201
|
Kamimiya H, Suzuki Y, Kasama T, Kajiwara H, Yamamoto T, Mine T, Watarai S, Ogura K, Nakamura K, Tsuge J, Kushi Y. Unique gangliosides synthesized in vitro by sialyltransferases from marine bacteria and their characterization: ganglioside synthesis by bacterial sialyltransferases. J Lipid Res 2013; 54:571-580. [PMID: 23220479 PMCID: PMC3617933 DOI: 10.1194/jlr.m026955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 12/03/2012] [Indexed: 11/20/2022] Open
Abstract
On the basis of the results outlined in our previous report, bacterial sialyltransferases (ST) from marine sources were further characterized using glycosphingolipids (GSL), especially ganglio-series GSLs, based on the enzymatic characteristics and kinetic parameters obtained by Line weaver-Burk plots. Among them, GA1 and GA2 were found to be good substrates for these unique STs. Thus, new gangliosides synthesized by α2-3 and α2-6STs were structurally characterized by several analytical procedures. The ganglioside generated by the catalytic activity of α2-3ST was identified as GM1b. On the other hand, when enzyme reactions by α2-6STs were performed using substrates GA2 and GA1, very unique gangliosides were generated. The structures were identified as NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer and NeuAcα2-6Galβ1-3GalNAcβ1-4Galβ1-4Glcβ-Cer, respectively. The synthesized ganglioside NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer showed binding activity to the influenza A virus {A/Panama/2007/99 (H3N2)} at a similar level to purified sialyl(α2-3)paragloboside (S2-3PG) and sialyl(α2-6)paragloboside (S2-6PG) from mammalian sources. The evidence suggests that these STs have unique features, including substrate specificities restricted not only to lacto-series but also to ganglio-series GSLs, as well as catalytic potentials for ganglioside synthesis. This evidence demonstrates that effective in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing sialic acid (Sia) modifications, thereby preparing large-scale gangliosides and permitting the exploration of unknown functions.
Collapse
Affiliation(s)
- Hisashi Kamimiya
- Department of Materials and Applied Chemistry,
College of Science and Technology, Nihon University,
Chiyoda-ku, Tokyo 101-8308, Japan
| | - Yusuke Suzuki
- Department of Materials and Applied Chemistry,
College of Science and Technology, Nihon University,
Chiyoda-ku, Tokyo 101-8308, Japan
| | - Takeshi Kasama
- Instrumental Analysis Research Center,
Tokyo Medical Dental University, Bunkyo-ku, Tokyo
113-8510, Japan
| | - Hitomi Kajiwara
- Intellectual Property Center, Japan
Tobacco Inc., Minato-ku, Tokyo 105-8422,
Japan
| | - Takeshi Yamamoto
- Product Science Division,
Japan Tobacco Inc., Yokohama, Kanagawa 227-8512,
Japan
| | - Toshiki Mine
- Plant Innovation Center,
Japan Tobacco Inc., Iwata, Shizuoka 483-0802,
Japan
| | - Shinobu Watarai
- Laboratory of Veterinary Immunology,
Division of Veterinary Science, Graduate School of Life and Environmental
Science, Osaka Prefecture University, Sakai, Osaka
599-8531, Japan
| | - Kiyoshi Ogura
- Tokyo
Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo
156-8506, Japan
| | - Kazuo Nakamura
- Division of Biology, College
of Liberal Arts and Sciences, Kitasato University School of
Medicine, Sagamihara, Kanagawa 228-8555,
Japan
| | - Junichi Tsuge
- Junior College of
Sapporo Otani University, Sapporo, Hokkaido 065-8567,
Japan
| | - Yasunori Kushi
- Department of Materials and Applied Chemistry,
College of Science and Technology, Nihon University,
Chiyoda-ku, Tokyo 101-8308, Japan
| |
Collapse
|
202
|
The role of the sialic acid in monitoring the evolution of malignant melanoma. From murine models to human research. REV ROMANA MED LAB 2013. [DOI: 10.2478/rrlm-2013-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
203
|
Yang S, Zhang H. Solid-phase glycan isolation for glycomics analysis. Proteomics Clin Appl 2012; 6:596-608. [PMID: 23090885 PMCID: PMC3674833 DOI: 10.1002/prca.201200045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/11/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
Abstract
Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | | |
Collapse
|
204
|
Detmer SE, Gramer MR, Goyal SM, Torremorell M. In vitro characterization of influenza A virus attachment in the upper and lower respiratory tracts of pigs. Vet Pathol 2012; 50:648-58. [PMID: 23169913 DOI: 10.1177/0300985812467469] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The binding of influenza A viruses to epithelial cells in the respiratory tract of mammals is a key step in the infection process. Therefore, direct assessment of virus-host cell interaction using virus histochemistry (VH) will enhance our understanding of the pathogenesis of these new viruses. For this study, the authors selected viruses that represented the 4 main genetic clusters of North American swine H1 (SwH1) viruses, along with A/California/04/2009 H1N1 and a vaccine strain for the positive controls, and the virus label, fluorescein isothiocyanate (FITC), for the negative control. A group of 5 viruses containing a 2-amino acid insertion adjacent to the binding site of the hemagglutinin protein and their presumed ancestral viruses were also examined for changes in binding patterns. Viruses were bound to formalin-fixed paraffin-embedded, 6-week-old (6w) and adult pig tissues. Qualitative VH scores per respiratory zone ranged from + to +++, with bronchioles having the highest and most consistent scores, regardless of animal age. For the 6w bronchioles, a quantitative VH score was calculated using digital images of 5 bronchioles per tissue section using image analysis software. Significant differences in attachment were found among the SwH1 viruses (P < .0001) and among the ancestral and insertion viruses (P < .0001). These results provide new insights on virus binding to porcine respiratory epithelial cells and the usefulness of morphometric scores. The results also highlight limitations of in vitro techniques, including VH for predicting virulence and host range.
Collapse
Affiliation(s)
- S E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK Canada.
| | | | | | | |
Collapse
|
205
|
A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles. PLoS One 2012; 7:e43596. [PMID: 23133587 PMCID: PMC3487904 DOI: 10.1371/journal.pone.0043596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed. Methodology/Findings We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134. Conclusions We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 viruses.
Collapse
|
206
|
Ilyushina NA, Ikizler MR, Kawaoka Y, Rudenko LG, Treanor JJ, Subbarao K, Wright PF. Comparative study of influenza virus replication in MDCK cells and in primary cells derived from adenoids and airway epithelium. J Virol 2012; 86:11725-34. [PMID: 22915797 PMCID: PMC3486302 DOI: 10.1128/jvi.01477-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/10/2012] [Indexed: 12/25/2022] Open
Abstract
Although clinical trials with human subjects are essential for determination of safety, infectivity, and immunogenicity, it is desirable to know in advance the infectiousness of potential candidate live attenuated influenza vaccine strains for human use. We compared the replication kinetics of wild-type and live attenuated influenza viruses, including H1N1, H3N2, H9N2, and B strains, in Madin-Darby canine kidney (MDCK) cells, primary epithelial cells derived from human adenoids, and human bronchial epithelium (NHBE cells). Our data showed that despite the fact that all tissue culture models lack a functional adaptive immune system, differentiated cultures of human epithelium exhibited the greatest restriction for all H1N1, H3N2, and B vaccine viruses studied among three cell types tested and the best correlation with their levels of attenuation seen in clinical trials with humans. In contrast, the data obtained with MDCK cells were the least predictive of restricted viral replication of live attenuated vaccine viruses in humans. We were able to detect a statistically significant difference between the replication abilities of the U.S. (A/Ann Arbor/6/60) and Russian (A/Leningrad/134/17/57) cold-adapted vaccine donor strains in NHBE cultures. Since live attenuated pandemic influenza vaccines may potentially express a hemagglutinin and neuraminidase from a non-human influenza virus, we assessed which of the three cell cultures could be used to optimally evaluate the infectivity and cellular tropism of viruses derived from different hosts. Among the three cell types tested, NHBE cultures most adequately reflected the infectivity and cellular tropism of influenza virus strains with different receptor specificities. NHBE cultures could be considered for use as a screening step for evaluating the restricted replication of influenza vaccine candidates.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- Department of Pediatrics, Geisel Medical School at Dartmouth, Lebanon, New Hampshire, USA.
| | | | | | | | | | | | | |
Collapse
|
207
|
Characterization of an H3N2 canine influenza virus isolated from Tibetan mastiffs in China. Vet Microbiol 2012; 162:345-352. [PMID: 23107656 DOI: 10.1016/j.vetmic.2012.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 11/20/2022]
Abstract
Ten 3-month-old Tibetan mastiffs became ill 2 days after they were bought from a Tibetan mastiff exhibition, and 4 of them died 2 weeks later. A canine influenza virus (ZJ0110) was isolated from the lung of a deceased Tibetan mastiff and was characterized in detail. Sequence analysis indicated that the 8 genes of the canine isolate were most similar to those of avian-origin canine influenza viruses (H3N2) isolated in South Korea in 2007, with which they shared >98% sequence identity. ZJ0110 could experimentally infect 6-month-old beagles by intranasal inoculation and by airborne transmission, causing severe respiratory syndrome. Moreover, ZJ0110 could replicate in the upper respiratory tracts of mice and guinea pigs, and the virus titer was comparable to that in the upper respiratory tracts of dogs. Although the virus was genetically of avian origin, ZJ0110 could not experimentally infect chicken or ducks by intranasal inoculation. These results suggest that dogs might be an intermediary host in which avian influenza viruses adapt to replicate in mammals.
Collapse
|
208
|
Sun Y, Sun S, Ma J, Tan Y, Du L, Shen Y, Mu Q, Pu J, Lin D, Liu J. Identification and characterization of avian-origin H3N2 canine influenza viruses in northern China during 2009-2010. Virology 2012; 435:301-7. [PMID: 23063406 DOI: 10.1016/j.virol.2012.09.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/30/2012] [Accepted: 09/28/2012] [Indexed: 11/26/2022]
Abstract
Twelve avian-origin H3N2 influenza strains were isolated from dogs with signs of respiratory disease in northern China during 2009-2010. Phylogenetic analysis showed that eight gene segments of all the isolates had a close relationship with those of avian-origin H3N2 canine influenza viruses (CIVs) from South Korea and southern China. Genetic analysis indicated that these isolates had a PERQTR/G HA cleavage motif, which differed from the PEKQTR/G motif of canine viruses before 2007. Noteworthy, one of our isolates had an additional basic amino acid at position -3 of the HA cleavage site, with a sequence of PERRTR/G which might facilitate the HA cleavage. An insertion of two amino acids at positions 74-75 in the neuraminidase stalk were found in all H3N2 CIVs isolated since 2009. Our findings show the continued evolution of avian-origin H3N2 CIVs and emphasize the necessity of continued surveillance of influenza virus in dogs.
Collapse
Affiliation(s)
- Yipeng Sun
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
210
|
Bodewes R, Nieuwkoop NJ, Verburgh RJ, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Use of influenza A viruses expressing reporter genes to assess the frequency of double infections in vitro. J Gen Virol 2012; 93:1645-1648. [PMID: 22535774 DOI: 10.1099/vir.0.042671-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exchange of gene segments between mammalian and avian influenza A viruses may lead to the emergence of potential pandemic influenza viruses. Since co-infection of single cells with two viruses is a prerequisite for reassortment to take place, we assessed frequencies of double-infection in vitro using influenza A/H5N1 and A/H1N1 viruses expressing the reporter genes eGFP or mCherry. Double-infected A549 and Madin-Darby canine kidney cells were detected by confocal microscopy and flow cytometry.
Collapse
Affiliation(s)
- R Bodewes
- Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - N J Nieuwkoop
- Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - R J Verburgh
- Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - R A M Fouchier
- Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - A D M E Osterhaus
- ViroClinics Biosciences, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
- Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - G F Rimmelzwaan
- ViroClinics Biosciences, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
- Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
211
|
Muranaka M, Yamanaka T, Katayama Y, Niwa H, Oku K, Matsumura T, Oyamada T. Time-related Pathological Changes in Horses Experimentally Inoculated with Equine Influenza A Virus. J Equine Sci 2012; 23:17-26. [PMID: 24833992 PMCID: PMC4013977 DOI: 10.1294/jes.23.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
To investigate the pathology of equine influenza, necropsy of 7 horses experimentally
infected with equine influenza A virus (EIV) subtype H3N8 was conducted on post-infection
days (PID) 2, 3, 7, and 14. Histopathologically, rhinitis or tracheitis including
epithelial degeneration or necrosis with loss of ciliated epithelia and a reduction in
goblet cell numbers, was observed in the respiratory tracts on PIDs 2 and 3. Epithelial
hyperplasia or squamous metaplasia and suppurative bronchopneumonia with proliferation of
type II pneumocytes were observed on PIDs 7 and 14. Viral antigen was detected
immunohistochemically in the epithelia of the nasal mucosa, trachea, and bronchi on PIDs 2
and 3. The sodA gene of Streptococcus equi subsp. zooepidemicus, a suspected cause of
suppurative bronchopneumonia, was detected in paraffin-embedded lung tissue sections, but
only on PIDs 7 and 14. These findings suggest that damage caused to ciliated epithelia and
goblet cells by EIV infection results in secondary bacterial bronchopneumonia due to a
reduction in mucociliary clearance.
Collapse
Affiliation(s)
- Masanori Muranaka
- Epizootic Research Center, Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Takashi Yamanaka
- Epizootic Research Center, Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Yoshinari Katayama
- Epizootic Research Center, Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Hidekazu Niwa
- Epizootic Research Center, Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Kazuomi Oku
- Racehorse Clinic, Miho Training Center, the Japan Racing Association, Ibaraki 300-0415, Japan
| | - Tomio Matsumura
- Epizootic Research Center, Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Toshifumi Oyamada
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| |
Collapse
|
212
|
Makkoch J, Prachayangprecha S, Payungporn S, Chieochansin T, Songserm T, Amonsin A, Poovorawan Y. Erythrocyte binding preference of human pandemic influenza virus a and its effect on antibody response detection. Ann Lab Med 2012; 32:276-82. [PMID: 22779069 PMCID: PMC3384809 DOI: 10.3343/alm.2012.32.4.276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/21/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Validation of hemagglutination inhibition (HI) assays is important for evaluating antibody responses to influenza virus, and selection of erythrocytes for use in these assays is important. This study aimed to determine the correlation between receptor binding specificity and effectiveness of the HI assay for detecting antibody response to pandemic influenza H1N1 (pH1N1) virus. METHODS Hemagglutination (HA) tests were performed using erythrocytes from 6 species. Subsequently, 8 hemagglutinating units of pH1N1 from each species were titrated by real-time reverse transcription-PCR. To investigate the effect of erythrocyte binding preference on HI antibody titers, comparisons of HI with microneutralization (MN) assays were performed. RESULTS Goose erythrocytes showed most specific binding with pH1N1, while HA titers using human erythrocytes were comparable to those using turkey erythrocytes. The erythrocyte binding efficiency was shown to have an impact on antibody detection. Comparing MN titers, HI titers using turkey erythrocytes yielded the most accurate results, while those using goose erythrocytes produced the highest geometric mean titer. Human blood group O erythrocytes lacking a specific antibody yielded results most comparable to those obtained using turkey erythrocytes. Further, pre-existing antibody to pH1N1 and different erythrocyte species can distort HI assay results. CONCLUSIONS HI assay, using turkey and human erythrocytes, yielded the most comparable and applicable results for pH1N1 than those by MN assay, and using goose erythrocytes may lead to overestimated titers. Selection of appropriate erythrocyte species for HI assay allows construction of a more reliable database, which is essential for further investigations and control of virus epidemics.
Collapse
Affiliation(s)
- Jarika Makkoch
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Slinporn Prachayangprecha
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Clinical Virology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thaweesak Songserm
- Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom, Thailand
| | - Alongkorn Amonsin
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
213
|
Pawelek KA, Huynh GT, Quinlivan M, Cullinane A, Rong L, Perelson AS. Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol 2012; 8:e1002588. [PMID: 22761567 PMCID: PMC3386161 DOI: 10.1371/journal.pcbi.1002588] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/16/2012] [Indexed: 01/08/2023] Open
Abstract
Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection. Influenza, commonly referred to as the flu, is a contagious respiratory illness caused by influenza virus infections. Although most infected subjects with intact immune systems are able to clear the virus without developing serious flu complications, the mechanisms underlying viral control are not fully understood. In this paper, we address this question by developing mathematical models that include both innate and adaptive immune responses, and fitting them to experimental data from horses infected with equine influenza virus. We find that the innate immune response, such as natural killer cell-mediated infected cell killing and interferon's antiviral effect, can explain the first rapid viral decline and subsequent second peak viremia, and that the adaptive immune response is needed to eventually clear the virus. This study improves our understanding of influenza virus dynamics and may provide more information for future research in influenza pathogenesis, treatment, and vaccination.
Collapse
Affiliation(s)
- Kasia A. Pawelek
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, United States of America
| | - Giao T. Huynh
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, United States of America
| | - Michelle Quinlivan
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Ann Cullinane
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Libin Rong
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, United States of America
- * E-mail: (LR); (ASP)
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail: (LR); (ASP)
| |
Collapse
|
214
|
Sun Z, Huber VC, McCormick K, Kaushik RS, Boon ACM, Zhu L, Hause B, Webby RJ, Fang Y. Characterization of a porcine intestinal epithelial cell line for influenza virus production. J Gen Virol 2012; 93:2008-2016. [PMID: 22739061 DOI: 10.1099/vir.0.044388-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have developed a porcine intestine epithelial cell line, designated SD-PJEC for the propagation of influenza viruses. The SD-PJEC cell line is a subclone of the IPEC-J2 cell line, which was originally derived from newborn piglet jejunum. Our results demonstrate that SD-PJEC is a cell line of epithelial origin that preferentially expresses receptors of oligosaccharides with Sia2-6Gal modification. This cell line is permissive to infection with human and swine influenza A viruses and some avian influenza viruses, but poorly support the growth of human-origin influenza B viruses. Propagation of swine-origin influenza viruses in these cells results in a rapid growth rate within the first 24 h post-infection and the titres ranged from 4 to 8 log(10) TCID(50) ml(-1). The SD-PJEC cell line was further tested as a potential alternative cell line to Madin-Darby canine kidney (MDCK) cells in conjunction with 293T cells for rescue of swine-origin influenza viruses using the reverse genetics system. The recombinant viruses A/swine/North Carolina/18161/02 (H1N1) and A/swine/Texas/4199-2/98 (H3N2) were rescued with virus titres of 7 and 8.25 log(10) TCID(50) ml(-1), respectively. The availability of this swine-specific cell line represents a more relevant substrate for studies and growth of swine-origin influenza viruses.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - Kara McCormick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - Radhey S Kaushik
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Adrianus C M Boon
- Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Longchao Zhu
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Ben Hause
- Newport Laboratories, Worthington, MN 56187, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Fang
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
215
|
Cheng X, Zengel JR, Xu Q, Jin H. Surface glycoproteins of influenza A H3N2 virus modulate virus replication in the respiratory tract of ferrets. Virology 2012; 432:91-8. [PMID: 22743127 DOI: 10.1016/j.virol.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/08/2012] [Accepted: 06/01/2012] [Indexed: 11/16/2022]
Abstract
The hemagglutinin (HA) genes of the influenza A H3N2 subtype viruses isolated from 1968 to 2010 have evolved substantially but their neuraminidase (NA) genes have been relatively less divergent. The H3N2 viruses isolated since 1995 were found to replicate in the lower respiratory tract of ferrets less efficiently than the earlier isolates. To evaluate whether the HA or/and NA or the internal protein gene segments of the H3N2 virus affected viral replication in the respiratory tract of ferrets, recombinant A/California/07/2004 (CA04) (H3N2) virus and its reassortants that contained the same CA04 internal protein gene segments and the HA and/or NA of A/Udorn/309/1972 (UD72) or A/Wuhan/359/1995 (WH95) H3N2 viruses were generated and evaluated for their replication in the respiratory tract of ferrets. All the reassortant viruses replicated efficiently in the upper respiratory tract of ferrets, but their replication in the lower respiratory tract of ferrets varied. In contrast to the UD72-HA reassortant virus that replicated efficiently in the lungs of ferrets, the virus with the WH95-HA or the CA04-HA either replicated modestly or did not replicate in the lungs of ferrets. The reassortants with the WH95-HA and UD72-NA or CA04-NA had the tendency to lose a N-linked glycosylation site at residue 246 in the HA, resulting in viral lung titer of 100-fold higher than the virus with the HA and NA from WH95. The UD72-NA had the highest neuraminidase activity and increased viral replication by up to 100-fold in tissue culture cells during early infection. Thus, our data indicate that both the HA and NA glycoproteins play important roles in viral replication of the H3N2 influenza virus in ferrets.
Collapse
|
216
|
Nara T, Yasui T, Fujimori O, Meyer W, Tsukise A. Histochemical analyses of anti-microbial substances in canine perianal skin with special reference to glandular structures. Anat Histol Embryol 2012; 42:105-13. [PMID: 22715928 DOI: 10.1111/j.1439-0264.2012.01171.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/26/2012] [Indexed: 12/14/2022]
Abstract
Circumanal glands are prominent features of the canine perianal skin, which are often located near to the sebaceous glands and apocrine glands. As the functional relevance of circumanal glands is yet unknown, we studied the localisation of sialic acids and anti-microbial substances (lysozyme, immunoglobulin A, lactoferrin, β-defensin) in these glandular structures by lectin histochemistry and immunohistochemistry. The glands exhibited a number of sialic acids that were linked to α2-6Gal/GalNAc and α2-3Galβ1-4GlcNAc. Additionally, lysozyme, lactoferrin and β-defensin could be demonstrated in the three types of skin glands, whereas IgA was only detectable in the apocrine glands. The results of the study suggest the specific significance of the circumanal glands. Independent of a certain endocrine role, their products may mainly function as protective agents to preserve the integrity of the anal region, considering that sialic acids and anti-microbial substances are important in defence mechanisms.
Collapse
Affiliation(s)
- T Nara
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | | | | | | | | |
Collapse
|
217
|
Afilalo M, Stern E, Oughton M. Evaluation and management of seasonal influenza in the emergency department. Emerg Med Clin North Am 2012; 30:271-305, viii. [PMID: 22487108 PMCID: PMC7127178 DOI: 10.1016/j.emc.2011.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Seasonal influenza causes significant morbidity and mortality, primarily due to increased complication rates among the elderly population and patients with chronic diseases. Timely diagnosis of influenza and early recognition of an influenza outbreak or epidemic are key components in preventing influenza-related complications, hospitalizations, and deaths. Emergency departments are the most frequent points of entry for most influenza cases and are well positioned to identify and manage influenza community outbreaks and epidemics. Emergency departments need specific infection control measures to curb the spread of influenza in the Emergency Department and hospital during the influenza season.
Collapse
Affiliation(s)
- Marc Afilalo
- Emergency Department, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Room D-012, Montreal, Quebec, Canada, H3T 1E2.
| | | | | |
Collapse
|
218
|
Reperant LA, Kuiken T, Osterhaus ADME. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans. Vaccine 2012; 30:4419-34. [PMID: 22537992 DOI: 10.1016/j.vaccine.2012.04.049] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/06/2012] [Accepted: 04/12/2012] [Indexed: 12/11/2022]
Abstract
Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population.
Collapse
Affiliation(s)
- Leslie A Reperant
- Department of Virology, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | |
Collapse
|
219
|
Anderson TC, Crawford PC, Katz JM, Dubovi EJ, Landolt G, Gibbs EPJ. Diagnostic performance of the canine Influenza A Virus subtype H3N8 hemagglutination inhibition assay. J Vet Diagn Invest 2012; 24:499-508. [DOI: 10.1177/1040638712440992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Canine Influenza A virus subtype H3N8 (H3N8 CIV) was recognized in 2004 as a novel respiratory pathogen for dogs. To date, infections have been diagnosed in thousands of dogs in 38 U.S. states. Diagnostic techniques such as reverse transcription polymerase chain reaction (RT-PCR) and virus isolation may yield false-negative results if samples are collected after virus shedding has ceased. Therefore, serology is often necessary to confirm diagnosis. The hemagglutination inhibition (HI) assay is the test of choice for serological diagnosis of influenza infections in animals. However, discrepancies exist between diagnostic laboratories and research groups in some of the test parameters for the H3N8 CIV HI assay and the cutoff antibody titer for seropositivity. The objectives of the current study were 1) to assess the diagnostic performance of a H3N8 CIV HI assay using field sera from canine infectious respiratory disease outbreaks and 2) to evaluate the effect of test parameter variations on test performance, including the use of different red blood cell (RBC) species, serum treatment methods, and virus isolates. Based on a receiver operating characteristic analysis using serum microneutralization assay titers as the gold standard, the H3N8 CIV HI assay described in the present study is highly sensitive (99.6%) and specific (94.6%) when the cutoff antibody titer for seropositivity is 32. Evaluation of parameter variations determined that the sensitivity and specificity of the H3N8 CIV HI assay depend on serum pretreatment with a receptor-destroying enzyme or periodate, use of 0.5% turkey or chicken RBCs, and use of antigenically well-matched H3N8 virus strains.
Collapse
Affiliation(s)
- Tara C. Anderson
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Anderson, Crawford, Gibbs)
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA (Katz)
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY (Dubovi)
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Landolt)
| | - P. Cynda Crawford
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Anderson, Crawford, Gibbs)
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA (Katz)
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY (Dubovi)
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Landolt)
| | - Jacqueline M. Katz
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Anderson, Crawford, Gibbs)
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA (Katz)
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY (Dubovi)
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Landolt)
| | - Edward J. Dubovi
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Anderson, Crawford, Gibbs)
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA (Katz)
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY (Dubovi)
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Landolt)
| | - Gabriele Landolt
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Anderson, Crawford, Gibbs)
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA (Katz)
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY (Dubovi)
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Landolt)
| | - E. Paul J. Gibbs
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Anderson, Crawford, Gibbs)
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA (Katz)
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY (Dubovi)
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Landolt)
| |
Collapse
|
220
|
No evidence of horizontal infection in horses kept in close contact with dogs experimentally infected with canine influenza A virus (H3N8). Acta Vet Scand 2012; 54:25. [PMID: 22506984 PMCID: PMC3416777 DOI: 10.1186/1751-0147-54-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since equine influenza A virus (H3N8) was transmitted to dogs in the United States in 2004, the causative virus, which is called canine influenza A virus (CIV), has become widespread in dogs. To date, it has remained unclear whether or not CIV-infected dogs could transmit CIV to horses. To address this, we tested whether or not close contact between horses and dogs experimentally infected with CIV would result in its interspecies transmission. METHODS Three pairs of animals consisting of a dog inoculated with CIV (10(8.3) egg infectious dose 50/dog) and a healthy horse were kept together in individual stalls for 15 consecutive days. During the study, all the dogs and horses were clinically observed. Virus titres in nasal swab extracts and serological responses were also evaluated. In addition, all the animals were subjected to a gross pathological examination after euthanasia. RESULTS All three dogs inoculated with CIV exhibited clinical signs including, pyrexia, cough, nasal discharge, virus shedding and seroconversion. Gross pathology revealed lung consolidations in all the dogs, and Streptococcus equi subsp. zooepidemicus was isolated from the lesions. Meanwhile, none of the paired horses showed any clinical signs, virus shedding or seroconversion. Moreover, gross pathology revealed no lesions in the respiratory tracts including the lungs of the horses. CONCLUSIONS These findings may indicate that a single dog infected with CIV is not sufficient to constitute a source of CIV infection in horses.
Collapse
|
221
|
Jayaraman A, Chandrasekaran A, Viswanathan K, Raman R, Fox JG, Sasisekharan R. Decoding the distribution of glycan receptors for human-adapted influenza A viruses in ferret respiratory tract. PLoS One 2012; 7:e27517. [PMID: 22359533 PMCID: PMC3281014 DOI: 10.1371/journal.pone.0027517] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022] Open
Abstract
Ferrets are widely used as animal models for studying influenza A viral pathogenesis and transmissibility. Human-adapted influenza A viruses primarily target the upper respiratory tract in humans (infection of the lower respiratory tract is observed less frequently), while in ferrets, upon intranasal inoculation both upper and lower respiratory tract are targeted. Viral tropism is governed by distribution of complex sialylated glycan receptors in various cells/tissues of the host that are specifically recognized by influenza A virus hemagglutinin (HA), a glycoprotein on viral surface. It is generally known that upper respiratory tract of humans and ferrets predominantly express α2→6 sialylated glycan receptors. However much less is known about the fine structure of these glycan receptors and their distribution in different regions of the ferret respiratory tract. In this study, we characterize distribution of glycan receptors going beyond terminal sialic acid linkage in the cranial and caudal regions of the ferret trachea (upper respiratory tract) and lung hilar region (lower respiratory tract) by multiplexing use of various plant lectins and human-adapted HAs to stain these tissue sections. Our findings show that the sialylated glycan receptors recognized by human-adapted HAs are predominantly distributed in submucosal gland of lung hilar region as a part of O-linked glycans. Our study has implications in understanding influenza A viral pathogenesis in ferrets and also in employing ferrets as animal models for developing therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Akila Jayaraman
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - Aarthi Chandrasekaran
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - Karthik Viswanathan
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - Rahul Raman
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United State of America
| | - Ram Sasisekharan
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
222
|
Receptor-binding profiles of H7 subtype influenza viruses in different host species. J Virol 2012; 86:4370-9. [PMID: 22345462 DOI: 10.1128/jvi.06959-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO(3))GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO(3))GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry.
Collapse
|
223
|
Chernyy ES, Rapoport EM, André S, Kaltner H, Gabius HJ, Bovin NV. Galectins promote the interaction of influenza virus with its target cell. BIOCHEMISTRY (MOSCOW) 2012; 76:958-67. [PMID: 22022970 DOI: 10.1134/s0006297911080128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza virus is known to bind sialoglycans located on the surface of the host cell. In addition, recent data suggest the involvement of other molecular targets in viral reception. Of note, a high density of terminal galactose residues is created on the surface of virions because of the influenza virus' own neuraminidase activity. Thus, we suggested the possibility for an interaction of the influenza virus with galactose-binding proteins--galectins. In the present work we studied the influence of several galectins on the adhesion and further internalization of virus into the cell; six virus strains and three cell lines were studied. Chicken galectins CG-1A and -2 as well as human galectins HGal-1 and -8 promote virus binding in dose dependent manner, but they do not influence the internalization stage. Also, galectins are able to restore the ability of influenza virus to infect desialylated cells up to the level of native cells. When CG-1A in physiological concentrations was loaded onto viruses, the adhesion level was higher than in the case of on-cell loading. The effect of adhesion increase depends on the glycan structure of target-cell as well as of virus. The aggregated data suggest a promotional effect of galectins during the stage of influenza virus binding with the surface of target-cell.
Collapse
Affiliation(s)
- E S Chernyy
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | | | | | |
Collapse
|
224
|
Residue Y161 of influenza virus hemagglutinin is involved in viral recognition of sialylated complexes from different hosts. J Virol 2012; 86:4455-62. [PMID: 22301136 DOI: 10.1128/jvi.07187-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Influenza A virus glycoprotein hemagglutinin (HA) binds to host cell surface sialic acid (SA)-terminated sugars in glycoproteins to initiate viral entry. It is thought that avian influenza viruses preferentially bind to N-acetylneuraminic acid α3 (NeuAcα3) sugars, while human influenza viruses exhibit a preference for NeuAcα6-containing sugars. Thus, species-specific SA(s) is one of the determinants in viral host tropism. The SA binding pocket of the HA1 subunit has been extensively studied, and a number of residues important for receptor binding have been identified. In this study, we examined the potential roles of seven highly conserved HA surface-located amino acid residues in receptor binding and viral entry using an H5 subtype. Among them, mutant Y161A showed cell-type-dependent viral entry without obvious defects in HA protein expression or viral incorporation. This mutant also displayed dramatically different ability in agglutinating different animal erythrocytes. Oligosaccharide binding analysis showed that substituting alanine at Y161 of HA changed the SA binding preference from NeuAc to N-glycolylneuraminic acid (NeuGc). Rescued mutant Y161A viruses demonstrated a 5- to 10-fold growth defect, but they were robust in viral replication and plaque forming ability. Our results demonstrate that Y161 is a critical residue involved in recognition of different SA species. This residue may play a role in determining influenza virus host tropism.
Collapse
|
225
|
Contemporary epidemiology of North American lineage triple reassortant influenza A viruses in pigs. Curr Top Microbiol Immunol 2012; 370:113-32. [PMID: 22266673 PMCID: PMC7120137 DOI: 10.1007/82_2011_196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The 2009 pandemic H1N1 infection in humans has been one of the greatest concerns for public health in recent years. However, influenza in pigs is a zoonotic viral disease well-known to virologists for almost one century with the classical H1N1 subtype the only responsible agent for swine influenza in the United States for many decades. Swine influenza was first recognized clinically in pigs in the Midwestern U.S. in 1918 and since that time it has remained important to the swine industry throughout the world. Since 1988, however, the epidemiology of swine influenza changed dramatically. A number of emerging subtypes and genotypes have become established in the U.S. swine population. The ability of multiple influenza virus lineages to infect pigs is associated with the emergence of reassortant viruses with new genomic arrangements, and the introduction of the 2009 pandemic H1N1 from humans to swine represents a well-known example. The recent epidemiological data regarding the current state of influenza A virus subtypes circulating in the Canadian and American swine population is discussed in this review.
Collapse
|
226
|
SRIWILAIJAROEN N, SUZUKI Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:226-49. [PMID: 22728439 PMCID: PMC3410141 DOI: 10.2183/pjab.88.226] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Influenza virus hemagglutinin (HA) contains antigenic sites recognized by the host immune system, cleavage sites cleaved by host proteases, receptor binding sites attaching to sialyl receptors on the target cell, and fusion peptides mediating membrane fusion. Change in an amino acid(s) in these sites may affect the potential of virus infection and spread within and between hosts. Influenza viruses with H1 HA infect birds, pigs and humans and have caused two of the four pandemics in the past 100 years: 1918 pandemic that killed 21-50 million people and 2009 pandemic that caused more than 18,000 deaths. Understanding the relationship between antigenic structure and immune specificity, the receptor binding specificity in virus transmission, how the cleavage site controls pathogenicity, and how the fusion peptide causes membrane fusion for the entry of influenza virus into the host cell should provide information to find more effective ways to prevent and control influenza.
Collapse
Affiliation(s)
- Nongluk SRIWILAIJAROEN
- Faculty of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Health Science Hills, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Yasuo SUZUKI
- Health Science Hills, College of Life and Health Sciences, Chubu University, Aichi, Japan
- Global COE Program for Innovation in Human Health Sciences, Shizuoka, Japan
- Correspondence should be addressed: Y. Suzuki, Health Science Hills, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan (e-mail: )
| |
Collapse
|
227
|
The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol 2011; 86:2706-14. [PMID: 22205751 DOI: 10.1128/jvi.05546-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates.
Collapse
|
228
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
229
|
Mori K, Haruyama T, Nagata K. Tamiflu-resistant but HA-mediated cell-to-cell transmission through apical membranes of cell-associated influenza viruses. PLoS One 2011; 6:e28178. [PMID: 22140536 PMCID: PMC3227662 DOI: 10.1371/journal.pone.0028178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/02/2011] [Indexed: 01/01/2023] Open
Abstract
The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to “right next door”: one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Haruyama
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
230
|
Quintana AM, Hussey SB, Burr EC, Pecoraro HL, Annis KM, Rao S, Landolt GA. Evaluation of infectivity of a canine lineage H3N8 influenza A virus in ponies and in primary equine respiratory epithelial cells. Am J Vet Res 2011; 72:1071-8. [PMID: 21801065 DOI: 10.2460/ajvr.72.8.1071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate whether an equine-derived canine H3N8 influenza A virus was capable of infecting and transmitting disease to ponies. ANIMALS 20 influenza virus-seronegative 12- to 24-month-old ponies. PROCEDURES 5 ponies were inoculated via aerosol exposure with 10(7) TCID(50) of A/Canine/Wyoming/86033/07 virus (Ca/WY)/pony. A second group of 5 ponies (positive control group) was inoculated via aerosol exposure with a contemporary A/Eq/Colorado/10/07 virus (Eq/CO), and 4 sham-inoculated ponies served as a negative control group. To evaluate the potential for virus transmission, ponies (3/inoculation group) were introduced 2 days after aerosol exposure and housed with Ca/WY- and Eq/CO-inoculated ponies to serve as sentinel animals. Clinical signs, nasal virus shedding, and serologic responses to inoculation were monitored in all ponies for up to 21 days after viral inoculation. Growth and infection characteristics of viruses were examined by use of Madin-Darby canine kidney cells and primary equine and canine respiratory epithelial cells. RESULTS Ponies inoculated with Ca/WY had mild changes in clinical appearance, compared with results for Eq/CO-inoculated ponies. Additionally, Ca/WY inoculation induced significantly lower numbers for copies of the matrix gene in nasal secretions and lower systemic antibody responses in ponies than did Eq/CO inoculation. The Ca/WY isolate was not transmitted to sentinel ponies. CONCLUSIONS AND CLINICAL RELEVANCE Inoculation of ponies with the canine H3N8 isolate resulted in mild clinical disease, minimal nasal virus shedding, and weak systemic antibody responses, compared with responses after inoculation with the equine H3N8 influenza isolate. These results suggested that Ca/WY has not maintained infectivity for ponies.
Collapse
Affiliation(s)
- Ayshea M Quintana
- Department of Microbiology, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol 2011; 86:667-78. [PMID: 22072765 DOI: 10.1128/jvi.06348-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses.
Collapse
|
232
|
Lei F, Shi W. Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses. Curr Genomics 2011; 12:466-74. [PMID: 22547954 PMCID: PMC3219842 DOI: 10.2174/138920211797904052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/27/2011] [Accepted: 08/10/2011] [Indexed: 12/24/2022] Open
Abstract
The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research.
Collapse
Affiliation(s)
- Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weifeng Shi
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
233
|
Homan EJ, Bremel RD. Patterns of predicted T-cell epitopes associated with antigenic drift in influenza H3N2 hemagglutinin. PLoS One 2011; 6:e26711. [PMID: 22039539 PMCID: PMC3200361 DOI: 10.1371/journal.pone.0026711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022] Open
Abstract
Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968-2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.
Collapse
Affiliation(s)
- E Jane Homan
- ioGenetics LLC, Madison, Wisconsin, United States of America.
| | | |
Collapse
|
234
|
Major histocompatibility complex class II expression and hemagglutinin subtype influence the infectivity of type A influenza virus for respiratory dendritic cells. J Virol 2011; 85:11955-63. [PMID: 21917972 DOI: 10.1128/jvi.05830-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103(+) DC, CD11b(hi) DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103(+) and CD11b(hi) RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract.
Collapse
|
235
|
Song X, Yu H, Chen X, Lasanajak Y, Tappert MM, Air GM, Tiwari VK, Cao H, Chokhawala HA, Zheng H, Cummings RD, Smith DF. A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem 2011; 286:31610-22. [PMID: 21757734 PMCID: PMC3173124 DOI: 10.1074/jbc.m111.274217] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/07/2011] [Indexed: 01/22/2023] Open
Abstract
Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2-3- and α2-6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2-6- and α2-3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-D-glycero-D-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2-6-linked Neu5Ac9Lt or α2-6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions.
Collapse
Affiliation(s)
- Xuezheng Song
- From the Department of Biochemistry and the Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hai Yu
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Xi Chen
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Yi Lasanajak
- From the Department of Biochemistry and the Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary M. Tappert
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Gillian M. Air
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Vinod K. Tiwari
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Hongzhi Cao
- the Department of Chemistry, University of California, Davis, California 95616, and
| | | | - Haojie Zheng
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Richard D. Cummings
- From the Department of Biochemistry and the Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David F. Smith
- From the Department of Biochemistry and the Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
236
|
Trebbien R, Larsen LE, Viuff BM. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol J 2011; 8:434. [PMID: 21902821 PMCID: PMC3177912 DOI: 10.1186/1743-422x-8-434] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/08/2011] [Indexed: 01/07/2023] Open
Abstract
Background Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA) I, and II, and Sambucus Nigra (SNA). Furthermore, the predilection sites of swine influenza virus (SIV) subtypes H1N1 and H1N2 as well as avian influenza virus (AIV) subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. Results SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0%) at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas. Conclusions A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species.
Collapse
Affiliation(s)
- Ramona Trebbien
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1790 Copenhagen V, Denmark.
| | | | | |
Collapse
|
237
|
Cwach KT, Sandbulte HR, Klonoski JM, Huber VC. Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays. Influenza Other Respir Viruses 2011; 6:127-35. [PMID: 21883963 PMCID: PMC3235232 DOI: 10.1111/j.1750-2659.2011.00283.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Please cite this paper as: Cwach et al. (2011) Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2011.00283.x. Background Prior to detection of an antibody response toward influenza viruses using the hemagglutination inhibition assay (HAI), sera are routinely treated to inactivate innate inhibitors using both heat inactivation (56°C) and recombinant neuraminidase [receptor‐destroying enzyme (RDE)]. Objectives We revisited the contributions of innate serum inhibitors toward interference with influenza viruses in immune assays, using murine sera, with emphasis on the interactions with influenza A viruses of the H3N2 subtype. Methods We used individual serum treatments: 56°C alone, RDE alone, or RDE + 56°C, to treat sera prior to evaluation within HAI, microneutralization, and macrophage uptake assays. Results Our data demonstrate that inhibitors present within untreated murine sera interfere with the HAI assay in a manner that is different from that seen for the microneutralization assay. Specifically, the γ class inhibitor α2‐Macroglobulin (A2‐M) can inhibit H3N2 viruses within the HAI assay, but not in the microneutralization assay. Based on these findings, we used a macrophage uptake assay to demonstrate that these inhibitors can increase uptake by macrophages when the influenza viruses express an HA from a 1968 H3N2 virus isolate, but not a 1997 H3N2 isolate. Conclusions The practice of treating sera to inactivate innate inhibitors of influenza viruses prior to evaluation within immune assays has allowed us to effectively detect influenza virus‐specific antibodies for decades. However, this practice has yielded an under‐appreciation for the contribution of innate serum inhibitors toward host immune responses against these viruses, including contributions toward neutralization and macrophage uptake.
Collapse
Affiliation(s)
- Kevin T Cwach
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069-2390, USA
| | | | | | | |
Collapse
|
238
|
Zhang Z, Hu S, Li Z, Wang X, Liu M, Guo Z, Li S, Xiao Y, Bi D, Jin H. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. INFECTION GENETICS AND EVOLUTION 2011; 11:1790-7. [PMID: 21896338 DOI: 10.1016/j.meegid.2011.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/21/2011] [Accepted: 07/24/2011] [Indexed: 12/09/2022]
Abstract
Human infection of avian influenza H9N2 virus highlighted the need to better understand the mechanism of interspecies transmission. In this study, we generated mouse-adapted influenza virus (ma01) through serial lung-to-lung passages of a wild-type H9N2 (A/chicken/Hubei/01/1999). Ma01 caused highly lethal infection in mice with severe lung pathology and extended tissue tropism. Nine amino acid substitutions of ma01 were observed in five viral genes (those for PB2, PA, NA, M1, and NS1). Of these mutations, substitutes of PB2(627), PA(349), PA(605), NA(88), and NA(356) were absent in influenza H9N2. Furthermore, the targets of wild-type virus responding to mouse microRNA mmu-mir-1940 and mmu-mir-1904 were eliminated in ma01. The mutation PB2(627) of ma01 confirmed as a key virulence determinant of influenza H5N1 was responsible for the altered recognition of mmu-mir-1904. In addition, induction of IL-1β, IL-6, TNF-α, and IFN-β was found in significantly higher levels in ma01 infected mouse peripheral blood than parental strain. These results demonstrate that multiple amino acid substitutions and avoidance of microRNA recognitions may be essential for lethal infection and high speed of virus growth can outcompete the antiviral response of infected host.
Collapse
Affiliation(s)
- Zongde Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Ebrahimi SM, Ziapour S, Tebianian M, Dabaghian M, Mohammadi M. Study of infection with an Iranian field-isolated H9N2 avian influenza virus in vaccinated and unvaccinated Japanese quail. Avian Dis 2011; 55:195-200. [PMID: 21793433 DOI: 10.1637/9538-092110-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, we examined the mortality rate, egg production, and clinical signs of quail experimentally infected with a field isolate of A/Chicken/Iran/339/02 (H9N2) avian influenza virus obtained from an infected commercial layer farm with severe morbidity and mortality. A total of 120 quail at 14 days old were randomly divided into four groups of vaccinated (B and C) and unvaccinated (A and D) birds. Vaccination was done on days 20 and 32, and viral inoculation of birds in groups C and D was then carried out on day 43. For evaluation of viral transmission, at 24 hr postinoculation additional unvaccinated birds were placed in direct contact with challenged birds. All the birds were evaluated for clinical signs, egg production, antibody production, viral titration in lung homogenates, and viral transmission following inoculation. All unvaccinated-challenged birds were infected and showed clinical signs, whereas the infection rate along with clinical signs of vaccinated-challenged birds reached 30%-40%. Although vaccination induced high antibody titers, reduction in food and water consumption was evident in this vaccinated-challenged group compared with the unchallenged control group. These results could indicate that inactivated vaccine did not fully prevent the infection, although it was capable of protecting birds against clinical signs and significantly decreased viral titers in lungs after intranasal challenge.
Collapse
Affiliation(s)
- Seyyed Mahmoud Ebrahimi
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), P.O. Box 31975/148, Karaj, Tehran, Iran.
| | | | | | | | | |
Collapse
|
240
|
Dundon WG, Heidari A, Fusaro A, Monne I, Beato MS, Cattoli G, Koch G, Starick E, Brown IH, Aldous EW, Briand FX, Le Gall-Reculé G, Jestin V, Jørgensen PH, Berg M, Zohari S, Metreveli G, Munir M, Ståhl K, Albina E, Hammoumi S, Gil P, de Almeida RS, Smietanka K, Domańska-Blicharz K, Minta Z, Van Borm S, van den Berg T, Martin AM, Barbieri I, Capua I. Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011--review and recommendations for surveillance. Vet Microbiol 2011; 154:209-21. [PMID: 21925809 DOI: 10.1016/j.vetmic.2011.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/13/2011] [Accepted: 08/17/2011] [Indexed: 01/29/2023]
Abstract
Since 2006, the members of the molecular epidemiological working group of the European "EPIZONE" network of excellence have been generating sequence data on avian influenza and avian paramyxoviruses from both European and African sources in an attempt to more fully understand the circulation and impact of these viruses. This review presents a timely update on the epidemiological situation of these viruses based on sequence data generated during the lifetime of this project in addition to data produced by other groups during the same period. Based on this information and putting it all into a European context, recommendations for continued surveillance of these important viruses within Europe are presented.
Collapse
Affiliation(s)
- William G Dundon
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
242
|
Eichelberger MC, Green MD. Animal models to assess the toxicity, immunogenicity and effectiveness of candidate influenza vaccines. Expert Opin Drug Metab Toxicol 2011; 7:1117-27. [PMID: 21749266 DOI: 10.1517/17425255.2011.602065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Every year, > 100 million doses of licensed influenza vaccine are administered worldwide, with relatively few serious adverse events reported. Initiatives to manufacture influenza vaccines on different platforms have come about to ensure timely production of strain-specific as well as universal vaccines. To prevent adverse events that may be associated with these new vaccines, it is important to evaluate the toxicity of new formulations in animal models. AREAS COVERED This review outlines preclinical studies that evaluate safety, immunogenicity and effectiveness of novel products to support further development and clinical trials. This has been done through a review of the latest literature describing vaccines under development. EXPERT OPINION The objective of preclinical safety tests is to demonstrate the absence of toxic contaminants and adventitious agents. Additional tests that characterize vaccine content more completely, or demonstrate the absence of exacerbated disease following virus challenge in vaccinated animals, may provide additional data to ensure the safety of new vaccine strategies.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
243
|
Avian influenza viruses infect primary human bronchial epithelial cells unconstrained by sialic acid α2,3 residues. PLoS One 2011; 6:e21183. [PMID: 21731666 PMCID: PMC3121740 DOI: 10.1371/journal.pone.0021183] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 05/23/2011] [Indexed: 12/03/2022] Open
Abstract
Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias α2,3 versus α2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia α2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia α2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans.
Collapse
|
244
|
|
245
|
Ma W, Lager KM, Vincent AL, Janke BH, Gramer MR, Richt JA. The role of swine in the generation of novel influenza viruses. Zoonoses Public Health 2011; 56:326-37. [PMID: 19486316 DOI: 10.1111/j.1863-2378.2008.01217.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ecology of influenza A viruses is very complicated involving multiple host species and viral genes. Avian species have variable susceptibility to influenza A viruses with wild aquatic birds being the reservoir for this group of pathogens. Occasionally, influenza A viruses are transmitted to mammals from avian species, which can lead to the development of human pandemic strains by direct or indirect transmission to man. Because swine are also susceptible to infection with avian and human influenza viruses, genetic reassortment between these viruses and/or swine influenza viruses can occur. The potential to generate novel influenza viruses has resulted in swine being labelled 'mixing vessels'. The mixing vessel theory is one mechanism by which unique viruses can be transmitted from an avian reservoir to man. Although swine can generate novel influenza viruses capable of infecting man, at present, it is difficult to predict which viruses, if any, will cause a human pandemic. Clearly, the ecology of influenza A viruses is dynamic and can impact human health, companion animals, as well as the health of livestock and poultry for production of valuable protein commodities. For these reasons, influenza is, and will continue to be, a serious threat to the wellbeing of mankind.
Collapse
Affiliation(s)
- W Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | | | | | | | | | | |
Collapse
|
246
|
Fair JM, Nemeth NM, Taylor-McCabe KJ, Shou Y, Marrone BL. Clinical and acquired immunologic responses to West Nile virus infection of domestic chickens (Gallus gallus domesticus). Poult Sci 2011; 90:328-36. [PMID: 21248329 DOI: 10.3382/ps.2010-00809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous bird species are highly susceptible to North American strains of West Nile virus (WNV), and although domestic chickens are relatively resistant to WNV-associated disease, this species currently represents the most practical avian model for immune responses to WNV infection. Knowledge of the immunomodulation of susceptibility to WNV in birds is important for understanding taxonomic differences in infection outcomes. While focusing on immunophenotyping of CD3(+), CD4(+), CD8(+), and CD45(+) lymphocyte subpopulations, we compared lymphocyte subpopulations, blood chemistries, cloacal temperatures, IgM and IgG antibody titers, and differential whole-blood cell counts of WNV-infected and uninfected hens. Total blood calcium and lymphocyte numbers were lower in WNV-infected chickens compared with uninfected chickens. The heterophil-to-lymphocyte ratio increased over time from 2 to 22 d postinoculation (DPI) in uninfected chickens and from 2 to 8 DPI in WNV-infected chickens, although levels declined from 8 to 22 DPI in the latter group. No significant differences were found in the remaining immunological and hematological variables of the WNV-infected and uninfected groups. Our results reaffirm that chickens are resistant to WNV infection, and demonstrated that the heterophil-to-lymphocyte ratio differed between groups, allowing for sorting of infection status. Similar patterns in immune responses over time in both infected and uninfected hens may be related to age (i.e., 10 wk) and associated immune development.
Collapse
Affiliation(s)
- J M Fair
- Los Alamos National Laboratory, Biosecurity and Public Health, Los Alamos, NM 87545, USA.
| | | | | | | | | |
Collapse
|
247
|
Garcia JM, Lai JCC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 2011; 9:443-55. [PMID: 21504401 DOI: 10.1586/eri.11.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudotyped viral particles are being used as safe surrogates to mimic the structure and surface of many viruses, including highly pathogenic viruses such as avian influenza H5N1, to investigate biological functions mediated by the envelope proteins derived from these viruses. The first part of this article evaluates and discusses the differences in the production and characterization of influenza pseudoparticles. The second part focuses on the applications that such a flexible tool can provide in modern influenza research, in particular in the fields of drug discovery, molecular biology and diagnosis.
Collapse
Affiliation(s)
- Jean-Michel Garcia
- HKU-Pasteur Research Centre, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong.
| | | |
Collapse
|
248
|
Abstract
Influenza A viruses are spherical particles that attach to cells through bonds between hemagglutinin and specific cellular receptors. Numerous studies performed have recently revealed that Sialic acid (SA) is a crucial component of influenza A virus receptors. This brief review summarizes recent advances in our understanding of influenza A virus receptors. The introduction describes the classification of influenza A virus receptors and the review continues with a survey of the distribution of SA in different tissue and host. This is followed by research applications of influenza A virus receptors, and explanation of why receptor studies are so important on a world-wide scale.
Collapse
Affiliation(s)
- Shengqiang Ge
- Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | | |
Collapse
|
249
|
Kadirvelraj R, Grant OC, Goldstein IJ, Winter HC, Tateno H, Fadda E, Woods RJ. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc human-type influenza receptor. Glycobiology 2011; 21:973-84. [PMID: 21436237 DOI: 10.1093/glycob/cwr030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
McErlean P, Greiman A, Favoreto S, Avila PC. Viral diversity in asthma. Immunol Allergy Clin North Am 2011; 30:481-95, v. [PMID: 21029933 PMCID: PMC2967440 DOI: 10.1016/j.iac.2010.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Peter McErlean
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, 240 East Huron, McGaw M530h, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|