201
|
Abstract
The discovery of aquaporin-1 (AQP1) explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the identification of a whole new family of membrane proteins, the aquaporin water channels. At present, at least eight aquaporins are expressed at distinct sites in the kidney and four members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. In the present review, a number of inherited and acquired conditions characterized by urinary concentration defects as well as common diseases associated with severe water retention are discussed with relation to the role of aquaporins in regulation and dysregulation of renal water transport.
Collapse
Affiliation(s)
- S Nielsen
- The Water and Salt Research Center, University of Aarhus, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
202
|
Kondo Y, Morimoto T, Nishio T, Aslanova UF, Nishino M, Farajov EI, Sugawara N, Kumagai N, Ohsaga A, Maruyama Y, Takahashi S. Phylogenetic, ontogenetic, and pathological aspects of the urine-concentrating mechanism. Clin Exp Nephrol 2006; 10:165-74. [PMID: 17009073 DOI: 10.1007/s10157-006-0429-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/09/2006] [Indexed: 12/21/2022]
Abstract
The urine-concentrating mechanism is one of the most fundamental functions of avian and mammalian kidneys. This particular function of the kidneys developed as a system to accumulate NaCl in birds and as a system to accumulate NaCl and urea in mammals. Based on phylogenetic evidence, the mammalian urine-concentrating mechanism may have evolved as a modification of the renal medulla's NaCl accumulating system that is observed in birds. This qualitative conversion of the urine-concentrating mechanism in the mammalian inner medulla of the kidneys may occur during the neonatal period. Human kidneys have several suboptimal features caused by the neonatal conversion of the urine-concentrating mechanism. The urine-concentrating mechanism is composed of various functional molecules, including water channels, solute transporters, and vasopressin receptors. Abnormalities in water channels aquaporin (AQP)1 and AQP2, as well as in the vasopressin receptor V2R, are known to cause nephrogenic diabetes insipidus. An analysis of the pathological mechanism involved in nephrogenic diabetes insipidus suggests that molecular chaperones may improve the intracellular trafficking of AQP2 and V2R, and, in the near future, such chaperones may become a new clinical tool for treating nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Yoshiaki Kondo
- Department of Medical Informatics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Egan JR, Butler TL, Au CG, Tan YM, North KN, Winlaw DS. Myocardial water handling and the role of aquaporins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1043-52. [PMID: 16876107 DOI: 10.1016/j.bbamem.2006.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 03/08/2006] [Accepted: 05/16/2006] [Indexed: 01/19/2023]
Abstract
Cardiac surgery is performed in approximately 770,000 adults and 30,000 children in the United States of America annually. In this review we outline the mechanistic links between post-operative myocardial stunning and the development of myocardial edema. These interrelated processes cause a decline in myocardial performance that account for significant morbidity and mortality after cardiac surgery. Factors leading to myocardial edema include hemodilution, ischemia and reperfusion as well as osmotic gradients arising from pathological change. Several members of the aquaporin family of water transport proteins have been described in the myocardium although their role in the pathogenesis and resolution of cardiac edema is not established. This review examines evidence for the involvement of aquaporins in myocardial water handling during normal and pathological conditions.
Collapse
Affiliation(s)
- Jonathan R Egan
- Kid's Heart Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
204
|
Ishibashi K. Aquaporin subfamily with unusual NPA boxes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:989-93. [PMID: 16579962 DOI: 10.1016/j.bbamem.2006.02.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/18/2006] [Accepted: 02/21/2006] [Indexed: 11/23/2022]
Abstract
Aquaporins have been identified based on highly conserved two asparagine-proline-alanine (NPA) boxes that are important for the formation of a water-permeating pore. Some aquaporin-like sequences, however, have less conserved NPA boxes. Although they have lower homology with conventional aquaporins, they should be included in aquaporin family based on their conserved six transmembrane domains and hydrophobic NPA box-like repeats. They are widely distributed in multicellular organisms. Only SIPs from plants and AQP11/12 from mammals were examined previously and found to be localized inside the cell. Intracellular localization will be a common feature of these aquaporin-like proteins since most of them have positively charged amino acid clusters at the carboxy-termini similar to di-lysine motif (-KKXX) for an endoplasmic reticulum retention signal. Accordingly, they are tentatively named subcellular-aquaporins in this review. Currently, studies on their functions and biological roles are limited. SIPs were shown to function as water channels and the disruption of AQP11 produced neonatally fatal polycystic kidneys. Further works on subcellular-aquaporins will reveal new insights into the roles of aquaporins.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Molecular Biology, Clinical research Center, Chiba-east Hospital, 673 Nitona, Chiba 260-8712, Japan.
| |
Collapse
|
205
|
Butler TL, Au CG, Yang B, Egan JR, Tan YM, Hardeman EC, North KN, Verkman AS, Winlaw DS. Cardiac aquaporin expression in humans, rats, and mice. Am J Physiol Heart Circ Physiol 2006; 291:H705-13. [PMID: 16582023 DOI: 10.1152/ajpheart.00090.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water accumulation in the heart is important in ischemia-reperfusion injury and operations performed by using cardiopulmonary bypass, with cardiac dysfunction associated with myocardial edema being the principal determinant of clinical outcome. As an initial step in determining the role of aquaporin (AQP) water channels in myocardial edema, we have assessed the myocardial expression of AQPs in humans, rats, and mice. RT-PCR revealed expression of AQP-1, -4, -6, -7, -8, and -11 transcripts in the mouse heart. AQP-1, -6, -7, and -11 mRNAs were found in the rat heart as well as low levels of AQP-4 and -9. Human hearts contained AQP-1, -3, -4, -5, -7, -9, -10, and -11 mRNAs. AQP-1 protein expression was confirmed by Western blot analysis in all three species. AQP-4 protein was detected in the mouse heart but not in the rat or human heart. To determine the potential functional consequences of myocardial AQP expression, water permeability was measured in plasma membrane vesicles from myocardial cells of wild-type versus various AQP knockout mice. Water permeability was reduced by AQP-1 knockout but not by AQP-4 or AQP-8 knockout. With the use of a model of isolated rat heart perfusion, it was found that osmotic and ischemic stresses are not associated with changes in AQP-1 or AQP-4 expression. These studies support a possible functional role of AQP-1 in myocardium but indicate that early adaptations to osmotic and ischemic stress do not involve transcriptional or posttranslational AQP-1 regulation.
Collapse
Affiliation(s)
- Tanya L Butler
- Kids Heart Research, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta 2006; 28:421-8. [PMID: 16870248 DOI: 10.1016/j.placenta.2006.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To assess the role of aquaporins (AQPs) in the regulation of amniotic fluid (AF) volume, we determined AF volume and composition and placental and fetal membrane AQP expression throughout the second half of murine gestation. METHODS Pregnant CD1 mice were sacrificed at e10-19 and AF volume and composition determined. Placenta and fetal membranes were screened for AQP gene expression. AQP gene expression was quantified by real-time RT PCR and protein location determined by immunohistochemistry. Changes in AF volume were correlated with AQP expression. RESULTS Both membranes and placenta demonstrated expression of AQP1, -3, -8 and -9. Advancing gestation was associated with increased AF volume from e10 to e16, with a marked decrease in AF volume from e16 to e19. By immunohistochemistry, AQP1 was localized to placental vessels and AQP3 to trophoblast. AF volume was negatively correlated with fetal membrane AQP1 and placental AQP1 and AQP9 expression, and positively correlated with placental AQP3 expression. CONCLUSION Changes in AQPs with advancing gestation, and their correlation with AF volume, suggest a role in mediating placental and membrane water flow and ultimately AF volume. AQP1 appears to regulate fetal membrane water flow, and AQP3 is a likely candidate for the regulation of placental water flow.
Collapse
|
207
|
Ablimit A, Matsuzaki T, Tajika Y, Aoki T, Hagiwara H, Takata K. Immunolocalization of water channel aquaporins in the nasal olfactory mucosa. ACTA ACUST UNITED AC 2006; 69:1-12. [PMID: 16609265 DOI: 10.1679/aohc.69.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aquaporins (AQPs), membrane water channel proteins expressed in various tissues and organs, serve in the transfer of water and small solutes across the membrane. We raised antibodies to AQPs using isoform-specific synthetic peptides and surveyed their expression in the rat nasal olfactory and respiratory mucosae. AQP1, AQP3, AQP4, and AQP5 were detected by immunohistochemical and immunoblotting analyses. AQP1 was expressed in the endothelial cells of blood vessels and the surrounding connective tissue cells in the olfactory and respiratory mucosae. AQP1 may be involved in water transfer across the blood vessel wall. In the olfactory epithelium, no AQP was detected in the olfactory sensory cells. Instead, AQP3 was abundant in the olfactory epithelium, where it was localized in the supporting cells and basal cells. Expression of AQP3 was mostly restricted to the basal cells in the respiratory epithelium. In marked contrast, AQP4 was abundant in the respiratory epithelium, but its abundance was limited to the basal cells in the olfactory epithelium. In the Bowman's gland, AQP5 was localized in the apical membrane in the secretory acinar cells, whereas AQP3 and AQP4 were found in the basolateral membrane. Similar localization was seen in its duct cells. These results showed a distinct localization pattern for AQPs in the olfactory epithelium. AQP3 and AQP4 in the supporting cells and basal cells may play an important role in generating and maintaining the specific microenvironment around the olfactory sensory cells. AQP3, AQP4, and AQP5 in the Bowman's gland may serve in the secretion to generate the microenvironment at the apical surface of the olfactory dendrites for odorant reception.
Collapse
Affiliation(s)
- Abduxukur Ablimit
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | |
Collapse
|
208
|
Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P. Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC BIOCHEMISTRY 2006; 7:14. [PMID: 16650285 PMCID: PMC1475587 DOI: 10.1186/1471-2091-7-14] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 05/01/2006] [Indexed: 11/10/2022]
Abstract
Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11). AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.
Collapse
Affiliation(s)
- Daniel A Gorelick
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Jeppe Praetorius
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| | - Takashi Tsunenari
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| | - Peter Agre
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
209
|
Abstract
Transgenic mouse models of aquaporin (AQP) deletion and mutation have been instructive in elucidating the role of AQPs in renal physiology. Mice lacking AQP1 are unable to concentrate their urine because of low water permeability in the proximal tubule, thin descending limb of Henle, and outer medullary descending vasa recta, resulting in defective near-isosmolar fluid absorption in the proximal tubule and defective countercurrent multiplication. Mice lacking functional AQP2, AQP3, or AQP4 manifest various degrees of nephrogenic diabetes insipidus resulting from reduced collecting duct water permeability. Mice lacking AQP7 and AQP8 can concentrate their urine fully, although AQP7 null mice manifest an interesting defect in glycerol reabsorption. Two unexpected renal phenotypes of AQP null mice have been discovered recently, including defective proximal tubule cell migration in AQP1 deficiency, and cystic renal disease in AQP11 deficiency. AQPs thus are important in several aspects of the urinary concentrating mechanism and in functions unrelated to tubular fluid transport. The mouse phenotype data suggest the renal AQPs as targets for the development of aquaretics and potentially for therapy of cystic renal disease and acute renal injury.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0521, USA.
| |
Collapse
|
210
|
Abstract
The review focuses on the potential physiological and pathophysiological roles of aquaporins (AQPs), a family of water channel proteins, in the hepatobiliary system. Among 13 aquaporins (AQP0-AQP12) cloned in mammals, seven AQPs have been identified in the liver and biliary tree. Accumulating evidence suggests that AQPs are likely involved in canalicular and ductal bile secretion, gluconeogenesis and microbial infection and may have other novel roles that affect liver function.
Collapse
|