201
|
Umamaheswari T, Anbukkarasi K, Singh P, Tomar SK, Singh R. Streptococcus thermophilusstrains of plant origin as dairy starters: Isolation and characterisation. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Prashant Singh
- Dairy Microbiology Division; National Dairy Research Institute; Karnal Haryana 132001 India
| | - Sudhir K Tomar
- Dairy Microbiology Division; National Dairy Research Institute; Karnal Haryana 132001 India
| | - Rameshwar Singh
- Dairy Microbiology Division; National Dairy Research Institute; Karnal Haryana 132001 India
| |
Collapse
|
202
|
Christophersen CT, Petersen A, Licht TR, Conlon MA. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein. Nutrients 2013; 5:3740-56. [PMID: 24064573 PMCID: PMC3798932 DOI: 10.3390/nu5093740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/13/2013] [Accepted: 09/01/2013] [Indexed: 12/17/2022] Open
Abstract
High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic simulator consisting of a proximal vessel (PV) (pH 5.5) and a distal vessel (DV) (pH 6.8) inoculated with human faeces and media containing soy protein. Genotoxicity of the liquid phase and microbial population changes in the vessels were measured. Soy protein (3%) was fermented with 1% low amylose cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse correlation between levels of damage induced by the ferments and levels of sulphate-reducing bacteria, Bacteroides fragilis, and acetate. In conclusion, dietary XOS can potentially modulate the genotoxicity of the colonic environment and specific bacterial groups and short chain fatty acids may mediate this.
Collapse
Affiliation(s)
- Claus T. Christophersen
- Preventative Health National Research Flagship, CSIRO Animal, Food and Health Sciences, PO Box 10041, Adelaide BC SA 5000, Australia; E-Mail:
| | - Anne Petersen
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Mørkhøj Bygade 19, Søborg 2860, Denmark; E-Mails: (A.P.); (T.R.L.)
| | - Tine R. Licht
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Mørkhøj Bygade 19, Søborg 2860, Denmark; E-Mails: (A.P.); (T.R.L.)
| | - Michael A. Conlon
- Preventative Health National Research Flagship, CSIRO Animal, Food and Health Sciences, PO Box 10041, Adelaide BC SA 5000, Australia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-8-8303-8909; Fax: +61-8-8303-8899
| |
Collapse
|
203
|
Rausch S, Held J, Fischer A, Heimesaat MM, Kühl AA, Bereswill S, Hartmann S. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One 2013; 8:e74026. [PMID: 24040152 PMCID: PMC3769368 DOI: 10.1371/journal.pone.0074026] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023] Open
Abstract
Parasitic nematodes are potent modulators of immune reactivity in mice and men. Intestinal nematodes live in close contact with commensal gut bacteria, provoke biased Th2 immune responses upon infection, and subsequently lead to changes in gut physiology. We hypothesized that murine nematode infection is associated with distinct changes of the intestinal bacterial microbiota composition. We here studied intestinal inflammatory and immune responses in mice following infection with the hookworm Heligmosomoidespolygyrusbakeri and applied cultural and molecular techniques to quantitatively assess intestinal microbiota changes in the ileum, cecum and colon. At day 14 post nematode infection, mice harbored significantly higher numbers of γ-Proteobacteria/Enterobacteriaceae and members of the Bacteroides/Prevotella group in their cecum as compared to uninfected controls. Abundance of Gram-positive species such as Lactobacilli, Clostridia as well as the total bacterial load was not affected by worm infection. The altered microbiota composition was independent of the IL-4/-13 – STAT6 signaling axis, as infected IL-4Rα-/- mice showed a similar increase in enterobacterial loads. In conclusion, infection with an enteric nematode is accompanied by distinct intestinal microbiota changes towards higher abundance of gram-negative commensal species at the small intestinal site of infection (and inflammation), but also in the parasite-free large intestinal tract. Further studies should unravel the impact of nematode-induced microbiota changes in inflammatory bowel disease to allow for a better understanding of how theses parasites interfere with intestinal inflammation and bacterial communities in men.
Collapse
MESH Headings
- Animals
- Bacterial Load
- Cytokines/biosynthesis
- Enterobacteriaceae/classification
- Enterobacteriaceae/genetics
- Enterobacteriaceae/growth & development
- Female
- Interleukin-4 Receptor alpha Subunit/genetics
- Interleukin-4 Receptor alpha Subunit/metabolism
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/microbiology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/parasitology
- Intestinal Mucosa/pathology
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Intestine, Small/parasitology
- Intestine, Small/pathology
- Mice
- Mice, Knockout
- Microbiota
- Nematode Infections/immunology
- Nematode Infections/microbiology
- Nematode Infections/parasitology
- RNA, Bacterial
- RNA, Ribosomal, 16S
- Signal Transduction
Collapse
Affiliation(s)
- Sebastian Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
- * E-mail:
| | - Josephin Held
- Department of Neuropathology, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| |
Collapse
|
204
|
Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C, Lähteinen T, Brouns SJJ, Satokari R, von Ossowski I, Reunanen J, Palva A, de Vos WM. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 2013; 9:e1003683. [PMID: 23966868 PMCID: PMC3744422 DOI: 10.1371/journal.pgen.1003683] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/15/2013] [Indexed: 01/20/2023] Open
Abstract
Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects. Some bacterial species are specialists and adapted to a single niche, while others are generalists and able to grow in various environmental conditions. Lactobacillus rhamnosus is a generalist and its members can often be found in different human cavities but also in various artisanal and industrial dairy products. To gain insights into the genetic complexity and ecological versatility of this species, we collected 100 L. rhamnosus strains from different niches. Genomic and functional analysis of these revealed a dichotomy within the species that reflected its adaptation to particular niches. The variable regions identified in the L. rhamnosus genome encode lifestyle traits that allowed us to demonstrate that some L. rhamnosus isolates possibly resided in multiple habitats. Our work brings valuable data on the ecological dynamics and adaptability of the species and provides a basis for a model explaining the ecology of L. rhamnosus in an anthropocentric perspective. Finally, we observed that a set of pheno-genomic markers, i.e. CRISPR oligotyping or carbohydrate metabolism, would be sufficient and among the best ways to differentiate the L. rhamnosus strains, providing a general approach to select the highest diversity in these and other bacterial species.
Collapse
Affiliation(s)
- François P Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Terpend K, Possemiers S, Daguet D, Marzorati M. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME ®). ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:595-603. [PMID: 23864575 DOI: 10.1111/1758-2229.12056] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/20/2013] [Indexed: 05/28/2023]
Abstract
Current prebiotics, such as fructo-oligosaccharides (FOS), are limited in their persistence in the distal colon and are predominantly fermented in the proximal colon. In order to identify a potential alternative, the differences in the fermentation profile of arabinogalactan (AG) and FOS have been assessed in the Simulator of the Human Intestinal Microbial Ecosystem. The effect of each product on the composition and activity of the microbial community was analysed during a 3-week treatment period at a dose of 5 g day(-1). While FOS indeed was mainly fermented in the simulated proximal colon, AG was still available for fermentation in the simulated distal colon as shown by pH profiles, size exclusion chromatography and analyses of specific enzymatic activities. As a consequence, the main effect of the products (increase in propionate and butyrate and decrease in ammonium production) occurred in different intestinal areas. DGGE and qPCR analyses confirmed that the main modulation of the microbiota by the two products occurred in different areas of the gut. AG was associated with a statistically significant increase in the concentration of total bacteria, Bacteroidetes, Faecalibacterium prausnitzii, a delayed bifidogenic effect and a decrease of the pathogenic Clostridium perfringens. FOS led to a strong lactobacillogenic effect.
Collapse
Affiliation(s)
- Kathleen Terpend
- NEXIRA SAS BRAM, 1, Avenue de la Preuilhe, Parc technologique du Lauragais, 11150, Bram, France
| | | | | | | |
Collapse
|
206
|
Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S, Hamelmann E. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 2013; 132:601-607.e8. [PMID: 23900058 DOI: 10.1016/j.jaci.2013.05.043] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Perturbations in the intestinal microbiota may disrupt mechanisms involved in the development of immunologic tolerance. The present study aimed to examine the establishment of the infant microbiota and its association to the development of atopic dermatitis (AD). METHODS Within a randomized, placebo-controlled trial on the prevention of AD by oral supplementation of a bacterial lysate between week 5 and the end of month 7, feces was collected at the ages of 5 weeks (n = 571), 13 weeks (n = 332), and 31 weeks (n = 499) and subjected to quantitative PCRs to detect bifidobacteria, bacteroides, lactobacilli, Escherichia coli, Clostridium difficile, and Clostridium cluster I. RESULTS Birth mode, breast-feeding but also birth order had a strong effect on the microbiota composition. With increasing number of older siblings the colonization rates at age 5 weeks of lactobacilli (P < .001) and bacteroides (P = .02) increased, whereas rates of clostridia decreased (P < .001). Colonization with clostridia, at the age of 5 and 13 weeks was also associated with an increased risk of developing AD in the subsequent 6 months of life (odds ratioadjusted = 2.35; 95% CI, 1.36-3.94 and 2.51; 1.30-4.86, respectively). Mediation analyses demonstrated that there was a statistically significant indirect effect via Clostridium cluster I colonization for both birth mode and birth order in association to AD. CONCLUSION The results of this study are supportive for a role of the microbiota in the development of AD. Moreover, the "beneficial" influence of older siblings on the microbiota composition suggests that this microbiota may be one of the biological mechanisms underlying the sibling effect.
Collapse
Affiliation(s)
- John Penders
- Department of Medical Microbiology, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.
| | - Kerstin Gerhold
- Department of Pediatric Pneumology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ellen E Stobberingh
- Department of Medical Microbiology, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carel Thijs
- Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | | | - Susanne Lau
- Department of Pediatric Pneumology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eckard Hamelmann
- University Children's Hospital, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
207
|
Interaction of Lactobacillus fermentum BGHI14 with rat colonic mucosa: implications for colitis induction. Appl Environ Microbiol 2013; 79:5735-44. [PMID: 23851097 DOI: 10.1128/aem.01807-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present study was carried out to test the colonic mucosal response of rats to oral supplementation with Lactobacillus fermentum BGHI14 and to correlate the tissue reaction to trinitrobenzenesulfonate (TNBS)-induced colitis with mucosal barrier alterations caused by bacterial ingestion. An immune cell-mediated reaction of healthy colonic tissue was noticed after bacterial feeding. After prolonged bacterial treatment, the observed reaction had retreated to normality, but the mRNA levels of proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) remained elevated. These data point to the chronic low-grade inflammation that could be caused by long-term probiotic consumption. Although no detrimental effects of bacterial pretreatment were noticed in colitic rats, at least in the acute state of disease, the results obtained in our study point to the necessity of reassessment of existing data on the safety of probiotic preparations. Additionally, probiotic effects in experimental colitis models might depend on time coordination of disease induction with treatment duration.
Collapse
|
208
|
Sivieri K, Morales MLV, Adorno MAT, Sakamoto IK, Saad SMI, Rossi EA. Lactobacillus acidophilus CRL 1014 improved "gut health" in the SHIME reactor. BMC Gastroenterol 2013; 13:100. [PMID: 23758634 PMCID: PMC3700768 DOI: 10.1186/1471-230x-13-100] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 06/07/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND How to maintain "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. METHODS The SHIME model was used to study the effect of Lactobacillus acidophilus 1014 on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2-wk using a culture medium. This stabilization period was followed by a 2-wk control period during which the microbiota was monitored. The microbiota was then subjected to a 4-wk treatment period by adding 5 mL of sterile peptone water with L. acidophilus CRL1014 at the concentration of 10⁸ CFU/mL to vessel one (the stomach compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA) and ammonium analyses were carried out for monitoring of the microbial community from the colon compartments. RESULTS A significant increase (p < 0.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed changes in the lactobacilli community from the colon compartments of the SHIME reactor. The (SCFA) concentration increased (p < 0.01) during the treatment period, due mainly to significant increased levels of acetic, butyric, and propionic acids. However, ammonium concentrations decreased during the same period (p < 0.01). CONCLUSIONS This study showed the beneficial influence of L. acidophilus CRL 1014 on microbial metabolism and lactobacilli community composition for improving human health.
Collapse
Affiliation(s)
- Katia Sivieri
- Department of Food & Nutrition, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara Jau Highway, Km1, Araraquara, SP, Brazil
| | - Martha L Villarreal Morales
- University of São Paulo, Faculty of Pharmaceutical Sciences, 580, Prof. Lineu Prestes Av, São Paulo, SP 05508-000, Brazil
| | | | | | - Susana M Isay Saad
- University of São Paulo, Faculty of Pharmaceutical Sciences, 580, Prof. Lineu Prestes Av, São Paulo, SP 05508-000, Brazil
| | - Elizeu A Rossi
- Department of Food & Nutrition, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara Jau Highway, Km1, Araraquara, SP, Brazil
| |
Collapse
|
209
|
|
210
|
Vigsnæs LK, Brynskov J, Steenholdt C, Wilcks A, Licht TR. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls. Benef Microbes 2013; 3:287-97. [PMID: 22968374 DOI: 10.3920/bm2012.0018] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed knowledge about the composition of the intestinal microbiota may be critical to unravel the pathogenesis of ulcerative colitis (UC), a human chronic inflammatory bowel disease, since the intestinal microbes are expected to influence some of the key mechanisms involved in the inflammatory process of the gut mucosa. The aim of this study was to investigate the faecal microbiota in patients either with UC in remission (n=6) or with active disease (n=6), and in healthy controls (n=6). The composition of Gram-negative bacteria and Gram-positive bacteria was examined. Antigenic structures of Gram-negative bacteria such as lipopolysaccharides have been related to the inflammatory responses and pathogenesis of inflammatory bowel disease. Dice cluster analysis and principal component analysis of faecal microbiota profiles obtained by denaturing gradient gel electrophoresis and quantitative PCR, respectively, revealed that the composition of faecal bacteria from UC patients with active disease differed from the healthy controls and that this difference should be ascribed to Gram-negative bacteria. The analysis did not show any clear grouping of UC patients in remission. Even with the relatively low number of subjects in each group, we were able to detect a statistically significant underrepresentation of Lactobacillus spp. and Akkermansia muciniphila in UC patients with clinically active disease compared to the healthy controls. In line with previous communications, we have shown that the microbiota in UC patients with active disease differ from that in healthy controls. Our findings indicate that alterations in the composition of the Gram-negative bacterial population, as well as reduced numbers of lactobacilli and A. muciniphila may play a role in UC.
Collapse
Affiliation(s)
- L K Vigsnæs
- Division of Food Microbiology, National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | | | | | | | | |
Collapse
|
211
|
Maurice CF, Turnbaugh PJ. Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiol Rev 2013; 37:830-48. [PMID: 23550823 DOI: 10.1111/1574-6976.12022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small-to-moderate-sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single-cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities.
Collapse
Affiliation(s)
- Corinne F Maurice
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
212
|
Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 2013; 79:3744-55. [PMID: 23584771 DOI: 10.1128/aem.03983-12] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.
Collapse
|
213
|
Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 2013; 109 Suppl 2:S51-62. [PMID: 23360881 DOI: 10.1017/s0007114512005211] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytes in vitro. The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity with Lactobacillus paracasei, Lactobacillus rhamnosus and Bifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S-23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and named L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibited in vitro the meningitis aetiological agent Listeria monocytogenes and human rotavirus infections. B. breve CNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest that L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.
Collapse
|
214
|
Metzler-Zebeli BU, Schmitz-Esser S, Klevenhusen F, Podstatzky-Lichtenstein L, Wagner M, Zebeli Q. Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats. Anaerobe 2013; 20:65-73. [PMID: 23474085 DOI: 10.1016/j.anaerobe.2013.02.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/10/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022]
Abstract
High grain feeding has been associated with ruminal pH depression and microbial dysbiosis in cattle. Yet, the impact of high grain feeding on the caprine rumen and hindgut microbial community and lipopolysaccharide (LPS) release is largely unknown. Therefore, the objective was to investigate the effect of increasing dietary levels of barley grain on the microbial composition and LPS concentrations in the rumen and colon of goats. Effects were compared with respect to the responses of ruminal and colonic pH and short-chain fatty acid (SCFA) generation. Growing goats (n = 5-6) were fed diets containing 0, 30, or 60% coarsely ground barley grain for 6 weeks. Ruminal ciliate protozoa were counted with Bürker counting chamber, and quantitative PCR was used to compare bacterial populations. Increasing dietary grain level linearly increased (P < 0.05) ruminal numbers of entodiniomorphids. With the 60% grain diet, there was a reduction in ruminal abundance of the genus Prevotella and Fibrobacter succinogenes, whereas the ruminal abundance of Lactobacillus spp. increased compared to the 0 and 30% grain diets (P < 0.05). In the colon, abundance of the genus Prevotella and F. succinogenes increased (P < 0.05) in goats fed the 60% grain diet compared to those fed the other diets. Colonic abundance of Clostridium cluster I was related to the presence of grain in the diet. Ruminal LPS concentration decreased (P < 0.05) in response to the 60% grain diet, whereas its colonic concentration increased in response to the same diet (P < 0.05). Present results provide first insight on the adaptive response of rumen protozoa and rumen and colonic bacterial populations to increasing dietary levels of grain in goats. Although luminal pH largely affects microbial populations, fermentable substrate flow to the caprine hindgut may have played a greater role for colonic bacterial populations in the present study.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
215
|
Larsen N, Vogensen FK, Gøbel RJ, Michaelsen KF, Forssten SD, Lahtinen SJ, Jakobsen M. Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin Nutr 2013; 32:935-40. [PMID: 23510724 DOI: 10.1016/j.clnu.2013.02.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/22/2013] [Accepted: 02/13/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS This study is a part of the clinical trials with probiotic bacterium Lactobacillus salivarius Ls-33 conducted in obese adolescents. Previously reported clinical studies showed no effect of Ls-33 consumption on the metabolic syndrome in the subject group. The aim of the study was to investigate the impact of L. salivarius Ls-33 on fecal microbiota in obese adolescents. METHODS The study was a double-blinded intervention with 50 subjects randomized to intake of L. salivarius Ls-33 or placebo for 12 weeks. The fecal microbiota was assessed by real-time quantitative PCR before and after intervention. Concentrations of fecal short chain fatty acids were determined using gas chromatography. RESULTS Ratios of Bacteroides-Prevotella-Porphyromonas group to Firmicutes belonging bacteria, including Clostridium cluster XIV, Blautia coccoides_Eubacteria rectale group and Roseburia intestinalis, were significantly increased (p ≤ 0.05) after administration of Ls-33. The cell numbers of fecal bacteria, including the groups above as well as Clostridium cluster I, Clostridium cluster IV, Faecalibacterium prausnitzii, Enterobacteriaceae, Enterococcus, the Lactobacillus group and Bifidobacterium were not significantly altered by intervention. Similarly, short chain fatty acids remained unaffected. CONCLUSION L. salivarius Ls-33 might modify the fecal microbiota in obese adolescents in a way not related to metabolic syndrome. CLINICAL TRIAL NUMBER NCT 01020617.
Collapse
Affiliation(s)
- Nadja Larsen
- University of Copenhagen, Faculty of Science, Department of Food Science, Rolighedsvej 30, Frederiksberg 1958, Denmark.
| | | | | | | | | | | | | |
Collapse
|
216
|
Wang Y, Ametaj BN, Ambrose DJ, Gänzle MG. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol 2013; 13:19. [PMID: 23356904 PMCID: PMC3564792 DOI: 10.1186/1471-2180-13-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 01/21/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Uterine infections in dairy cows lower profitability of dairy operations. Infections of the reproductive tract are related to the overgrowth of pathogenic bacteria during the first three weeks after parturition. However, alterations in the vaginal microbiota composition in the first weeks after parturition remain poorly documented. RESULTS In this study, bacteria isolated from the vagina of healthy pregnant, and infected postpartum cows were characterised by random amplification of polymorphic DNA (RAPD) analysis and partial 16S ribosomal RNA (rDNA) gene sequencing. Populations of bacilli and lactic acid bacteria of the genera Enterococcus, Lactobacillus, and Pediococcus were present in both healthy and infected cows. Infected cows had a significant increase in the vaginal enteric bacteria population which consisted mainly of Escherichia coli. Three E. coli isolates harboured the gene coding for Shiga-like-toxin (SLT) I or II. Several isolates of the Pediococcus acidilactici were found to produce the bacteriocin pediocin AcH/PA-1. Quantitative PCR analyses of vaginal mucus samples collected from ten metritic cows before and after parturition confirmed the presence of the Lactobacillus group (Lactobacillus spp., Pediococcus spp., Leuconostoc spp., and Weissella spp.); Enterobacteriaceae, E. coli, and bacilli. The presence of the pediocin AcH/PA-1 structural gene and SLT genes were also confirmed with qPCR. CONCLUSIONS In conclusion, overgrowth of pathogenic bacteria, particularly E. coli, after parturition likely contributes to the development of metritis. Our microbiota analysis extends the information related to the composition of commensal bacteria in the bovine female reproductive tract and may facilitate the development of novel intervention strategies for prevention of uterine infections in dairy cows.
Collapse
Affiliation(s)
- Yvonne Wang
- Department of Agricultural, University of Alberta, Food and Nutritional Science, 4-10 Ag/For Centre, Edmonton, AB, T6G 2P5, Canada
| | | | | | | |
Collapse
|
217
|
Cremonesi P, Chessa S, Castiglioni B. Genome sequence and analysis of Lactobacillus helveticus. Front Microbiol 2013; 3:435. [PMID: 23335916 PMCID: PMC3542869 DOI: 10.3389/fmicb.2012.00435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022] Open
Abstract
The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council Lodi, Italy
| | | | | |
Collapse
|
218
|
Diverse effects of oats on cholesterol metabolism in C57BL/6 mice correlate with expression of hepatic bile acid-producing enzymes. Eur J Nutr 2012; 52:1755-69. [PMID: 23262749 DOI: 10.1007/s00394-012-0479-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE We previously reported that two substrains of C57BL/6 mice respond differently to oats with respect to reduction in plasma cholesterol. Analysis of this difference might offer clues to mechanisms behind the cholesterol-lowering effect of oats. Here, we address the possible roles of hepatic steroid metabolism and the intestinal microbiota in this respect. METHODS Female C57BL/6 mice were fed an atherogenic diet with oat bran (27 %) or control fibres for 4 weeks. RESULTS C57BL/6 NCrl mice responded to oat bran with 19 ± 1 % (P < 0.001) lower plasma cholesterol, 40 ± 5% (P < 0.01) higher excretion of bile acids and increased expression of the bile acid-producing hepatic enzymes CYP7A1 and CYP8B1, but none of these effects were found in C57BL/6JBomTac mice. However, on control diet, C57BL/6JBomTac had tenfold higher expression of CYP7A1 and levels of hepatic cholesterol esters than C57BL/6NCrl mice. Plasma levels of fructosamine indicated improved glycemic control by oat bran in C57BL/6NCrl but not in C57BL/6JBomTac. C57BL/6JBomTac had higher intestinal microbiota diversity, but lower numbers of Enterobacteriaceae, Akkermansia and Bacteroides Fragilis than C57BL/6NCrl mice. Oat bran increased bacterial numbers in both substrains. Microbiota diversity was reduced by oats in C57BL/6JBomTac, but unaffected in C57BL/6NCrl. CONCLUSIONS Our data do not support a connection between altered microbiota diversity and reduced plasma cholesterol, but the bacterial composition in the intestine may influence the effects of added fibres. The cholesterol-lowering properties of oats involve increased production of bile acids via the classical pathway with up-regulation of CYP7A1 and CYP8B1. Altered cholesterol or bile acid metabolism may interfere with the potential of oats to reduce plasma cholesterol.
Collapse
|
219
|
Martinez RCR, Cardarelli HR, Borst W, Albrecht S, Schols H, Gutiérrez OP, Maathuis AJH, de Melo Franco BDG, De Martinis ECP, Zoetendal EG, Venema K, Saad SMI, Smidt H. Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol Ecol 2012; 84:110-23. [PMID: 23167835 DOI: 10.1111/1574-6941.12041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 12/23/2022] Open
Abstract
A validated in vitro model of the large intestine (TIM-2), set up with human or pig faeces, was used to evaluate the impact of potentially probiotic Lactobacillus amylovorus DSM 16698, administered alone (i), in the presence of prebiotic galactooligosaccharides (GOS) (ii), and co-administered with probiotic Bifidobacterium animalis ssp. lactis Bb-12 (Bb-12) (iii) on GOS degradation, microbial growth (L. amylovorus, lactobacilli, bifidobacteria and total bacteria) and metabolite production. High performance anion exchange chromatography revealed that GOS degradation was more pronounced in TIM-2 inoculated with pig faeces than with human faeces. Denaturing gradient gel electrophoresis profiling of PCR-amplified 16S rRNA genes detected a more complex Lactobacillus spp. community in pig faecal material than in human faecal inoculum. According to 16S rRNA gene-targeted qPCR, GOS stimulated the growth of lactobacilli and bifidobacteria in faecal material from both materials. The cumulative production of short chain fatty acids and ammonia was higher (P < 0.05) for pig than for human faeces. However, lactate accumulation was higher (P < 0.05) in the human model and increased after co-administration with GOS and Bb-12. This study reinforced the notion that differences in microbiota composition between target host organisms need to be considered when animal data are extrapolated to human, as is often done with pre- and probiotic intervention studies.
Collapse
Affiliation(s)
- Rafael C R Martinez
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Rist VTS, Eklund M, Bauer E, Sauer N, Mosenthin R. Effect of feeding level on the composition of the intestinal microbiota in weaned piglets. J Anim Sci 2012; 90 Suppl 4:19-21. [PMID: 23365271 DOI: 10.2527/jas.52642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In piglets, the development and composition of intestinal microbiota is influenced by dietary factors. A considerable reduction in feed intake during the transition from liquid to solid feed is often accompanied by postweaning diarrhea. Therefore, it is hypothesized that variations in feeding level during weaning may affect intestinal microbial composition. Forty-eight piglets fitted with simple ileal T-cannulas were used to examine the effects of a high (60 g/kg BW) and a low (30 g/kg BW) feeding level on the composition of the ileal and fecal microbiota. The assay diets contained graded inclusion levels of soybean (Glycine max) meal or casein. Bacterial cell numbers of total eubacteria, Lactobacillus spp., and the mainly proteolytic Clostridium leptum, Clostridium coccoides, Enterobacteriaceae, and Bacteroides-Prevotella-Porphyromonas group (Bacteroides group) of feces and ileal digesta were determined by use of real-time PCR. There were no interactions between feeding level and protein source except for the Bacteroides group in ileal digesta. Ileal cell numbers of lactobacilli were increased (P < 0.001) at the higher feeding level. In contrast, ileal cell numbers of Clostridium coccoides were lower (P < 0.001) at the higher feeding level. There were no differences of bacterial cell numbers in feces. Results indicate that feeding level affects microbial composition in the small intestine. Also, sufficient feed intake during weaning encourages proliferation of beneficial bacteria, thereby contributing to improved gut health.
Collapse
Affiliation(s)
- V T S Rist
- Institute of Animal Nutrition, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
221
|
Karlsson CLJ, Onnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 2012; 20:2257-61. [PMID: 22546742 DOI: 10.1038/oby.2012.110] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the gut microbiota in preschool children with and without overweight and obesity. Twenty overweight or obese children and twenty children with BMI within the normal range (age: 4-5 years) were recruited from the south of Sweden. The gut microbiota was accessed by quantitative PCR (qPCR) and terminal restriction fragment length polymorphism and calprotectin was measured in feces. Liver enzymes were quantified in obese/overweight children. The concentration of the gram-negative family Enterobacteriaceae was significantly higher in the obese/overweight children (P = 0.036), whereas levels of Desulfovibrio and Akkermansia muciniphila-like bacteria were significantly lower in the obese/overweight children (P = 0.027 and P = 0.030, respectively). No significant differences were found in content of Lactobacillus, Bifidobacterium or the Bacteroides fragilis group. The diversity of the dominating bacterial community tended to be less diverse in the obese/overweight group, but the difference was not statistically significant. Concentration of Bifidobacterium was inversely correlated to alanine aminotransferase (ALT) in obese/overweight children. The fecal levels of calprotectin did not differ between the study groups. These findings indicate that the gut microbiota differed among preschool children with obesity/overweight compared with children with BMI within the normal range.
Collapse
Affiliation(s)
- Caroline L J Karlsson
- Food Hygiene, Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
222
|
Vitali B, Cruciani F, Baldassarre ME, Capursi T, Spisni E, Valerii MC, Candela M, Turroni S, Brigidi P. Dietary supplementation with probiotics during late pregnancy: outcome on vaginal microbiota and cytokine secretion. BMC Microbiol 2012; 12:236. [PMID: 23078375 PMCID: PMC3493352 DOI: 10.1186/1471-2180-12-236] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 10/16/2012] [Indexed: 12/14/2022] Open
Abstract
Background The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacterial genera and species dominated by the genus Lactobacillus. The activity of lactobacilli helps to maintain the natural healthy balance of the vaginal microbiota. This role is particularly important during pregnancy because vaginal dismicrobism is one of the most important mechanisms for preterm birth and perinatal complications. In the present study, we characterized the impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbiota and immunological profiles of healthy women during late pregnancy. Results An association between the oral intake of the probiotic VSL#3 and changes in the composition of the vaginal microbiota of pregnant women was revealed by PCR-DGGE population profiling. Despite no significant changes were found in the amounts of the principal vaginal bacterial populations in women administered with VSL#3, qPCR results suggested a potential role of the probiotic product in counteracting the decrease of Bifidobacterium and the increase of Atopobium, that occurred in control women during late pregnancy. The modulation of the vaginal microbiota was associated with significant changes in some vaginal cytokines. In particular, the decrease of the anti-inflammatory cytokines IL-4 and IL-10 was observed only in control women but not in women supplemented with VSL#3. In addition, the probiotic consumption induced the decrease of the pro-inflammatory chemokine Eotaxin, suggesting a potential anti-inflammatory effect on the vaginal immunity. Conclusion Dietary supplementation with the probiotic VSL#3 during the last trimester of pregnancy was associated to a modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. Trial registration ClinicalTrials.gov NCT01367470
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
van Zanten GC, Knudsen A, Röytiö H, Forssten S, Lawther M, Blennow A, Lahtinen SJ, Jakobsen M, Svensson B, Jespersen L. The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PLoS One 2012; 7:e47212. [PMID: 23082149 PMCID: PMC3474826 DOI: 10.1371/journal.pone.0047212] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Prebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon. METHODS AND FINDINGS Carbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 10(3)-10(4) fold and 10-10(2) fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p=0.04 and p=0.03, respectively). CONCLUSIONS The results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the production of SCFA of fecal microbiota in a model system of the human colon, thereby potentially being able to manipulate the microbiota in a way connected to human health.
Collapse
Affiliation(s)
- Gabriella C van Zanten
- Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Bergström A, Licht TR, Wilcks A, Andersen JB, Schmidt LR, Grønlund HA, Vigsnaes LK, Michaelsen KF, Bahl MI. Introducing GUt low-density array (GULDA): a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiol Lett 2012; 337:38-47. [PMID: 22967145 DOI: 10.1111/1574-6968.12004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 12/29/2022] Open
Abstract
Alterations in the human gut microbiota caused, for example, by diet, functional foods, antibiotics, or occurring as a function of age are now known to be of relevance for host health. Therefore, there is a strong need for methods to detect such alterations in a rapid and comprehensive manner. In the present study, we developed and validated a high-throughput real-time quantitative PCR-based analysis platform, termed 'GUt Low-Density Array' (GULDA). The platform was designed for simultaneous analysis of the change in the abundance of 31 different microbial 16S rRNA gene targets in fecal samples obtained from individuals at various points in time. The target genes represent important phyla, genera, species, or other taxonomic groups within the five predominant bacterial phyla of the gut, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia and also Euryarchaeota. To demonstrate the applicability of GULDA, analysis of fecal samples obtained from six healthy infants at both 9 and 18 months of age was performed and showed a significant increase over time of the relative abundance of bacteria belonging to Clostridial cluster IV (Clostridia leptum group) and Bifidobacterium bifidum and concurrent decrease in the abundance of Clostridium butyricum and a tendency for decrease in Enterobacteriaceae over the 9-month period.
Collapse
Affiliation(s)
- Anders Bergström
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Baker J, Brown K, Rajendiran E, Yip A, DeCoffe D, Dai C, Molcan E, Chittick SA, Ghosh S, Mahmoud S, Gibson DL. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2012; 303:G825-36. [PMID: 22821949 DOI: 10.1152/ajpgi.00327.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease, inclusive of Crohn's disease and ulcerative colitis, consists of immunologically mediated disorders involving the microbiota in the gastrointestinal tract. Lavender oil is a traditional medicine used to relieve many gastrointestinal disorders. The goal of this study was to examine the therapeutic effects of the essential oil obtained from a novel lavender cultivar, Lavandula×intermedia cultivar Okanagan lavender (OLEO), in a mouse model of acute colitis caused by Citrobacter rodentium. In colitic mice, oral gavage with OLEO resulted in less severe disease, including decreased morbidity and mortality, reduced intestinal tissue damage, and decreased infiltration of neutrophils and macrophages, with reduced levels of TNF-α, IFN-γ, IL-22, macrophage inflammatory protein-2α, and inducible nitric oxide synthase expression. This was associated with increased levels of regulatory T cell populations compared with untreated colitic mice. Recently, we demonstrated that the composition of the enteric microbiota affects susceptibility to C. rodentium-induced colitis. Here, we found that oral administration of OLEO induced microbiota enriched with members of the phylum Firmicutes, including segmented filamentous bacteria, which are known to protect against the damaging effects of C. rodentium. Additionally, during infection, OLEO treatment promoted the maintenance of microbiota loads, with specific increases in Firmicutes bacteria and decreases in γ-Proteobacteria. We observed that Firmicutes bacteria were intimately associated with the apical region of the intestinal epithelial cells during infection, suggesting that their protective effect was through contact with the gut wall. Finally, we show that OLEO inhibited C. rodentium growth and adherence to Caco-2 cells, primarily through the activities of 1,8-cineole and borneol. These results indicate that while OLEO promoted Firmicutes populations, it also controlled pathogen load through antimicrobial activity. Overall, our results reveal that OLEO can protect against colitis through the microbial-immunity nexus and that a pharmacological agent, in this case OLEO, alters the normal enteric microbiota.
Collapse
Affiliation(s)
- J Baker
- Department of Biology, University of British Columbia Okanagan, ASC 368, 3333 Univ. Way, The Irving K. Barber School of Arts and Sciences, Kelowna, BC, Canada V1V 1V7
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Vlčková K, Mrázek J, Kopečný J, Petrželková KJ. Evaluation of different storage methods to characterize the fecal bacterial communities of captive western lowland gorillas (Gorilla gorilla gorilla). J Microbiol Methods 2012; 91:45-51. [DOI: 10.1016/j.mimet.2012.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 12/18/2022]
|
227
|
Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog 2012; 53:12-8. [PMID: 22783557 DOI: 10.1016/j.micpath.2012.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative (qt) real time PCR using 16SrDNA primers is useful for determination of the bacterial composition of the gastric microbiota in Mongolian gerbils. The aim of this study was to determine the change in the gastric microbiota after long-term infection with Helicobacter pylori. One year after inoculation with H. pylori, five gerbils were determined as H. pylori-positive and 6 gerbils H. pylori-negative by culture and real time qt PCR methods. The gastric microbiota of each group of gerbils was also compared with that of 6 gerbils uninfected with H. pylori. DNA from the Atopobium cluster, Bifidobacterium spp., Clostridium coccoides group, Clostridium leptum subgroup, Enterococcus spp. and Lactobacillus spp. were detected in the gastric mucus of both infected and uninfected gerbils. In contrast, Eubacterium cylindroides group and Prevotella spp. were detected only in H. pylori-negative gerbils. The numbers of C. leptum subgroup, C. coccoides group and Bifidobacterium spp. in gastric mucus of H. pylori-negative Mongolian gerbils were significantly lower than those in non-infected gerbils. The results obtained suggest that the composition of gastric indigenous microbiota in Mongolian gerbils may be disturbed by long-term infection with H. pylori, and that these changes may in fact inhibit H. pylori infection.
Collapse
|
228
|
Han H, Takase S, Nishino N. Survival of silage lactic acid bacteria in the goat gastrointestinal tract as determined by denaturing gradient gel electrophoresis. Lett Appl Microbiol 2012; 55:384-9. [DOI: 10.1111/j.1472-765x.2012.03305.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
229
|
Sauer N, Eklund M, Bauer E, Gänzle MG, Field CJ, Zijlstra RT, Mosenthin R. The effects of pure nucleotides on performance, humoral immunity, gut structure and numbers of intestinal bacteria of newly weaned pigs. J Anim Sci 2012; 90:3126-34. [PMID: 22859755 DOI: 10.2527/jas.2011-4417] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Weaning is often stressful for piglets and accompanied by morphological, histological, microbial, and immunological changes along the digestive tract. Dietary nucleotides are bioactive compounds which have the potential to diminish weaning-associated challenges. The experiment was carried out with 5 litters each of 7 pigs (mixed sex), weaned at 20 d of age. One baseline pig per litter was slaughtered at d 0. The remaining 30 pigs were housed individually and randomly allocated to 2 dietary treatments: the control diet or the control diet supplemented with a mixture of nucleotides. Measurements of growth performance traits included ADFI, ADG, G:F, and BW. At d 17, fresh fecal samples were taken to determine bacterial numbers. On d 19 and 20, pigs were slaughtered and blood samples were analyzed for plasma immunoglobulins and intestinal samples were assessed for morphological traits. Digesta from the jejunum and cecum were collected for analysis of the microbiome. The ADFI was greater in the nucleotide treatment compared with the control treatment (P < 0.05), but ADG, G:F, and BW did not differ between treatments. Plasma IgA concentrations increased with age and were greater in the nucleotide (P < 0.05) compared with the control group. There were no treatment differences in plasma IgG and IgM, gut morphology, or intestinal and fecal bacterial counts. Supplemental nucleotides may increase ADFI but without having any impact on growth performance of the pigs. Greater plasma IgA concentrations indicate that adding nucleotides in the weaning diet supported humoral immunity. However, there was no effect of dietary nucleotide supplementation on the composition of the bacterial community in parts of the small and large intestine. Further research is warranted before the use of nucleotide as a feed additive in pig diet can be recommended.
Collapse
Affiliation(s)
- N Sauer
- Institute of Animal Nutrition, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
230
|
Bergström A, Kristensen MB, Bahl MI, Metzdorff SB, Fink LN, Frøkiaer H, Licht TR. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res Notes 2012; 5:402. [PMID: 22857743 PMCID: PMC3465226 DOI: 10.1186/1756-0500-5-402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 07/12/2012] [Indexed: 12/29/2022] Open
Abstract
Background Postnatal regulation of the small intestinal mucus layer is potentially important in the development of adult gut functionality. We hypothesized that the nature of bacterial colonization affects mucus gene regulation in early life. We thus analyzed the influence of the presence of a conventional microbiota as well as two selected monocolonizing bacterial strains on the transcription of murine genes involved in mucus layer development during the first week of life. Mouse pups (N = 8/group) from differently colonized dams: Germ-free (GF), conventional specific pathogen free (SPF), monocolonized with either Lactobacillus acidophilus NCFM (Lb) or Escherichia coli Nissle (Ec) were analyzed by qPCR on isolated ileal tissue sections from postnatal days 1 and 6 (PND1, PND6) after birth with respect to: (i) transcription of specific genes involved in mucus production (Muc1-4, Tff3) and (ii) amounts of 16S rRNA of Lactobacillus and E. coli. Quantification of 16S rRNA genes was performed to obtain a measure for amounts of colonized bacteria. Results We found a microbiota-independent transcriptional increase of all five mucus genes from PND1 to PND6. Furthermore, the relative level of transcription of certain mucus genes on PND1 was increased by the presence of bacteria. This was observed for Tff3 in the SPF, Ec, and Lb groups; for Muc2 in SPF; and for Muc3 and Muc4 in Ec and Lb, respectively. Detection of bacterial 16S rRNA genes levels above the qPCR detection level occurred only on PND6 and only for some of the colonized animals. On PND6, we found significantly lower levels of Muc1, Muc2 and Muc4 gene transcription for Lb animals with detectable Lactobacillus levels as compared to animals with Lactobacillus levels below the detection limit. Conclusions In summary, our data show that development of the expression of genes encoding secreted (Muc2/Tff3) and membrane-bound (Muc1/Muc3/Muc4) mucus regulatory proteins, respectively, is distinct and that the onset of this development may be accelerated by specific groups of bacteria present or absent at the mucosal site.
Collapse
Affiliation(s)
- Anders Bergström
- Gut Ecology Group, Department of Food Microbiology, National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
231
|
Salami F, Abels M, Hyöty H, Vaziri-Sani F, Aronsson C, Vehik K, Delli A, Hagopian W, Rewers M, Ziegler A, Simell O, Akolkar B, Krischer J, She J, Lernmark A. DETECTION OF LACTOBACILLI IN MONTHLY MAIL-IN STOOL SAMPLES FROM 3-18 MONTHS OLD INFANTS AT GENETIC RISK FOR TYPE 1 DIABETES. INTERNATIONAL JOURNAL OF PROBIOTICS & PREBIOTICS 2012; 7:135-144. [PMID: 25045339 PMCID: PMC4101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The feasibility to detect lactobacilli in mail-in infant stools collected monthly from 3-18 months old children was investigated. The aim was to determine total lactobacilli and Lactobacillus plantarum (L. plantarum) content (ng/g feces) in 50 infants each from Colorado (648 samples), Finland (624 samples) and Sweden (685 samples) who participated in the TEDDY (The Environmental Determinants of Diabetes in the Young) study. Total lactobacilli content varied markedly between 5 and 16,800 ng/g feces in the three clinical sites within and between individuals especially in infants. L.plantarum also varied markedly intra- and inter-individually from <0.5 - 736 ng/g feces. A higher variability of total lactobacilli was found before 10 months of age than after in the three different clinical sites. Sweden had the lowest total lactobacilli content compared to Colorado and Finland while the L.plantarum content was higher in Sweden. Mail-in stool samples from infants should prove useful in analyzing probiotics in childhood.
Collapse
Affiliation(s)
- F Salami
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - M Abels
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - H Hyöty
- Department of Virology, Tampere University Hospital, Tampere, Finland
| | - F Vaziri-Sani
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Ca Aronsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - K Vehik
- Morsani College of Medicine, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - A Delli
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Wa Hagopian
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | - M Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Ag Ziegler
- Diabetes Research Institute, Technische Universität München, Munich, Germany
| | - O Simell
- Department of Pediatrics, University of Turku, Turku, Finland
| | | | - J Krischer
- Morsani College of Medicine, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - J She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA
| | - A Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| |
Collapse
|
232
|
Cruciani F, Brigidi P, Calanni F, Lauro V, Tacchi R, Donders G, Peters K, Guaschino S, Vitali B. Efficacy of rifaximin vaginal tablets in treatment of bacterial vaginosis: a molecular characterization of the vaginal microbiota. Antimicrob Agents Chemother 2012; 56:4062-70. [PMID: 22585228 PMCID: PMC3421556 DOI: 10.1128/aac.00061-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/04/2012] [Indexed: 12/20/2022] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal disorder characterized by an alteration of the vaginal bacterial morphotypes, associated with sexually transmitted infections and adverse pregnancy outcomes. The purpose of the present study was to evaluate the impact of different doses of rifaximin vaginal tablets (100 mg/day for 5 days, 25 mg/day for 5 days, and 100 mg/day for 2 days) on the vaginal microbiota of 102 European patients with BV enrolled in a multicenter, double-blind, randomized, placebo-controlled study. An integrated molecular approach based on quantitative PCR (qPCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to investigate the effects of vaginal tablets containing the antibiotic. An increase in members of the genus Lactobacillus and a decrease in the BV-related bacterial groups after the antibiotic treatment were demonstrated by qPCR. PCR-DGGE profiles confirmed the capability of rifaximin to modulate the composition of the vaginal microbial communities and to reduce their complexity. This molecular analysis supported the clinical observation that rifaximin at 25 mg/day for 5 days represents an effective treatment to be used in future pivotal studies for the treatment of BV.
Collapse
Affiliation(s)
- Federica Cruciani
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Gilbert Donders
- Department of Obstetrics and Gynaecology, General Hospital Heilig Hart Tienen and University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | | | - Secondo Guaschino
- Department of Obstetrics and Gynecology, Institute of Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
233
|
Xie Y, Luo Z, Li Z, Deng M, Liu H, Zhu B, Ruan B, Li L. Structural shifts of fecal microbial communities in rats with acute rejection after liver transplantation. MICROBIAL ECOLOGY 2012; 64:546-554. [PMID: 22430504 DOI: 10.1007/s00248-012-0030-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
Bacterial translocation and the development of sepsis after orthotopic liver transplantation (OLT) may be promoted by immunological damage to the intestinal mucosa or by quantitative and qualitative changes in intestinal microbiota. This study monitored structural shifts of gut microbiota in rats with OLT using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (RT-qPCR). RT-qPCR targets six major microorganisms (Domain Bacteria, Bacteroides, Bifidobacteria, Enterobacteriaceae, Lactobacillus and Clostridium leptum subgroup). Isograft, Allograft and Sham model were studied. Bacterial translocation to host organs and plasma endotoxin were determined. Alteration in gut microbiota was associated with the elevation of plasma endotoxin and a higher rate of bacterial translocation (BT) to liver in rats with acute rejection. Dynamic analysis of DGGE fingerprints showed that the gut microbiota structure of animals in the three groups was similar before the operation. But significant alterations in the composition of fecal microbiota in Allograft group were observed at 1 and 2 weeks after the OLT. The acute rejection was accompanied by the shifts of gut microbiota towards members of Bacteroides and Ruminococcus. Results from RT-qPCR indicated that Bacteroides significantly increased at 2 weeks after the OLT, whereas numbers of Bifidobacterium spp. decreased at 1 week and recovered at 2 weeks after the OLT. In summary, our data showed that rats with acute rejection after OLT exhibited significant structure shifts in the gut microbiota which dominant by overgrowth of Bacteroides and Ruminococcus, and these were associated with elevation of plasma endotoxin and higher rate of BT.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, China, 310003
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Björklund M, Ouwehand AC, Forssten SD, Nikkilä J, Tiihonen K, Rautonen N, Lahtinen SJ. Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol. AGE (DORDRECHT, NETHERLANDS) 2012; 34:987-999. [PMID: 21853265 PMCID: PMC3682059 DOI: 10.1007/s11357-011-9294-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Ageing changes gut microbiota composition and alters immune system function. Probiotics, prebiotics and synbiotics may improve the health status of elderly individuals by modifying the intestinal environment and the microbiota composition, and by stimulating the immune system. In this work, we studied the effects of synbiotic supplementation on the gut microbiota of healthy elderly volunteers. Fifty-one elders were randomly assigned to consume either a synbiotic dietary supplement or a placebo in addition to their usual diet for a 2-week period. The synbiotic product consisted of the probiotic Lactobacillus acidophilus NCFM and the prebiotic lactitol and was ingested twice a day, with a total daily dose of 10 g lactitol and 2 × 10(10) cells of probiotic bacteria. Before, during and after the intervention period fecal quantities of six phylogenetic bacterial groups were determined using quantitative PCR, and relative changes in total microbiota composition were assessed by percent guanine-plus-cytosine profiling. The microbiota profiles showed certain relative changes within the microbial community, and indicated an increase of bifidobacteria levels during synbiotic supplementation. Quantification by PCR confirmed the in changes in the microbiota composition; for example increases in total levels of endogenous bifidobacteria and lactobacilli were recorded. Throughout the 6-week study period there was a decrease unrelated to intervention in the Blautia coccoides-Eubacterium rectale bacterial group levels and Clostridium cluster XIVab levels, but this decrease appeared to be halted during the synbiotic intervention. In conclusion, putatively beneficial changes in microbiota were observed in the elderly subjects supplemented with the synbiotic product.
Collapse
Affiliation(s)
- Marika Björklund
- />Danisco BioActives, Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
- />Department of Biosciences, Åbo Akademi University, Tykistönkatu 6, 20520 Turku, Finland
| | - Arthur C. Ouwehand
- />Danisco BioActives, Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Sofia D. Forssten
- />Danisco BioActives, Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Janne Nikkilä
- />Pharmatest Services Ltd, Itäinen Pitkäkatu 4 C, 5th floor, 20520 Turku, Finland
| | - Kirsti Tiihonen
- />Danisco BioActives, Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Nina Rautonen
- />Danisco BioActives, Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Sampo J. Lahtinen
- />Danisco BioActives, Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
235
|
Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats. Nutr Res 2012; 32:599-606. [PMID: 22935343 DOI: 10.1016/j.nutres.2012.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 01/06/2023]
Abstract
The benefits of inulin-type fructans for bowel health are well established, but less so for other fructan sources. In vitro data suggest that fructans extracted from cereals are readily fermented and produce favorable short-chain fatty acid profiles; however, whether this occurs in vivo is unknown. We hypothesized that in rats, fructans extracted from wheat stem and barley grain would have similar effects on fermentation as oligofructose (OF). Fifty-six male Sprague-Dawley rats were randomly assigned to 1 of 7 dietary treatments that contained either 2% or 5% fructan, provided by a barley grain fructan extract (BGFE), a wheat stem fructan extract, or OF or no added fructan (control). The duration of the feeding study was 14 days. Rats fed diets containing 5% fructan had higher cecal digesta weights; larger acetate, propionate, and total short-chain fatty acid pools; and lower pHs in comparison with the control group. In addition, only the 5% OF and 5% BGFE groups increased cecal butyrate pools, and 5% BGFE was the only group in which colonic digesta pH was lower than that of the control. Diets containing 2% fructan did not affect any of these fermentation end points. Whereas bifidobacteria numbers in cecal digesta of 2% and 5% OF were higher than that in the control group, they were not different from those in rats fed diets containing BGFE and wheat stem fructan extract. Barley grain and wheat stem fructans produced similar large bowel fermentation patterns to OF when fed to rats at 5% of the diet.
Collapse
|
236
|
Gauffin Cano P, Santacruz A, Moya Á, Sanz Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 2012; 7:e41079. [PMID: 22844426 PMCID: PMC3406031 DOI: 10.1371/journal.pone.0041079] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/19/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Associations have been made between obesity and reduced intestinal numbers of members of the phylum Bacteroidetes, but there is no direct evidence of the role these bacteria play in obesity. Herein, the effects of Bacteroides uniformis CECT 7771 on obesity-related metabolic and immune alterations have been evaluated. METHODS AND FINDINGS Adult (6-8 week) male wild-type C57BL-6 mice were fed a standard diet or a high-fat-diet HFD to induce obesity, supplemented or not with B. uniformis CECT 7771 for seven weeks. Animal weight was monitored and histologic, biochemical, immunocompetent cell functions, and features of the faecal microbiota were analysed after intervention. The oral administration of B. uniformis CECT 7771 reduced body weight gain, liver steatosis and liver cholesterol and triglyceride concentrations and increased small adipocyte numbers in HFD-fed mice. The strain also reduced serum cholesterol, triglyceride, glucose, insulin and leptin levels, and improved oral tolerance to glucose in HFD fed mice. The bacterial strain also reduced dietary fat absorption, as indicated by the reduced number of fat micelles detected in enterocytes. Moreover, B. uniformis CECT 7771 improved immune defence mechanisms, impaired in obesity. HFD-induced obesity led to a decrease in TNF-α production by peritoneal macrophages stimulated with LPS, conversely, the administration of B. uniformis CECT 7771 increased TNF-α production and phagocytosis. Administering this strain also increased TNF-α production by dendritic cells (DCs) in response to LPS stimulation, which was significantly reduced by HFD. B. uniformis CECT 7771 also restored the capacity of DCs to induce a T-cell proliferation response, which was impaired in obese mice. HFD induced marked changes in gut microbiota composition, which were partially restored by the intervention. CONCLUSIONS Altogether, the findings indicate that administration of B. uniformis CECT 7771 ameliorates HFD-induced metabolic and immune dysfunction associated with intestinal dysbiosis in obese mice.
Collapse
Affiliation(s)
- Paola Gauffin Cano
- Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), Valencia, Spain
| | - Arlette Santacruz
- Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), Valencia, Spain
| | - Ángela Moya
- Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), Valencia, Spain
- * E-mail:
| |
Collapse
|
237
|
Collins J, van Pijkeren JP, Svensson L, Claesson MJ, Sturme M, Li Y, Cooney JC, van Sinderen D, Walker AW, Parkhill J, Shannon O, O'Toole PW. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol Microbiol 2012; 85:862-77. [PMID: 22724453 DOI: 10.1111/j.1365-2958.2012.08148.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected.
Collapse
Affiliation(s)
- James Collins
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, Nally K, Ross RP, O’Toole PW. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile Lactobacilli. PLoS One 2012; 7:e40592. [PMID: 22808200 PMCID: PMC3393694 DOI: 10.1371/journal.pone.0040592] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444(T) motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli.
Collapse
Affiliation(s)
- B. Anne Neville
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Brian M. Forde
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | - Trevor Darby
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Avril Coghlan
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Kenneth Nally
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul W. O’Toole
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
239
|
Magwira CA, Kullin B, Lewandowski S, Rodgers A, Reid SJ, Abratt VR. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. J Appl Microbiol 2012; 113:418-28. [PMID: 22616725 DOI: 10.1111/j.1365-2672.2012.05346.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/02/2012] [Accepted: 05/14/2012] [Indexed: 12/13/2022]
Abstract
AIM To examine whether enhanced diversity or numbers of oxalate-degrading bacteria in the gastrointestinal tracts of black South Africans play a role in determining the rarity of urolithiasis in this group. METHODS AND RESULTS Fresh faecal samples collected from healthy black and white South African male volunteers were analysed in terms of bacterial oxalate-degrading activity, bacterial diversity and relative species abundance. Varied bacterial populations prepared from samples from the low-risk black group showed a significantly higher level of oxalate degradation. Denaturing gradient gel electrophoresis analyses of Lactobacillus and related spp. and Bifidobacterium spp. 16S rRNA PCR products revealed a significantly higher faecal Lactobacillus diversity for the low-risk black group relative to the higher-risk white group. Quantitative real-time PCR experiments did not show any significant differences between the study groups for Lactobacillus and related spp.. However, Bifidobacterium spp. were present at a significantly higher relative abundance in the black group. Oxalobacter formigenes was present only at very low levels in either group. CONCLUSIONS The low abundance of O. formigenes and increased diversity and abundance of oxalate-degrading Lactobacillus and Bifidobacterium spp. in the black South African population suggest that these strains rather than O. formigenes may protect this group against calcium oxalate kidney stone disease. SIGNIFICANCE AND IMPACT OF THE STUDY The South African black population harbours a pool of potential oxalate-degrading lactic acid bacteria, which is more abundant and diverse than that of white South Africans. This may be useful in developing probiotics for calcium oxalate kidney stone prophylaxis.
Collapse
Affiliation(s)
- C A Magwira
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
240
|
Kiňová Sepová H, Bilková A. Isolation and identification of new lactobacilli from goatling stomach and investigation of reuterin production in Lactobacillus reuteri strains. Folia Microbiol (Praha) 2012; 58:33-8. [PMID: 22688897 DOI: 10.1007/s12223-012-0166-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/16/2012] [Indexed: 11/30/2022]
Abstract
Five new strains of lactobacilli isolated from goatling's stomach were identified by molecular-biological approaches. Profiles of fermentable saccharides, Gram staining, and cell morphology were also determined. They were identified as Lactobacillus reuteri (strains KO4b, KO4m, KO5) and as Lactobacillus plantarum (strains KG1z, KG4). In DNA samples of all newly isolated L. reuteri strains as well as in L. reuteri E (Lreu E; originated from lamb), the part of gldC gene, coding large subunit of glycerol dehydratase, that is necessary for 3-hydroxypropionaldehyde (3-HPA; reuterin) production, was amplified using two designed primer sets. However, the 3-HPA production was revealed only in the strain Lreu E. It produced five- or ten-fold lower amount of 3-HPA in comparison with probiotic L. reuteri ATCC 55730 in aerobic or anaerobic conditions, respectively. Moreover, Lreu E completely lost its production ability after ca. five passages in MRS medium. The co-incubation of Lreu E, but not other L. reuteri isolates, with Escherichia coli re-induced 3-HPA production. In the case of L. reuteri ATCC 55730, the 3-HPA production increased more than four times after co-incubation with E. coli.
Collapse
Affiliation(s)
- Hana Kiňová Sepová
- Department of Cellular and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.
| | | |
Collapse
|
241
|
West NP, Pyne DB, Cripps A, Christophersen CT, Conlon MA, Fricker PA. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals. Gut Microbes 2012; 3:221-7. [PMID: 22572834 PMCID: PMC3427214 DOI: 10.4161/gmic.19579] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synbiotic supplements, which contain multiple functional ingredients, may enhance the immune system more than the use of individual ingredients alone. A double blind active controlled parallel trial over a 21 d exercise training period was conducted to evaluate the effect of Gut Balance™, which contains Lactobacillus paracasei subsp. paracasei (L. casei 431®), Bifidobacterium animalis ssp. lactis (BB-12®), Lactobacillus acidophilus (LA-5®), Lactobacillus rhamnosus (LGG®), two prebiotics (raftiline and raftilose) and bovine whey derived lactoferrin and immunoglobulins with acacia gum on fecal microbiota, short chain fatty acids (SCFA), gut permeability, salivary lactoferrin and serum cytokines. All subjects randomized were included in the analysis. There was a 9-fold (1.2-fold to 64-fold; 95% confidence intervals p = 0.03) greater increase in fecal L. paracasei numbers with Gut Balance™ compared with acacia gum supplementation. Gut Balance™ was associated with a 50% (-12% to 72%; p = 0.02) smaller increase in the concentration of serum IL-16 in comparison to acacia gum from pre- to post-study. No substantial effects of either supplement were evident in fecal SCFA concentrations, measures of mucosal immunity or GI permeability. Clinical studies are now required to determine whether Gut Balance™ may exert beneficial GI health effects by increasing the recovery of fecal L. paracasei. Both supplements had little effect on immunity. Twenty two healthy physically active male subjects (mean age = 33.9 ± 6.5y) were randomly allocated to either daily prebiotic or synbiotic supplementation for 21 d. Saliva, blood, urine and fecal samples were collected pre-, mid and post-intervention. Participants recorded patterns of physical activity on a self-reported questionnaire.
Collapse
Affiliation(s)
- Nicholas P. West
- Department of Physiology; Australian Institute of Sport; Canberra, Australia,School of Physiotherapy and Exercise Science; Griffith Health; Griffith University; Southport, Australia
| | - David B. Pyne
- Department of Physiology; Australian Institute of Sport; Canberra, Australia,Medical School; Australian National University; Canberra, Australia
| | - Allan Cripps
- Griffith Health; Griffith University; Southport, Australia,Correspondence to: Allan Cripps,
| | - Claus T. Christophersen
- Preventative Health National Research Flagship; CSIRO Food and Nutritional Sciences; Adelaide, Australia
| | - Michael A. Conlon
- Preventative Health National Research Flagship; CSIRO Food and Nutritional Sciences; Adelaide, Australia
| | | |
Collapse
|
242
|
Gravett MG, Jin L, Pavlova SI, Tao L. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta). J Med Primatol 2012; 41:183-90. [PMID: 22429090 DOI: 10.1111/j.1600-0684.2012.00537.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. METHODS Vaginal swab samples were aseptically obtained from 200 reproductive-aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specific polymerase chain reaction, and 16S rRNA gene sequence. RESULTS A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was Lactobacillus reuteri, which colonized the vaginas of 86% monkeys. Lactobacillus johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. CONCLUSIONS The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri.
Collapse
Affiliation(s)
- Michael G Gravett
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | |
Collapse
|
243
|
Zhang R, Daroczy K, Xiao B, Yu L, Chen R, Liao Q. Qualitative and semiquantitative analysis of Lactobacillus species in the vaginas of healthy fertile and postmenopausal Chinese women. J Med Microbiol 2012; 61:729-739. [PMID: 22301614 DOI: 10.1099/jmm.0.038687-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the prevalence and quantity of Lactobacillus species in the vaginas of healthy Chinese women. Vaginal samples from 92 fertile and 22 postmenopausal healthy Chinese women were analysed using a 16S rRNA gene clone library and species-specific PCR followed by sequencing and real-time PCR. A total of 13 different Lactobacillus species were detected. Species-specific PCR showed that 3% of the fertile women were colonized by one species of Lactobacillus and 97% were colonized by two or more species. Among the postmenopausal women, 91% were colonized by one species of Lactobacillus and 9% were colonized by two species. In the fertile women, L. iners (82.61%), L. crispatus (70.65%) and L. gasseri (67.39%) were more prevalent than L. jensenii (40.22%), L. acidophilus (39.13%), L. brevis (23.91%), L. plantarum (5.43%), L. johnsonii (3.26%), L. fermentum (2.17%), L. salivarius (2.17%), L. rhamnosus (1.09%), L. reuteri (1.09%) and L. paracasei (1.09%); L. delbrueckii was not detected. In the postmenopausal women, L. fermentum, L. rhamnosus, L. reuteri and L. delbrueckii were not detected, and the other 10 species were detected in just a few samples. The prevalence of these species according to the clone library differed from the prevalence indicated by the species-specific PCR. According to the semiquantitative analysis, the total Lactobacillus DNA concentrations were higher in fertile women than in postmenopausal women. Sixty-one per cent of the fertile women were predominantly colonized by L. iners, 35% by L. crispatus, and 2% by L. gasseri. Associations between pairs of Lactobacillus species in fertile women were significant (P<0.05) between the following pairs: L. iners and L. gasseri, L. iners and L. jensenii, L. iners and L. acidophilus, L. gasseri and L. acidophilus, and L. gasseri and L. jensenii. In conclusion, this study provided detailed information on Lactobacillus species colonizing the vaginas of healthy Chinese fertile and postmenopausal women. The study also showed that the diversity of Lactobacillus species in fertile women was higher than in postmenopausal women. According to our study, different techniques, such as species-specific PCR and comparison against a 16S rRNA gene clone library, resulted in different findings regarding species prevalence. These findings highlight the importance of standardization of techniques used for evaluation of bacterial communities. According to our findings regarding species associations, L. iners and L. gasseri may have influences on colonization and proliferation of other vaginal Lactobacillus species.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xi'anmen Street, Beijing 100034, PR China
| | | | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xi'anmen Street, Beijing 100034, PR China
| | - Li Yu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xi'anmen Street, Beijing 100034, PR China
| | - Rui Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xi'anmen Street, Beijing 100034, PR China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xi'anmen Street, Beijing 100034, PR China
| |
Collapse
|
244
|
Martín V, Maldonado-Barragán A, Moles L, Rodriguez-Baños M, Campo RD, Fernández L, Rodríguez JM, Jiménez E. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 2012; 28:36-44. [PMID: 22267318 DOI: 10.1177/0890334411424729] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In previous years, it has been shown that human milk is a potential source of bacteria for the infant gut. The results of this work confirm the presence of the same specific bacterial strains of Bifidobacterium, Lactobacillus, and Staphylococcus in breast milk and infant fecal samples. The identity of bacteria isolated from breast milk and infant feces from 20 mother-infant pairs was investigated at the strain level. DNA from Staphylococcus, Lactobacillus, and Bifidobacterium was detected by qRTi-PCR in nearly all samples analyzed. These samples were cultured on different agar media. One colony representative of each morphology was selected and identified at the species level combining classical tests and molecular techniques (PCR, RAPD, PFGE, and/or MLST genotyping). Breast milk and infant feces from 19 mother-infant pairs shared different Staphylococcus, Lactobacillus, and/or Bifidobacterium species and strains. Significantly, 2 mother-infant pairs shared 4 bacterial strains although most pairs shared 2. These results confirm that breast milk and infant feces from mother-infant pairs share the same strain(s), indicating that breastfeeding could contribute to the bacterial transfer from the mother to the infant and, therefore, to the infant gut colonization.
Collapse
Affiliation(s)
- Virginia Martín
- Department of Nutrición, Bromatología y Tecn. Alimentos, UCM
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Vitali B, Minervini G, Rizzello CG, Spisni E, Maccaferri S, Brigidi P, Gobbetti M, Di Cagno R. Novel probiotic candidates for humans isolated from raw fruits and vegetables. Food Microbiol 2012; 31:116-25. [PMID: 22475949 DOI: 10.1016/j.fm.2011.12.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
This study was aimed at determining the probiotic potential of a large number of autochthonous lactic acid bacteria isolated from fruit and vegetables. Survival under simulated gastric and intestinal conditions showed that 35% of the strains, mainly belonging to the species Lactobacillus plantarum maintained high cell densities. Selected strains did not affect the immune-mediation by Caco-2 cells. All strains stimulated all 27 immune-mediators by peripheral blood mononuclear cells (PBMC). A significant (P<0.05; P<0.01) increase of the major part of cytokines and growth factors was found. A few chemokines were stimulated. Immune-mediators with pro-inflammatory activity (IL-17, EOTAXIN and IFNγ) were significantly (P<0.01) stimulated by all strains, followed by IL-1b>IP-10>IL-6>MIP1α. Stimulation of IL-12, IL-2 and IL-7 was strain dependent. Only a few strains increased the synthesis of cytokines with anti-inflammatory activity. Six L. plantarum strains were further selected. Four were defined as the strongly adhesive strains (more than 40 bacteria adhering to one Caco-2 cell), and 2 as the adhesive strains (5-40 bacteria adhering to one Caco-2 cell). Five strains grew and acidified chemically defined medium with fructo-oligosaccharides (FOS) as the only carbon source. End-products of FOS fermentation were found. All strains inhibited enterohemorragic Escherichia coli K12 and Bacillus megaterium F6 isolated from human sources. The results of this study showed that some autochthonous lactic acid bacteria from raw fruit and vegetables have functional features to be considered as novel probiotic candidates.
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. Br J Nutr 2012; 108:1633-43. [PMID: 22243836 DOI: 10.1017/s0007114511007203] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Modulation of intestinal microbiota by non-digestible carbohydrates may reduce inflammation in inflammatory bowel disease (IBD). The aim of the present study was to assess the effects of inulin and fructo-oligosaccharides (FOS) on intestinal microbiota and colitis in HLA-B27 transgenic rats, a well-validated rodent model for IBD. In this study, 4-week-old rats were fed 8 g/kg body weight inulin or FOS for 12 weeks, or not. Faeces were collected at 4 and 16 weeks of age; and caecal samples were collected at necropsy. The effects of inulin and FOS on chronic intestinal inflammation were assessed using a gross gut score, histology score and levels of mucosal IL-1β. Intestinal microbiota were characterised by quantitative PCR and denaturing gradient gel electrophoresis. Colitis was significantly reduced in all FOS-fed rats compared to the control diet, whereas inulin decreased chronic intestinal inflammation in only half the number of animals. Quantitative analysis of caecal microbiota demonstrated that inulin increased the numbers of total bacteria and the Bacteroides-Prevotella-Porphyromonas group, FOS increased bifidobacteria, and both fructans decreased Clostridium cluster XI. In the faecal samples, both inulin and FOS decreased total bacteria, Bacteroides-Prevotella-Porphyromonas group, and Clostridium clusters XI and XIVa. FOS increased Bifidobacterium spp., and mediated a decrease of gene copies of Enterobacteriaceae and Clostridium difficile toxin B in faeces. SCFA concentrations in the faecal and caecal samples were unaffected by the diets. In conclusion, FOS increased the abundance of Bifidobacterium spp., whereas both fructans reduced Clostridium cluster XI and C. difficile toxin gene expression, correlating with a reduction of chronic intestinal inflammation.
Collapse
|
247
|
Cao S, He X, Xu W, Luo Y, Yuan Y, Liu P, Cao B, Shi H, Huang K. Safety assessment of transgenic Bacillus thuringiensis rice T1c-19 in Sprague-Dawley rats from metabonomics and bacterial profile perspectives. IUBMB Life 2012; 64:242-50. [DOI: 10.1002/iub.601] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/10/2011] [Indexed: 12/18/2022]
|
248
|
Vitali B, Biagi E, Brigidi P. Protocol for the use of PCR-denaturing gradient gel electrophoresis and quantitative PCR to determine vaginal microflora constitution and pathogens in bacterial vaginosis. Methods Mol Biol 2012; 903:177-193. [PMID: 22782818 DOI: 10.1007/978-1-61779-937-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In healthy women, the vaginal ecosystem is dominated by Lactobacillus spp., but a diverse array of other bacteria can be present in lower amounts. The activity of lactobacilli is essential to protect women from genital infections and to maintain the natural healthy balance of the vaginal microbiota. Bacterial vaginosis (BV) is a complex, polymicrobial disorder characterized by an overgrowth of strict or facultative anaerobic bacteria and a reduction of lactobacilli. Culture-independent techniques based on the analysis of rRNA gene sequences provide powerful tools to reveal the phylogenetic diversity of the vaginal microorganisms in healthy women and patients affected by BV. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis conducted with universal primers for eubacteria allows detecting the most abundant bacterial species of an ecosystem. Sequencing of the DNA fragments and comparison with sequences present in publicly available databases allow identifying the corresponding bacterial species. Quantitative PCR is a powerful technique for the quantitative analysis of a selected genus or species.
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|
249
|
Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Appl Environ Microbiol 2011; 78:956-64. [PMID: 22156412 DOI: 10.1128/aem.06385-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Considering the increase in the consumption of yeasts as human probiotics, the aim of this study was to broadly investigate the beneficial properties of the lactic yeast Kluyveromyces marxianus (formerly Kluyveromyces fragilis) B0399. Several potential probiotic traits of K. marxianus B0399 were investigated by using in vitro assays, including adhesion and immune modulation, and the effect of the administration of 10(7) CFU/day of K. marxianus B0399 on the composition and metabolic activity of the human intestinal microbiota was investigated in a 3-stage continuous-culture system simulating the human colon. We demonstrated that this strain was highly adhesive to human enterocyte-like Caco-2 cells and modulated the immune response, inducing proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs). In the presence of inflammatory stimulation with lipopolysaccharide (LPS), K. marxianus B0399 provoked decreases in the levels of production of proinflammatory cytokines in PBMCs and Caco-2 cells, thus ameliorating the inflammatory response. Furthermore, K. marxianus B0399 impacted the colonic microbiota, increasing the bifidobacterial concentration in the stages of the colonic model system simulating the proximal and transverse colon. The amounts of the short-chain fatty acids acetate and propionate also increased following yeast supplementation. Finally, K. marxianus B0399 was found to induce a decrease of the cytotoxic potential of the culture supernatant from the first stage of the colonic model system. The effects of K. marxianus B0399 on adhesion, immune function, and colonic microbiota demonstrate that this strain possesses a number of beneficial and strain-specific properties desirable for a microorganism considered for application as a probiotic.
Collapse
|
250
|
Vermeiren J, Van den Abbeele P, Laukens D, Vigsnaes LK, De Vos M, Boon N, Van de Wiele T. Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol Ecol 2011; 79:685-96. [PMID: 22092917 DOI: 10.1111/j.1574-6941.2011.01252.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 12/16/2022] Open
Abstract
The mucus layer in the colon, acting as a barrier to prevent invasion of pathogens, is thinner and discontinuous in patients with ulcerative colitis (UC). A recent developed in vitro dynamic gut model, the M-SHIME, was used to compare long-term colonization of the mucin layer by the microbiota from six healthy volunteers (HV) and six UC patients and thus distinguish the mucin adhered from the luminal microbiota. Although under the same nutritional conditions, short-chain fatty acid production by the luminal communities from UC patients showed a tendency toward a lower butyrate production. A more in-depth community analysis of those microbial groups known to produce butyrate revealed that the diversity of the Clostridium coccoides/Eubacterium rectale and Clostridium leptum group, and counts of Faecalibacterium prausnitzii were lower in the luminal fractions of the UC samples. Counts of Roseburia spp. were lower in the mucosal fractions of the UC samples. qPCR analysis for butyryl-CoA:acetate CoA transferase, responsible for butyrate production, displayed a lower abundance in both the luminal and mucosal fractions of the UC samples. The M-SHIME model revealed depletion in butyrate producing microbial communities not restricted to the luminal but also in the mucosal samples from UC patients compared to HV.
Collapse
Affiliation(s)
- Joan Vermeiren
- Laboratory of Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|