway. CONCLUSION Go signaling is a novel signaling pathway in MBs that regulates sleep in Drosophila.
Collapse
Affiliation(s)
- Fang Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
222
|
Kahsai L, Zars T. Learning and memory in Drosophila: behavior, genetics, and neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:139-67. [PMID: 21906539 DOI: 10.1016/b978-0-12-387003-2.00006-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The rich behavioral repertoire that Drosophila use to navigate in their natural environment suggests that flies can use memories to inform decisions. Development of paradigms to examine memories that restrict behavioral choice was essential in furthering our understanding of the genetics and neural systems of memory formation in the fly. Olfactory, visual, and place memory paradigms have proven influential in determining principles for the mechanisms of memory formation. Several parts of the nervous system have been shown to be important for different types of memories, including the mushroom bodies and the central complex. Thus far, about 40 genes have been linked to normal olfactory short-term memory. A subset of these genes have also been tested for a role in visual and place memory. Some genes have a common function in memory formation, specificity of action comes from where in the nervous system these genes act. Alternatively, some genes have a more restricted role in different types of memories.
Collapse
Affiliation(s)
- Lily Kahsai
- University of Missouri, Division of Biological Sciences, 114 Lefevre Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
223
|
Newquist G. Brain organization and the roots of anticipation in Drosophila olfactory conditioning. Neurosci Biobehav Rev 2010; 35:1166-74. [PMID: 21168436 DOI: 10.1016/j.neubiorev.2010.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/16/2022]
Abstract
Defining learning at the molecular and physiological level has been one of the greatest challenges in biology. Recent research suggests that by studying fruit fly (Drosophila melanogaster) brain organization we can now begin to unravel some of these mysteries. The fruit fly brain is organized into executive centers that regulate anatomically separate behavioral systems. The mushroom body is an example of an executive center which is modified by olfactory conditioning. During this simple form of learning, an odor is paired with either food or shock. Either experience alters distinguishable specific circuitry within the mushroom body. Results suggest that after conditioning an odor to food, the mushroom body will activate a feeding system via a subset of its circuitry. After conditioning an odor to shock, the mushroom body will instead activate an avoidance system with other subsets of mushroom body neurons. The results of these experiments demonstrate a mechanism for flies to display anticipation of their environment after olfactory conditioning has occurred. However, these results fail to provide evidence for reinforcement, a consequence of action, as part of this mechanism. Instead, specific subsets of dopaminergic and octopaminergic neurons provide a simple pairing signal, in contrast to a reinforcement signal, which allows for prediction of the environment after experience. This view has implications for models of conditioning.
Collapse
Affiliation(s)
- Gunnar Newquist
- Cell and Molecular Biology Program, Department of Biology, University of Nevada, Reno, NV 89557, United States.
| |
Collapse
|
224
|
Akalal DBG, Yu D, Davis RL. A late-phase, long-term memory trace forms in the γ neurons of Drosophila mushroom bodies after olfactory classical conditioning. J Neurosci 2010; 30:16699-708. [PMID: 21148009 PMCID: PMC3380342 DOI: 10.1523/jneurosci.1882-10.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/18/2010] [Accepted: 08/24/2010] [Indexed: 11/21/2022] Open
Abstract
Using functional optical imaging in vivo, we demonstrate that the γ mushroom body (MB) neurons of Drosophila melanogaster respond with axonal calcium influx when odors or electric shock stimuli are presented to the fly. Pairing of odor and electric shock stimuli in a single training trial or multiple, massed training trials failed to modify the odor-evoked calcium signal when flies were tested at several different times after training. In contrast, animals that received multiple but spaced odor-shock pairings exhibited a robust increase in calcium influx into the MB axons when tested between 18 and 48 h after training. This time window for the γ neuron memory trace is displaced relative to the modifications that occur between 9 and 24 h after training in the α branch of the α/β MB neurons. The α/β and the γ neuron long-term memory traces were both blocked by expressing a repressor of the transcription factor cAMP response element-binding protein or a calcium/calmodulin-dependent kinase II hairpin RNA. These results demonstrate that behavioral long-term olfactory memory is encoded as modifications of calcium influx into distinct MB neurons during overlapping but different windows of time after training.
Collapse
Affiliation(s)
| | - Dinghui Yu
- Department of Molecular and Cellular Biology and
| | - Ronald L. Davis
- Department of Molecular and Cellular Biology and
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas 77030, and
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458
| |
Collapse
|
225
|
Abstract
Studies of olfactory learning in Drosophila have provided key insights into the brain mechanisms underlying learning and memory. One type of olfactory learning, olfactory classical conditioning, consists of learning the contingency between an odor with an aversive or appetitive stimulus. This conditioning requires the activity of molecules that can integrate the two types of sensory information, the odorant as the conditioned stimulus and the aversive or appetitive stimulus as the unconditioned stimulus, in brain regions where the neural pathways for the two stimuli intersect. Compelling data indicate that a particular form of adenylyl cyclase functions as a molecular integrator of the sensory information in the mushroom body neurons. The neuronal pathway carrying the olfactory information from the antennal lobes to the mushroom body is well described. Accumulating data now show that some dopaminergic neurons provide information about aversive stimuli and octopaminergic neurons about appetitive stimuli to the mushroom body neurons. Inhibitory inputs from the GABAergic system appear to gate olfactory information to the mushroom bodies and thus control the ability to learn about odors. Emerging data obtained by functional imaging procedures indicate that distinct memory traces form in different brain regions and correlate with different phases of memory. The results from these and other experiments also indicate that cross talk between mushroom bodies and several other brain regions is critical for memory formation.
Collapse
Affiliation(s)
- Germain U. Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida
| | | | - Ronald L. Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida
| |
Collapse
|
226
|
Larkin A, Karak S, Priya R, Das A, Ayyub C, Ito K, Rodrigues V, Ramaswami M. Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learn Mem 2010; 17:645-53. [PMID: 21106688 DOI: 10.1101/lm.1839010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naive Drosophila larvae show vigorous chemotaxis toward many odorants including ethyl acetate (EA). Chemotaxis toward EA is substantially reduced after a 5-min pre-exposure to the odorant and recovers with a half-time of ∼20 min. An analogous behavioral decrement can be induced without odorant-receptor activation through channelrhodopsin-based, direct photoexcitation of odorant sensory neurons (OSNs). The neural mechanism of short-term habituation (STH) requires the (1) rutabaga adenylate cyclase; (2) transmitter release from predominantly GABAergic local interneurons (LNs); (3) GABA-A receptor function in projection neurons (PNs) that receive excitatory inputs from OSNs; and (4) NMDA-receptor function in PNs. These features of STH cannot be explained by simple sensory adaptation and, instead, point to plasticity of olfactory synapses in the antennal lobe as the underlying mechanism. Our observations suggest a model in which NMDAR-dependent depression of the OSN-PN synapse and/or NMDAR-dependent facilitation of inhibitory transmission from LNs to PNs contributes substantially to short-term habituation.
Collapse
Affiliation(s)
- Aoife Larkin
- School of Genetics and Microbiology, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Melicharek DJ, Ramirez LC, Singh S, Thompson R, Marenda DR. Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet 2010; 19:4253-64. [PMID: 20716578 PMCID: PMC2951870 DOI: 10.1093/hmg/ddq348] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/11/2010] [Indexed: 11/13/2022] Open
Abstract
CHARGE syndrome (CS, OMIM #214800) is a rare, autosomal dominant disorder, two-thirds of which are caused by haplo-insufficiency in the Chd7 gene. Here, we show that the Drosophila homolog of Chd7, kismet, is required for proper axonal pruning, guidance and extension in the developing fly's central nervous system. In addition to defects in neuroanatomy, flies with reduced kismet expression show defects in memory and motor function, phenotypes consistent with symptoms observed in CS patients. We suggest that the analysis of this disease model can complement and expand upon the existing studies for this disease, allowing a better understanding of the role of kismet in neural developmental, and Chd7 in CS pathogenesis.
Collapse
Affiliation(s)
| | - Laura C. Ramirez
- Department of Biology, Drexel University, Philadelphia, PA, USA and
| | - Sukhdeep Singh
- Department of Biology, Drexel University, Philadelphia, PA, USA and
| | - Rhea Thompson
- Department of Biology, Drexel University, Philadelphia, PA, USA and
| | - Daniel R. Marenda
- Department of Biology, Drexel University, Philadelphia, PA, USA and
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
228
|
Tamura T, Horiuchi D, Chen YC, Sone M, Miyashita T, Saitoe M, Yoshimura N, Chiang AS, Okazawa H. Drosophila PQBP1 regulates learning acquisition at projection neurons in aversive olfactory conditioning. J Neurosci 2010; 30:14091-101. [PMID: 20962230 PMCID: PMC6634781 DOI: 10.1523/jneurosci.1319-10.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/15/2010] [Accepted: 08/18/2010] [Indexed: 01/24/2023] Open
Abstract
Polyglutamine tract-binding protein-1 (PQBP1) is involved in the transcription-splicing coupling, and its mutations cause a group of human mental retardation syndromes. We generated a fly model in which the Drosophila homolog of PQBP1 (dPQBP1) is repressed by insertion of piggyBac. In classical odor conditioning, learning acquisition was significantly impaired in homozygous piggyBac-inserted flies, whereas the following memory retention was completely normal. Mushroom bodies (MBs) and antennal lobes were morphologically normal in dPQBP1-mutant flies. Projection neurons (PNs) were not reduced in number and their fiber connections were not changed, whereas gene expressions including NMDA receptor subunit 1 (NR1) were decreased in PNs. Targeted double-stranded RNA-mediated silencing of dPQBP1 in PNs, but not in MBs, similarly disrupted learning acquisition. NR1 overexpression in PNs rescued the learning disturbance of dPQBP1 mutants. HDAC (histone deacetylase) inhibitors, SAHA (suberoylanilide hydroxamic acid) and PBA (phenylbutyrate), that upregulated NR1 partially rescued the learning disturbance. Collectively, these findings identify dPQBP1 as a novel gene regulating learning acquisition at PNs.
Collapse
Affiliation(s)
- Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daisuke Horiuchi
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yi-Chung Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Masaki Sone
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | | | - Minoru Saitoe
- Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan
| | - Natsue Yoshimura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, and
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
229
|
Brain activity at 70-80 Hz changes during olfactory stimulation protocols in Drosophila. PLoS One 2010; 5:e12867. [PMID: 20877566 PMCID: PMC2943920 DOI: 10.1371/journal.pone.0012867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 08/28/2010] [Indexed: 01/09/2023] Open
Abstract
Oscillatory and synchronized activities in the mammalian brain have been correlated with the execution of complex cognitive tasks. Similar oscillations have been observed in local field potentials (LFPs) in flies, in this case correlated with different attentional states. To further test the significance of these oscillations we recorded LFPs from the brain of Drosophila melanogaster as it responded to the presentation of olfactory stimuli. We find that responses in the 70-80 Hz range increase during olfactory stimulation. Recurrent stimulation specifically decreased the power of LFPs in this frequency range. Delivery of electric shocks before olfactory stimulation modulated LFPs in the 70-80 Hz range by evoking a transient increase. These results suggest that these signals are a simple neuronal correlate of higher-order olfactory processing in flies.
Collapse
|
230
|
Tan Y, Yu D, Pletting J, Davis RL. Gilgamesh is required for rutabaga-independent olfactory learning in Drosophila. Neuron 2010; 67:810-20. [PMID: 20826312 PMCID: PMC4144819 DOI: 10.1016/j.neuron.2010.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2010] [Indexed: 11/21/2022]
Abstract
Cyclic AMP signaling in Drosophila mushroom body neurons, anchored by the adenylyl cyclase encoded by the rutabaga gene, is indispensable for olfactory memory formation. From a screen for new memory mutants, we identified alleles of the gilgamesh (gish) gene, which encodes a casein kinase Iγ homolog that is preferentially expressed in the mushroom body neurons. The gish-encoded kinase participates in the physiology of these neurons underlying memory formation since the mutant memory deficit was rescued with expression of a gish cDNA in these neurons only during adulthood. A cellular memory trace, detected as increased calcium influx into the α'/β' neuron processes in response to the odor used for conditioning, was disrupted in gish mutants. Epistasis experiments indicated a lack of genetic interactions between gish and rutabaga. Therefore, gish participates in a rutabaga-independent pathway for memory formation and accounts for some of the residual learning that occurs in rutabaga mutants.
Collapse
Affiliation(s)
- Ying Tan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Dinghui Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jennifer Pletting
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ronald L. Davis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
231
|
A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A 2010; 107:16378-83. [PMID: 20810922 DOI: 10.1073/pnas.1004669107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transgenic manipulation of subsets of brain cells is increasingly used for studying behaviors and their underlying neural circuits. In Drosophila, the GAL4-upstream activating sequence (UAS) binary system is powerful for gene manipulation, but GAL4 expression is often too broad for fine mapping of neural circuits. Here, we describe the development of unique molecular genetic tools to restrict GAL4 expression patterns. Building on the GAL4-UAS system, our method adds two components: a collection of enhancer-trap recombinase, Flippase (ET-FLP), transgenic lines that provide inheritable, reproducible, and tissue-specific FLP and an FRT-dependent GAL80 "flip-in" construct that converts FLP expression into tissue-specific repression of GAL4 by GAL80. By including a UAS-encoded fluorescent protein, circuit morphology can be simultaneously marked while the circuit function is assessed using another UAS transgene. In a proof-of-principle analysis, we applied this ET-FLP-induced intersectional GAL80/GAL4 repression (FINGR) method to map the neural circuitry underlying fly wing inflation. The FINGR system is versatile and powerful in combination with the vast collection of GAL4 lines for neural circuit mapping as well as for clonal analysis based on the infusion of the yeast-derived FRT/FLP system of mitotic recombination into Drosophila. The strategies and tactics underlying our FINGR system are also applicable to other genetically amenable organisms in which transgenes including the GAL4, UAS, GAL80, and FLP factors can be applied.
Collapse
|
232
|
Aso Y, Siwanowicz I, Bräcker L, Ito K, Kitamoto T, Tanimoto H. Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 2010; 20:1445-51. [PMID: 20637624 PMCID: PMC2929706 DOI: 10.1016/j.cub.2010.06.048] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 11/21/2022]
Abstract
A paired presentation of an odor and electric shock induces aversive odor memory in Drosophila melanogaster. Electric shock reinforcement is mediated by dopaminergic neurons, and it converges with the odor signal in the mushroom body (MB). Dopamine is synthesized in approximately 280 neurons that form distinct cell clusters and is involved in a variety of brain functions. Recently, one of the dopaminergic clusters (PPL1) that includes MB-projecting neurons was shown to signal reinforcement for aversive odor memory. As each dopaminergic cluster contains multiple types of neurons with different projections and physiological characteristics, functional understanding of the circuit for aversive memory requires cellular identification. Here, we show that MB-M3, a specific type of dopaminergic neurons in the PAM cluster, is preferentially required for the formation of labile memory. Strikingly, flies formed significant aversive odor memory without electric shock when MB-M3 was selectively stimulated together with odor presentation. In addition, we identified another type of dopaminergic neurons in the PPL1 cluster, MB-MP1, which can induce aversive odor memory. As MB-M3 and MB-MP1 target the distinct subdomains of the MB, these reinforcement circuits might induce different forms of aversive memory in spatially segregated synapses in the MB.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Igor Siwanowicz
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Lasse Bräcker
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyoku, Tokyo 113-0032, Japan
| | - Toshihiro Kitamoto
- Department of Anesthesia and Interdisciplinary Programs in Genetics and Neuroscience, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Hiromu Tanimoto
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
233
|
Waddell S. Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci 2010; 33:457-64. [PMID: 20701984 DOI: 10.1016/j.tins.2010.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/30/2010] [Accepted: 07/13/2010] [Indexed: 01/29/2023]
Abstract
A goal of memory research is to understand how changing the weight of specific synapses in neural circuits in the brain leads to an appropriate learned behavioral response. Finding the relevant synapses should allow investigators to probe the underlying physiological and molecular operations that encode memories and permit their retrieval. In this review I discuss recent work in Drosophila that implicates specific subsets of dopaminergic (DA) neurons in aversive reinforcement and appetitive motivation. The zonal architecture of these DA neurons is likely to reveal the functional organization of aversive and appetitive memory in the mushroom bodies. Combinations of fly DA neurons might code negative and positive value, consistent with a motivational systems role as proposed in mammals.
Collapse
Affiliation(s)
- Scott Waddell
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
234
|
Bhogal B, Jongens TA. Fragile X syndrome and model organisms: identifying potential routes of therapeutic intervention. Dis Model Mech 2010; 3:693-700. [PMID: 20682752 DOI: 10.1242/dmm.002006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a cognitive disorder caused by silencing of the fragile X mental retardation 1 gene (FMR1). Since the discovery of the gene almost two decades ago, most scientific contributions have focused on identifying the molecular function of the fragile X mental retardation protein (FMRP) and understanding how absence of FMR1 gene expression gives rise to the disease phenotypes. The use of model organisms has allowed rapid progression in the FXS field and has given insight into the molecular basis of the disease. The mouse and fly FXS models have enabled studies to identify potential targets and pathways for pharmacological treatment. Here, we briefly review the two primary FXS model systems and describe how studies in these organisms have led us closer to therapeutic treatments for patients afflicted with FXS.
Collapse
Affiliation(s)
- Balpreet Bhogal
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | |
Collapse
|
235
|
Abstract
In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.
Collapse
|
236
|
Buchanan ME, Davis RL. A distinct set of Drosophila brain neurons required for neurofibromatosis type 1-dependent learning and memory. J Neurosci 2010; 30:10135-43. [PMID: 20668197 PMCID: PMC2917756 DOI: 10.1523/jneurosci.0283-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/21/2022] Open
Abstract
Nonspecific cognitive impairments are one of the many manifestations of neurofibromatosis type 1 (NF1). A learning phenotype is also present in Drosophila melanogaster that lack a functional neurofibromin gene (nf1). Multiple studies have indicated that Nf1-dependent learning in Drosophila involves the cAMP pathway, including the demonstration of a genetic interaction between Nf1 and the rutabaga-encoded adenylyl cyclase (Rut-AC). Olfactory classical conditioning experiments have previously demonstrated a requirement for Rut-AC activity and downstream cAMP pathway signaling in neurons of the mushroom bodies. However, Nf1 expression in adult mushroom body neurons has not been observed. Here, we address this discrepancy by demonstrating (1) that Rut-AC is required for the acquisition and stability of olfactory memories, whereas Nf1 is only required for acquisition, (2) that expression of nf1 RNA can be detected in the cell bodies of mushroom body neurons, and (3) that expression of an nf1 transgene only in the alpha/beta subset of mushroom body neurons is sufficient to restore both protein synthesis-independent and protein synthesis-dependent memory. Our observations indicate that memory-related functions of Rut-AC are both Nf1-dependent and -independent, that Nf1 mediates the formation of two distinct memory components within a single neuron population, and that our understanding of Nf1 function in memory processes may be dissected from its role in other brain functions by specifically studying the alpha/beta mushroom body neurons.
Collapse
Affiliation(s)
| | - Ronald L. Davis
- Department of Molecular and Human Genetics and
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
237
|
Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight. J Neurosci 2010; 30:1301-13. [PMID: 20107057 DOI: 10.1523/jneurosci.3668-09.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium (Ca(2+)) signaling is known to regulate the development, maintenance and modulation of activity in neuronal circuits that underlie organismal behavior. In Drosophila, intracellular Ca(2+) signaling by the inositol 1,4,5-trisphosphate receptor and the store-operated channel (dOrai) regulates the formation and function of neuronal circuits that control flight. Here, we show that restoring InsP(3)R activity in insulin-producing neurons of flightless InsP(3)R mutants (itpr) during pupal development can rescue systemic flight ability. Expression of the store operated Ca(2+) entry (SOCE) regulator dSTIM in insulin-producing neurons also suppresses compromised flight ability of InsP(3)R mutants suggesting that SOCE can compensate for impaired InsP(3)R function. Despite restricted expression of wild-type InsP(3)R and dSTIM in insulin-producing neurons, a global restoration of SOCE and store Ca(2+) is observed in primary neuronal cultures from the itpr mutant. These results suggest that restoring InsP(3)R-mediated Ca(2+) release and SOCE in a limited subset of neuromodulatory cells can influence systemic behaviors such as flight by regulating intracellular Ca(2+) homeostasis in a large population of neurons through a non-cell-autonomous mechanism.
Collapse
|
238
|
Roat TC, da Cruz Landim C. Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: Neuroblasts proliferation and death. Micron 2010; 41:382-9. [DOI: 10.1016/j.micron.2010.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
|
239
|
Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. Proc Natl Acad Sci U S A 2010; 107:10262-7. [PMID: 20479249 DOI: 10.1073/pnas.0914912107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feedback plays important roles in sensory processing. Mushroom bodies are believed to be involved in olfactory learning/memory and multisensory integration in insects. Previous cobalt-labeling studies have suggested the existence of feedback from the mushroom bodies to the antennal lobes in the honey bee. In this study, the existence of functional feedback from Drosophila mushroom bodies to the antennal lobes was investigated through ectopic expression of the ATP receptor P2X(2) in the Kenyon cells of mushroom bodies. Activation of Kenyon cells induced depolarization in projection neurons and local interneurons in the antennal lobes in a nicotinic receptor-dependent manner. Activation of Kenyon cell axons in the betagamma-lobes in the mushroom body induced more potent responses in the antennal lobe neurons than activation of Kenyon cell somata. Our results indicate that functional feedback from Kenyon cells to projection neurons and local interneurons is present in Drosophila and is likely mediated by the betagamma-lobes. The presence of this functional feedback from the mushroom bodies to the antennal lobes suggests top-down modulation of olfactory information processing in Drosophila.
Collapse
|
240
|
Murakami S, Dan C, Zagaeski B, Maeyama Y, Kunes S, Tabata T. Optimizing Drosophila olfactory learning with a semi-automated training device. J Neurosci Methods 2010; 188:195-204. [PMID: 20153774 PMCID: PMC2854214 DOI: 10.1016/j.jneumeth.2010.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
Drosophila olfactory aversive conditioning has served as a powerful model system with which to elucidate the molecular and neuronal mechanisms underlying memory formation. In the typical protocol, flies are exposed to a constant odor stream while receiving a pulsed electric shock in the conditioning tube of a manual apparatus. We have devised a simple, low-cost semi-automated conditioning apparatus that computationally controls the delivery of odor and shock. A semiconductor-based odor sensor is employed to monitor the change of odor concentration in the training tube. The system thus allows electric shocks to be precisely matched with odor concentration in the training tube. We found that short-term memory performance was improved with a pulsed odor flow protocol, in which odor is presented in short pulses, each paired with electric shock, rather than as a constant flow. The effect of pulsed odor flow might be ascribed to the phenomenon of 'conditioned approach', where approach toward an odor is induced when the electric shock is presented before odor pulse ends. Our data shows that the system is applicable to the study of olfactory memory formation and to the examination of conditioning parameters at a level of detail not practical with a manual apparatus.
Collapse
Affiliation(s)
- Satoshi Murakami
- Institute of Molecular and Cellular Biosciences, University of Tokyo
| | - Chuntao Dan
- Department of Molecular and Cellular Biology, Harvard University
| | - Brendan Zagaeski
- Department of Molecular and Cellular Biology, Harvard University
| | - Yuko Maeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo
| | - Sam Kunes
- Department of Molecular and Cellular Biology, Harvard University
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo
| |
Collapse
|
241
|
Liang L, Luo L. The olfactory circuit of the fruit fly Drosophila melanogaster. SCIENCE CHINA-LIFE SCIENCES 2010; 53:472-84. [PMID: 20596914 DOI: 10.1007/s11427-010-0099-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/15/2010] [Indexed: 11/29/2022]
Abstract
The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.
Collapse
Affiliation(s)
- Liang Liang
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
242
|
Research progress on Drosophila visual cognition in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:374-384. [DOI: 10.1007/s11427-010-0073-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 02/07/2023]
|
243
|
Zars T. Short-term memories in Drosophila are governed by general and specific genetic systems. Learn Mem 2010; 17:246-51. [PMID: 20418404 DOI: 10.1101/lm.1706110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In a dynamic environment, there is an adaptive value in the ability of animals to acquire and express memories. That both simple and complex animals can learn is therefore not surprising. How animals have solved this problem genetically and anatomically probably lies somewhere in a range between a single molecular/anatomical mechanism that applies to all situations and a specialized mechanism for each learning situation. With an intermediate level of nervous system complexity, the fruit fly Drosophila has both general and specific resources to support different short-term memories. Some biochemical/cellular mechanisms are common between learning situations, indicating that flies do not have a dedicated system for each learning context. The opposite possible extreme does not apply to Drosophila either. Specialization in some biochemical and anatomical terms suggests that there is not a single learning mechanism that applies to all conditions. The distributed basis of learning in Drosophila implies that these systems were independently selected.
Collapse
Affiliation(s)
- Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
244
|
Sinakevitch I, Grau Y, Strausfeld NJ, Birman S. Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila. Neural Dev 2010; 5:10. [PMID: 20370889 PMCID: PMC3003247 DOI: 10.1186/1749-8104-5-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 04/06/2010] [Indexed: 12/16/2022] Open
Abstract
Background The mushroom bodies (MBs) are paired brain centers located in the insect protocerebrum involved in olfactory learning and memory and other associative functions. Processes from the Kenyon cells (KCs), their intrinsic neurons, form the bulk of the MB's calyx, pedunculus and lobes. In young adult Drosophila, the last-born KCs extend their processes in the α/β lobes as a thin core (α/β cores) that is embedded in the surrounding matrix of other mature KC processes. A high level of L-glutamate (Glu) immunoreactivity is present in the α/β cores (α/βc) of recently eclosed adult flies. In a Drosophila model of fragile X syndrome, the main cause of inherited mental retardation, treatment with metabotropic Glu receptor (mGluR) antagonists can rescue memory deficits and MB structural defects. Results To address the role of Glu signaling in the development and maturation of the MB, we have compared the time course of Glu immunoreactivity with the expression of various glutamatergic markers at various times, that is, 1 hour, 1 day and 10 days after adult eclosion. We observed that last-born α/βc KCs in young adult as well as developing KCs in late larva and at various pupal stages transiently express high level of Glu immunoreactivity in Drosophila. One day after eclosion, the Glu level was already markedly reduced in the α/βc neurons. Glial cell processes expressing glutamine synthetase and the Glu transporter dEAAT1 were found to surround the Glu-expressing KCs in very young adults, subsequently enwrapping the α/β lobes to become distributed equally over the entire MB neuropil. The vesicular Glu transporter DVGluT was detected by immunostaining in processes that project within the MB lobes and pedunculus, but this transporter is apparently never expressed by the KCs themselves. The NMDA receptor subunit dNR1 is widely expressed in the MB neuropil just after eclosion, but was not detected in the α/βc neurons. In contrast, we provide evidence that DmGluRA, the only Drosophila mGluR, is specifically expressed in Glu-accumulating cells of the MB α/βc immediately and for a short time after eclosion. Conclusions The distribution and dynamics of glutamatergic markers indicate that newborn KCs transiently accumulate Glu at a high level in late pupal and young eclosed Drosophila, and may locally release this amino acid by a mechanism that would not involve DVGluT. At this stage, Glu can bind to intrinsic mGluRs abundant in the α/βc KCs, and to NMDA receptors in the rest of the MB neuropil, before being captured and metabolized in surrounding glial cells. This suggests that Glu acts as an autocrine or paracrine agent that contributes to the structural and functional maturation of the MB during the first hours of Drosophila adult life.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Laboratoire de Neurobiologie, CNRS UMR 7637, ESPCI ParisTech, 10 rue Vauquelin, 75231 Paris cedex 5, France.
| | | | | | | |
Collapse
|
245
|
Kong EC, Woo K, Li H, Lebestky T, Mayer N, Sniffen MR, Heberlein U, Bainton RJ, Hirsh J, Wolf FW. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One 2010; 5:e9954. [PMID: 20376353 PMCID: PMC2848596 DOI: 10.1371/journal.pone.0009954] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/11/2010] [Indexed: 02/06/2023] Open
Abstract
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.
Collapse
Affiliation(s)
- Eric C. Kong
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
| | - Katherine Woo
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Haiyan Li
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tim Lebestky
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Nasima Mayer
- Department of Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Melissa R. Sniffen
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ulrike Heberlein
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Roland J. Bainton
- Department of Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Fred W. Wolf
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
246
|
Abstract
One of the hallmarks of both memory and the underlying synaptic plasticity is that they each rely on short-lived and longer-lived forms. Short-lived memory is thought to rely on modification to existing proteins, whereas long-term memory requires induction of new gene expression. The most common view is that these two processes rely on signaling mechanisms within the same neurons. We recently demonstrated a dissection of the signaling requirements for short and long-lived memory into distinct sets of neurons. Using an aversive olfactory conditioning task in Drosophila, we found that cAMP signaling in different neuron cell types is sufficient to support short or long-term memory independently.
Collapse
Affiliation(s)
- Allison Blum
- Watson School of Biological Sciences, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
247
|
Visual Targeting of Motor Actions in Climbing Drosophila. Curr Biol 2010; 20:663-8. [DOI: 10.1016/j.cub.2010.02.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/24/2022]
|
248
|
Gomez-Marin A, Duistermars BJ, Frye MA, Louis M. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 2010; 4:6. [PMID: 20407585 PMCID: PMC2854573 DOI: 10.3389/fncel.2010.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/10/2010] [Indexed: 11/21/2022] Open
Abstract
Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg's vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.
Collapse
Affiliation(s)
- Alex Gomez-Marin
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Universitat Pompeu Fabra Barcelona, Spain
| | | | | | | |
Collapse
|
249
|
Gervasi N, Tchénio P, Preat T. PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron 2010; 65:516-29. [PMID: 20188656 DOI: 10.1016/j.neuron.2010.01.014] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2010] [Indexed: 11/27/2022]
Abstract
The dynamics of PKA activity in the olfactory learning and memory center, the mushroom bodies (MBs), are still poorly understood. We addressed this issue in vivo using a PKA FRET probe. Application of dopamine, the main neuromodulator involved in aversive learning, resulted in PKA activation specifically in the vertical lobe, whereas octopamine, involved in appetitive learning, stimulated PKA in all MB lobes. Strikingly, MB lobes were homogeneously activated by dopamine in the learning mutant dunce, showing that Dunce phosphodiesterase plays a major role in the spatial regulation of cAMP dynamics. Furthermore, costimulation with acetylcholine and either dopamine or octopamine led to a synergistic activation of PKA in the MBs that depends on Rutabaga adenylyl cyclase. Our results suggest that Rutabaga acts as a coincidence detector and demonstrate the existence of subcellular domains of PKA activity that could underlie the functional specialization of MB lobes in aversive and appetitive learning.
Collapse
Affiliation(s)
- Nicolas Gervasi
- Genes and Dynamics of Memory Systems, Neurobiology Unit, Ecole Supérieure de Physique et Chimie Industrielle, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | | | | |
Collapse
|
250
|
Forgetting is regulated through Rac activity in Drosophila. Cell 2010; 140:579-89. [PMID: 20178749 DOI: 10.1016/j.cell.2009.12.044] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/06/2009] [Accepted: 12/22/2009] [Indexed: 11/23/2022]
Abstract
Initially acquired memory dissipates rapidly if not consolidated. Such memory decay is thought to result either from the inherently labile nature of newly acquired memories or from interference by subsequently attained information. Here we report that a small G protein Rac-dependent forgetting mechanism contributes to both passive memory decay and interference-induced forgetting in Drosophila. Inhibition of Rac activity leads to slower decay of early memory, extending it from a few hours to more than one day, and to blockade of interference-induced forgetting. Conversely, elevated Rac activity in mushroom body neurons accelerates memory decay. This forgetting mechanism does not affect memory acquisition and is independent of Rutabaga adenylyl cyclase-mediated memory formation mechanisms. Endogenous Rac activation is evoked on different time scales during gradual memory loss in passive decay and during acute memory removal in reversal learning. We suggest that Rac's role in actin cytoskeleton remodeling may contribute to memory erasure.
Collapse
|