201
|
Zhao L, Tyrrell DL. Myeloid dendritic cells can kill T cells during chronic hepatitis C virus infection. Viral Immunol 2013; 26:25-39. [PMID: 23374153 DOI: 10.1089/vim.2012.0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid dendritic cells (mDCs) are the most potent professional antigen-presenting cells that regulate specific T-cell responses. Here we studied the ability of mDCs to kill T cells during HCV infection. We found that mDCs from chronic hepatitis C (CHC) patients expressed upregulated levels of two inhibitory ligands, Fas ligand and the ligand 2 of PD-1 (PD-L2), compared to healthy mDCs. However, their expression of the ligand 1 of PD-1 (PD-L1), tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and B lymphocyte stimulator (BLyS) on the cell surface was comparable to healthy mDCs. CHC patient mDCs had cytotoxic effects on autologous patient T cells and allogeneic healthy T cells. CHC patient T cells had increased expression of PD-1 compared to healthy T cells. These results indicate that the cytotoxic activity of mDCs is upregulated to kill T cells during chronic HCV infection, which represents a novel mechanism of HCV immune evasion.
Collapse
Affiliation(s)
- Li Zhao
- Li KaShing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, Alberta, Canada.
| | | |
Collapse
|
202
|
Willimsky G, Schmidt K, Loddenkemper C, Gellermann J, Blankenstein T. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J Clin Invest 2013; 123:1032-43. [PMID: 23454765 DOI: 10.1172/jci64742] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
T cell surveillance is often effective against virus-associated tumors because of their high immunogenicity. It is not clear why surveillance occasionally fails, particularly against hepatitis B virus- or hepatitis C virus-associated hepatocellular carcinoma (HCC). We established a transgenic murine model of virus-induced HCC by hepatocyte-specific adenovirus-induced activation of the oncogenic SV40 large T antigen (TAg). Adenovirus infection induced cytotoxic T lymphocytes (CTLs) targeted against the virus and TAg, leading to clearance of the infected cells. Despite the presence of functional, antigen-specific T cells, a few virus-infected cells escaped immune clearance and progressed to HCC. These cells expressed TAg at levels similar to HCC isolated from neonatal TAg-tolerant mice, suggesting that CTL clearance does not select for cells with low immunogenicity. Virus-infected mice revealed significantly greater T cell infiltration in early-stage HCC compared with that in late-stage HCC, demonstrating progressive local immune suppression through inefficient T cell infiltration. Programmed cell death protein-1 (PD-1) and its ligand PD-L1 were expressed in all TAg-specific CD8+ T cells and HCC, respectively, which contributed to local tumor-antigen-specific tolerance. Thus, we have developed a model of virus-induced HCC that may allow for a better understanding of human HCC.
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
203
|
Seigel B, Bengsch B, Lohmann V, Bartenschlager R, Blum HE, Thimme R. Factors that determine the antiviral efficacy of HCV-specific CD8(+) T cells ex vivo. Gastroenterology 2013; 144:426-436. [PMID: 23142136 DOI: 10.1053/j.gastro.2012.10.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Dysfunctional CD8(+) T cells are believed to contribute to the ability of hepatitis C virus (HCV) to evade the immune response. Most studies have focused on the effector functions of HCV-specific CD8(+) T cells or their surface expression of inhibitory receptors. There is currently no information available about the ex vivo ability of HCV-specific CD8(+) T cells to inhibit viral replication (antiviral efficacy). METHODS To analyze the antiviral efficacy of virus-specific CD8(+) T cells ex vivo, we used an immunologic model based on a cell line that expresses HLA-A*02 and contains a stably replicating HCV reporter replicon. We isolated HCV-specific CD8(+) T cells from 18 HLA-A*02-positive patients with chronic HCV infection and 15 subjects with resolved HCV infection (7 spontaneous, 8 after therapy). Replicon cells were labeled with virus-specific peptides; inhibition of HCV replication was determined by measuring luciferase activity after 72 hours of coculture with virus-specific CD8(+) T cells. RESULTS HCV-specific CD8(+) T cells from patients with chronic HCV infection had a significantly lower antiviral efficacy than influenza-, Epstein-Barr virus-, and cytomegalovirus-specific CD8(+) T cells. Antiviral efficacy was associated with the ability of virus-specific CD8(+) T cells to secrete interferon gamma. The antiviral efficacy of HCV-specific CD8(+) T cells was linked to surface expression of CD127 and PD-1. The cytokines interleukin-2, interleukin-7, and interleukin-15 increased the antiviral efficacy of CD127-positive but not of CD127-negative, HCV-specific CD8(+) T cells. Spontaneous, but not antiviral therapy-induced, viral clearance was associated with increased antiviral efficacy. CONCLUSIONS The ability of CD8(+) T cells to inhibit HCV replication ex vivo is associated with their ability to secrete interferon gamma and their surface expression of CD127 and PD-1.
Collapse
Affiliation(s)
- Bianca Seigel
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany.
| |
Collapse
|
204
|
Neumann-Haefelin C, Thimme R. Adaptive immune responses in hepatitis C virus infection. Curr Top Microbiol Immunol 2013; 369:243-62. [PMID: 23463204 DOI: 10.1007/978-3-642-27340-7_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune response plays a central role in the outcome of hepatitis C virus (HCV) infection. Indeed, spontaneous viral clearance is associated with an early neutralizing antibody response as well as vigorous and sustained HCV-specific CD4+ and CD8+ T cell responses. In persistent HCV infection, however, all three components of the antiviral adaptive immune response fail due to different viral evasion strategies. In this chapter, we will describe the components of a successful immune response against HCV and summarize the mechanisms of immune failure. We will also highlight characteristics of protective CD8+ T cell responses which is the key factor to the design of an efficacious vaccine.
Collapse
|
205
|
T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2012; 121:1612-21. [PMID: 23247726 DOI: 10.1182/blood-2012-09-457531] [Citation(s) in RCA: 410] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell exhaustion, originally described in chronic viral infections, was recently reported in solid and hematologic cancers. It is not defined whether exhaustion contributes to T-cell dysfunction observed in chronic lymphocytic leukemia (CLL). We investigated the phenotype and function of T cells from CLL patients and age-matched controls. CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD244, CD160, and PD1, with expansion of a PD1+BLIMP1HI subset. These molecules were most highly expressed in the expanded population of effector T cells in CLL. CLL CD8+ T cells showed functional defects in proliferation and cytotoxicity, with the cytolytic defect caused by impaired granzyme packaging into vesicles and nonpolarized degranulation. In contrast to virally induced exhaustion, CLL T cells showed increased production of interferon-γ and TNFα and increased expression of TBET, and normal IL2 production. These defects were not restricted to expanded populations of cytomegalovirus (CMV)–specific cells, although CMV seropositivity modulated the distribution of lymphocyte subsets, the functional defects were present irrespective of CMV serostatus. Therefore, although CLL CD8+ T cells exhibit features of T-cell exhaustion, they retain the ability to produce cytokines. These findings also exclude CMV as the sole cause of T-cell defects in CLL.
Collapse
|
206
|
Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A. Hepatic enrichment and activation of myeloid dendritic cells during chronic hepatitis C virus infection. Hepatology 2012; 56:2071-81. [PMID: 22711645 PMCID: PMC3747821 DOI: 10.1002/hep.25904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/04/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Chronic hepatitis C virus (HCV) infection is a serious disease that can result in numerous long-term complications leading to liver failure or death. Approximately 80% of people fail to clear their infection, largely as the result of weak, narrowly targeting or waning antiviral T-cell responses. Although professional antigen presenting cells (APCs) like dendritic cells (DCs) might serve as targets for modulation of T-cell immunity, the particular role of DCs in immunity to HCV is not known. Moreover the identity, phenotype, and functional characteristics of such populations in the liver, the site of HCV replication, have proven difficult to elucidate. Using a multicolor flow-based approach, we identified six distinct populations of professional APCs among liver interstitial leukocytes isolated from uninfected and HCV-infected patients. Although a generalized enrichment of DCs in the liver compared to blood was observed for all patients, HCV infection was characterized by a significant increase in the frequency of intrahepatic myeloid DCs (both CD1c+ and CD141+). Phenotypic analyses of liver plasmacytoid (pDC) and myeloid DCs (mDC) further revealed the HCV-induced expression of maturation molecules CD80, CD83, CD40, and programmed death ligand-1. Importantly, pDC and mDCs from HCV-infected liver were capable of secreting effector cytokines, interferon-alpha and interleukin-12, respectively, in response to Toll-like receptor stimulation in vitro. CONCLUSION Chronic HCV infection facilitates the "customized" recruitment of liver DC subsets with established functional roles in antigen presentation. These DCs are characterized by a mature, activated phenotype and are functionally responsive to antigenic stimulation in vitro. Such findings highlight an important paradox surrounding liver DC recruitment during HCV infection, where despite their activation these cells do not provide adequate protection from the virus.
Collapse
Affiliation(s)
| | - Huiming Hon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
- Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Stuart J. Knechtle
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Allan D. Kirk
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Arash Grakoui
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
- Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, 30322
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
207
|
Pasetto A, Frelin L, Aleman S, Holmström F, Brass A, Ahlén G, Brenndörfer ED, Lohmann V, Bartenschlager R, Sällberg M, Bertoletti A, Chen M. TCR-redirected human T cells inhibit hepatitis C virus replication: hepatotoxic potential is linked to antigen specificity and functional avidity. THE JOURNAL OF IMMUNOLOGY 2012; 189:4510-9. [PMID: 23024278 DOI: 10.4049/jimmunol.1201613] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus-specific CTL with high levels of functional avidity have been associated with viral clearance in hepatitis C virus (HCV) infection and with enhanced protective immunity. In chronic HCV infection, lack of antiviral CTL is frequently observed. In this study, we aim to investigate novel HCV TCRs that differ in Ag specificity. This involved isolating new HCV-specific murine TCRs that recognize a conserved HLA-A2-restricted CTL epitope within the nonstructural protein (NS) 5A viral protein and comparing them with TCRs recognizing another conserved CTL target in the NS3 viral protein. This was done by expressing the TCRs in human T cells and analyzing the function of the resulting TCR-transduced T cells. Our result indicates that these TCRs are efficiently assembled in transduced human T cells. They recognize peptide-loaded targets and demonstrate polyfunctional features such as IL-2, IFN-γ, and TNF-α secretion. However, in contrast to NS3-specific TCRs, the NS5A TCR-transduced T cells consist of a smaller proportion of polyfunctional T cells and require more peptide ligands to trigger the effector functions, including degranulation. Despite the differences, NS5A TCRs show effective inhibition of HCV replication in human hepatoma cells with persistent HCV RNA replication. Moreover, cellular injury demonstrated by aspartate aminotransferase release and cell death is less significant in the hepatoma cells following coincubation with NS5A TCR-transduced T cells, which is a property consistent with noncytotoxic antiviral CTLs. Our results suggest that HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Dental Medicine, Karolinska Institutet, Huddinge 141 04, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Increased program cell death-1 expression on T lymphocytes of patients with progressive multifocal leukoencephalopathy. J Acquir Immune Defic Syndr 2012; 60:244-8. [PMID: 22549384 DOI: 10.1097/qai.0b013e31825a313c] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellullar immune response is important in the containment of progressive multifocal leukoencephalopathy (PML). We examined program cell death-1 (PD-1) expression, a marker of cellular immune exhaustion, on T lymphocytes in PML. PD-1 expression was elevated on total CD4(+) and CD8(+) T cells (medians 36% and 24%) in PML patients compared with healthy control subjects (medians 14% and 18%; P = 0.0015 and P = 0.033). In PML patients, JC virus (JCV)-specific CD8(+) cytotoxic T lymphocytes expressed PD-1 more frequently than total CD8 T lymphocytes (means 39% and 78%, P = 0.0004). Blocking the PD-1 receptor increased JCV-specific T-cell immune response in a subgroup of PML patients.
Collapse
|
209
|
Brenndörfer ED, Sällberg M. Hepatitis C virus-mediated modulation of cellular immunity. Arch Immunol Ther Exp (Warsz) 2012; 60:315-29. [PMID: 22911132 DOI: 10.1007/s00005-012-0184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is a major cause of chronic liver disease globally. A chronic infection can result in liver fibrosis, liver cirrhosis, hepatocellular carcinoma and liver failure in a significant ratio of the patients. About 170 million people are currently infected with HCV. Since 80 % of the infected patients develop a chronic infection, HCV has evolved sophisticated escape strategies to evade both the innate and the adaptive immune system. Thus, chronic hepatitis C is characterized by perturbations in the number, subset composition and/or functionality of natural killer cells, natural killer T cells, dendritic cells, macrophages and T cells. The balance between HCV-induced immune evasion and the antiviral immune response results in chronic liver inflammation and consequent immune-mediated liver injury. This review summarizes our current understanding of the HCV-mediated interference with cellular immunity and of the factors resulting in HCV persistence. A profound knowledge about the intrinsic properties of HCV and its effects on intrahepatic immunity is essential to be able to design effective immunotherapies against HCV such as therapeutic HCV vaccines.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology F68, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | | |
Collapse
|
210
|
Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet JP, Bordi R, Filali-Mouhim A, Loubert JB, El-Far M, Dupuy FP, Boulassel MR, Tremblay C, Routy JP, Bernard N, Balderas R, Haddad EK, Sékaly RP. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog 2012; 8:e1002840. [PMID: 22916009 PMCID: PMC3420930 DOI: 10.1371/journal.ppat.1002840] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
Chronic viral infections lead to persistent CD8 T cell activation and functional exhaustion. Expression of programmed cell death-1 (PD-1) has been associated to CD8 T cell dysfunction in HIV infection. Herein we report that another negative regulator of T cell activation, CD160, was also upregulated on HIV-specific CD8 T lymphocytes mostly during the chronic phase of infection. CD8 T cells that expressed CD160 or PD-1 were still functional whereas co-expression of CD160 and PD-1 on CD8 T cells defined a novel subset with all the characteristics of functionally exhausted T cells. Blocking the interaction of CD160 with HVEM, its natural ligand, increased HIV-specific CD8 T cell proliferation and cytokine production. Transcriptional profiling showed that CD160−PD-1+CD8 T cells encompassed a subset of CD8+ T cells with activated transcriptional programs, while CD160+PD-1+ T cells encompassed primarily CD8+ T cells with an exhausted phenotype. The transcriptional profile of CD160+PD-1+ T cells showed the downregulation of the NFκB transcriptional node and the upregulation of several inhibitors of T cell survival and function. Overall, we show that CD160 and PD-1 expressing subsets allow differentiating between activated and exhausted CD8 T cells further reinforcing the notion that restoration of function will require multipronged approaches that target several negative regulators. HIV infection is widely known to cause generalized immune activation and immune exhaustion ultimately leading to HIV disease progression. Several studies have suggested over the years that the accumulation of inhibitory signalling proteins on the surface of responding cells is linked to immune exhaustion in HIV. It has become paramount to distinguish functionally exhausted CD8 T cells from activated HIV-specific CD8 T cells because both cell types have different fates. Using specific cell surface markers, we were able to identify these different cell types and show that HIV-infected patients accumulate dysfunctional CD8 T cells over time. Importantly, we show that this dysfunction is reversible.
Collapse
Affiliation(s)
- Yoav Peretz
- Caprion/ImmuneCarta Services, Montreal, Quebec, Canada
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Zhong He
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Yu Shi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Bader Yassine-Diab
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Philippe Goulet
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Rebeka Bordi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Ali Filali-Mouhim
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Baptiste Loubert
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Franck P. Dupuy
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Mohamed Rachid Boulassel
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicole Bernard
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert Balderas
- BD Biosciences, San Diego, California, United States of America
| | - Elias K. Haddad
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Institut National de la Santé et de la Recherche Médicale U743, CRCHUM, Université de Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
211
|
Abstract
The immune response in patients chronically infected with HCV plays a unique role during the infection because of its potential to contribute not only to viral clearance and, in some cases, protective immunity, but also to liver injury. A detailed understanding of the immunological mechanisms involved in persistence to HCV is essential to fully appreciate the complexity of the disease. In recent years, enormous progress has been made to characterize the dysfunctional natural killer cells and T cells during the chronic phase of infection. This information is important to further optimize treatment strategies based on the strengthening antiviral and immunomodulatory activities in patients chronically infected with HCV.
Collapse
Affiliation(s)
- Michelle Spaan
- Liver Unit, Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
212
|
Channappanavar R, Twardy BS, Suvas S. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection. PLoS One 2012; 7:e39757. [PMID: 22808056 PMCID: PMC3395688 DOI: 10.1371/journal.pone.0039757] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/29/2012] [Indexed: 11/26/2022] Open
Abstract
The blocking of programmed death ligand-1 (PDL-1) has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1) infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Brandon S. Twardy
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Susmit Suvas
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
213
|
Sandalova E, Laccabue D, Boni C, Watanabe T, Tan A, Zong HZ, Ferrari C, Bertoletti A. Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology 2012; 143:78-87.e3. [PMID: 22475535 DOI: 10.1053/j.gastro.2012.03.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/07/2012] [Accepted: 03/26/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS During viral infection, the activities of virus-specific CD8(+) T cells are carefully regulated to prevent severe damage of the infected organs. We investigated the mechanisms that control the functions of activated T cells. METHODS We measured the size of the population of activated and proliferating CD8(+) T cells and the functional pattern of CD8(+) T cells specific for the entire hepatitis B virus proteome and for selected heterologous virus (Epstein-Barr virus, human cytomegalovirus, and influenza virus) using blood samples from 18 patients with acute hepatitis B. We analyzed the effects of different modulatory mechanisms, such as inhibitory molecules, suppressive cytokines (interleukin-10), and arginase, on the activities of CD8(+) T cells. RESULTS In patients with acute hepatitis B, the expansion of activated and proliferating (HLA-DR/CD38(+), Ki-67(+)/Bcl-2(low)) CD8(+) T cells did not quantitatively match their specific functions ex vivo; virus-specific CD8(+) T cells had functional impairments that were temporally restricted to the acute phase of viral hepatitis. These impairments in function were not limited to HBV-specific CD8(+) T cells but were also observed in CD8(+) T cells with specificities for other viruses. We investigated possible causes of antigen-independent CD8(+) T cell inhibition and found that the increased levels of arginase observed in patients with acute hepatitis could suppress the function of activated, but not resting, CD8(+) T cells. CONCLUSIONS The increased level of arginase in patients with acute hepatitis B suppresses the functions of activated CD8(+) T cells. This mechanism might limit the amount of liver damage caused by activated CD8(+) T cells in patients with acute HBV infection.
Collapse
Affiliation(s)
- Elena Sandalova
- Infection & Immunity Program, Singapore Institute for Clinical Sciences, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, Green JM. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R112. [PMID: 22742734 PMCID: PMC3580670 DOI: 10.1186/cc11404] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022]
Abstract
Introduction Severe sepsis is characterized by an initial hyper-inflammatory response that may progress to an immune-suppressed state associated with increased susceptibility to nosocomial infection. Analysis of samples obtained from patients who died of sepsis has identified expression of specific inhibitory receptors expressed on lymphocytes that are associated with cell exhaustion. The objective of this study was to prospectively determine the pattern of expression of these receptors and immune cell function in patients with acute sepsis. Methods Twenty-four patients with severe sepsis were enrolled within 24 hours of the onset of sepsis, as were 12 age-matched healthy controls. Peripheral blood was obtained at enrollment and again seven days later. Immune cell subsets and receptor expression were extensively characterized by quantitative flow cytometry. Lymphocyte function was assayed by stimulated cytokine secretion and proliferation assays. Results were also correlated to clinical outcome. Results At the onset of severe sepsis, patients had decreased circulating innate and adaptive immune cells and elevated lymphocyte expression of receptors associated with cell activation compared to controls. Samples analyzed seven days later demonstrated increased expression of the inhibitory receptors CTLA4, TIM-3 and LAG-3 on T lymphocytes accompanied by decreased expression of the IL-7 receptor. Functional assays revealed impaired secretion of interferon γ following stimulation in vitro, which was reversible by incubation overnight in fresh media. Impaired secretion of IFNγ correlated with death or development of secondary infection. Conclusions Lymphocytes from patients with acute sepsis upregulate expression of receptors associated with cell exhaustion, which may contribute to the immune suppressed state that occurs in protracted disease. Therapy that reverses T cell exhaustion may restore immune function in immunocompromised patients and improve survival in sepsis.
Collapse
|
215
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
216
|
Burke KP, Munshaw S, Osburn WO, Levine J, Liu L, Sidney J, Sette A, Ray SC, Cox AL. Immunogenicity and cross-reactivity of a representative ancestral sequence in hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:5177-88. [PMID: 22508927 DOI: 10.4049/jimmunol.1103008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vaccines designed to prevent or to treat hepatitis C viral infection must achieve maximum cross-reactivity against widely divergent circulating strains. Rational approaches for sequence selection to maximize immunogenicity and minimize genetic distance across circulating strains may enhance vaccine induction of optimal cytotoxic T cell responses. We assessed T cell recognition of potential hepatitis C virus (HCV) vaccine sequences generated using three rational approaches: combining epitopes with predicted tight binding to the MHC, consensus sequence (most common amino acid at each position), and representative ancestral sequence that had been derived using bayesian phylogenetic tools. No correlation was seen between peptide-MHC binding affinity and frequency of recognition, as measured by an IFN-γ T cell response in HLA-matched HCV-infected individuals. Peptides encoding representative, consensus, and natural variant sequences were then tested for the capacity to expand CD8 T cell populations and to elicit cross-reactive CD8 T cell responses. CD8(+) T cells expanded with representative sequence HCV generally more broadly and robustly recognized highly diverse circulating HCV strains than did T cells expanded with either consensus sequence or naturally occurring sequence variants. These data support the use of representative sequence in HCV vaccine design.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Chauhan NK, Vajpayee M, Mojumdar K, Singh R, Singh A. Study of CD4+CD8+ Double positive T-lymphocyte phenotype and function in Indian patients infected with HIV-1. J Med Virol 2012; 84:845-56. [DOI: 10.1002/jmv.23289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
218
|
Bes M, Sauleda S, Casamitjana N, Piron M, Campos-Varela I, Quer J, Cubero M, Puig L, Guardia J, Esteban JI. Reversal of nonstructural protein 3-specific CD4(+) T cell dysfunction in patients with persistent hepatitis C virus infection. J Viral Hepat 2012; 19:283-94. [PMID: 22404727 DOI: 10.1111/j.1365-2893.2011.01549.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV)-specific T cell responses are essential for HCV control, and chronic infection is characterized by functionally altered antigen-specific T cells. It has been proposed that the early inactivation of specific CD4(+) T cell responses may be involved in establishment of HCV persistence. We have investigated whether HCV-specific CD4(+) T cells dysfunction can be reversed in vitro. Nonstructural protein 3 (NS3) and core-specific CD4(+) T cells from eight chronically infected and eight spontaneously resolved HCV individuals were selected through transient CD154 (CD40 ligand) expression, and their functional profile (IFN-γ, IL-2, TNF-α, IL-10 and IL-4 production by enzyme-linked immunospot assay, cytometric bead array and intracellular cytokine staining, and proliferation by carboxy-fluorescein diacetate succinimidyl ester dilution assay) was determined both ex vivo and after in vitro expansion of sorted CD154-expressing cells in the absence of specific antigen in IL-7/IL-15-supplemented medium. Ex vivo bulk CD4(+) T cells from chronic patients expressed CD154 in most cases, albeit at lower frequencies than those of resolved patients (0.11%vs 0.41%; P = 0.01), when stimulated with NS3, but not core, although they had a markedly impaired capacity to produce IL-2 and IFN-γ. Antigen-free in vitro expansion of NS3-specific CD154(+) cells from chronic patients restored IFN-γ and IL-2 production and proliferation to levels similar to those of patients with spontaneously resolved infection. Hence, NS3-specific CD4(+) T cell response can be rescued in most chronic HCV patients by in vitro expansion in the absence of HCV-specific antigen. These results might provide a rationale for adoptive immunotherapy.
Collapse
Affiliation(s)
- M Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Servei Català de la Salut, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Sasson SC, Zaunders JJ, Seddiki N, Bailey M, McBride K, Koelsch KK, Merlin KM, Smith DE, Cooper DA, Kelleher AD. Progressive activation of CD127+132- recent thymic emigrants into terminally differentiated CD127-132+ T-cells in HIV-1 infection. PLoS One 2012; 7:e31148. [PMID: 22348045 PMCID: PMC3278435 DOI: 10.1371/journal.pone.0031148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/03/2012] [Indexed: 12/11/2022] Open
Abstract
Aim HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in loss of CD127+132− and gains in CD127−132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127 from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation. Methods Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients with HIV infection were studied. CD127+132−, CD127+132+ and CD127−132+ T-cells were phenotyped by activation, differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles (sjTRECs) were measured. Results CD127+132− T-cells were enriched for naïve cells while CD127−132+ T-cells were enriched for activated/terminally differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions of activated/terminally differentiated CD127−132+ T-cells. In contrast to CD127+132− T-cells, CD127−132+ T-cells were Ki-67+Bcl-2low and contained increased levels of HIV-DNA. Naïve CD127+132− T-cells contained a higher proportion of sjTRECs. Conclusion The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+132− recent thymic emigrants into CD127−132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of CD127 and permanent distortion of T-cell homeostasis.
Collapse
Affiliation(s)
- Sarah C Sasson
- The Kirby Institute, The University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Hafalla JCR, Claser C, Couper KN, Grau GE, Renia L, de Souza JB, Riley EM. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology. PLoS Pathog 2012; 8:e1002504. [PMID: 22319445 PMCID: PMC3271068 DOI: 10.1371/journal.ppat.1002504] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022] Open
Abstract
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8+ T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites. T cells are part of the body's defense system in response to infection. However, once the infection has been suitably controlled, these T cells must be switched off. Inhibitory pathways, such as CTLA-4 and PD-1, are known to send the ‘turn off’ signal to T cells during chronic infections. However, their roles in acute infections, such as malaria, are unclear. We compared the function of these inhibitory pathways in mice that are either susceptible or resistant to severe malarial disease (cerebral malaria). Strikingly, we found that receptors for CTLA-4 and PD-1 are more highly expressed in T cells from susceptible mice than from resistant mice. Therefore, cerebral malaria develops despite the high expression of these inhibitory receptors. Moreover, we demonstrated that blocking these inhibitory receptors in the resistant mice increased the function of T cells, which in turn led to the characteristic signs of cerebral malaria. Finally, reminiscent of what is known for the susceptible strain, we confirmed that certain T cells (CD8+) and molecules (IFN-γ) are crucial to the development of cerebral malaria in the otherwise resistant mice. Thus, the CTLA-4 and PD-1 inhibitory pathways have essential, independent and non-redundant roles in regulating the body's complex response to malaria.
Collapse
Affiliation(s)
- Julius Clemence R Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
PURPOSE OF REVIEW The goal of this study is to review key recent findings related to the immunopathogenesis of hepatitis C virus (HCV) infection, especially in regards to T lymphocytes. It aims to complement other reviews in this issue on the roles of host genetics (IL-28B), acute HCV infection (when disease outcome is determined) and other factors that may influence fibrosis progression (microbial translocation). The main focus is on specific immunity and T cells in the context of success and failure to control viral infection. RECENT FINDINGS This review focuses on two areas of intense interest in the recent literature: the relationship between the human leukocyte antigen (HLA), class I-restricted T-cell responses and the evolution of the virus and the role of inhibitory markers on T cells in the immunopathogenesis of HCV. When appropriate, we compare findings from studies of HIV-specific immunity. SUMMARY From examining the virus and the mutational changes associated with T-cell responses and from analyzing the markers on T cells, there have been numerous advances in the understanding of immune evasion mechanisms employed by HCV.
Collapse
|
222
|
Raghuraman S, Park H, Osburn WO, Winkelstein E, Edlin BR, Rehermann B. Spontaneous clearance of chronic hepatitis C virus infection is associated with appearance of neutralizing antibodies and reversal of T-cell exhaustion. J Infect Dis 2012; 205:763-71. [PMID: 22293431 DOI: 10.1093/infdis/jir835] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) readily establishes chronic infection with exhaustion of HCV-specific T cells and escape from neutralizing antibodies. Spontaneous recovery from chronic infection is rare and has never to our knowledge been studied immunologically. METHODS We prospectively studied, from prior to infection through >2 years of follow-up, cytokines, HCV-specific T cells, and antibodies, as well as viral sequence evolution in a white male who spontaneously cleared HCV genotype 1a after 65 weeks. RESULTS Significant alanine aminotransferase and plasma cytokine elevation and broad HCV-specific T-cell responses did not result in HCV clearance in the acute phase. Frequency and effector function of HCV-specific T cells decreased thereafter, and HCV titers stabilized as is typical for the chronic phase. HCV clearance after 65 weeks followed the appearance of neutralizing antibodies at week 48 and was associated with reversal of HCV-specific T-cell exhaustion, as evidenced by reduced programmed death-1 (PD-1) expression and improved T-cell function. Clearance occurred without inflammation or superinfection with hepatitis B virus, human cytomegalovirus virus, influenza, and Epstein-Barr virus. CONCLUSIONS T-cell exhaustion is reversible at least in the first 2 years of chronic HCV infection, and this reversion in conjunction with neutralizing antibodies may clear HCV. These findings are relevant for immunotherapy of chronic infections.
Collapse
Affiliation(s)
- Sukanya Raghuraman
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Department of Health and Human Services (DHHS), Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
223
|
Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O'Donnell E, Neuberg D, Shipp MA. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 2012; 18:1611-8. [PMID: 22271878 DOI: 10.1158/1078-0432.ccr-11-1942] [Citation(s) in RCA: 554] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Programmed cell death ligand 1 (PD-L1) is a molecule expressed on antigen-presenting cells that engages the PD-1 receptor on T cells and inhibits T-cell receptor signaling. The PD-1 axis can be exploited by tumor cells to dampen host antitumor immune responses and foster tumor cell survival. PD-1 blockade has shown promise in multiple malignancies but should be directed toward patients in whom it will be most effective. In recent studies, we found that the chromosome 9p24.1 amplification increased the gene dosage of PD-L1 and its induction by JAK2 in a subset of patients with classical Hodgkin lymphoma (cHL). However, cHLs with normal 9p24.1 copy numbers also expressed detectable PD-L1, prompting analyses of additional PD-L1 regulatory mechanisms. EXPERIMENTAL DESIGN Herein, we utilized immunohistochemical, genomic, and functional analyses to define alternative mechanisms of PD-L1 activation in cHL and additional EBV(+) lymphoproliferative disorders. RESULTS We identified an AP-1-responsive enhancer in the PD-L1 gene. In cHL Reed-Sternberg cells, which exhibit constitutive AP-1 activation, the PD-L1 enhancer binds AP-1 components and increases PD-L1 promoter activity. In addition, we defined Epstein-Barr virus (EBV) infection as an alternative mechanism for PD-L1 induction in cHLs with diploid 9p24.1. PD-L1 was also expressed by EBV-transformed lymphoblastoid cell lines as a result of latent membrane protein 1-mediated, JAK/STAT-dependent promoter and AP-1-associated enhancer activity. In addition, more than 70% of EBV(+) posttransplant lymphoproliferative disorders expressed detectable PD-L1. CONCLUSIONS AP-1 signaling and EBV infection represent alternative mechanisms of PD-L1 induction and extend the spectrum of tumors in which to consider PD-1 blockade.
Collapse
|
224
|
Takamori A, Hasegawa A, Utsunomiya A, Maeda Y, Yamano Y, Masuda M, Shimizu Y, Tamai Y, Sasada A, Zeng N, Choi I, Uike N, Okamura J, Watanabe T, Masuda T, Kannagi M. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers. Retrovirology 2011; 8:100. [PMID: 22151736 PMCID: PMC3261825 DOI: 10.1186/1742-4690-8-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/07/2011] [Indexed: 12/17/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC) already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23) and 100% of HAM/TSP patients (n = 18/18) tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL) patients (n = 8/21), although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69) and degranulation (CD107a) markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV) pp65-specific CD8+ T-cells that possessed functions upon CMV pp65 peptide stimulation. We further examined additional samples of two smoldering type ATL patients and found that they also showed dysfunctions of Tax-specific but not CMV-specific CD8+ T-cells. Conclusions These findings indicated that Tax-specific CD8+ T-cells were scarce and dysfunctional not only in ATL patients but also in a limited AC population, and that the dysfunction was selective for HTLV-1-specifc CD8+ T-cells in early stages.
Collapse
Affiliation(s)
- Ayako Takamori
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Petrovic D, Dempsey E, Doherty DG, Kelleher D, Long A. Hepatitis C virus--T-cell responses and viral escape mutations. Eur J Immunol 2011; 42:17-26. [PMID: 22125159 DOI: 10.1002/eji.201141593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/15/2011] [Accepted: 10/05/2011] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus and the number of HCV-infected individuals worldwide is estimated to be approximately 170 million. Most HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV-host interactions have a crucial role in viral survival, persistence, pathogenicity of infection, and disease progression. Maintenance of a vigorous, sustained cellular immune response recognizing multiple epitopes is essential for viral clearance. To escape immune surveillance, HCV alters its epitopes so that they are no-longer recognized by T cells and neutralizing antibodies, in addition to interfering with host cell cellular components and signaling pathways. The generation of escape variants is one of the most potent immune evasion strategies utilized by HCV. A large body of evidence suggests that single or multiple mutations within HLA-restricted epitopes contribute to viral immune escape and establishment of viral persistence. Further elucidation of the molecular mechanisms underlying immune escape will aid in the design of novel vaccines and therapeutics for the disease.
Collapse
Affiliation(s)
- Danijela Petrovic
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
226
|
Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL, Boss JM, Ahmed R. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 2011; 35:400-12. [PMID: 21943489 DOI: 10.1016/j.immuni.2011.06.015] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 02/18/2011] [Accepted: 06/17/2011] [Indexed: 12/14/2022]
Abstract
Functionally exhausted T cells have high expression of the PD-1 inhibitory receptor, and therapies that block PD-1 signaling show promise for resolving chronic viral infections and cancer. By using human and murine systems of acute and chronic viral infections, we analyzed epigenetic regulation of PD-1 expression during CD8(+) T cell differentiation. During acute infection, naive to effector CD8(+) T cell differentiation was accompanied by a transient loss of DNA methylation of the Pdcd1 locus that was directly coupled to the duration and strength of T cell receptor signaling. Further differentiation into functional memory cells coincided with Pdcd1 remethylation, providing an adapted program for regulation of PD-1 expression. In contrast, the Pdcd1 regulatory region was completely demethylated in exhausted CD8(+) T cells and remained unmethylated even when virus titers decreased. This lack of DNA remethylation leaves the Pdcd1 locus poised for rapid expression, potentially providing a signal for premature termination of antiviral functions.
Collapse
Affiliation(s)
- Ben Youngblood
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Escape from a dominant HLA-B*15-restricted CD8+ T cell response against hepatitis C virus requires compensatory mutations outside the epitope. J Virol 2011; 86:991-1000. [PMID: 22072759 DOI: 10.1128/jvi.05603-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antiviral CD8(+) T cells are a key component of the adaptive immune system against hepatitis C virus (HCV). For the development of immune therapies, it is essential to understand how CD8(+) T cells contribute to clearance of infection and why they fail so often. A mechanism for secondary failure is mutational escape of the virus. However, some substitutions in viral epitopes are associated with fitness costs and often require compensatory mutations. We hypothesized that compensatory mutations may point toward epitopes under particularly strong selection pressure that may be beneficial for vaccine design because of a higher genetic barrier to escape. We previously identified two HLA-B*15-restricted CD8(+) epitopes in NS5B (LLRHHNMVY(2450-2458) and SQRQKKVTF(2466-2474)), based on sequence analysis of a large HCV genotype 1b outbreak. Both epitopes are targeted in about 70% of HLA-B*15-positive individuals exposed to HCV. Reproducible selection of escape mutations was confirmed in an independent multicenter cohort in the present study. Interestingly, mutations were also selected in the epitope flanking region, suggesting that compensatory evolution may play a role. Covariation analysis of sequences from the database confirmed a significant association between escape mutations inside one of the epitopes (H2454R and M2456L) and substitutions in the epitope flanking region (S2439T and K2440Q). Functional analysis with the subgenomic replicon Con1 confirmed that the primary escape mutations impaired viral replication, while fitness was restored by the additional substitutions in the epitope flanking region. We concluded that selection of escape mutations inside an HLA-B*15 epitope requires secondary substitutions in the epitope flanking region that compensate for fitness costs.
Collapse
|
228
|
Pasetto A, Frelin L, Brass A, Yasmeen A, Koh S, Lohmann V, Bartenschlager R, Magalhaes I, Maeurer M, Sällberg M, Chen M. Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. J Gen Virol 2011; 93:247-258. [PMID: 22071510 PMCID: PMC3352347 DOI: 10.1099/vir.0.037903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anette Brass
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anila Yasmeen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sarene Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Laboratory Medicine, Stockholm, Sweden
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Isabelle Magalhaes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Markus Maeurer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | | | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
229
|
Li H, Lasaro MO, Jia B, Lin SW, Haut LH, High KA, Ertl HCJ. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol Ther 2011; 19:2021-30. [PMID: 21587208 PMCID: PMC3222540 DOI: 10.1038/mt.2011.81] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/02/2011] [Indexed: 11/09/2022] Open
Abstract
Hepatic adeno-associated virus serotype 2 (AAV2)-mediated gene transfer failed to achieve sustained transgene product expression in human subjects. We formulated the hypothesis that rejection of AAV-transduced hepatocytes is caused by AAV capsid-specific CD8(+) T cells that become reactivated upon gene transfer. Although this hypothesis was compatible with clinical data, which showed a rise in circulating AAV capsid-specific T cells following injection of AAV vectors, it did not explain that AAV vectors achieved long-term transgene expression in rhesus macaques, which are naturally infected with AAV serotypes closely related to those of humans. To address this apparent contradiction, we tested human and rhesus macaque samples for AAV capsid-specific T cells by intracellular cytokine staining combined with staining for T-cell subset and differentiation markers. This highly sensitive method, which could provide a tool to monitor adverse T-cell responses in gene transfer trials, showed that AAV capsid-specific CD8(+) and CD4(+) T cells can be detected in blood of naturally infected humans and rhesus macaques. They are present at higher frequencies in rhesus macaques. Furthermore, T cells from humans and rhesus macaques exhibit striking differences in their differentiation status and in their functions, which may explain the disparate duration of AAV-mediated gene transfer in these two species.
Collapse
Affiliation(s)
- Hua Li
- Immunology Program, Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Wood NAW, Linn ML, Bowen DG. Exhausted or just sleeping: awakening virus-specific responses in chronic hepatitis C virus infection. Hepatology 2011; 54:1879-82. [PMID: 22038790 DOI: 10.1002/hep.24602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicole A W Wood
- A W Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
231
|
Cavanagh MM, Qi Q, Weyand CM, Goronzy JJ. Finding Balance: T cell Regulatory Receptor Expression during Aging. Aging Dis 2011; 2:398-413. [PMID: 22396890 PMCID: PMC3295076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023] Open
Abstract
Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.
Collapse
Affiliation(s)
| | | | | | - Jörg J. Goronzy
- Correspondence should be addressed to: Jörg J. Goronzy, M.D., Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
232
|
Mengus C, Le Magnen C, Trella E, Yousef K, Bubendorf L, Provenzano M, Bachmann A, Heberer M, Spagnoli GC, Wyler S. Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer. J Transl Med 2011; 9:162. [PMID: 21943235 PMCID: PMC3191336 DOI: 10.1186/1479-5876-9-162] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/26/2011] [Indexed: 11/17/2022] Open
Abstract
Background Chronic inflammation has been suggested to favour prostate cancer (PCA) development. Interleukins (IL) represent essential inflammation mediators. IL-2, IL-7, IL-15 and IL-21, sharing a common receptor γ chain (c-γ), control T lymphocyte homeostasis and proliferation and play major roles in regulating cancer-immune system interactions. We evaluated local IL-2, IL-7, IL-15 and IL-21 gene expression in prostate tissues from patients with early stage PCA or benign prostatic hyperplasia (BPH). As control, we used IL-6 gene, encoding an IL involved in PCA progression. IL-6, IL-7 and IL-15 titres were also measured in patients' sera. Methods Eighty patients with BPH and 79 with early (1 to 2c) stage PCA were enrolled. Gene expression in prostate tissues was analyzed by quantitative real-time PCR (qRT-PCR). Serum IL concentrations and acute phase protein titres were evaluated by ELISA. Mann-Whitney, Wilcoxon and χ2 tests were used to compare IL gene expression and serum titers in the two groups of patients. Receiver operating characteristic (ROC) curves were constructed to evaluate the possibility to distinguish sera from different groups of patients based on IL titers. Results IL-2 and IL-21 gene expression was comparably detectable, with low frequency and at low extents, in PCA and BPH tissues. In contrast, IL-6, IL-7 and IL-15 genes were expressed more frequently (p < 0.0001, p = 0.0047 and p = 0.0085, respectively) and to significantly higher extents (p = 0.0051, p = 0.0310 and p = 0.0205, respectively) in early stage PCA than in BPH tissues. Corresponding proteins could be detected to significantly higher amounts in sera from patients with localized PCA, than in those from patients with BPH (p = 0.0153, p = 0.0174 and p = 0.0064, respectively). Analysis of ROC curves indicates that IL-7 (p = 0.0039), but not IL-6 (p = 0.2938) or IL-15 (p = 0.1804) titres were able to distinguish sera from patients with malignancy from those from patients with benign disease. Serum titres of C reactive (CRP), high mobility group B1 (HMGB1) and serum amyloid A (SAA) acute phase proteins were similar in both groups of patients. Conclusions Expression IL-7 and IL-15 genes in prostate tissues and corresponding serum titres are significantly increased in patients with early stage PCA as compared with patients with BPH.
Collapse
Affiliation(s)
- Chantal Mengus
- ICFS, Department of Surgery, Basel University Hospital, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Zhou CB, Li ZW. Progress in understanding the role of PD-1/PD-L1 signaling pathway in the immunoregulation of HBV infection. Shijie Huaren Xiaohua Zazhi 2011; 19:2752-2759. [DOI: 10.11569/wcjd.v19.i26.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death-1 (PD-1) is an inhibitory co-stimulatory molecule belonging to the CD28 family. It plays an important role in the maintenance of immune tolerance through binding to its ligands. Recent studies showed that the PD-1/PD-1 ligand 1 (PD-L1) pathway played an essential role in the development of chronic viral infection, autoimmune diseases and tumor immunity. Manipulating this pathway may have possible clinical applications to HBV treatment. This article will review the recent progress in understanding the role of PD-1/PD-L1 signaling pathway in the immunoregulation of HBV infection.
Collapse
|
234
|
Abstract
T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigen-presenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.
Collapse
Affiliation(s)
- Hyun-Tak Jin
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
235
|
Spahn J, Pierce RH, Crispe IN. Ineffective CD8(+) T-cell immunity to adeno-associated virus can result in prolonged liver injury and fibrogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2370-81. [PMID: 21925469 DOI: 10.1016/j.ajpath.2011.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 01/12/2023]
Abstract
Chronic viral hepatitis depends on the inability of the T-cell immune response to eradicate antigen. This results in a sustained immune response accompanied by tissue injury and fibrogenesis. We have created a mouse model that reproduces these effects, based on the response of CD8(+) T cells to hepatocellular antigen delivered by an adeno-associated virus (AAV) vector. Ten thousand antigen-specific CD8(+) T cells undergo slow expansion in the liver and can precipitate a subacute inflammatory hepatitis with stellate cell activation and fibrosis. Over time, antigen-specific CD8(+) T cells show signs of exhaustion, including high expression of PD-1, and eventually both inflammation and fibrosis resolve. This model allows the investigation of both chronic liver immunopathology and its resolution.
Collapse
Affiliation(s)
- Jessica Spahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
| | | | | |
Collapse
|
236
|
Abstract
The microenviroment of acute myelogenous leukemia (AML) is suppressive for immune effector cells. Regulatory T cells (Tregs) have been recognized as a contributor factor and may be recruited and exploited by leukemic cells to evade immunesurveillance. Studies have shown that the frequencies of marrow and blood Tregs are greater in patients with AML than in control patients. Although increased Tregs have been associated with a decreased risk of GVHD after allogeneic HCT and hence may impede the graft-versus-tumor effect, recent findings indicate that that this may not be the case. Because there is a need to improve outcomes of standard treatment (chemotherapy with or without allogeneic HCT) in AML, targeting Tregs present an outstanding opportunity in AML because discoveries may apply throughout its treatment. Here, we review data on the roles of Tregs in mediating immune system-AML interactions. We focused on in vitro, animal, and observational human studies of Tregs in AML biology, development, prognosis, and therapy in different settings (eg, vaccination and HCT). Manipulation of Tregs or other types of immunomodulation may become a part of AML treatment in the future.
Collapse
|
237
|
Schmidt J, Thimme R, Neumann-Haefelin C. Host genetics in immune-mediated hepatitis C virus clearance. Biomark Med 2011; 5:155-69. [PMID: 21473719 DOI: 10.2217/bmm.11.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upon infection with hepatitis C virus (HCV), only few patients spontaneously clear the virus, while most patients develop chronic HCV infection. The host innate and adaptive immune response is believed to be the key determinant of viral clearance or persistence. Several host factors have been demonstrated to influence the efficiency of the antiviral immune response, including IL-28B polymorphisms, inhibitory natural killer cell receptors, as well as HLA class I and II alleles presenting viral antigens to CD8(+) and CD4(+) T cells. The understanding of the respective mechanisms is essential for the development of successful vaccination strategies against HCV.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | | | |
Collapse
|
238
|
Zelinskyy G, Myers L, Dietze KK, Gibbert K, Roggendorf M, Liu J, Lu M, Kraft AR, Teichgräber V, Hasenkrug KJ, Dittmer U. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication. THE JOURNAL OF IMMUNOLOGY 2011; 187:3730-7. [PMID: 21873525 DOI: 10.4049/jimmunol.1101612] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It was recently reported that inhibitory molecules such as programmed death-1 (PD-1) were upregulated on CD8(+) T cells during acute Friend retrovirus infection and that the cells were prematurely exhausted and dysfunctional in vitro. The current study confirms that most activated CD8(+) T cells upregulated expression of PD-1 during acute infection and revealed a dichotomy of function between PD-1(hi) and PD-1(lo) subsets. More PD-1(lo) cells produced antiviral cytokines such as IFN-γ and TNF-α, whereas more PD-1(hi) cells displayed characteristics of cytotoxic effectors such as production of granzymes and surface expression of CD107a. Importantly, CD8(+) T cells mediated rapid in vivo cytotoxicity and were critical for control of acute Friend virus replication. Thus, direct ex vivo analyses and in vivo experiments revealed high CD8(+) T cell functionality and indicate that PD-1 expression during acute infection is not a marker of T cell exhaustion.
Collapse
Affiliation(s)
- Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body's own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions and the microenvironment in programming tolerogenic DCs. Here, we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | |
Collapse
|
240
|
Wang BJ, Bao JJ, Wang JZ, Wang Y, Jiang M, Xing MY, Zhang WG, Qi JY, Roggendorf M, Lu MJ, Yang DL. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol 2011; 17:3322-9. [PMID: 21876620 PMCID: PMC3160536 DOI: 10.3748/wjg.v17.i28.3322] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/13/2010] [Accepted: 11/20/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of programmed death (PD)-1, PD ligand 1 (PD-L1) and PD-L2 in liver tissues in the context of chronic hepatitis and hepatocellular carcinoma (HCC).
METHODS: Liver biopsies and HCC specimens from patients were collected and histologically examined. The expression of PD-1, PD-L1, and PD-L2 in biopsy specimens of chronic hepatitis and HCC specimens was evaluated by immunohistochemical staining. The association between the expression level of PD-1, PD-L1, and PD-L2 and clinical and pathological variables was analyzed statistically.
RESULTS: Expression of PD-1 was found in liver-infiltrating lymphocytes. In contrast, PD-L1 and PD-L2 were expressed in non-parenchyma liver cells and tumor cells. The expression of PD-L1 was significantly correlated with hepatitis B virus infection (1.42 ± 1.165 vs 0.50 ± 0.756, P = 0.047) and with the stage of HCC (7.50 ± 2.121 vs 1.75 ± 1.500 vs 3.00 ± 0.001, P = 0.018). PD-1 and PD-Ls were significantly up-regulated in HCC specimens (1.40 ± 1.536 vs 5.71 ± 4.051, P = 0.000; 1.05 ± 1.099 vs 4.29 ± 3.885, P = 0.004; 1.80 ± 1.473 vs 3.81 ± 3.400, P = 0.020).
CONCLUSION: PD-L1 may contribute to negative regulation of the immune response in chronic hepatitis B. PD-1 and PD-Ls may play a role in immune evasion of tumors.
Collapse
|
241
|
Shi J, Qin X, Zhao L, Wang G, Liu C. Human immunodeficiency virus type 1 Tat induces B7-H1 expression via ERK/MAPK signaling pathway. Cell Immunol 2011; 271:280-5. [PMID: 21821233 DOI: 10.1016/j.cellimm.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 11/24/2022]
Abstract
In HIV-infected subjects, B7-H1 synthesis and expression are up-regulated, and the degree of dysregulation correlates with the severity of disease. HIV-1 Tat protein, the viral transactivating factor, represents a key target for the host immune response. However, the relationship between B7-H1 and Tat protein has not been addressed. Here, we chose human endothelial cells which provide costimulatory signals sufficiently to influence T cells. We used recombinant pcDNA3.1(+)-Tat plasmid to transfect human endothelial cells ECV304 to establish stable Tat-expressed cell strain, and found that HIV-1 Tat was able to induce B7-H1 expression in ECV304 cells by Real-time PCR and flow cytometry analysis, and inhibited lymphocyte proliferation in co-culture system. Moreover, by using pharmacological inhibitor of ERK pathway, HIV-1 Tat induces B7-H1 expression via ERK/MAPK signaling pathway was corroborated. In summary, our results indicate that HIV-1 Tat could induce B7-H1 synthesis in ECV304 cells through ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jijing Shi
- Institute of Molecular Biology, China Three Gorges University, Yichang, Hubei, China
| | | | | | | | | |
Collapse
|
242
|
Racanelli V, Leone P, Grakoui A. A spatial view of the CD8+ T-cell response: the case of HCV. Rev Med Virol 2011; 21:347-57. [PMID: 21732472 DOI: 10.1002/rmv.702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
In viral infections, a memory T-cell population comprises multiple subtypes of cells, distributed in diverse anatomic compartments and possibly re-circulating among them. Accordingly, memory T cells display distinct phenotypes and functions, depending on the nature of the infecting virus, the anatomic location of the infection, and the differences between the sites of active infection and T-cell collection. This paper explores the body compartments where virus-specific CD8(+) T cells have been found during chronic hepatitis C virus infection, describes the cells' memory qualities, and discusses how they are spatially regulated, in comparison with other human viral infections. Understanding the role of compartmentalization and diversity of HCV-specific memory T-cell subsets may be the key to developing effective immunotherapies.
Collapse
Affiliation(s)
- Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy.
| | | | | |
Collapse
|
243
|
Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol 2011; 32:345-9. [PMID: 21697013 DOI: 10.1016/j.it.2011.05.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
Abstract
T cell immunoglobulin-3 (Tim-3) has been identified as a marker of differentiated interferon-γ-producing CD4(+) T helper type 1 and CD8(+) T cytotoxic type 1 cells. The interaction of Tim-3 with its ligand, galectin-9 (Gal-9), induces cell death, and in vivo blockade of this interaction results in exacerbated autoimmunity and abrogation of tolerance in experimental models, establishing Tim-3 as a negative regulatory molecule. Recent studies have uncovered additional mechanisms by which Tim-3 negatively regulates T cell responses, such as promoting the development of CD8(+) T cell exhaustion and inducing expansion of myeloid-derived suppressor cells. In contrast to this inhibitory effect on T cells, Tim-3-Gal-9 interaction promotes macrophage clearance of intracellular pathogens. Here, we focus on the emerging role for Tim-3 in tumor and antimicrobial immunity.
Collapse
Affiliation(s)
- Kaori Sakuishi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
244
|
Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol 2011. [PMID: 21697013 DOI: 10.10 16/j.it.2011.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell immunoglobulin-3 (Tim-3) has been identified as a marker of differentiated interferon-γ-producing CD4(+) T helper type 1 and CD8(+) T cytotoxic type 1 cells. The interaction of Tim-3 with its ligand, galectin-9 (Gal-9), induces cell death, and in vivo blockade of this interaction results in exacerbated autoimmunity and abrogation of tolerance in experimental models, establishing Tim-3 as a negative regulatory molecule. Recent studies have uncovered additional mechanisms by which Tim-3 negatively regulates T cell responses, such as promoting the development of CD8(+) T cell exhaustion and inducing expansion of myeloid-derived suppressor cells. In contrast to this inhibitory effect on T cells, Tim-3-Gal-9 interaction promotes macrophage clearance of intracellular pathogens. Here, we focus on the emerging role for Tim-3 in tumor and antimicrobial immunity.
Collapse
Affiliation(s)
- Kaori Sakuishi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
245
|
Shen T, Zheng J, Liang H, Xu C, Chen X, Zhang T, Xu Q, Lu F. Characteristics and PD-1 expression of peripheral CD4+CD127loCD25hiFoxP3+ Treg cells in chronic HCV infected-patients. Virol J 2011; 8:279. [PMID: 21645420 PMCID: PMC3129323 DOI: 10.1186/1743-422x-8-279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022] Open
Abstract
Background Both regulatory T cells (Tregs) and PD-1/PD-L1 pathway were critically involved in HCV viral persistence. However, the association between them was not well investigated. Herein, we aimed to investigate the distributional profiles of Tregs subsets and association between PD-1 expression on these subsets and development of HCV long-term persistence. Methods CD45RA and CD27 were employed to separate peripheral Tregs as naïve/central memory/effector memory/effector subsets. The phenotypic characteristics and PD-1 expression of Tregs were studied by flow cytometry. Results In the present study, the majority of Tregs was identified as central memory phenotype in chronic hepatitis C patients compared with nearly equal contribution of naïve and central memory subsets in healthy individuals. PD-1 expression was elevated in all CD4+ T cell subset in chronic HCV infected patients, including Tregs. Of note, higher level of PD-1 expression was found on TEM- and effector-Treg than naïve- and TCM-Tregs subsets. The ratio of TEM-Tregs/naive-Tregs and TEM-Tregs/TCM-Tregs regarding to PD-1 MFI were significantly lower in CHC patients compared to controls. Conclusions Our study indicated that distinctive characteristics of PD-1 expression on Tregs in HCV infection suggests associated with impaired adaptive immunity as well as viral long-term persistence. The cross talk between Treg cells and PD-1 induced inhibition in chronic HCV infection deserved further exploration for HCV infection associated immune pathogenesis.
Collapse
Affiliation(s)
- Tao Shen
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Ruhl M, Knuschke T, Schewior K, Glavinic L, Neumann-Haefelin C, Chang DI, Klein M, Heinemann FM, Tenckhoff H, Wiese M, Horn PA, Viazov S, Spengler U, Roggendorf M, Scherbaum N, Nattermann J, Hoffmann D, Timm J. CD8+ T-cell response promotes evolution of hepatitis C virus nonstructural proteins. Gastroenterology 2011; 140:2064-73. [PMID: 21376049 DOI: 10.1053/j.gastro.2011.02.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) acquires mutations that allow it to escape the CD8+ T-cell response, although the extent to which this process contributes to viral evolution at the population level is not clear. We studied viral adaptation using data from a large outbreak of HCV genotype 1b infection that occurred among women immunized with contaminated immunoglobulin from 1977 to 1978. METHODS The HCV nonstructural protein coding regions NS3-NS5B were sequenced from 78 patients, and mutations were mapped according to their location inside or outside previously described CD8+ T-cell epitopes. A statistical approach was developed to identify sites/regions under reproducible selection pressure associated with HLA class I. RESULTS The frequency of nonsynonymous mutations was significantly higher inside previously described CD8+ T-cell epitopes than outside-particularly in NS3/4A and NS5B. We identified new regions that are under selection pressure, indicating that not all CD8+ T-cell epitopes have been identified; 6 new epitopes that interact with CD8+ T cells were identified and confirmed in vitro. In some CD8+ T-cell epitopes mutations were reproducibly identified in patients that shared the relevant HLA allele, indicating immune pressure at the population level. There was statistical support for selection of mutations in 18 individual epitopes. Interestingly, 14 of these were restricted by HLA-B allele. CONCLUSIONS HLA class I-associated selection pressure on the nonstructural proteins and here predominantly on NS3/4A and NS5B promotes evolution of HCV. HLA-B alleles have a dominant effect in this selection process. Adaptation of HCV to the CD8+ T-cell response at the population level creates challenges for vaccine design.
Collapse
Affiliation(s)
- Marianne Ruhl
- Institute of Virology, University of Duisburg-Essen, and Addiction Research Group, Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Conrad JA, Ramalingam RK, Smith RM, Barnett L, Lorey SL, Wei J, Simons BC, Sadagopal S, Meyer-Olson D, Kalams SA. Dominant clonotypes within HIV-specific T cell responses are programmed death-1high and CD127low and display reduced variant cross-reactivity. THE JOURNAL OF IMMUNOLOGY 2011; 186:6871-85. [PMID: 21562156 DOI: 10.4049/jimmunol.1004234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HIV epitope-specific T cell responses are often comprised of clonotypic expansions with distinct functional properties. In HIV(+) individuals, we measured programmed death-1 (PD-1) and IL-7Rα expression, MHC class I tetramer binding, cytokine production, and proliferation profiles of dominant and subdominant TCR clonotypes to evaluate the relationship between the composition of the HIV-specific T cell repertoire and clonotypic phenotype and function. Dominant clonotypes are characterized by higher PD-1 expression and lower C127 expression compared with subdominant clonotypes, and TCR avidity positively correlates with PD-1 expression. At low peptide concentrations, dominant clonotypes fail to survive in culture. In response to stimulation with peptides representing variant epitopes, subdominant clonotypes produce higher relative levels of cytokines and display greater capacity for cross-recognition compared with dominant clonotypes. These data indicate that dominant clonotypes within HIV-specific T cell responses display a phenotype consistent with ongoing exposure to cognate viral epitopes and suggest that cross-reactive, subdominant clonotypes may retain greater capacity to suppress replication of viral variants as well as to survive in the absence of strong antigenic signaling.
Collapse
Affiliation(s)
- Joseph A Conrad
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 2011; 241:104-18. [PMID: 21488893 PMCID: PMC3727276 DOI: 10.1111/j.1600-065x.2011.01007.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The continual interaction of the immune system with a developing tumor is thought to result in the establishment of a dynamic state of equilibrium. This equilibrium depends on the balance between effector and regulatory T-cell compartments. Whereas regulatory T cells can infiltrate and accumulate within tumors, effector T cells fail to efficiently do so. Furthermore, effector T cells that do infiltrate the tumor become tightly controlled by different regulatory cellular subsets and inhibitory molecules. The outcome of this balance is critical to survival, and whereas in some cases the equilibrium can rapidly result in the elimination of the transformed cells by the immune system, in many other cases the tumor manages to escape immune control. In this review, we discuss relevant work focusing on the establishment of the intratumor balance, the dynamic changes in the populations of effector and regulatory T cells within the tumor, and the role of the tumor vasculature and its activation state in the recruitment of different T-cell subsets. Finally, we also discuss work associated to the manipulation of the immune response to tumors and its impact on the infiltration, accumulation, and function of tumor-reactive lymphocytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Sergio A. Quezada
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - Karl S. Peggs
- Department of Haematology, UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Tyler R. Simpson
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - James P. Allison
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| |
Collapse
|
249
|
Ndhlovu LC, Leal FE, Hasenkrug AM, Jha AR, Carvalho KI, Eccles-James IG, Bruno FR, Vieira RGS, York VA, Chew GM, Jones RB, Tanaka Y, Neto WK, Sanabani SS, Ostrowski MA, Segurado AC, Nixon DF, Kallas EG. HTLV-1 tax specific CD8+ T cells express low levels of Tim-3 in HTLV-1 infection: implications for progression to neurological complications. PLoS Negl Trop Dis 2011; 5:e1030. [PMID: 21541358 PMCID: PMC3082508 DOI: 10.1371/journal.pntd.0001030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/27/2011] [Indexed: 11/19/2022] Open
Abstract
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially "exhausted" and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Collapse
Affiliation(s)
- Lishomwa C Ndhlovu
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, Tata P, Gupta S, Zilliox MJ, Nakaya HI, Pulendran B, Haining WN, Freeman GJ, Ahmed R. Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4200-12. [PMID: 21383243 PMCID: PMC3723805 DOI: 10.4049/jimmunol.1001783] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
T cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that programmed death-1 (PD-1) regulates T cell dysfunction during chronic lymphocytic choriomeningitis virus infection in mice, and PD-1(hi) cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, hepatitis C virus, and hepatitis B virus. However, it is not known if PD-1(hi) cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function, and gene expression profiles of PD-1(hi) versus PD-1(lo) CD8 T cells in the peripheral blood of healthy human adults as follows: 1) the percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans, and PD-1 was expressed by the memory CD8 T cells; 2) PD-1(hi) CD8 T cells in healthy humans did not significantly correlate with the PD-1(hi) exhausted gene signature of HIV-specific human CD8 T cells or chronic lymphocytic choriomeningitis virus-specific CD8 T cells from mice; 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults; 4) PD-1 was expressed by the effector memory compared with terminally differentiated effector CD8 T cells; and 5) finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed. In conclusion, our study shows that most PD-1(hi) CD8 T cells in healthy adult humans are effector memory cells rather than exhausted cells.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Chris C. Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - David Masopust
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Joseph D. Miller
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Koichi Araki
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Gregory H. Doho
- Emory Biomarker Service Center, Emory University, Atlanta, GA 30322
| | | | | | - Michael J. Zilliox
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Helder I. Nakaya
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - W. Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| |
Collapse
|