201
|
de Medeiros Azevedo T, Aburjaile FF, Ferreira-Neto JRC, Pandolfi V, Benko-Iseppon AM. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World J Microbiol Biotechnol 2021; 37:206. [PMID: 34708327 DOI: 10.1007/s11274-021-03168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.
Collapse
Affiliation(s)
- Thamara de Medeiros Azevedo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Flávia Figueira Aburjaile
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|
202
|
Human ZR, Roets F, Crous CJ, Wingfield MJ, de Beer ZW, Venter SN. Fire impacts bacterial composition in Protea repens (Proteaceae) infructescences. FEMS Microbiol Lett 2021; 368:6385756. [PMID: 34626182 DOI: 10.1093/femsle/fnab132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
The diverse bacterial communities in and around plants provide important benefits, such as protection against pathogens and cycling of essential minerals through decomposition of moribund plant biomass. Biodiverse fynbos landscapes generally have limited deadwood habitats due to the absence of large trees and frequent fire. In this study, we determined the effect of a fire disturbance on the bacterial communities in a fynbos landscape dominated by the shrub Protea repens using 16S ribosomal RNA amplicon sequencing. The bacterial community composition in newly formed fruiting structures (infructescences) and soil at a recently burnt site was different from that in an unburnt site. Bacteria inhabiting P. repens infructescences were similar to well-known taxa from decomposing wood and litter. This suggests a putative role for these aboveground plant structures as reservoirs for postfire decomposer bacteria. The results imply that inordinately frequent fires, which are commonplace in the Anthropocene, are a significant disturbance to bacterial communities and could affect the diversity of potentially important microbes from these landscapes.
Collapse
Affiliation(s)
- Zander R Human
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Casparus J Crous
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
203
|
Yan K, Han W, Zhu Q, Li C, Dong Z, Wang Y. Leaf surface microtopography shaping the bacterial community in the phyllosphere: evidence from 11 tree species. Microbiol Res 2021; 254:126897. [PMID: 34710835 DOI: 10.1016/j.micres.2021.126897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Phyllosphere bacteria are an important component of environmental microbial communities and are closely related to plant health and ecosystem stability. However, the relationships between the inhabitation and assembly of phyllosphere bacteria and leaf microtopography are still obscure. In this study, the phyllosphere bacterial communities and leaf microtopographic features (vein density, stomatal length, and density) of eleven tree species were fully examined. Both the absolute abundance and diversity of phyllosphere bacterial communities were significantly different among the tree species, and leaf vein density dominated the variation. TITAN analysis showed that leaf vein density also played more important roles in regulating the relative abundance of bacteria than stomatal features, and 6 phyla and 62 genera of phyllosphere bacteria showed significant positive responses to leaf vein density. Moreover, LEfSe analysis showed that the leaves with higher vein density had more bacterial biomarkers. Leaf vein density also changed the co-occurrence pattern of phyllosphere bacteria, and the co-occurrence network demonstrated more negative correlations and more nodes on the leaves with larger leaf vein density, indicating that higher densities of leaf veins improved the stability of the phyllosphere bacterial community. Phylogenetic analysis showed that deterministic processes (especially homogeneous selection) dominated the assembly process of phyllosphere bacterial communities. The leaf vein density increased the degree of bacterial clustering at the phylogenetic level. Therefore, the inhabitation and assembly of the phyllosphere bacterial community are related to leaf microtopography, which provides deeper insight into the interaction between plants and bacteria.
Collapse
Affiliation(s)
- Kun Yan
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenhao Han
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Qiliang Zhu
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chuanrong Li
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Zhi Dong
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yanping Wang
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
204
|
Fu J, Zeng L, Zheng L, Bai Z, Li Z, Liu L. Comparative Transcriptomic Analyses of Antibiotic-Treated and Normally Reared Bactrocera dorsalis Reveals a Possible Gut Self-Immunity Mechanism. Front Cell Dev Biol 2021; 9:647604. [PMID: 34621734 PMCID: PMC8490719 DOI: 10.3389/fcell.2021.647604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.
Collapse
Affiliation(s)
- Jiajin Fu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lingyu Zeng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Linyu Zheng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenzhen Bai
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
205
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: Diversity and functions. Microbiol Res 2021; 254:126888. [PMID: 34700185 DOI: 10.1016/j.micres.2021.126888] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
206
|
Ambient Air Pollution Shapes Bacterial and Fungal Ivy Leaf Communities. Microorganisms 2021; 9:microorganisms9102088. [PMID: 34683409 PMCID: PMC8540654 DOI: 10.3390/microorganisms9102088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ambient air pollution exerts deleterious effects on our environment. Continuously exposed to the atmosphere, diverse communities of microorganisms thrive on leaf surfaces, the phylloplane. The composition of these communities is dynamic, responding to many environmental factors including ambient air pollution. In this field study, over a 2 year period, we sampled Hedera helix (ivy) leaves at six locations exposed to different ambient air pollution conditions. Daily, we monitored ambient black carbon (BC), PM2.5, PM10, nitrogen dioxide, and ozone concentrations and found that ambient air pollution led to a 2–7-fold BC increase on leaves, the phylloplane BC load. Our results further indicated that the phylloplane BC load correlates with the diversity of bacterial and fungal leaf communities, impacting diversity more than seasonal effects. The bacterial genera Novosphingobium, Hymenobacter, and Methylorubrum, and the fungal genus Ampelomyces were indicators for communities exposed to the highest phylloplane BC load. Parallel to this, we present one fungal and two bacterial phylloplane strains isolated from an air-polluted environment able to degrade benzene, toluene, and/or xylene, including a genomics-based description of the degradation pathways involved. The findings of this study suggest that ambient air pollution shapes microbial leaf communities, by affecting diversity and supporting members able to degrade airborne pollutants.
Collapse
|
207
|
Moretti C, Rezzonico F, Orfei B, Cortese C, Moreno‐Pérez A, van den Burg HA, Onofri A, Firrao G, Ramos C, Smits THM, Buonaurio R. Synergistic interaction between the type III secretion system of the endophytic bacterium Pantoea agglomerans DAPP-PG 734 and the virulence of the causal agent of olive knot Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. MOLECULAR PLANT PATHOLOGY 2021; 22:1209-1225. [PMID: 34268839 PMCID: PMC8435235 DOI: 10.1111/mpp.13105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 05/29/2023]
Abstract
The endophytic bacterium Pantoea agglomerans DAPP-PG 734 was previously isolated from olive knots caused by infection with Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. Whole-genome analysis of this P. agglomerans strain revealed the presence of a Hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To assess the role of the P. agglomerans T3SS in the interaction with P. savastanoi pv. savastanoi, we generated independent knockout mutants in three Hrp genes of the P. agglomerans DAPP-PG 734 T3SS (hrpJ, hrpN, and hrpY). In contrast to the wildtype control, all three mutants failed to cause a hypersensitive response when infiltrated in tobacco leaves, suggesting that P. agglomerans T3SS is functional and injects effector proteins in plant cells. In contrast to P. savastanoi pv. savastanoi DAPP-PG 722, the wildtype strain P. agglomerans DAPP-PG 734 and its Hrp T3SS mutants did not cause olive knot disease in 1-year-old olive plants. Coinoculation of P. savastanoi pv. savastanoi with P. agglomerans wildtype strains did not significantly change the knot size, while the DAPP-PG 734 hrpY mutant induced a significant decrease in knot size, which could be complemented by providing hrpY on a plasmid. By epifluorescence microscopy and confocal laser scanning microscopy, we found that the localization patterns in knots were nonoverlapping for P. savastanoi pv. savastanoi and P. agglomerans when coinoculated. Our results suggest that suppression of olive plant defences mediated by the Hrp T3SS of P. agglomerans DAPP-PG 734 positively impacts the virulence of P. savastanoi pv. savastanoi DAPP-PG 722.
Collapse
Affiliation(s)
- Chiaraluce Moretti
- Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversità degli Studi di PerugiaPerugiaItaly
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research GroupInstitute of Natural Resource SciencesZurich University of Applied Sciences ZHAWWädenswilSwitzerland
| | - Benedetta Orfei
- Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversità degli Studi di PerugiaPerugiaItaly
| | - Chiara Cortese
- Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversità degli Studi di PerugiaPerugiaItaly
| | - Alba Moreno‐Pérez
- Área de GenéticaFacultad de CienciasUniversidad de MálagaMálagaSpain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Andrea Onofri
- Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversità degli Studi di PerugiaPerugiaItaly
| | - Giuseppe Firrao
- Dipartimento di Scienze Agroalimentati Ambientali e AnimaliUniversità degli Studi di UdineUdineItaly
| | - Cayo Ramos
- Área de GenéticaFacultad de CienciasUniversidad de MálagaMálagaSpain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research GroupInstitute of Natural Resource SciencesZurich University of Applied Sciences ZHAWWädenswilSwitzerland
| | - Roberto Buonaurio
- Dipartimento di Scienze Agrarie, Alimentari e AmbientaliUniversità degli Studi di PerugiaPerugiaItaly
| |
Collapse
|
208
|
Samal B, Chatterjee S. Bacterial quorum sensing facilitates Xanthomonas campesteris pv. campestris invasion of host tissue to maximize disease symptoms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6524-6543. [PMID: 33993246 DOI: 10.1093/jxb/erab211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) helps the Xanthomonas group of phytopathogens to infect several crop plants. The vascular phytopathogen Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot disease on Brassicaceae leaves, where a typical v-shaped lesion spans both vascular and mesophyll regions with progressive leaf chlorosis. Recently, the role of QS has been elucidated during Xcc early infection stages. However, a detailed insight into the possible role of QS-regulated bacterial invasion in host chlorophagy during late infection stages remains elusive. In this study, using QS-responsive whole-cell bioreporters of Xcc, we present a detailed chronology of QS-facilitated Xcc colonization in the mesophyll region of cabbage (Brassica oleracea) leaves. We report that QS-enabled localization of Xcc to parenchymal chloroplasts triggers leaf chlorosis and promotion of systemic infection. Our results indicate that the QS response in the Xanthomonas group of vascular phytopathogens maximizes their population fitness across host tissues to trigger stage-specific host chlorophagy and establish a systemic infection.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
209
|
He YH, Adkar-Purushothama CR, Ito T, Shirakawa A, Yamamoto H, Kashiwagi A, Tatewaki A, Fujibayashi M, Sugiyama S, Yaginuma K, Akahira T, Yamamoto S, Tsushima S, Matsushita Y, Sano T. Microbial Diversity in the Phyllosphere and Rhizosphere of an Apple Orchard Managed under Prolonged "Natural Farming" Practices. Microorganisms 2021; 9:microorganisms9102056. [PMID: 34683377 PMCID: PMC8540600 DOI: 10.3390/microorganisms9102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022] Open
Abstract
Microbial diversity in an apple orchard cultivated with natural farming practices for over 30 years was compared with conventionally farmed orchards to analyze differences in disease suppression. In this long-term naturally farmed orchard, major apple diseases were more severe than in conventional orchards but milder than in a short-term natural farming orchard. Among major fungal species in the phyllosphere, we found that Aureobasidium pullulans and Cryptococcus victoriae were significantly less abundant in long-term natural farming, while Cladosporium tenuissimum predominated. However, diversity of fungal species in the phyllosphere was not necessarily the main determinant in the disease suppression observed in natural farming; instead, the maintenance of a balanced, constant selection of fungal species under a suitable predominant species such as C. tenuissimum seemed to be the important factors. Analysis of bacteria in the phyllosphere revealed Pseudomonas graminis, a potential inducer of plant defenses, predominated in long-term natural farming in August. Rhizosphere metagenome analysis showed that Cordyceps and Arthrobotrys, fungal genera are known to include insect- or nematode-infecting species, were found only in long-term natural farming. Among soil bacteria, the genus Nitrospira was most abundant, and its level in long-term natural farming was more than double that in the conventionally farmed orchard.
Collapse
Affiliation(s)
- Ying-Hong He
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Charith Raj Adkar-Purushothama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
- RNA Group/Groupe ARN, Département de Biochimie, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Tsutae Ito
- Division of Apple Research, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Morioka 020-0123, Japan; (T.I.); (K.Y.)
| | - Asuka Shirakawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Hideki Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
- Correspondence: (A.K.); (T.S.)
| | - Ayumu Tatewaki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Shuichi Sugiyama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Katsuhiko Yaginuma
- Division of Apple Research, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Morioka 020-0123, Japan; (T.I.); (K.Y.)
| | - Tomoya Akahira
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center, Kuroishi 036-0332, Japan; (T.A.); (S.Y.)
| | - Shingen Yamamoto
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center, Kuroishi 036-0332, Japan; (T.A.); (S.Y.)
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Fisheries Engineering Division, Kamisu 314-0408, Japan
| | - Seiya Tsushima
- National Agro-Environment Research Institute, Tsukuba 305-0856, Japan; (S.T.); (Y.M.)
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi 243-0034, Japan
| | - Yuko Matsushita
- National Agro-Environment Research Institute, Tsukuba 305-0856, Japan; (S.T.); (Y.M.)
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
- Correspondence: (A.K.); (T.S.)
| |
Collapse
|
210
|
Luo K, Ouellet T, Zhao H, Wang X, Kang Z. Wheat- Fusarium graminearum Interactions Under Sitobion avenae Influence: From Nutrients and Hormone Signals. Front Nutr 2021; 8:703293. [PMID: 34568403 PMCID: PMC8455932 DOI: 10.3389/fnut.2021.703293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The English grain aphid Sitobion avenae and phytopathogen Fusarium graminearum are wheat spike colonizers. "Synergistic" effects of the coexistence of S. avenae and F. graminearum on the wheat spikes have been shown in agroecosystems. To develop genetic resistance in diverse wheat cultivars, an important question is how to discover wheat-F. graminearum interactions under S. avenae influence. In recent decades, extensive studies have typically focused on the unraveling of more details on the relationship between wheat-aphids and wheat-pathogens that has greatly contributed to the understanding of these tripartite interactions at the ecological level. Based on the scientific production available, the working hypotheses were synthesized from the aspects of environmental nutrients, auxin production, hormone signals, and their potential roles related to the tripartite interaction S. avenae-wheat-F. graminearum. In addition, this review highlights the relevance of preexposure to the herbivore S. avenae to trigger the accumulation of mycotoxins, which stimulates the infection process of F. graminearum and epidemic of Fusarium head blight (FHB) in the agroecosystems.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
211
|
Sun X, Zheng Y, Xu G, Guo Q, Tan J, Ding G. Fungal diversity within the phyllosphere of Pinus massoniana and the possible involvement of phyllospheric fungi in litter decomposition. Fungal Biol 2021; 125:785-795. [PMID: 34537174 DOI: 10.1016/j.funbio.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Fungi play key roles in forest ecosystems and help to shape the forest's diverse functions. However, little is known about the diversity of phyllospheric fungi or their possible relationships with fungal communities residing in different micro-environments of Pinus massoniana forests. We investigated seven different sample types: mature needles (NM), dead needles (ND), needles falling as litter (L), fermenting needles (F), humus (H), top soil (0-20 cm) (TS), and secondary soil (20-40 cm) (SS). These seven fungal communities were examined and compared with ITS amplicons using a high-throughput sequencing technique. A total of 1213 fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level. Distinct fungal communities were associated with different sample types. A greater number of OTUs were present in both NM and F samples than those shared by both NM and TS samples, indicating that phyllospheric fungi may play crucial roles in litter decomposition. Sixty OTUs (the core microbiome) were found in all sample types, and they may probably play different ecological roles in different sample types. These findings extend our knowledge of the fungal diversity of the phyllosphere and its possible interactions with fungal communities found in distinct forest micro-habitats.
Collapse
Affiliation(s)
- Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Yang Zheng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Gang Xu
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jianhui Tan
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, Guangxi, 530002, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
212
|
Palmer JL, Hilton S, Picot E, Bending GD, Schäfer H. Tree phyllospheres are a habitat for diverse populations of CO-oxidizing bacteria. Environ Microbiol 2021; 23:6309-6327. [PMID: 34523801 DOI: 10.1111/1462-2920.15770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Carbon monoxide (CO) is both a ubiquitous atmospheric trace gas and an air pollutant. While aerobic CO-degrading microorganisms in soils and oceans are estimated to remove ~370 Tg of CO per year, the presence of CO-degrading microorganisms in above-ground habitats, such as the phyllosphere, and their potential role in CO cycling remains unknown. CO-degradation by leaf washes of two common British trees, Ilex aquifolium and Crataegus monogyna, demonstrated CO uptake in all samples investigated. Based on the analyses of taxonomic and functional genes, diverse communities of candidate CO-oxidizing taxa were identified, including members of Rhizobiales and Burkholderiales which were abundant in the phyllosphere at the time of sampling. Based on predicted genomes of phyllosphere community members, an estimated 21% of phyllosphere bacteria contained CoxL, the large subunit of CO-dehydrogenase. In support of this, data mining of publicly available phyllosphere metagenomes for genes encoding CO-dehydrogenase subunits demonstrated that, on average, 25% of phyllosphere bacteria contained CO-dehydrogenase gene homologues. A CO-oxidizing Phyllobacteriaceae strain was also isolated from phyllosphere samples which contains genes encoding both CO-dehydrogenase as well as a ribulose-1,5-bisphosphate carboxylase-oxygenase. These results suggest that the phyllosphere supports diverse and potentially abundant CO-oxidizing bacteria, which are a potential sink for atmospheric CO.
Collapse
Affiliation(s)
- Jess L Palmer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Emma Picot
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
213
|
Gao M, Xiong C, Gao C, Tsui CKM, Wang MM, Zhou X, Zhang AM, Cai L. Disease-induced changes in plant microbiome assembly and functional adaptation. MICROBIOME 2021; 9:187. [PMID: 34526096 PMCID: PMC8444440 DOI: 10.1186/s40168-021-01138-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/27/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND The plant microbiome is an integral part of the host and increasingly recognized as playing fundamental roles in plant growth and health. Increasing evidence indicates that plant rhizosphere recruits beneficial microbes to the plant to suppress soil-borne pathogens. However, the ecological processes that govern plant microbiome assembly and functions in the below- and aboveground compartments under pathogen invasion are not fully understood. Here, we studied the bacterial and fungal communities associated with 12 compartments (e.g., soils, roots, stems, and fruits) of chili pepper (Capsicum annuum L.) using amplicons (16S and ITS) and metagenomics approaches at the main pepper production sites in China and investigated how Fusarium wilt disease (FWD) affects the assembly, co-occurrence patterns, and ecological functions of plant-associated microbiomes. RESULTS The amplicon data analyses revealed that FWD affected less on the microbiome of pepper reproductive organs (fruit) than vegetative organs (root and stem), with the strongest impact on the upper stem epidermis. Fungal intra-kingdom networks were less stable and their communities were more sensitive to FWD than the bacterial communities. The analysis of microbial interkingdom network further indicated that FWD destabilized the network and induced the ecological importance of fungal taxa. Although the diseased plants were more susceptible to colonization by other pathogenic fungi, their below- and aboveground compartments can also recruit potential beneficial bacteria. Some of the beneficial bacterial taxa enriched in the diseased plants were also identified as core taxa for plant microbiomes and hub taxa in networks. On the other hand, metagenomic analysis revealed significant enrichment of several functional genes involved in detoxification, biofilm formation, and plant-microbiome signaling pathways (i.e., chemotaxis) in the diseased plants. CONCLUSIONS Together, we demonstrate that a diseased plant could recruit beneficial bacteria and mitigate the changes in reproductive organ microbiome to facilitate host or its offspring survival. The host plants may attract the beneficial microbes through the modulation of plant-microbiome signaling pathways. These findings significantly advance our understanding on plant-microbiome interactions and could provide fundamental and important data for harnessing the plant microbiome in sustainable agriculture. Video abstract.
Collapse
Affiliation(s)
- Min Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Clement K M Tsui
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Meng-Meng Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ai-Min Zhang
- Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, 550009, Guiyang, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
214
|
Madhaiyan M, Selvakumar G, Alex TH, Cai L, Ji L. Plant Growth Promoting Abilities of Novel Burkholderia-Related Genera and Their Interactions With Some Economically Important Tree Species. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A survey of bacterial endophytes associated with the leaves of oil palm and acacias resulted in the isolation of 19 bacterial strains belonging to the genera Paraburkholderia, Caballeronia, and Chitinasiproducens, which are now regarded as distinctively different from the parent genus Burkholderia. Most strains possessed one or more plant growth promotion (PGP) traits although nitrogenase activity was present in only a subset of the isolates. The diazotrophic Paraburkholderia tropica strain S39-2 with multiple PGP traits and the non-diazotrophic Chitinasiproducens palmae strain JS23T with a significant level of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were selected to investigate the influence of bacterial inoculation on some economically important tree species. Microscopic examination revealed that P. tropica S39-2 was rhizospheric as well as endophytic while C. palmae JS23T was endophytic. P. tropica strain S39-2 significantly promoted the growth of oil palm, eucalyptus, and Jatropha curcas. Interestingly, the non-diazotrophic, non-auxin producing C. palmae JS23T strain also significantly promoted the growth of oil palm and eucalyptus although it showed negligible effect on J. curcas. Our results suggest that strains belonging to the novel Burkholderia-related genera widely promote plant growth via both N-independent and N-dependent mechanisms. Our results also suggest that the induction of defense response may prevent the colonization of an endophyte in plants.
Collapse
|
215
|
Ching'anda C, Atehnkeng J, Bandyopadhyay R, Callicott KA, Orbach MJ, Mehl HL, Cotty PJ. Temperature Influences on Interactions Among Aflatoxigenic Species of Aspergillus Section Flavi During Maize Colonization. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:720276. [PMID: 37744097 PMCID: PMC10512225 DOI: 10.3389/ffunb.2021.720276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 09/26/2023]
Abstract
Fungal species within Aspergillus section Flavi contaminate food and feed with aflatoxins. These toxic fungal metabolites compromise human and animal health and disrupt trade. Genotypically and phenotypically diverse species co-infect crops, but temporal and spatial variation in frequencies of different lineages suggests that environmental factors such as temperature may influence structure of aflatoxin-producing fungal communities. Furthermore, though most species within Aspergillus section Flavi produce sclerotia, divergent sclerotial morphologies (small or S-type sclerotia vs. large or L-type sclerotia) and differences in types and quantities of aflatoxins produced suggest lineages are adapted to different life strategies. Temperature is a key parameter influencing pre- and post-harvest aflatoxin contamination of crops. We tested the hypothesis that species of aflatoxin-producing fungi that differ in sclerotial morphology will vary in competitive ability and that outcomes of competition and aflatoxin production will be modulated by temperature. Paired competition experiments between highly aflatoxigenic S-type species (A. aflatoxiformans and Lethal Aflatoxicosis Fungus) and L-type species (A. flavus L morphotype and A. parasiticus) were conducted on maize kernels at 25 and 30°C. Proportions of each isolate growing within and sporulating on kernels were measured using quantitative pyrosequencing. At 30°C, S-type fungi were more effective at host colonization compared to L-type isolates. Total aflatoxins and the proportion of B vs. G aflatoxins were greater at 30°C compared to 25°C. Sporulation by L-type isolates was reduced during competition with S-type fungi at 30°C, while relative quantities of conidia produced by S-type species either increased or did not change during competition. Results indicate that both species interactions and temperature can shape population structure of Aspergillus section Flavi, with warmer temperatures favoring growth and dispersal of highly toxigenic species with S-type sclerotia.
Collapse
Affiliation(s)
- Connel Ching'anda
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Lilongwe, Malawi
| | | | - Kenneth A. Callicott
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
| | - Marc J. Orbach
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Hillary L. Mehl
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
| | - Peter J. Cotty
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
216
|
Lajoie G, Kembel SW. Plant-bacteria associations are phylogenetically structured in the phyllosphere. Mol Ecol 2021; 30:5572-5587. [PMID: 34411359 DOI: 10.1111/mec.16131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
Determining whether and how global change will lead to novel interactions between hosts and microbes is an important issue in ecology and evolution. Understanding the contribution of host and microbial ecologies and evolutionary histories in driving their contemporary associations is an important step towards addressing this challenge and predicting the fitness consequences of novel associations. Using shotgun metagenomic and amplicon sequencing of bacterial communities from the leaf surfaces (phyllosphere) of trees, we investigated how phylogenetic relatedness among hosts and among their associated bacteria influences the distribution of bacteria among hosts. We also evaluated whether the functional traits of trees and bacteria explained these associations across multiple host species. We show that phylogenetically similar hosts tended to associate with the same bacteria and that phylogenetically similar bacteria tended to associate with the same host species. Phylogenetic interactions between tree and bacterial taxa also explained variation in their associations. The effect of host and symbiont evolutionary histories on bacterial distribution across hosts were observed across phylogenetic scales, but prominently explained variation among higher taxonomic categories of hosts and symbionts. These results suggest that ecological variation arising early in the plant and bacterial phylogenies have been particularly important for driving their contemporary associations. Variation in bacterial functional genes associated with the biosynthesis of aromatic amino acids and compounds and with cell motility were notably important in explaining bacterial community turnover among gymnosperm and angiosperm hosts. Overall, our results suggest an influence of host and bacterial traits and evolutionary histories in driving their contemporary associations.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC, H2X 1Y4, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
217
|
Zhu Q, Tang MJ, Yang Y, Sun K, Tian LS, Lu F, Hao AY, Dai CC. Endophytic fungus Phomopsis liquidambaris B3 induces rice resistance to RSRD caused by Fusarium proliferatum and promotes plant growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4059-4075. [PMID: 33349945 DOI: 10.1002/jsfa.11042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice spikelet rot disease (RSRD) is an emerging disease that significantly reduces rice yield and quality. In this study, we evaluated the potential use of the broad-spectrum endophytic fungus Phomopsis liquidambaris B3 as a biocontrol agent against RSRD. We also compared the control effects of different treatments, including chemical fungicides and treatment with multiple strains and single strains in combination or individually, against RSRD. The objective of this study was to find an effective and environmentally friendly control strategy to reduce the occurrence of RSRD and improve the rice yield. RESULTS In pot experiments, the effect of B3 alone was better than that of fungicide or combined measures. The results showed that root colonization by B3 significantly reduced the incidence and disease index of RSRD by 41.0% and 53.8%, respectively. This was related to enhanced superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activity, and to significantly upregulated expression levels of OsAOX, OsLOX, OsPAL, and OsPR10 in rice. Moreover, B3 improved the diversity of the bacterial community rather than the fungal community in the rice rhizosphere. It also led to a decrease in Fusarium proliferatum colonization and fumonisin content in the grain. Finally, root development was markedly promoted after B3 inoculation, and the yield improved by 48.60%. The result of field experiments showed that the incidence of RSRD and the fumonisin content were observably reduced in rice receiving B3, by 24.41% and 37.87%, respectively. CONCLUSION The endophytic fungus Phomopsis liquidambaris B3 may become an effective tool to relieve rice spikelet rot disease. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin-Shuang Tian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ai-Yue Hao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
218
|
Xiong C, Singh BK, He JZ, Han YL, Li PP, Wan LH, Meng GZ, Liu SY, Wang JT, Wu CF, Ge AH, Zhang LM. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. MICROBIOME 2021; 9:171. [PMID: 34389047 PMCID: PMC8364065 DOI: 10.1186/s40168-021-01118-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. RESULTS Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. CONCLUSIONS Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract.
Collapse
Affiliation(s)
- Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yan-Lai Han
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pei-Pei Li
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Li-Hua Wan
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, Qujing, 655000, China
| | - Guo-Zhong Meng
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, Qujing, 655000, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Fa Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
219
|
Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses. Appl Environ Microbiol 2021; 87:e0089521. [PMID: 34161142 DOI: 10.1128/aem.00895-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high-resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future. IMPORTANCE Globally important grassland ecosystems are at risk of degradation due to poor management practices compounded by predicted increases in severity and duration of drought over the next century. Finding new ways to support grassland productivity is critical to maintaining their ecological and agricultural benefits. Discerning how grassland microbial communities change in response to climate stress will help us understand how plant-microbe relationships may be useful to sustainably support grasslands in the future. In this study, phyllosphere community diversity and composition were significantly altered under drought conditions. The significance of our research is demonstrating how severe climate stress reduces bacterial community diversity, which previously was directly associated with decreased plant productivity. These findings guide future questions about functional plant-microbe interactions under stress conditions, greatly enhancing our understanding of how bacteria can increase food security by promoting grassland growth and resilience.
Collapse
|
220
|
Zhu T, Yao J, Liu H, Zhou CH, Liu YZ, Wang ZW, Quan ZX, Li B, Yang J, Huang WC, Nie M. Cross-phytogroup assessment of foliar epiphytic mycobiomes. Environ Microbiol 2021; 23:6210-6222. [PMID: 34347355 DOI: 10.1111/1462-2920.15703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
The foliar surface forms one of the largest aboveground habitats on Earth and maintains plant-fungus relationships that greatly affect ecosystem functioning. Despite many studies with particular plant species, the foliar epiphytic mycobiome has not been studied across a large number of plant species from different taxa. Using high-throughput sequencing, we assessed epiphytic mycobiomes on leaf surfaces of 592 plant species in a botanical garden. Plants of angiosperms, gymnosperms, and pteridophytes were involved. Plant taxonomy, leaf side, growing environment, and evolutionary relationships were considered. We found that pteridophytes showed the higher fungal species diversity, stronger mutualistic fungal interactions, and a greater percentage of putative pathogens than gymnosperms and angiosperms. Plant taxonomic group, leaf side, and growing environment were significantly associated with the foliar epiphytic mycobiome, but the similarity of the mycobiomes among plants was not directly related to the distance of the host evolutionary tree. Our results provide a general understanding of the foliar fungal mycobiomes from pteridophytes to angiosperms. These findings will facilitate our understanding of foliar fungal epiphytes and their roles in plant communities and ecosystems.
Collapse
Affiliation(s)
- Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jia Yao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chen-Hao Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuan-Zhan Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zheng-Wei Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei-Chang Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
221
|
Ke M, Ye Y, Li Y, Zhou Z, Xu N, Feng L, Zhang J, Lu T, Cai Z, Qian H. Leaf metabolic influence of glyphosate and nanotubes on the Arabidopsis thaliana phyllosphere. J Environ Sci (China) 2021; 106:66-75. [PMID: 34210440 DOI: 10.1016/j.jes.2021.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
Chemical exposure can indirectly affect leaf microbiota communities, but the mechanism driving this phenomenon remains largely unknown. Results revealed that the co-exposure of glyphosate and multi-carbon nanotubes (CNTs) caused a synergistic inhibitory effect on the growth and metabolism of Arabidopsis thaliana shoots. However, only a slight inhibitory effect was induced by nanotubes or glyphosate alone at the tested concentrations. Several intermediate metabolites of nitrogen metabolism and fatty acid synthesis pathways were upregulated under the combined treatment, which increased the amount of energy required to alleviate the disruption caused by the combined treatment. Additionally, compared with the two individual treatments, the glyphosate/nanotube combination treatment induced greater fluctuations in the phyllosphere bacterial community members with low abundance (relative abundance (RA) <1%) at both the family and genus levels, and among these bacteria some plant growth promotion and nutrient supplement related bacteria were markable increased. Strikingly, strong correlations between phyllosphere bacterial diversity and metabolites suggested a potential role of leaf metabolism, particularly nitrogen and carbohydrate metabolism, in restricting the range of leaf microbial taxa. These correlations between phyllosphere bacterial diversity and leaf metabolism will improve our understanding of plant-microbe interactions and the extent of their drivers of variation and the underlying causes of variability in bacterial community composition.
Collapse
Affiliation(s)
- Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lan Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
222
|
Fanin N, Lin D, Freschet GT, Keiser AD, Augusto L, Wardle DA, Veen GFC. Home-field advantage of litter decomposition: from the phyllosphere to the soil. THE NEW PHYTOLOGIST 2021; 231:1353-1358. [PMID: 34008201 DOI: 10.1111/nph.17475] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Plants often associate with specialized decomposer communities that increase plant litter breakdown, a phenomenon that is known as the 'home-field advantage' (HFA). Although the concept of HFA has long considered only the role of the soil microbial community, explicit consideration of the role of the microbial community on the foliage before litter fall (i.e. the phyllosphere community) may help us to better understand HFA. We investigated the occurrence of HFA in the presence vs absence of phyllosphere communities and found that HFA effects were smaller when phyllosphere communities were removed. We propose that priority effects and interactions between phyllosphere and soil organisms can help explain the positive effects of the phyllosphere at home, and suggest a path forward for further investigation.
Collapse
Affiliation(s)
- Nicolas Fanin
- INRAE, UMR 1391 ISPA, Bordeaux Sciences Agro, 71 Avenue Edouard Bourlaux, CS 20032, Villenave-d'Ornon Cedex, F33882, France
| | - Dunmei Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174th Shapingba Zhengjie Street, Shapingba District, Chongqing, 400045, China
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, Moulis, 09200, France
| | - Ashley D Keiser
- Stockbridge School of Agriculture, 311 Paige Laboratory, University of Massachusetts, 161 Holdsworth Way, Amherst, MA, 01003, USA
| | - Laurent Augusto
- INRAE, UMR 1391 ISPA, Bordeaux Sciences Agro, 71 Avenue Edouard Bourlaux, CS 20032, Villenave-d'Ornon Cedex, F33882, France
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalstesteeg 10, Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
223
|
Kim DR, Kwak YS. A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4. THE PLANT PATHOLOGY JOURNAL 2021; 37:389-395. [PMID: 34365750 PMCID: PMC8357572 DOI: 10.5423/ppj.nt.03.2021.0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.
Collapse
Affiliation(s)
- Da-Ran Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21Plus) and IALS, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
224
|
Craighead S, Huang R, Chen H, Kniel KE. The use of pulsed light to inactivate Cryptosporidium parvum oocysts on high-risk commodities (Cilantro, mesclun lettuce, spinach, and tomatoes). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
225
|
de Sousa LP. Bacterial communities of indoor surface of stingless bee nests. PLoS One 2021; 16:e0252933. [PMID: 34242231 PMCID: PMC8270128 DOI: 10.1371/journal.pone.0252933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Microbes have been identified as fundamental for the good health of bees, acting as pathogens, protective agent against infection/inorganic toxic compounds, degradation of recalcitrant secondary plant metabolites, definition of social group membership, carbohydrate metabolism, honey and bee pollen production. However, study of microbiota associated with bees have been largely confined to the honeybees and solitary bees. Here, I characterized the microbiota of indoor surface nest of four brazilian stingless bee species (Apidae: Meliponini) with different construction behaviors and populations. Bees that use predominantly plant material to build the nest (Frieseomelitta varia and Tetragonisca angustula) have a microbiome dominated by bacteria found in the phylloplane and flowers such as Pseudomonas sp. and Sphingomonas sp. Species that use mud and feces (Trigona spinipes) possess a microbiome dominated by coliforms such as Escherichia coli and Alcaligenes faecalis. Melipona quadrifasciata, which uses both mud / feces and plant resin, showed a hybrid microbiome with microbes found in soil, feces and plant material. These findings indicate that indoor surface microbiome varies widely among bees and reflects the materials used in the construction of the nests.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
226
|
Endophytic Microbiome Responses to Sulfur Availability in Beta vulgaris (L.). Int J Mol Sci 2021; 22:ijms22137184. [PMID: 34281236 PMCID: PMC8269133 DOI: 10.3390/ijms22137184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Sulfur is an essential plant macronutrient, and its adequate supply allows an efficient root storage and sugar extractability in sugar beets (Beta vulgaris L.). In this study, we investigated the effect of changes in sulfur availability on the endophytic community structure of sugar beets. Plants were hydroponically grown in a complete nutrient solution (S-supplied), a nutrient solution without MgSO4 (S-deprived), and a nutrient solution without MgSO4 for six days and resupplied with 100 μM MgSO4 for 48 h (S-resupplied). The sulfur status was monitored by inductively coupled plasma ICP–OES, and combustion analysis together with the evaluation of microRNA395 as a biomarker for sulfate status. Metabarcoding of the bacterial 16S rRNA gene was carried out in order to determine leaf endophytic community structure. The Shannon diversity index significantly differed (p < 0.05) between sulfate-supplied and sulfate-deprived seedlings. Validation by Real-Time PCR showed a significant increase (p < 0.05) of Burkholderia spp. in sulfate-deprived plants as compared to sulfate-supplied ones. The study sheds new light on the effects of nutrient deficiency on the microbiome of sugar beet plants.
Collapse
|
227
|
Zhou SYD, Zhang Q, Neilson R, Giles M, Li H, Yang XR, Su JQ, Zhu YG. Vertical distribution of antibiotic resistance genes in an urban green facade. ENVIRONMENT INTERNATIONAL 2021; 152:106502. [PMID: 33721724 DOI: 10.1016/j.envint.2021.106502] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The phyllosphere is considered a key site for the transfer of both naturally and anthropogenically selected antimicrobial resistance genes (ARGs) to humans. Consequently, the development of green building systems may pose an, as yet, unexplored pathway for ARGs and pathogens to transfer from the environment to outdoor plants. We collected leaves from plants climbing up buildings at 1, 2, 4 and 15 m above ground level and collected associated dust samples from adjacent windowsills to determine the diversity and relative abundance of microbiota and ARGs. Overall, a total of 143 ARGs from 11 major classes and 18 mobile genetic elements (MGEs) were detected. The relative abundance of ARGs within the phyllosphere decreased with increasing height above ground level. Fast expectation-maximization microbial source tracking (FEAST) suggested that the contribution of soil and aerosols to the phyllosphere microbiome was limited. A culture-dependent method to isolate bacteria from plant tissues identified a total of 91 genera from root, stem, and leaf samples as well as endophytes isolated from leaves. Of those bacteria, 20 isolates representing 9 genera were known human pathogenic members to humans. Shared bacterial from culture-dependent and culture-independent methods suggest microorganisms may move from soil to plant, potentially through an endophytic mechanism and thus, there is a clear potential for movement of ARGs and human pathogens from the outdoor environment.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Madeline Giles
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
228
|
Processing of leafy vegetables matters: Damage and microbial community structure from field to bag. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
229
|
Goss KU. Mantrailing as evidence in court? FORENSIC SCIENCE INTERNATIONAL: REPORTS 2021. [DOI: 10.1016/j.fsir.2021.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
230
|
Ueda H, Tabata J, Seshime Y, Masaki K, Sameshima-Yamashita Y, Kitamoto H. Cutinase-like biodegradable plastic-degrading enzymes from phylloplane yeasts have cutinase activity. Biosci Biotechnol Biochem 2021; 85:1890-1898. [PMID: 34160605 DOI: 10.1093/bbb/zbab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022]
Abstract
Phylloplane yeast genera Pseudozyma and Cryptococcus secrete biodegradable plastic (BP)-degrading enzymes, termed cutinase-like enzymes (CLEs). Although CLEs contain highly conserved catalytic sites, the whole protein exhibits ≤30% amino acid sequence homology with cutinase. In this study, we analyzed whether CLEs exhibit cutinase activity. Seventeen Cryptococcus magnus strains, which degrade BP at 15 °C, were isolated from leaves and identified the DNA sequence of the CLE in one of the strains. Cutin was prepared from tomato leaves and treated with CLEs from 3 Cryptococcus species (C. magnus, Cryptococcus flavus, and Cryptococcus laurentii) and Pseudozyma antarctia (PaE). A typical cutin monomer, 10,16-dihydroxyhexadecanoic acid, was detected in extracts of the reaction solution via gas chromatography-mass spectrometry, showing that cutin was indeed degraded by CLEs. In addition to the aforementioned monomer, separation analysis via thin-layer chromatography detected high-molecular-weight products resulting from the breakdown of cutin by PaE, indicating that PaE acts as an endo-type enzyme.
Collapse
Affiliation(s)
- Hirokazu Ueda
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Japan
| | - Jun Tabata
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Japan
| | - Yasuyo Seshime
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Japan
| | | | - Yuka Sameshima-Yamashita
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Japan
| | - Hiroko Kitamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Japan
| |
Collapse
|
231
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
232
|
Walden S, Jauss RT, Feng K, Fiore-Donno AM, Dumack K, Schaffer S, Wolf R, Schlegel M, Bonkowski M. On the phenology of protists: recurrent patterns reveal seasonal variation of protistan (Rhizaria: Cercozoa and Endomyxa) communities in tree canopies. FEMS Microbiol Ecol 2021; 97:fiab081. [PMID: 34117748 PMCID: PMC8213970 DOI: 10.1093/femsec/fiab081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Tree canopies are colonized by billions of highly specialized microorganisms that are well adapted to the highly variable microclimatic conditions, caused by diurnal fluctuations and seasonal changes. In this study, we investigated seasonality patterns of protists in the tree canopies of a temperate floodplain forest via high-throughput sequencing with group-specific primers for the phyla Cercozoa and Endomyxa. We observed consistent seasonality, and identified divergent spring and autumn taxa. Tree crowns were characterized by a dominance of bacterivores and omnivores, while eukaryvores gained a distinctly larger share in litter and soil communities on the ground. In the canopy seasonality was largest among communities detected on the foliar surface: In spring, higher variance within alpha diversity of foliar samples indicated greater heterogeneity during initial colonization. However, communities underwent compositional changes during the aging of leaves in autumn, highly reflecting recurring phenological changes during protistan colonization. Surprisingly, endomyxan root pathogens appeared to be exceptionally abundant across tree canopies during autumn, demonstrating a potential role of the canopy surface as a physical filter for air-dispersed propagules. Overall, about 80% of detected OTUs could not be assigned to known species-representing dozens of microeukaryotic taxa whose canopy inhabitants are waiting to be discovered.
Collapse
Affiliation(s)
- Susanne Walden
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Robin-Tobias Jauss
- Institute of Biology, Biodiversity and Evolution, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, 100085 Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, 100049 Beijing, China
| | - Anna Maria Fiore-Donno
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Kenneth Dumack
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Stefan Schaffer
- Institute of Biology, Molecular Evolution and Animal Systematics, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ronny Wolf
- Institute of Biology, Molecular Evolution and Animal Systematics, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Martin Schlegel
- Institute of Biology, Biodiversity and Evolution, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| |
Collapse
|
233
|
Assembly of the Populus Microbiome Is Temporally Dynamic and Determined by Selective and Stochastic Factors. mSphere 2021; 6:e0131620. [PMID: 34106767 PMCID: PMC8265678 DOI: 10.1128/msphere.01316-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent work shows that the plant microbiome, particularly the initial assembly of this microbiome, influences plant health, survival, and fitness. Here, we characterize the initial assembly of the Populus microbiome across ten genotypes belonging to two poplar species in a common garden using 16S rRNA gene and ITS2 region amplicon sequencing of the leaf endosphere, leaf surface, root endosphere, and rhizosphere. We sampled these microbiomes three times throughout the first growing season and found that the composition of the microbiome changed dramatically over time across all plant-associated habitats and host genotypes. For archaea and bacteria, these changes were dominated by strong homogenizing selection (accounting for 29 to 62% of pairwise comparisons). However, fungal assembly was generally characterized by multiple ecological assembly processes (i.e., a mix of weak selective and dispersal processes). Interestingly, genotype, while a significant moderator of microbiome composition, generally explained less variation than sample date across plant-associated habitats. We defined a set of core genera that accounted for, on average, 36% of the microbiome. The relative abundance of this core community was consistent over time. Additionally, using source tracking modeling, we determined that new microbial taxa colonize from both aboveground and belowground sources, and combined with our ecological assembly null models, we found that both selective and dispersal processes explained the differences between exo- (i.e., leaf surface and rhizosphere) and endospheric microbiomes. Taken together, our results suggest that the initial assembly of the Populus microbiome is time-, genotype-, and habitat-dependent and is moderated by both selective and stochastic factors. IMPORTANCE The initial assembly of the plant microbiome may establish the trajectory of forthcoming microbiome states, which could determine the overall future health of the plant. However, while much is known about the initial microbiome assembly of grasses and agricultural crops, less is known about the initial microbiome of long-lived trees, such as poplar (Populus spp.). Thus, a greater understanding of initial plant microbiome assembly in an ecologically and economically important plant such as Populus is highly desirable. Here, we show that the initial microbiome community composition and assembly in the first growing season of Populus is temporally dynamic and is determined by a combination of both selective and stochastic factors. Our findings could be used to prescribe ecologically informed microbial inoculations and better predict the composition of the Populus microbiome into the future and to better understand its influence on plant health.
Collapse
|
234
|
Liao C, Wang L. Evaluation of the bacterial populations present in Spring Mix salad and their impact on the behavior of Escherichia coli O157:H7. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
235
|
Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL. Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage. PLoS One 2021; 16:e0252242. [PMID: 34061881 PMCID: PMC8168849 DOI: 10.1371/journal.pone.0252242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.
Collapse
Affiliation(s)
| | - Selda Ors
- Ataturk University, Department of Agricultural Structures and Irrigation, Erzurum, Turkey
| | | | - Xuan Liu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| | - Donald L. Suarez
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| |
Collapse
|
236
|
Menezes RC, Piechulla B, Warber D, Svatoš A, Kai M. Metabolic Profiling of Rhizobacteria Serratia plymuthica and Bacillus subtilis Revealed Intra- and Interspecific Differences and Elicitation of Plipastatins and Short Peptides Due to Co-cultivation. Front Microbiol 2021; 12:685224. [PMID: 34135882 PMCID: PMC8200778 DOI: 10.3389/fmicb.2021.685224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizobacteria live in diverse and dynamic communities having a high impact on plant growth and development. Due to the complexity of the microbial communities and the difficult accessibility of the rhizosphere, investigations of interactive processes within this bacterial network are challenging. In order to better understand causal relationships between individual members of the microbial community of plants, we started to investigate the inter- and intraspecific interaction potential of three rhizobacteria, the S. plymuthica isolates 4Rx13 and AS9 and B. subtilis B2g, using high resolution mass spectrometry based metabolic profiling of structured, low-diversity model communities. We found that by metabolic profiling we are able to detect metabolite changes during cultivation of all three isolates. The metabolic profile of S. plymuthica 4Rx13 differs interspecifically to B. subtilis B2g and surprisingly intraspecifically to S. plymuthica AS9. Thereby, the release of different secondary metabolites represents one contributing factor of inter- and intraspecific variations in metabolite profiles. Interspecific co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g showed consistently distinct metabolic profiles compared to mono-cultivated species. Thereby, putative known and new variants of the plipastatin family are increased in the co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g. Interestingly, intraspecific co-cultivation of S. plymuthica 4Rx13 and S. plymuthica AS9 revealed a distinct interaction zone and showed distinct metabolic profiles compared to mono-cultures. Thereby, several putative short proline-containing peptides are increased in co-cultivation of S. plymuthica 4Rx13 with S. plymuthica AS9 compared to mono-cultivated strains. Our results demonstrate that the release of metabolites by rhizobacteria alters due to growth and induced by social interactions between single members of the microbial community. These results form a basis to elucidate the functional role of such interaction-triggered compounds in establishment and maintenance of microbial communities and can be applied under natural and more realistic conditions, since rhizobacteria also interact with the plant itself and many other members of plant and soil microbiota.
Collapse
Affiliation(s)
- Riya C Menezes
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Birgit Piechulla
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Dörte Warber
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany.,Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| |
Collapse
|
237
|
Nathalia O, Waturangi DE. Extract from phyllosphere bacteria with antibiofilm and quorum quenching activity to control several fish pathogenic bacteria. BMC Res Notes 2021; 14:202. [PMID: 34034823 PMCID: PMC8146661 DOI: 10.1186/s13104-021-05612-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022] Open
Abstract
Objective The objective of this research were to screen quorum quenching activity compound from phyllosphere bacteria as well as antibiofilm activity against several fish pathogen bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. Results We found eight phyllosphere bacteria isolates with potential quorum quenching activity to inhibit Chromobacterium violaceum as indicator bacteria. Crude extracts (20 mg/mL) showed various antibiofilm activity against fish pathogenic bacteria used in this study. Isolate JB 17B showed the highest activity to inhibit biofilm formation of A. hydrophila and V. harveyi, meanwhile isolate JB 3B showed the highest activity to inhibit biofilm of S. agalactiae. From destruction assay, isolate JB 8F showed the highest activity to disrupt biofilm of A. hydrophila isolate JB 20B showed the highest activity to disrupt biofilm of V. harveyi, isolate JB 17B also showed the highest activity to disrupt biofilm of S. agalactiae.
Collapse
Affiliation(s)
- Olivia Nathalia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| |
Collapse
|
238
|
Valencia CU, Sword GA. Resin cast impressions as a tool for microscopic observations of fungal epiphytes on leaves. J Microbiol Methods 2021; 186:106237. [PMID: 33984390 DOI: 10.1016/j.mimet.2021.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/28/2022]
Abstract
A simple method for fungal epiphyte microscopic observations and preservation is described. A two-part clear casting resin, cotton leaves and two species of fungi were used to validate this protocol. We obtained very detailed images of fungal structures using this approach in addition to retaining the impressions for future reference.
Collapse
Affiliation(s)
- Cesar U Valencia
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
239
|
Sakata N, Ishiga T, Ishiga Y. Pseudmonas cannabina pv. alisalensis TrpA Is Required for Virulence in Multiple Host Plants. Front Microbiol 2021; 12:659734. [PMID: 33959115 PMCID: PMC8093880 DOI: 10.3389/fmicb.2021.659734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas cannabina pv. alisalensis (Pcal) causes bacterial leaf spot and blight of Brassicaceae and Poaceae. We previously identified several potential Pcal virulence factors with transposon mutagenesis. Among these a trpA mutant disrupted the tryptophan synthase alpha chain, and had an effect on disease symptom development and bacterial multiplication. To assess the importance of TrpA in Pcal virulence, we characterized the trpA mutant based on inoculation test and Pcal gene expression profiles. The trpA mutant showed reduced virulence when dip- and syringe-inoculated on cabbage and oat. Moreover, epiphytic bacterial populations of the trpA mutant were also reduced compared to the wild-type (WT). These results suggest that TrpA contributes to bacterial multiplication on the leaf surface and in the apoplast, and disease development. Additionally, several Brassicaceae (including Japanese radish, broccoli, and Chinese cabbage) also exhibited reduced symptom development when inoculated with the trpA mutant. Moreover, trpA disruption led to downregulation of bacterial virulence genes, including type three effectors (T3Es) and the phytotoxin coronatine (COR), and to upregulation of tryptophan biosynthesis genes. These results indicate that a trade-off between virulence factor production and Pcal multiplication with tryptophan might be regulated in the infection processes.
Collapse
Affiliation(s)
- Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
240
|
Maier BA, Kiefer P, Field CM, Hemmerle L, Bortfeld-Miller M, Emmenegger B, Schäfer M, Pfeilmeier S, Sunagawa S, Vogel CM, Vorholt JA. A general non-self response as part of plant immunity. NATURE PLANTS 2021; 7:696-705. [PMID: 34007033 PMCID: PMC7610825 DOI: 10.1038/s41477-021-00913-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/01/2021] [Indexed: 05/04/2023]
Abstract
Plants, like other multicellular lifeforms, are colonized by microorganisms. How plants respond to their microbiota is currently not well understood. We used a phylogenetically diverse set of 39 endogenous bacterial strains from Arabidopsis thaliana leaves to assess host transcriptional and metabolic adaptations to bacterial encounters. We identified a molecular response, which we termed the general non-self response (GNSR) that involves the expression of a core set of 24 genes. The GNSR genes are not only consistently induced by the presence of most strains, they also comprise the most differentially regulated genes across treatments and are predictive of a hierarchical transcriptional reprogramming beyond the GNSR. Using a complementary untargeted metabolomics approach we link the GNSR to the tryptophan-derived secondary metabolism, highlighting the importance of small molecules in plant-microbe interactions. We demonstrate that several of the GNSR genes are required for resistance against the bacterial pathogen Pseudomonas syringae. Our results suggest that the GNSR constitutes a defence adaptation strategy that is consistently elicited by diverse strains from various phyla, contributes to host protection and involves secondary metabolism.
Collapse
Affiliation(s)
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Lucas Hemmerle
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
241
|
Labrador MDM, Doña J, Serrano D, Jovani R. Quantitative Interspecific Approach to the Stylosphere: Patterns of Bacteria and Fungi Abundance on Passerine Bird Feathers. MICROBIAL ECOLOGY 2021; 81:1088-1097. [PMID: 33225409 DOI: 10.1007/s00248-020-01634-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Feathers are the habitat of a myriad of organisms, from fungi and bacteria to lice and mites. Although most studies focus on specific taxa and their interaction with the bird host, anecdotal data glimpse feathers as holders of a system with its own ecology, what we call here the stylosphere. A major gap in our knowledge of the stylosphere is the ecology of the total abundance of microorganisms, being also rare to find studies that analyze abundance of more than one group of microorganisms at the bird interspecific level. Here, we quantified bacterial and fungi abundances through qPCR on the wing feathers of 144 birds from 24 passerine and one non-passerine bird species from three localities in Southern Spain. Bacteria and fungi abundances spanned three orders of magnitude among individual birds, but were consistent when comparing the right and the left wing feathers of individuals. Sampling locality explained ca. 14% of the variation in both bacteria and fungi abundances. Even when statistically controlling for sampling locality, microbial abundances consistently differed between birds from different species, but these differences were not explained by bird phylogeny. Finally, bird individuals and species having more bacteria also tended to held larger abundances of fungi. Our results suggest a quite complex explanation for stylosphere microorganisms' abundance, being shaped by bird individual and species traits, as well as environmental factors, and likely bacteria-fungi interactions.
Collapse
Affiliation(s)
- María Del Mar Labrador
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, 41092, Seville, Spain.
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA
- Department of Animal Biology, Universidad de Granada, 18001, Granada, Spain
| | - David Serrano
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, 41092, Seville, Spain
| | - Roger Jovani
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, 41092, Seville, Spain
| |
Collapse
|
242
|
Gorski L, Walker S, Romanolo KF, Kathariou S. Growth and Survival of Attached Listeria on Lettuce and Stainless Steel Varies by Strain and Surface Type. J Food Prot 2021; 84:903-911. [PMID: 33411902 DOI: 10.4315/jfp-20-434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The foodborne pathogen Listeria monocytogenes lives as a saprophyte in nature and can adhere to and grow on surfaces as diverse as leaves, sediment, and stainless steel. To discern the mechanisms used by L. monocytogenes for attachment and growth on various surfaces, we studied interactions between the pathogen on lettuce and stainless steel. A panel of 24 strains (23 L. monocytogenes and 1 Listeria innocua) were screened for attachment and growth on lettuce at 4 and 25°C and on stainless steel at 10 and 37°C. Overnight growth of attached cells resulted in a 0- to 3-log increase on lettuce, depending on the strain and the temperature. Among the worst-performing strains on lettuce were two from a large cantaloupe outbreak, indicating that factors important for interactions with cantaloupe may be different from those required on lettuce tissue. Strains that grew the best on lettuce belonged to serotypes 1/2a, 1/2b, and 4b and were from cheese, potatoes, and water-sediment near produce fields. Confocal microscopy of L. monocytogenes tagged with constitutively expressed green fluorescent protein indicated associations with the cut edges and veins of lettuce leaves. On stainless steel coupons, there was a 5- to 7-log increase at 10°C after 7 days and a 4- to 7-log increase at 37°C after 40 h. Statistically, surface growth on stainless steel was better for serotype 1/2a than for serotype 4b strains, even though certain serotype 4b strains grew well on the coupons. The latter included strains that originated from produce and water-sediment. Some strains were fit in both environments, whereas others showed variability between the two different surfaces. Further analysis of these strains should reveal molecular factors needed for adherence and surface growth of L. monocytogenes on different biotic and abiotic surfaces. HIGHLIGHTS
Collapse
Affiliation(s)
- Lisa Gorski
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, California 94710
| | - Samarpita Walker
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, California 94710
| | - Kelly F Romanolo
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, California 94710
| | - Sophia Kathariou
- Department of Food Science, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
243
|
Senthilkumar M, Pushpakanth P, Arul Jose P, Krishnamoorthy R, Anandham R. Diversity and functional characterization of endophytic Methylobacterium isolated from banana cultivars of South India and its impact on early growth of tissue culture banana plantlets. J Appl Microbiol 2021; 131:2448-2465. [PMID: 33891792 DOI: 10.1111/jam.15112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/27/2022]
Abstract
AIMS This study aimed at determining the distribution, colonization and growth promoting nature of Methylobacterium spp. in tissue culture banana plantlets. METHODS AND RESULTS Leaf samples from different field grown banana cultivars were used for Methylobacterium spp., isolation. Metabolic profile and functional characterization for plant growth-promoting traits of the isolates were assessed. The isolates were confirmed using 16S rRNA gene sequencing analysis, which resulted in six distinct species of Methylobacterium namely M. radiotolerans, M. salsuginis, M. thiocyanatum, M. rhodesianum, M. rhodinum and M. populi. Methylobacterium spp. inoculation experiment was conducted under hydroponic system in tissue culture banana plantlets (germ free) with eight selected isolates. A significant increase in growth parameters of Methylobacterium treated plantlets compared to uninoculated control was observed. Methylobacterium salsuginis TNMB03-gfp29 was developed and colonization micrograph was obtained using confocal laser scanning microscopy (CLSM) and scanning electron microscopy in different parts of banana plantlets (root, stem and leaves). CONCLUSION Field grown banana plants found to harbour diverse endophytic Methylobacterium population. Our finding suggests that endophytic Methylobacterium species may provide significant plant growth promoting compounds/nutrients to the banana plants. The experimental results demonstrated the efficacy of Methylobacterium spp. as a potential bioinoculant and can be exploited as a phyllosphere and rhizosphere based bioinoculant for the initial establishment and growth of tissue culture banana plantlets. SIGNIFICANCE AND IMPACT OF THE STUDY This study extended our knowledge on the distribution of Methylobacterium spp. in banana plants and endophytic colonization nature of this particular genus in plants. In addition, efficient isolate (M. salsuginis TNMB03) identified in this study may be promoted as bio-inoculants for banana plants after field evaluation.
Collapse
Affiliation(s)
- M Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Pushpakanth
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Arul Jose
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai, Tamil Nadu, India
| | - R Krishnamoorthy
- Department of Crop Management, Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India
| | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
244
|
Borruso L, Bani A, Pioli S, Ventura M, Panzacchi P, Antonielli L, Giammarchi F, Polo A, Tonon G, Brusetti L. Do Aerial Nitrogen Depositions Affect Fungal and Bacterial Communities of Oak Leaves? Front Microbiol 2021; 12:633535. [PMID: 33935994 PMCID: PMC8085328 DOI: 10.3389/fmicb.2021.633535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
The amount of nitrogen (N) deposition onto forests has globally increased and is expected to double by 2050, mostly because of fertilizer production and fossil fuel burning. Several studies have already investigated the effects of N depositions in forest soils, highlighting negative consequences on plant biodiversity and the associated biota. Nevertheless, the impact of N aerial inputs deposited directly on the tree canopy is still unexplored. This study aimed to investigate the influence of increased N deposition on the leaf-associated fungal and bacterial communities in a temperate forest dominated by Sessile oak [Quercus petraea (Matt.) Liebl.]. The study area was located in the Monticolo forest (South Tyrol, Italy), where an ecosystem experiment simulating an increased N deposition has been established. The results highlighted that N deposition affected the fungal beta-diversity and bacterial alpha-diversity without affecting leaf total N and C contents. We found several indicator genera of both fertilized and natural conditions within bacteria and fungi, suggesting a highly specific response to altered N inputs. Moreover, we found an increase of symbiotrophic fungi in N-treated, samples which are commonly represented by lichen-forming mycobionts. Overall, our results indicated that N-deposition, by increasing the level of bioavailable nutrients in leaves, could directly influence the bacterial and fungal community diversity.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alessia Bani
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- School of Life Sciences, University of Essex Colchester Campus, Essex, United Kingdom
| | - Silvia Pioli
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Maurizio Ventura
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Pietro Panzacchi
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Francesco Giammarchi
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Andrea Polo
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giustino Tonon
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Lorenzo Brusetti
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
245
|
Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana. Appl Environ Microbiol 2021; 87:AEM.00091-21. [PMID: 33608298 DOI: 10.1128/aem.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biosurfactant production is a common trait in leaf surface-colonizing bacteria that has been associated with increased survival and movement on leaves. At the same time, the ability to degrade aliphatics is common in biosurfactant-producing leaf colonizers. Pseudomonads are common leaf colonizers and have been recognized for their ability to produce biosurfactants and degrade aliphatic compounds. In this study, we investigated the role of biosurfactants in four non-plant-pathogenic Pseudomonas strains by performing a series of experiments to characterize their surfactant properties and their role during leaf colonization and diesel degradation. The biosurfactants produced were identified using mass spectrometry. Two strains produced viscosin-like biosurfactants, and the other two produced massetolide A-like biosurfactants, which aligned with the phylogenetic relatedness between the strains. To further investigate the role of surfactant production, random Tn5 transposon mutagenesis was performed to generate knockout mutants. The knockout mutants were compared to their respective wild types with regard to their ability to colonize gnotobiotic Arabidopsis thaliana and to degrade diesel or dodecane. It was not possible to detect negative effects during plant colonization in direct competition or individual colonization experiments. When grown on diesel, knockout mutants grew significantly slower than their respective wild types. When grown on dodecane, knockout mutants were less impacted than during growth on diesel. By adding isolated wild-type biosurfactants, it was possible to complement the growth of the knockout mutants.IMPORTANCE Many leaf-colonizing bacteria produce surfactants and are able to degrade aliphatic compounds; however, whether surfactant production provides a competitive advantage during leaf colonization is unclear. Furthermore, it is unclear if leaf colonizers take advantage of the aliphatic compounds that constitute the leaf cuticle and cuticular waxes. Here, we tested the effect of surfactant production on leaf colonization, and we demonstrate that the lack of surfactant production decreases the ability to degrade aliphatic compounds. This indicates that leaf surface-dwelling, surfactant-producing bacteria contribute to degradation of environmental hydrocarbons and may be able to utilize leaf surface waxes. This has implications for plant-microbe interactions and future studies.
Collapse
|
246
|
Physiology of Methylotrophs Living in the Phyllosphere. Microorganisms 2021; 9:microorganisms9040809. [PMID: 33921272 PMCID: PMC8069551 DOI: 10.3390/microorganisms9040809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Methanol is abundant in the phyllosphere, the surface of the above-ground parts of plants, and its concentration oscillates diurnally. The phyllosphere is one of the major habitats for a group of microorganisms, the so-called methylotrophs, that utilize one-carbon (C1) compounds, such as methanol and methane, as their sole source of carbon and energy. Among phyllospheric microorganisms, methanol-utilizing methylotrophic bacteria, known as pink-pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of the phyllosphere, and some of them have recently been shown to have the ability to promote plant growth and increase crop yield. In addition to PPFMs, methanol-utilizing yeasts can proliferate and survive in the phyllosphere by using unique molecular and cellular mechanisms to adapt to the stressful phyllosphere environment. This review describes our current understanding of the physiology of methylotrophic bacteria and yeasts living in the phyllosphere where they are exposed to diurnal cycles of environmental conditions.
Collapse
|
247
|
Ishak S, Dormontt E, Young JM. Microbiomes in forensic botany: a review. Forensic Sci Med Pathol 2021; 17:297-307. [PMID: 33830453 DOI: 10.1007/s12024-021-00362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
Fragments of botanical material can often be found at crime scenes (on live and dead bodies, or on incriminating objects) and can provide circumstantial evidence on various aspects of forensic investigations such as determining crime scene locations, times of death or possession of illegal species. Morphological and genetic analysis are the most commonly applied methods to analyze plant fragment evidence but are limited by their low capacity to differentiate between potential source locations, especially at local scales. Here, we review the current applications and limitations of current plant fragment analysis for forensic investigations and introduce the potential of microbiome analysis to complement the existing forensic plant fragment analysis toolkit. The potential for plant fragment provenance identification at geographic scales meaningful to forensic investigations warrants further investigation of the phyllosphere microbiome in this context. To that end we identify three key areas of future research: 1) Retrieval of microbial DNA of sufficient quality and quantity from botanical material; 2) Variability of the phyllosphere microbiome at different taxonomic and spatial scales, with explicit reference to assignment capacity; 3) Impacts on assignment capacity of time, seasonality and movement of fragments between locations. The development of robust microbiome analysis tools for forensic purposes in botanical material could increase the evidentiary value of the botanical evidence commonly encountered in casework, aiding in the identification of crime scene locations.
Collapse
Affiliation(s)
- Sarah Ishak
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Eleanor Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer M Young
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
248
|
Haelewaters D, Urbina H, Brown S, Newerth-Henson S, Aime MC. Isolation and Molecular Characterization of the Romaine Lettuce Phylloplane Mycobiome. J Fungi (Basel) 2021; 7:277. [PMID: 33917072 PMCID: PMC8067711 DOI: 10.3390/jof7040277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Romaine lettuce (Lactuca sativa) is an important staple of American agriculture. Unlike many vegetables, romaine lettuce is typically consumed raw. Phylloplane microbes occur naturally on plant leaves; consumption of uncooked leaves includes consumption of phylloplane microbes. Despite this fact, the microbes that naturally occur on produce such as romaine lettuce are for the most part uncharacterized. In this study, we conducted culture-based studies of the fungal romaine lettuce phylloplane community from organic and conventionally grown samples. In addition to an enumeration of all such microbes, we define and provide a discussion of the genera that form the "core" romaine lettuce mycobiome, which represent 85.5% of all obtained isolates: Alternaria, Aureobasidium, Cladosporium, Filobasidium, Naganishia, Papiliotrema, Rhodotorula, Sampaiozyma, Sporobolomyces, Symmetrospora and Vishniacozyma. We highlight the need for additional mycological expertise in that 23% of species in these core genera appear to be new to science and resolve some taxonomic issues we encountered during our work with new combinations for Aureobasidiumbupleuri and Curvibasidium nothofagi. Finally, our work lays the ground for future studies that seek to understand the effect these communities may have on preventing or facilitating establishment of exogenous microbes, such as food spoilage microbes and plant or human pathogens.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, USA
| | - Samuel Brown
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - Shannon Newerth-Henson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| |
Collapse
|
249
|
Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T. Leaf-associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:87-99. [PMID: 37284285 PMCID: PMC10168098 DOI: 10.1002/pei3.10043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/08/2023]
Abstract
Plants are colonized by diverse fungal and viral communities that influence their growth and survival as well as ecosystem functioning. Viruses interact with both plants and the fungi they host. Our understanding of plant-fungi-virus interactions is very limited, especially in wild plants. Combining metagenomic and culturomic approaches, we assessed the richness, diversity, and composition of leaf-associated fungal and viral communities from pools of herbaceous wild plants representative of four sites corresponding to cultivated or natural ecosystems. We identified 161 fungal families and 18 viral families comprising 249 RNA-dependent RNA polymerase-based operational taxonomic units (RdRp OTUs) from leaves. Fungal culturomics captured 12.3% of the fungal diversity recovered with metagenomic approaches and, unexpectedly, retrieved viral OTUs that were almost entirely different from those recovered by leaf metagenomics. Ecosystem management had a significant influence on both leaf mycobiome and virome, with a higher fungal community richness in natural ecosystems and a higher viral family richness in cultivated ecosystems, suggesting that leaf-associated fungal and viral communities are under the influence of different ecological drivers. Both the leaf-associated fungal and viral community compositions showed a strong site-specificity. Further research is needed to confirm these trends and unravel the factors structuring plant-fungi-virus interactions in wild plant populations.
Collapse
Affiliation(s)
- Yuxin Ma
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | | | - Armelle Marais
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Marie Lefebvre
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Sébastien Theil
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
- Present address:
INRA UMRF20, côte de ReyneAurillac15000France
| | | | | |
Collapse
|
250
|
Liu L, Lu L, Li H, Meng Z, Dong T, Peng C, Xu X. Divergence of Phyllosphere Microbial Communities Between Females and Males of the Dioecious Populus cathayana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:351-361. [PMID: 33290085 DOI: 10.1094/mpmi-07-20-0178-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microbiota in dioecious plants remains largely unexplored. Here, the diversity and composition of female and male Populus cathayana phyllosphere bacterial and fungal communities were investigated using 16S rRNA/ITS1 gene-based MiSeq sequencing. The divergences of bacterial and fungal community compositions occurred between females and males. Both females and males had their unique phyllosphere bacterial and fungal microbiota, such as bacterial Gemmata spp. (5.41%) and fungal Pringsheimia spp. (0.03%) in females and bacterial Chitinophaga spp. (0.009%) and fungal Phaeococcomyces spp. (0.02%) in males. Significant differences in the relative abundance of phyla Proteobacteria and Planctomycetes bacteria and phyla Ascomycota and Basidiomycota fungi (P < 0.05) were also found between females and males. Some bacterial species of genera Spirosoma and Amnibacterium and fungal genera Venturia, Suillus, and Elmerina spp. were significantly enriched in males (P < 0.05). In contrast, levels of fungal genera Phoma and Aureobasidium spp. were significantly higher in females than in males (P < 0.05). The mineral, inorganic, and organic nutrients content contributed differently to the divergence of female and male phyllosphere microbial communities, with 87.08 and 45.17% of the variations being explained for bacterial and fungal communities, respectively. These results highlight the sexual discrimination of phyllosphere microbes on the dioecious plants and provide hints on the potential host-associated species in phyllosphere environments.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Liling Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Lu Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Huilin Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Zhensi Meng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| |
Collapse
|