201
|
Chen X, Zhu Y, Zheng W, Yan S, Li Y, Xie S. Elucidating doxycycline biotransformation mechanism by Chryseobacterium sp. WX1: Multi-omics insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133975. [PMID: 38452667 DOI: 10.1016/j.jhazmat.2024.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Doxycycline (DOX) represents a second-generation tetracycline antibiotic that persists as a challenging-to-degrade contaminant in environmental compartments. Despite its ubiquity, scant literature exists on bacteria proficient in DOX degradation. This study marked a substantial advancement in this field by isolating Chryseobacterium sp. WX1 from an activated sludge enrichment culture, showcasing its unprecedented ability to completely degrade 50 mg/L of DOX within 44 h. Throughout the degradation process, seven biotransformation products were identified, revealing a complex pathway that began with the hydroxylation of DOX, followed by a series of transformations. Employing an integrated multi-omics approach alongside in vitro heterologous expression assays, our study distinctly identified the tetX gene as a critical facilitator of DOX hydroxylation. Proteomic analyses further pinpointed the enzymes postulated to mediate the downstream modifications of DOX hydroxylation derivatives. The elucidated degradation pathway encompassed several key biological processes, such as the microbial transmembrane transport of DOX and its intermediates, the orchestration of enzyme synthesis for transformation, energy metabolism, and other gene-regulated biological directives. This study provides the first insight into the adaptive biotransformation strategies of Chryseobacterium under DOX-induced stress, highlighting the potential applications of this strain to augment DOX removal in wastewater treatment systems containing high concentrations of DOX.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
202
|
Han Y, Li M, Su D, Xiong S, Feng Y, Deng Q, Ding H. Chlorogenic acid attenuates tet (X)-mediated doxycycline resistance of Riemerella anatipestifer. Front Vet Sci 2024; 11:1368579. [PMID: 38764851 PMCID: PMC11099206 DOI: 10.3389/fvets.2024.1368579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction The increasing resistance of R. anatipestifer has posed a significant threat to the poultry industry in recent years. The tet gene is the primary determinant of tetracycline resistance in numerous bacteria, and the enzyme modification gene tet(X) is predominantly detected in tetracycline-resistant R. anatipestifer strains. Methods In this study, we evaluated the susceptibility of both the standard strain and clinical isolates of R. anatipestifer to doxycycline. And the expression levels of tet(X), tet(A), and tet(O) genes were detected. To assess drug susceptibility, shuttle plasmids were constructed to transfer the tet(X) gene into the standard strain of R. anatipestifer followed by treatment with chlorogenic acid. Results and discussion The results revealed that the minimum inhibitory concentration of doxycycline for the standard strain was 0.25μg/mL, whereas it exceeded 8μg/mL for the clinical isolates. Furthermore, there was a significant upregulation observed in expression levels of tet(X), tet(A), and tet(O) genes among induced strains. Interestingly, when transferring the tet(X) gene into the standard strain, its sensitivity to doxycycline decreased; however, MIC values for chlorogenic acid remained consistent between both standard and drug-resistant strains of R. anatipestifer. Moreover, we made a surprising discovery that screening passage with chlorogenic acid resulted in increased sensitivity of R. anatipestifer to doxycycline. Further analysis demonstrated a reversal in expression trends among three differentially expressed genes within induced drug resistance group after intervention with chlorogenic acid. The main objective behind this study is to investigate both killing effect exerted by chlorogenic acid on drug-resistant R. anatipestifer as well as its regulatory impact on drug resistance genes. This will provide novel insights and theoretical basis towards development of chlorogenic acid as a promising drug for treatment and control of drug resistance in R. anatipestifer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
203
|
Zalewska M, Błażejewska A, Szadziul M, Ciuchciński K, Popowska M. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30819-30835. [PMID: 38616224 PMCID: PMC11096248 DOI: 10.1007/s11356-024-33276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Szadziul
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Ciuchciński
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
204
|
Han Z, Zhang Q, Mirza IA, Ding Y, Nan X, Zhao Q, Li R, Xu L, Zhang N, Duan M, Zeng S, Kong Q, Zhang W, Wang H, Wu X, Zuo X, Li Y, Li Y. Efficacy of Tetracycline Three Times Daily was Comparable to That of Four Times Daily for Helicobacter pylori Rescue Treatment: A Multicenter, Noninferiority, Randomized Controlled Trial. Helicobacter 2024; 29:e13102. [PMID: 38873902 DOI: 10.1111/hel.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The optimal dosage of tetracycline remains unclear for Helicobacter pylori eradication. Frequent dosing requirements may decrease patient adherence and increase the incidence of adverse events, potentially reducing treatment efficacy. This study aimed to compare the efficacy of different tetracycline dosages in rescue treatment for H. pylori infection. METHODS A total of 406 patients needing H. pylori rescue treatment were enrolled. Patients were randomized into two groups and received bismuth-containing quadruple therapies as follows: esomeprazole 40 mg twice daily, bismuth 220 mg twice daily, amoxicillin 1000 mg twice daily, and tetracycline 500 mg either three (TET-T group) or four (TET-F group) times daily. At least 6 weeks after treatment completion, a 13C-urea breath test was performed to evaluate H. pylori eradication. RESULTS The intention-to-treat (ITT) eradication rates were 91.13% (185/203) and 90.15% (183/203) (p = 0.733), the modified ITT (MITT) eradication rates were 94.87% (185/195) and 95.31% (183/192) (p = 0.841), and the per-protocol (PP) eradication rates were 94.79% (182/192) and 95.21% (179/188) (p = 0.851) in the TET-T group and TET-F group, respectively. The eradication rates for the TET-T group were not inferior to those of the TET-F group in ITT, MITT, and PP analyses. The incidence of adverse effects was significantly lower in the TET-T group than in the TET-F group (23.65% vs. 33.50%, p = 0.028). No significant differences were observed in treatment compliance between the groups. CONCLUSIONS The dose of tetracycline administered three times daily showed comparable efficacy to that administered four times daily, while significantly reducing the incidence of adverse events. The combination of tetracycline and amoxicillin in bismuth-containing quadruple therapy achieved a high eradication rate in H. pylori rescue treatment.
Collapse
Affiliation(s)
- Zhongxue Han
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiumei Zhang
- Department of Gastroenterology, Yuncheng Traditional Chinese Medicine Hospital, Heze, Shandong, China
| | - Iqtida Ahmed Mirza
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuming Ding
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xueping Nan
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qing Zhao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Ruili Li
- Department of Gastroenterology, Taierzhuang District People's Hospital, Zaozhuang, Shandong, China
| | - Lidong Xu
- Department of Gastroenterology, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, Henan, China
| | - Ning Zhang
- Department of Gastroenterology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Miao Duan
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuyan Zeng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qingzhou Kong
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenlin Zhang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Wang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqi Wu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yueyue Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
205
|
Campagnano M, Xiao K, Gilboa Y, Cheruty U, Friedler E. Fate of antibiotics and hormones during hydrothermal carbonization of poultry litter: degradation kinetics and toxicity assessment of filtrates and hydrochars. ENVIRONMENTAL RESEARCH 2024; 248:118168. [PMID: 38220073 DOI: 10.1016/j.envres.2024.118168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This study investigated degradation kinetics of five selected organic micropollutants (OMPs) present in poultry litter (namely: sulfadiazine, tetracycline, and doxycycline hyclate (antibiotics); estrone and 17-β-estradiol (hormones)) during hydrothermal carbonization (HTC) treatment as the temperature stepwise increased to 250 °C. All five pure OMPs were completely degraded before 250 °C was reached during the HTC process. Nevertheless, presence of poultry litter slowed down the degradation of OMPs. Through elemental mass balance calculation, it is noted that after 15 min (temperature less than 137 °C), 69-82% of organic carbon and 50-66% of organic nitrogen initially consisting part of the target antibiotics were fully mineralized. Both HTC filtrates and hydrochars obtained from poultry litter inhibited Escherichia coli and Bacillus subtilis growth. A combination of high salinity, high nutrients, dissolved organic carbon, and other ions in the filtrate as well as the adsorption of OMPs on hydrochars were probably the reason for the high toxicity.
Collapse
Affiliation(s)
- Micol Campagnano
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Keke Xiao
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, 515063 Shantou, Guangdong, China.
| | - Yael Gilboa
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Uta Cheruty
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
206
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
207
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
208
|
Huang Y, Boyen F, Antonissen G, Vereecke N, Van Immerseel F. The Genetic Landscape of Antimicrobial Resistance Genes in Enterococcus cecorum Broiler Isolates. Antibiotics (Basel) 2024; 13:409. [PMID: 38786138 PMCID: PMC11117384 DOI: 10.3390/antibiotics13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Enterococcus cecorum is associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers. Prophylactic treatment with antimicrobials is common in the poultry industry, and, in the case of outbreaks, antimicrobial treatment is needed. In this study, the minimum inhibitory concentrations (MICs) and epidemiological cutoff (ECOFF) values (COWT) for ten antimicrobials were determined in a collection of E. cecorum strains. Whole-genome sequencing data were analyzed for a selection of these E. cecorum strains to identify resistance determinants involved in the observed phenotypes. Wild-type and non-wild-type isolates were observed for the investigated antimicrobial agents. Several antimicrobial resistance genes (ARGs) were detected in the isolates, linking phenotypes with genotypes for the resistance to vancomycin, tetracycline, lincomycin, spectinomycin, and tylosin. These detected resistance genes were located on mobile genetic elements (MGEs). Point mutations were found in isolates with a non-wild-type phenotype for enrofloxacin and ampicillin/ceftiofur. Isolates showing non-wild-type phenotypes for enrofloxacin had point mutations within the GyrA, GyrB, and ParC proteins, while five amino acid changes in penicillin-binding proteins (PBP2x superfamily) were observed in non-wild-type phenotypes for the tested β-lactam antimicrobials. This study is one of the first that describes the genetic landscape of ARGs within MGEs in E. cecorum, in association with phenotypical resistance determination.
Collapse
Affiliation(s)
- Yue Huang
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| | - Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- PathoSense BV, 2500 Lier, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| |
Collapse
|
209
|
Gashaw M, Layloff T, Hymete A, Ashenef A. Stability indicating high performance thin layer chromatography method development and validation for quantitative determination of tetracycline hydrochloride in tetracycline hydrochloride active pharmaceutical ingredient (API) and its dosage forms. BMC Chem 2024; 18:82. [PMID: 38659043 PMCID: PMC11040820 DOI: 10.1186/s13065-024-01183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Simple, quick, cost-effective, and environmentally friendly analytical methods for quality assurance and control roles for different medicines, including Tetrcyclines, are most significantly needed. Also, different thin layer chromatography (TLC)-based methods for tetracycline identification exist, but high performance thin layer chromatography methods based on modern state- of- the art equipment are still nonexistent. Thus, in this study, analytical method development and verification were done by high performance thin layer chromatography (HPTLC) (using an automated equipment model) using glass plates coated with silica gel 60 F254 after treating with 10% Na2EDTA. Validation was carried out according to International Council for Harmonization (ICH) guidelines. A mobile phase formed from ethyl acetate, acetonitrile, methanol, and 1% aqueous ammonia in the composition of 4.4:19.6:10:6 volume to volume ratio (V/V) was used. Rf value, percentage recoveries, linearity ranges, limit of detection (LOD), and limit of quantitation (LOQ) for the developed HPTLC method were 0.28, 100.83-106.25%, 160-560 ng/band (r2 values of 0.9999), 31.9 ng/band, and 96.7 ng/band, respectively. The results of the sample assays conducted using the new method and the United States Pharmacopoeia (USP) high performance liquid chromatography (HPLC) method were 91.59% to 108.3% and 90.83% to 102.85%, respectively. The F test for the aforementioned methods was 2.01, which is smaller than the tabulated F value of 5.05 with 5 degrees of freedom at a 95% confidence range, proving that the newly developed HPTLC and HPLC pharmacopoeial methods can be used interchangeably.The newly developed HPTLC method is easy, economical, specific, accurate, and roboust, thus it can be employed in a range of settings that require quality control and assurance activities of tetracycline hydrochloride (TC-HCl) in bulk and ointment dosage forms.
Collapse
Affiliation(s)
- Misganaw Gashaw
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Health Sciences, Debre Markos University, P.O. Box. 269, Debre Markos, Ethiopia
| | | | - Ariaya Hymete
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
| | - Ayenew Ashenef
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia.
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
210
|
Watanabe Y, Haneda T, Kimishima A, Kuwae A, Suga T, Suzuki T, Iwabuchi Y, Honsho M, Honma S, Iwatsuki M, Matsui H, Hanaki H, Kanoh N, Abe A, Asami Y, Ōmura S. PurA is the main target of aurodox, a type III secretion system inhibitor. Proc Natl Acad Sci U S A 2024; 121:e2322363121. [PMID: 38640341 PMCID: PMC11046696 DOI: 10.1073/pnas.2322363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.
Collapse
Affiliation(s)
- Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Aoi Kimishima
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Asaomi Kuwae
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Takuya Suga
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Takahiro Suzuki
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Sota Honma
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Naoki Kanoh
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo142-8501, Japan
| | - Akio Abe
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Yukihiro Asami
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| |
Collapse
|
211
|
Langelier C, Chu V, Glascock A, Donnell D, Grabow C, Brown C, Ward R, Love C, Kalantar K, Cohen S, Cannon C, Woodworth M, Kelley C, Celum C, Luetkemeyer A. Doxycycline post-exposure prophylaxis for sexually transmitted infections impacts the gut antimicrobial resistome. RESEARCH SQUARE 2024:rs.3.rs-4243341. [PMID: 38699315 PMCID: PMC11065088 DOI: 10.21203/rs.3.rs-4243341/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Doxycycline post-exposure prophylaxis (doxy-PEP) reduces bacterial sexually transmitted infections (STIs) among men who have sex with men and transgender women. While poised for widespread clinical implementation, the impact of doxy-PEP on antimicrobial resistance remains a primary concern as its effects on the gut microbiome and resistome, or the antimicrobial resistance genes (ARGs) present in the gut microbiome, are unknown. To investigate these effects, we studied participants from a randomized clinical trial who either received doxy-PEP as a one-time doxycycline 200 mg taken after condomless sex (DP arm, n = 100) or standard of care treatment (SOC arm, n = 50). From self-collected rectal swabs at enrollment (day-0) and after 6 months (month-6), we performed metagenomic DNA sequencing (DNA-seq) or metatranscriptomic RNA sequencing (RNA-seq). DNA-seq data was analyzable from 127 samples derived from 89 participants, and RNA-seq data from 86 samples derived from 70 participants. We compared the bacterial microbiome and resistome between the two study arms and over time. Tetracycline ARGs were detected in all day-0 DNA-seq samples and 85% of day-0 RNA-seq samples. The proportional mass of tetracycline ARGs in the resistome increased between day-0 and month-6 in DP participants from 46-51% in the metagenome (p = 0.02) and 4-15% in the metatranscriptome (p < 0.01), but no changes in other ARG classes were observed. Exposure to a higher number of doxycycline doses correlated with proportional enrichment of tetracycline ARGs in the metagenome (Spearman's ρ = 0.23, p < 0.01) and metatranscriptome (Spearman's ρ = 0.55, p < 0.01). Bacterial microbiome alpha diversity, beta diversity, and total bacterial mass did not differ between day-0 and month-6 samples from DP participants when assessed by either DNA-seq or RNA-seq. In an abundance-based correlation analysis, we observed an increase over time in the strength of the correlation between tetracycline ARGs and specific bacterial taxa, including some common human pathogens. In sum, doxy-PEP use over a 6-month period was associated with an increase in the proportion of tetracycline ARGs comprising the gut resistome, and an increase in the expression of tetracycline ARGs. Notably, doxy-PEP did not significantly alter alpha diversity or taxonomic composition of the gut microbiome, and did not demonstrate significant increases in non-tetracycline ARG classes. Further studies and population level surveillance are needed to understand the implications of these findings as doxy-PEP is implemented as a public health strategy.
Collapse
|
212
|
Childs A, Chand D, Pereira J, Santra S, Rajaraman S. BacteSign: Building a Findable, Accessible, Interoperable, and Reusable (FAIR) Database for Universal Bacterial Identification. BIOSENSORS 2024; 14:176. [PMID: 38667169 PMCID: PMC11047924 DOI: 10.3390/bios14040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
With the increasing incidence of diverse global bacterial outbreaks, it is important to build an immutable decentralized database that can capture regional changes in bacterial resistance with time. Herein, we investigate the use of a rapid 3D printed µbiochamber with a laser-ablated interdigitated electrode developed for biofilm analysis of Pseudomonas aeruginosa, Acinetobacter baumannii and Bacillus subtilis using electrochemical biological impedance spectroscopy (EBIS) across a 48 h spectrum, along with novel ladder-based minimum inhibitory concentration (MIC) stencil tests against oxytetracycline, kanamycin, penicillin G and streptomycin. Furthermore, in this investigation, a search query database has been built demonstrating the deterministic nature of the bacterial strains with real and imaginary impedance, phase, and capacitance, showing increased bacterial specification selectivity in the 9772.37 Hz range.
Collapse
Affiliation(s)
- Andre Childs
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - David Chand
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jorge Pereira
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
| | - Swaminathan Rajaraman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
213
|
Stevanovic M, Teuber Carvalho JP, Bittihn P, Schultz D. Dynamical model of antibiotic responses linking expression of resistance genes to metabolism explains emergence of heterogeneity during drug exposures. Phys Biol 2024; 21:036002. [PMID: 38412523 PMCID: PMC10988634 DOI: 10.1088/1478-3975/ad2d64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Antibiotic responses in bacteria are highly dynamic and heterogeneous, with sudden exposure of bacterial colonies to high drug doses resulting in the coexistence of recovered and arrested cells. The dynamics of the response is determined by regulatory circuits controlling the expression of resistance genes, which are in turn modulated by the drug's action on cell growth and metabolism. Despite advances in understanding gene regulation at the molecular level, we still lack a framework to describe how feedback mechanisms resulting from the interdependence between expression of resistance and cell metabolism can amplify naturally occurring noise and create heterogeneity at the population level. To understand how this interplay affects cell survival upon exposure, we constructed a mathematical model of the dynamics of antibiotic responses that links metabolism and regulation of gene expression, based on the tetracycline resistancetetoperon inE. coli. We use this model to interpret measurements of growth and expression of resistance in microfluidic experiments, both in single cells and in biofilms. We also implemented a stochastic model of the drug response, to show that exposure to high drug levels results in large variations of recovery times and heterogeneity at the population level. We show that stochasticity is important to determine how nutrient quality affects cell survival during exposure to high drug concentrations. A quantitative description of how microbes respond to antibiotics in dynamical environments is crucial to understand population-level behaviors such as biofilms and pathogenesis.
Collapse
Affiliation(s)
- Mirjana Stevanovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - João Pedro Teuber Carvalho
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| |
Collapse
|
214
|
Saliy O, Popova M, Tarasenko H, Getalo O. Development strategy of novel drug formulations for the delivery of doxycycline in the treatment of wounds of various etiologies. Eur J Pharm Sci 2024; 195:106636. [PMID: 38185273 DOI: 10.1016/j.ejps.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Doxycycline hyclate (DOXH) is a broad-spectrum antibiotic derived synthetically from tetracycline. Despite its use in clinical practice for more than 40 years, DOXH remains an effective antibiotic with retained activity. The potential advantages of DOXH for wound healing therapy include its mechanisms of action, such as anti-inflammatory effects, antioxidant properties, modulation of cellular processes, stimulation of collagen synthesis, and antimicrobial activity. As current standards of care aim to improve wound healing by promoting rapid closure, a relevant direction is the development of novel DOXH formulations for parenteral delivery that enhance both skin regeneration and control of infectious conditions. Oral delivery is the most common and commercially available route for administering DOXH therapeutic agents. However, parenteral delivery of DOXH, where the antibiotic substance is not in a solid state (as in powdered or compressed solid form) but rather dissolved in any carrier, presents challenges regarding DOX solubility and the stability of DOXH solutions, which are major factors complicating the development of new formulations for parenteral administration. This review discusses the achievements in research strategies and the development of new pharmaceutical formulations for the delivery of doxycycline in the treatment of wounds of various etiologies.
Collapse
Affiliation(s)
- Olena Saliy
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine
| | - Mariia Popova
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine.
| | - Hanna Tarasenko
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine
| | - Olga Getalo
- Department of Industrial, Clinical pharmacy and Clinical pharmacology, Shupyk National Healthcare University of Ukraine, Dorohozhytska Street 9, Kyiv 04112 Ukraine
| |
Collapse
|
215
|
Abdelrahim A, Harrell E, Fedorka-Cray PJ, Jacob M, Thakur S. Phenotypic and Genotypic Characterizations of Antimicrobial-Resistant Escherichia coli Isolates from Diverse Retail Meat Samples in North Carolina During 2018-2019. Foodborne Pathog Dis 2024; 21:211-219. [PMID: 38197854 DOI: 10.1089/fpd.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Surveillance of antimicrobial-resistant pathogens in U.S. retail meats is conducted to identify potential risks of foodborne illness. In this study, we conducted a phenotypic and genotypic analysis of Escherichia coli recovered from a diverse range of retail meat types during 2018-2019 in North Carolina. The investigation was conducted as part of the National Antimicrobial Resistance Monitoring System (NARMS). Retail meat sampling and E. coli isolation were performed in accordance with NARMS retail meat isolation protocols. We used the Sensititre™ broth microdilution system to determine phenotypic resistance to 14 antimicrobial agents and the Illumina next-generation sequencing platform for genotypic resistance profiling. The highest prevalence of E. coli isolates was found in ground turkey (n = 57, 42.9%) and chicken (n = 27, 20.3%), followed by ground beef (n = 25, 18.9%) and pork (n = 24, 18%). The isolates were divided into seven different phylogroups using the Clermont typing tool, with B1 (n = 59, 44.4%) and A (n = 39, 29.3%) being the most dominant, followed by B2 (n = 14, 10.5%), D (n = 7, 5.3%), F (n = 6, 4.5%), E (n = 3, 2.3%), and C (n = 2, 1.5%). Using multilocus sequence typing (MLST), 128 Sequence types (STs) were identified indicating high diversity. Phenotypic and genotypic resistance was observed toward aminoglycosides, sulfonamides, beta-lactams, macrolides, tetracyclines, phenicols, and fluoroquinolones. Ground turkey samples were more resistant to the panel of tested antimicrobials than chicken, beef, or pork (p < 0.05). All isolates were found to be susceptible to meropenem. A high percentage of turkey isolates (n = 16, 28%) were multidrug-resistant (MDR) compared with 18.5% of chicken (n = 5), 8.4% of pork (n = 2), and 8% of beef isolates (n = 2). This study highlights the benefit of surveillance to identify MDR E. coli for epidemiologic tracking and is a comprehensive report of the phenotypic and genotypic characterization of E. coli isolated from retail meats in North Carolina.
Collapse
Affiliation(s)
- Afaf Abdelrahim
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
216
|
Sun S, Sun Y, Geng J, Geng L, Meng F, Wang Q, Qi H. Machine learning reveals the selection pressure exerted by nonantibiotic pharmaceuticals at environmentally relevant concentrations on antibiotic resistance genotypes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120829. [PMID: 38579474 DOI: 10.1016/j.jenvman.2024.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The emergence and increasing prevalence of antibiotic resistance pose a global public risk for human health, and nonantimicrobial pharmaceuticals play an important role in this process. Herein, five nonantimicrobial pharmaceuticals, including acetaminophen (ACT), clofibric acid (CA), carbamazepine (CBZ), caffeine (CF) and nicotine (NCT), tetracycline-resistant strains, five ARGs (sul1, sul2, tetG, tetM and tetW) and one integrase gene (intI1), were detected in 101 wastewater samples during two typical sewage treatment processes including anaerobic-oxic (A/O) and biological aerated filter (BAF) in Harbin, China. The impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on both the resistance genotypes and resistance phenotypes were explored. The results showed that a significant impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on tetracycline resistance genes encoding ribosomal protection proteins (RPPs) was found, while no changes in antibiotic phenotypes, such as minimal inhibitory concentrations (MICs), were observed. Machine learning was applied to further sort out the contribution of nonantibiotic pharmaceuticals at environmentally relevant concentrations to different ARG subtypes. The highest contribution and correlation were found at concentrations of 1400-1800 ng/L for NCT, 900-1500 ng/L for ACT and 7000-10,000 ng/L for CF for tetracycline resistance genes encoding RPPs, while no significant correlation was found between the target compounds and ARGs when their concentrations were lower than 500 ng/L for NCT, 100 ng/L for ACT and 1000 ng/L for CF, which were higher than the concentrations detected in effluent samples. Therefore, the removal of nonantibiotic pharmaceuticals in WWTPs can reduce their selection pressure for resistance genes in wastewater.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Jialu Geng
- Ecological Environmental Monitoring Centre of Hinggan League, Hinggan League, 137400, China
| | - Linlin Geng
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
217
|
Rezaei A, Moqadami A, Khalaj-Kondori M, Feizi MAH. Minocycline induced apoptosis and suppressed expression of matrix metalloproteinases 2 and 9 in the breast cancer MCF-7 cells. Mol Biol Rep 2024; 51:463. [PMID: 38551800 DOI: 10.1007/s11033-024-09380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND In women, breast cancer is the second most frequent type of cancer. Looking for new and effective cancer-specific therapies with little to no adverse effects on healthy cells is critical. OBJECTIVE Minocycline, a second-generation tetracycline, has shown anticancer effects by targeting multiple pathways in various cancers. This study aimed to determine minocycline effects on the cell proliferation, apoptosis, and invasion of the human MCF-7 cells. METHODS MTT assay was used to evaluate the cytotoxicity of minocycline on the cells. Flow cytometry was performed to investigate the induction of apoptosis and the cell cycle progression. The expression levels of apoptotic and migration proteins and genes were assessed by western blotting and qRT-PCR. The scratch test was performed to evaluate the anti-migration effect of the drug. RESULTS The results indicated that the IC50 value of minocycline for MCF-7 cells was 36.10 µM. Minocycline treatment caused sub-G1 cell accumulation, indicating a significant apoptotic effect on the MCF-7 cells. Annexin-V/PI staining revealed a significant rise in early and late apoptotic cell percentages. Minocycline up-regulated Bax and Caspase-3 expression and down-regulated Bcl-2 and Pro-Cas3. The scratch test revealed significant anti-migration effects for minocycline. Furthermore, it caused down-regulation of MMP-2 and MMP-9 in a concentration-dependent method. CONCLUSION These findings further confirmed the anticancer effect of minocycline and highlighted that minocycline maybe considered as potential therapeutic agent for breast cancer treatment.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | |
Collapse
|
218
|
Jabarin A, Shtar G, Feinshtein V, Mazuz E, Shapira B, Ben-Shabat S, Rokach L. Eravacycline, an antibacterial drug, repurposed for pancreatic cancer therapy: insights from a molecular-based deep learning model. Brief Bioinform 2024; 25:bbae108. [PMID: 38647152 PMCID: PMC11033730 DOI: 10.1093/bib/bbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a serious threat to health, with limited effective therapeutic options, especially due to advanced stage at diagnosis and its inherent resistance to chemotherapy, making it one of the leading causes of cancer-related deaths worldwide. The lack of clear treatment directions underscores the urgent need for innovative approaches to address and manage this deadly condition. In this research, we repurpose drugs with potential anti-cancer activity using machine learning (ML). METHODS We tackle the problem by using a neural network trained on drug-target interaction information enriched with drug-drug interaction information, which has not been used for anti-cancer drug repurposing before. We focus on eravacycline, an antibacterial drug, which was selected and evaluated to assess its anti-cancer effects. RESULTS Eravacycline significantly inhibited the proliferation and migration of BxPC-3 cells and induced apoptosis. CONCLUSION Our study highlights the potential of drug repurposing for cancer treatment using ML. Eravacycline showed promising results in inhibiting cancer cell proliferation, migration and inducing apoptosis in PDAC. These findings demonstrate that our developed ML drug repurposing models can be applied to a wide range of new oncology therapeutics, to identify potential anti-cancer agents. This highlights the potential and presents a promising approach for identifying new therapeutic options.
Collapse
Affiliation(s)
- Adi Jabarin
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev (BGU), P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Guy Shtar
- Department of Information Systems and Software Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev (BGU), P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Eyal Mazuz
- Department of Information Systems and Software Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Bracha Shapira
- Department of Information Systems and Software Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev (BGU), P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Lior Rokach
- Department of Information Systems and Software Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
219
|
Aslam M, Rahman J, Iqbal A, Mujtaba S, Ashok AK, Kaouche FC, Hayat MM, Nisa MU, Ashraf M. Antiurease Activity of Antibiotics: In Vitro, In Silico, Structure Activity Relationship, and MD Simulations of Cephalosporins and Fluoroquinolones. ACS OMEGA 2024; 9:14005-14016. [PMID: 38559955 PMCID: PMC10975586 DOI: 10.1021/acsomega.3c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Helicobacter pylori infection is widespread in 50% of the world's population and is associated with gastric ulcers and related disorders that ultimately culminate in gastric cancer. Levofloxacin-based, or clarithromycin-based, triple therapy is frequently used to inhibit the bacterial urease enzyme for the eradication of H. pylori. A comprehensive investigation based on the urease inhibitory profiles of antibiotics and their computational implications is lacking in the scientific literature. The present study was aimed specifically to determine the antiurease activities within the realms of cephalosporins and fluoroquinolones by in vitro methods supported with in silico investigations. The results demonstrate the jack bean urease inhibitory activity of cephalosporins, wherein cefadroxil, cefpodoxime, cefotaxime, and cefaclor displayed inhibitions (IC50 21.35 ± 0.64 to 62.86 ± 0.78 μM) compared with the standard thiourea (IC50 21.25 ± 0.15 μM). Among fluoroquinolones, levofloxacin, ofloxacin, and gemifloxacin (IC50 7.24 ± 0.29 to 16.53 ± 0.85 μM) unveiled remarkable inhibitory profiles. Levofloxacin and ofloxacin exhibited competitive inhibition against the said enzyme. Ciprofloxacin and moxifloxacin displayed weak urease inhibitions. During molecular docking studies, Asp362, Gly279, Arg338, Asn168, Asp223, Gln364, and Met366 were involved in hydrogen bonding in fluoroquinolones, and hydrogen bonding was established with Arg338, His248, Asn168 residues, and metal Ni601 and Ni602 of the enzyme. MD simulations and MMPBSA results demonstrated the existence of significant protein-ligand binding. Overall, these results warrant further investigations into the significance of these active molecules in relation to their inhibitory potential against the targeted urease enzyme.
Collapse
Affiliation(s)
- Misbah Aslam
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Jameel Rahman
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Ambar Iqbal
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
- Department
of Biochemistry and Molecular Biology, Institute of Biochemistry,
Biotechnology, Bioinformatics (IBBB), B.J. Campus, The Islamia University of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Sara Mujtaba
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Avinash Karkada Ashok
- Department
of Biotechnology, Siddaganga Institute of
Technology, Tumakuru 572103, Karnataka, India
| | - Farah Chafika Kaouche
- Department
of Chemistry, Faculty of Sciences of Mater, Ibn Khaldoun University, BP 78 zaaoura, 14000 Tiaret, Algeria
| | - Muhammad Munawar Hayat
- P
& SH Department, Punjab Drug Testing
Laboratory, 1-Bird Wood
Road, Lahore 631000, Pakistan
| | - Mouqadus-Un Nisa
- Multan Drug
Testing Laboratory, near Multan Institute
of Kidney Disease, Muzaffargarh
Road, Multan 261000, Pakistan
| | - Muhammad Ashraf
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| |
Collapse
|
220
|
Huang W, Tang S, Xiao W, Chen Y, Li L, Li J. A molecularly imprinted photoelectrochemical sensor based on an rGO/MoSSe heterojunction for the detection of chlortetracycline. Analyst 2024; 149:2023-2033. [PMID: 38404152 DOI: 10.1039/d4an00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A reduced graphene oxide/molybdenum selenosulfide (rGO/MoSSe) heterojunction was synthesized, and a molecularly imprinted photoelectrochemical sensor for the detection of chlortetracycline was prepared. MoSSe was grown in situ on rGO by a hydrothermal method to form an rGO/MoSSe heterojunction, which acts as the sensitive film of the sensor. Since rGO can promote electron transfer and effectively inhibit electron-hole recombination, it effectively reduces the recombination probability of electrons and holes and improves the photoelectric efficiency, thus enhancing the detection sensitivity of the PEC sensor. The rGO/MoSSe was immobilized on an FTO electrode, and molecularly imprinted polymers (MIPs) were prepared by electropolymerization on the rGO/MoSSe-modified FTO electrode with chlortetracycline as the template molecule and o-phenylenediamine as the functional monomer, so as to construct a molecularly imprinted photoelectrochemical (MIP-PEC) sensor. The determination of chlortetracycline was realized by the strategy of a "gate-controlled effect", and the detection range of the chlortetracycline concentration was 5.0 × 10-13-5 × 10-9 mol L-1 with a detection limit of 1.57 × 10-13 mol L-1. The sensor has been applied to the determination of chlortetracycline in animal-derived food samples.
Collapse
Affiliation(s)
- Wanjin Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Shufei Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Wei Xiao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Yafei Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| |
Collapse
|
221
|
Lovšin Ž, Kotnik T, Klančnik A. Antibiotic's target site affects the potentiation of Lactiplantibacillus plantarum inhibition and inactivation by electroporation. Front Microbiol 2024; 15:1331714. [PMID: 38585700 PMCID: PMC10996065 DOI: 10.3389/fmicb.2024.1331714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Antibiotic resistance represents a growing global threat, and thus the motivation to develop novel and combined methods of bacterial inactivation is increasing. Electroporation is a technique in which electric pulses of sufficient strength are applied to permeabilize cells, including bacteria. Combining antibacterials with electroporation is a promising strategy to potentiate their bactericidal and bacteriostatic effectiveness. This approach has already proved useful for increasing bacterial inactivation, yet most studies so far have mainly focused on the maximal achievable effects, and less on the underlying mechanisms. We recently demonstrated that in the Gram-negative (G-) bacterium Escherichia coli, electroporation potentiates antibacterials targeting the peptidoglycan wall more than those with intracellular targets. However, in Gram-positive (G+) bacteria, the wall is directly accessible from the outside, and thus the dependence of potentiation on the antibacterial's target may be rather different. Here, we compare the inactivation and growth inhibition of the G+ bacterium Lactiplantibacillus plantarum for two antibiotics with different modes of action: ampicillin (inhibits cell-wall synthesis) and tetracycline (inhibits intracellular protein synthesis). Methods We used antibiotic concentrations ranging from 0 to 30 × MIC (minimum inhibitory concentration that we predetermined for each antibiotic), a single 1-ms electric pulse with an amplitude from 0 to 20 kV/cm, and post-pulse pre-dilution incubation of 24 h or 1 h. Results Electroporation increased the inhibition and inactivation efficiency of both antibiotics, but this was more pronounced for tetracycline, with statistical significance mostly limited to 24-h incubation. In general, both inhibition and inactivation grew stronger with increasing antibiotic concentration and electric field amplitude. Discussion Our results indicate that electroporation potentiates inactivation of G+ bacteria to a larger extent for antibiotics that inhibit intracellular processes and require transport into the cytoplasm, and to a smaller extent for antibiotics that inhibit cell-wall synthesis. This is the inverse of the relation observed in G- bacteria, and can be explained by the difference in the envelope structure: in G- bacteria the outer membrane must be breached for wall-inhibiting antibiotics to access their target, whereas in G+ bacteria the wall is inherently accessible from the outside and permeabilization does not affect this access.
Collapse
Affiliation(s)
- Žana Lovšin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
222
|
Ramirez DM, Dhiman S, Mukherjee A, Wimalasekara R, Schweizer F. Application of tobramycin benzyl ether as an antibiotic adjuvant capable of sensitizing multidrug-resistant Gram-negative bacteria to rifampicin. RSC Med Chem 2024; 15:1055-1065. [PMID: 38516601 PMCID: PMC10953491 DOI: 10.1039/d3md00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
The emergence of aminoglycoside resistance has prompted the development of amphiphilic aminoglycoside derivatives which target bacterial membranes. Tobramycin and nebramine ether derivatives initially designed for this purpose were optimized and screened for their potential application as outer membrane (OM) permeabilizing adjuvants. Structure-activity relationship (SAR) studies revealed that the tobramycin benzyl ether was the most optimal OM permeabilizer, capable of potentiating rifampicin, novobiocin, vancomycin, minocycline, and doxycycline against Gram-negative bacteria. The innovative use of this compound as an adjuvant is highlighted by its ability to sensitize multidrug-resistant (MDR) Gram-negative bacteria to rifampicin and restore the susceptibility of MDR Escherichia coli to minocycline.
Collapse
Affiliation(s)
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Ayan Mukherjee
- Department of Chemistry, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Ruwani Wimalasekara
- Department of Microbiology, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
223
|
Eshboev F, Mamadalieva N, Nazarov PA, Hussain H, Katanaev V, Egamberdieva D, Azimova S. Antimicrobial Action Mechanisms of Natural Compounds Isolated from Endophytic Microorganisms. Antibiotics (Basel) 2024; 13:271. [PMID: 38534706 DOI: 10.3390/antibiotics13030271] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Infectious diseases are a significant challenge to global healthcare, especially in the face of increasing antibiotic resistance. This urgent issue requires the continuous exploration and development of new antimicrobial drugs. In this regard, the secondary metabolites derived from endophytic microorganisms stand out as promising sources for finding antimicrobials. Endophytic microorganisms, residing within the internal tissues of plants, have demonstrated the capacity to produce diverse bioactive compounds with substantial pharmacological potential. Therefore, numerous new antimicrobial compounds have been isolated from endophytes, particularly from endophytic fungi and actinomycetes. However, only a limited number of these compounds have been subjected to comprehensive studies regarding their mechanisms of action against bacterial cells. Furthermore, the investigation of their effects on antibiotic-resistant bacteria and the identification of biosynthetic gene clusters responsible for synthesizing these secondary metabolites have been conducted for only a subset of these promising compounds. Through a comprehensive analysis of current research findings, this review describes the mechanisms of action of antimicrobial drugs and secondary metabolites isolated from endophytes, antibacterial activities of the natural compounds derived from endophytes against antibiotic-resistant bacteria, and biosynthetic gene clusters of endophytic fungi responsible for the synthesis of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Farkhod Eshboev
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent 100000, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nilufar Mamadalieva
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent 100000, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
| | - Pavel A Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, Moscow 119991, Russia
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle, Germany
| | - Vladimir Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Shakhnoz Azimova
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| |
Collapse
|
224
|
Shaw ZL, Awad MN, Gharehgozlo S, Greaves TL, Haidari H, Kopecki Z, Bryant G, Spicer PT, Walia S, Elbourne A, Bryant SJ. Deep Eutectic Solvent Eutectogels for Delivery of Broad-Spectrum Antimicrobials. ACS APPLIED BIO MATERIALS 2024; 7:1429-1434. [PMID: 38445589 DOI: 10.1021/acsabm.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Gel-based wound dressings have gained popularity within the healthcare industry for the prevention and treatment of bacterial and fungal infections. Gels based on deep eutectic solvents (DESs), known as eutectogels, provide a promising alternative to hydrogels as they are non-volatile and highly tunable and can solubilize therapeutic agents, including those insoluble in hydrogels. A choline chloride:glycerol-cellulose eutectogel was loaded with numerous antimicrobial agents including silver nanoparticles, black phosphorus nanoflakes, and commercially available pharmaceuticals (octenidine dihydrochloride, tetracycline hydrochloride, and fluconazole). The eutectogels caused >97% growth reduction in Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria and the fungal species Candida albicans.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Miyah N Awad
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
225
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
226
|
Blake KS, Kumar H, Loganathan A, Williford EE, Diorio-Toth L, Xue YP, Tang WK, Campbell TP, Chong DD, Angtuaco S, Wencewicz TA, Tolia NH, Dantas G. Sequence-structure-function characterization of the emerging tetracycline destructase family of antibiotic resistance enzymes. Commun Biol 2024; 7:336. [PMID: 38493211 PMCID: PMC10944477 DOI: 10.1038/s42003-024-06023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Tetracycline destructases (TDases) are flavin monooxygenases which can confer resistance to all generations of tetracycline antibiotics. The recent increase in the number and diversity of reported TDase sequences enables a deep investigation of the TDase sequence-structure-function landscape. Here, we evaluate the sequence determinants of TDase function through two complementary approaches: (1) constructing profile hidden Markov models to predict new TDases, and (2) using multiple sequence alignments to identify conserved positions important to protein function. Using the HMM-based approach we screened 50 high-scoring candidate sequences in Escherichia coli, leading to the discovery of 13 new TDases. The X-ray crystal structures of two new enzymes from Legionella species were determined, and the ability of anhydrotetracycline to inhibit their tetracycline-inactivating activity was confirmed. Using the MSA-based approach we identified 31 amino acid positions 100% conserved across all known TDase sequences. The roles of these positions were analyzed by alanine-scanning mutagenesis in two TDases, to study the impact on cell and in vitro activity, structure, and stability. These results expand the diversity of TDase sequences and provide valuable insights into the roles of important residues in TDases, and flavin monooxygenases more broadly.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anisha Loganathan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tayte P Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Chong
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Angtuaco
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
227
|
Lee M, Fraaije MW. Equipping Saccharomyces cerevisiae with an Additional Redox Cofactor Allows F 420-Dependent Bioconversions in Yeast. ACS Synth Biol 2024; 13:921-929. [PMID: 38346396 PMCID: PMC10949242 DOI: 10.1021/acssynbio.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/16/2024]
Abstract
Industrial application of the natural deazaflavin cofactor F420 has high potential for the enzymatic synthesis of high value compounds. It can offer an additional range of chemistry to the use of well-explored redox cofactors such as FAD and their respective enzymes. Its limited access through organisms that are rather difficult to grow has urged research on the heterologous production of F420 using more industrially relevant microorganisms such as Escherichia coli. In this study, we demonstrate the possibility of producing this cofactor in a robust and widely used industrial organism, Saccharomyces cerevisiae, by the heterologous expression of the F420 pathway. Through careful selection of involved enzymes and some optimization, we achieved an F420 yield of ∼1.3 μmol/L, which is comparable to the yield of natural F420 producers. Furthermore, we showed the potential use of F420-producing S. cerevisiae for F420-dependent bioconversions by carrying out the whole-cell conversion of tetracycline. As the first demonstration of F420 synthesis and use for bioconversion in a eukaryotic organism, this study contributes to the development of versatile bioconversion platforms.
Collapse
Affiliation(s)
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
228
|
Mansouri M, Fussenegger M. Small-Molecule Regulators for Gene Switches to Program Mammalian Cell Behaviour. Chembiochem 2024; 25:e202300717. [PMID: 38081780 DOI: 10.1002/cbic.202300717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic-biology-based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small-molecule-responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.
Collapse
Affiliation(s)
- Maysam Mansouri
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
- University of Basel, Faculty of Science, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| |
Collapse
|
229
|
Hillman A, Hyland SN, Wodzanowski KA, Moore DL, Ratna S, Jemas A, Sandles LMD, Chaya T, Ghosh A, Fox JM, Grimes CL. Minimalist Tetrazine N-Acetyl Muramic Acid Probes for Rapid and Efficient Labeling of Commensal and Pathogenic Peptidoglycans in Living Bacterial Culture and During Macrophage Invasion. J Am Chem Soc 2024; 146:6817-6829. [PMID: 38427023 PMCID: PMC10941766 DOI: 10.1021/jacs.3c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.
Collapse
Affiliation(s)
- Ashlyn
S. Hillman
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - DeVonte L. Moore
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Sushanta Ratna
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Andrew Jemas
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Liam-Michael D. Sandles
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Timothy Chaya
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware
Biotechnology Institute, UDEL Flow Cytometry Core, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M. Fox
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
230
|
Lugagne JB, Blassick CM, Dunlop MJ. Deep model predictive control of gene expression in thousands of single cells. Nat Commun 2024; 15:2148. [PMID: 38459057 PMCID: PMC10923782 DOI: 10.1038/s41467-024-46361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Gene expression is inherently dynamic, due to complex regulation and stochastic biochemical events. However, the effects of these dynamics on cell phenotypes can be difficult to determine. Researchers have historically been limited to passive observations of natural dynamics, which can preclude studies of elusive and noisy cellular events where large amounts of data are required to reveal statistically significant effects. Here, using recent advances in the fields of machine learning and control theory, we train a deep neural network to accurately predict the response of an optogenetic system in Escherichia coli cells. We then use the network in a deep model predictive control framework to impose arbitrary and cell-specific gene expression dynamics on thousands of single cells in real time, applying the framework to generate complex time-varying patterns. We also showcase the framework's ability to link expression patterns to dynamic functional outcomes by controlling expression of the tetA antibiotic resistance gene. This study highlights how deep learning-enabled feedback control can be used to tailor distributions of gene expression dynamics with high accuracy and throughput without expert knowledge of the biological system.
Collapse
Affiliation(s)
- Jean-Baptiste Lugagne
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA.
| | - Caroline M Blassick
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA.
| |
Collapse
|
231
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. Gut diversity and the resistome as biomarkers of febrile neutropenia outcome in paediatric oncology patients undergoing hematopoietic stem cell transplantation. Sci Rep 2024; 14:5504. [PMID: 38448687 PMCID: PMC10918076 DOI: 10.1038/s41598-024-56242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The gut microbiota of paediatric oncology patients undergoing a conditioning regimen before hematopoietic stem cell transplantation is recently considered to play role in febrile neutropenia. Disruption of commensal microbiota and evolution of opportune pathogens community carrying a plethora of antibiotic-resistance genes play crucial role. However, the impact, predictive role and association of patient´s gut resistome in the course of the therapy is still to be elucidated. We analysed gut microbiota composition and resistome of 18 paediatric oncology patients undergoing hematopoietic stem cell transplantation, including 12 patients developing febrile neutropenia, hospitalized at The Bone Marrow Transplantation Unit of the National Institute of Children´s disease in Slovak Republic and healthy individuals (n = 14). Gut microbiome of stool samples obtained in 3 time points, before hematopoietic stem cell transplantation (n = 16), one week after hematopoietic stem cell transplantation (n = 16) and four weeks after hematopoietic stem cell transplantation (n = 14) was investigated using shotgun metagenome sequencing and bioinformatical analysis. We identified significant decrease in alpha-diversity and nine antibiotic-resistance genes msr(C), dfrG, erm(T), VanHAX, erm(B), aac(6)-aph(2), aph(3)-III, ant(6)-Ia and aac(6)-Ii, one week after hematopoietic stem cell transplantation associated with febrile neutropenia. Multidrug-resistant opportune pathogens of ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli found in the gut carried the significant subset of patient's resistome. Over 50% of patients treated with trimethoprim/sulfamethoxazole, piperacillin/tazobactam and amikacin carried antibiotic-resistance genes to applied treatment. The alpha diversity and the resistome of gut microbiota one week after hematopoietic stem cell transplantation is relevant predictor of febrile neutropenia outcome after hematopoietic stem cell transplantation. Furthermore, the interindividual diversity of multi-drug resistant opportunistic pathogens with variable portfolios of antibiotic-resistance genes indicates necessity of preventive, personalized approach.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
232
|
Yue Q, Tang C, Li X, Lv W, Liu H, Yue H, Chen Y. Response of sulfide autotrophic denitrification process and microbial community to oxytetracycline stress. CHEMOSPHERE 2024; 351:141192. [PMID: 38218239 DOI: 10.1016/j.chemosphere.2024.141192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The coexistence of antibiotics with sulfide and nitrate is common in sewage. Thus, this study explored the removal performance of nitrate and sulfide, and the response of extracellular polymer substances (EPS) and the microbial community to the sulfide autotrophic denitrification (SAD) process under oxytetracycline (OTC) stress. In Phase Ⅰ, the SAD system showed favouranle performance (nitrate removal rate > 92.57%, sulfide removal rate > 97.75%). However, in Phase Ⅳ, at OTC concentrations of 10, 15, and 20 mg/L, the NRE decreased to 76.13%, 40.71%, 11.37%, respectively, and the SRE decreased to 97.58%, 97.09%, 92.84%, respectively. At OTC concentrations of 0, 10, 15, and 20 mg/L, the EPS content were 1.62, 1.75, 2.03, and 1.42 mg/gVSS, respectively. The results showed that SAD performance gradually deteriorated under OTC stress. In particular, when the OTC concentration was 20 mg/L, the EPS content was lower than that of the control test, which could be attributed to the occurrence of microbial death. Finally, high-throughput sequencing results showed that OTC exposure led to gradual domination by heterotrophic denitrifying bacteria.
Collapse
Affiliation(s)
- Qiong Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Xiaofan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wei Lv
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hanpeng Yue
- Gansu Qilianshan Pharmaceutical Co., Ltd, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
233
|
Heo HY, Zou G, Baek S, Kim J, Mylonakis E, Ausubel FM, Gao H, Kim W. A Methylazanediyl Bisacetamide Derivative Sensitizes Staphylococcus aureus Persisters to a Combination of Gentamicin And Daptomycin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306112. [PMID: 38126676 PMCID: PMC10916567 DOI: 10.1002/advs.202306112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Infections caused by Staphylococcus aureus, notably methicillin-resistant S. aureus (MRSA), pose treatment challenges due to its ability to tolerate antibiotics and develop antibiotic resistance. The former, a mechanism independent of genetic changes, allows bacteria to withstand antibiotics by altering metabolic processes. Here, a potent methylazanediyl bisacetamide derivative, MB6, is described, which selectively targets MRSA membranes over mammalian membranes without observable resistance development. Although MB6 is effective against growing MRSA cells, its antimicrobial activity against MRSA persisters is limited. Nevertheless, MB6 significantly potentiates the bactericidal activity of gentamicin against MRSA persisters by facilitating gentamicin uptake. In addition, MB6 in combination with daptomycin exhibits enhanced anti-persister activity through mutual reinforcement of their membrane-disrupting activities. Crucially, the "triple" combination of MB6, gentamicin, and daptomycin exhibits a marked enhancement in the killing of MRSA persisters compared to individual components or any double combinations. These findings underscore the potential of MB6 to function as a potent and selective membrane-active antimicrobial adjuvant to enhance the efficacy of existing antibiotics against persister cells. The molecular mechanisms of MB6 elucidated in this study provide valuable insights for designing anti-persister adjuvants and for developing new antimicrobial combination strategies to overcome the current limitations of antibiotic treatments.
Collapse
Affiliation(s)
- Hee Young Heo
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Guijin Zou
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)Singapore138632Republic of Singapore
| | - Seongeun Baek
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Jae‐Seok Kim
- Department of Laboratory MedicineKangdong Sacred Heart HospitalHallym University College of MedicineSeoul05355Republic of Korea
| | | | - Frederick M. Ausubel
- Department of Molecular BiologyMassachusetts General HospitalBostonMA02114USA
- Department of GeneticsHarvard Medical SchoolBostonMA02115USA
| | - Huajian Gao
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)Singapore138632Republic of Singapore
- School of Mechanical and Aerospace EngineeringCollege of EngineeringNanyang Technological UniversitySingapore639789Republic of Singapore
| | - Wooseong Kim
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| |
Collapse
|
234
|
Dewi RR, Nuryawan A, Jajere SM, Sihombing JM, Tambunan IJ. Antimicrobial resistance profiles of Escherichia coli derived from an integrated agroforestry-livestock system in Deli Serdang Regency, Indonesia. Vet World 2024; 17:690-699. [PMID: 38680150 PMCID: PMC11045535 DOI: 10.14202/vetworld.2024.690-699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/05/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Antimicrobial resistance (AMR) has become a significant global concern. Epidemiological data do not provide a robust description of the potential risks associated with AMR in the integrated agroforestry-livestock systems in Indonesia. Thus, the present study investigated the phenotypic and multidrug resistance (MDR) profiles of Escherichia coli strains isolated from the feces of livestock raised in the agro-silvopastoral system in Deli Serdang Regency, North Sumatra Province. Materials and Methods A standard microbiological culture procedure was followed to isolate the organism and test antibiotic susceptibility using the Kirby-Bauer disk diffusion protocol. Furthermore, the multiple antibiotic resistance index was determined. Univariate analysis was conducted to identify the risk factors associated with AMR. Results The vast majority (77.5%) of livestock farmers were aged >30 years. All farmers were men and had no higher education (100% of them). The majority of the animal species managed were cattle and goats (37.5% each) and the livestock grazing pasture system (67.5%). In addition, the majority of farmers reported high antimicrobial use on their farms (87.5%). Of the samples (n = 142) analyzed, n = 70 were positive, with an overall prevalence of 44.4%. The species-specific prevalences of E. coli were 32.5%, 47.8%, and 50% in buffalo, goat, and cattle, respectively. Ampicillin and tetracyclines exhibited high resistance levels among the studied animal species. A relatively lower MDR for E. coli was associated with grazing on the pasture. Conclusion The findings from the current study provide baseline epidemiological information for future robust studies aimed at elucidating the drivers and patterns of AMR in agro-silvopastoral systems in the study area or elsewhere.
Collapse
Affiliation(s)
- Rita Rosmala Dewi
- Department of Animal Husbandry, Faculty of Science and Technology, Universitas Tjut Nyak Dhien, Medan, Indonesia
| | - Arif Nuryawan
- Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Medan, Indonesia
| | - Saleh Mohammed Jajere
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Juli Mutiara Sihombing
- Department of Animal Husbandry, Faculty of Science and Technology, Universitas Tjut Nyak Dhien, Medan, Indonesia
| | - Ika Julianti Tambunan
- Department of Pharmacy, Faculty of Pharmacy, Universitas Tjut Nyak Dhien, Medan, Indonesia
| |
Collapse
|
235
|
Parkin HC, Street STG, Gowen B, Da-Silva-Correa LH, Hof R, Buckley HL, Manners I. Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles. J Am Chem Soc 2024; 146:5128-5141. [PMID: 38356186 DOI: 10.1021/jacs.3c09033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Self-assembled polymer nanoparticles are promising antibacterials, with nonspherical morphologies of particular interest as recent work has demonstrated enhanced antibacterial activity relative to their spherical counterparts. However, the reasons for this enhancement are currently unclear. We have performed a multifaceted analysis of the antibacterial mechanism of action of 1D nanofibers relative to nanospheres by the use of flow cytometry, high-resolution microscopy, and evaluations of the antibacterial activity of pristine and tetracycline-loaded nanoparticles. Low-length dispersity, fluorescent diblock copolymer nanofibers with a crystalline poly(fluorenetrimethylenecarbonate) (PFTMC) core (length = 104 and 472 nm, height = 7 nm, width = 10-13 nm) and a partially protonated poly(dimethylaminoethyl methacrylate) (PDMAEMA) corona (length = 12 nm) were prepared via seeded growth living crystallization-driven self-assembly. Their behavior was compared to that of analogous nanospheres containing an amorphous PFTMC core (diameter of 12 nm). While all nanoparticles were uptaken into Escherichia coli W3110, crystalline-core nanofibers were observed to cause significant bacterial damage. Drug loading studies indicated that while all nanoparticle antibacterial activity was enhanced in combination with tetracycline, the enhancement was especially prominent when small nanoparticles (ca. 15-25 nm) were employed. Therefore, the identified differences in the mechanism of action and the demonstrated consequences for nanoparticle size and morphology control may be exploited for the future design of potent antibacterial agents for overcoming antibacterial resistance. This study also reinforces the requirement of morphological control over polymer nanoparticles for biomedical applications, as differences in activity are observed depending on their size, shape, and core-crystallinity.
Collapse
Affiliation(s)
- Hayley C Parkin
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Steven T G Street
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Luiz H Da-Silva-Correa
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Rebecca Hof
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Heather L Buckley
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
236
|
Yuan Y, Hu Y, Zhang X, Zhong W, Pan S, Wang L, Zhou Z, Liu H, Zhang S, Peng G, Wang Y, Yan Q, Luo Y, Shi K, Zhong Z. Characteristics of MDR E. coli strains isolated from Pet Dogs with clinic diarrhea: A pool of antibiotic resistance genes and virulence-associated genes. PLoS One 2024; 19:e0298053. [PMID: 38416699 PMCID: PMC10901357 DOI: 10.1371/journal.pone.0298053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/17/2024] [Indexed: 03/01/2024] Open
Abstract
The increasing number of multi-drug resistant (MDR) bacteria in companion animals poses a threat to both pet treatment and public health. To investigate the characteristics of MDR Escherichia coli (E. coli) from dogs, we detected the antimicrobial resistance (AMR) of 135 E. coli isolates from diarrheal pet dogs by disc diffusion method (K-B method), and screened antibiotic resistance genes (ARGs), virulence-associated genes (VAGs), and population structure (phylogenetic groups and MLST) by polymerase chain reaction (PCR) for 74 MDR strains, then further analyzed the association between AMRs and ARGs or VAGs. Our results showed that 135 isolates exhibited high resistance to AMP (71.11%, 96/135), TET (62.22%, 84/135), and SXT (59.26%, 80/135). Additionally, 54.81% (74/135) of the isolates were identified as MDR E. coli. In 74 MDR strains, a total of 12 ARGs in 6 categories and 14 VAGs in 4 categories were observed, of which tetA (95.95%, 71/74) and fimC (100%, 74/74) were the most prevalent. Further analysis of associations between ARGs and AMRs or VAGs in MDR strains revealed 23 significant positive associated pairs were observed between ARGs and AMRs, while only 5 associated pairs were observed between ARGs and VAGs (3 positive associated pairs and 2 negative associated pairs). Results of population structure analysis showed that B2 and D groups were the prevalent phylogroups (90.54%, 67/74), and 74 MDR strains belonged to 42 STs (6 clonal complexes and 23 singletons), of which ST10 was the dominant lineage. Our findings indicated that MDR E. coli from pet dogs carry a high diversity of ARGs and VAGs, and were mostly belong to B2/D groups and ST10. Measures should be taken to prevent the transmission of MDR E. coli between companion animals and humans, as the fecal shedding of MDR E. coli from pet dogs may pose a threat to humans.
Collapse
Affiliation(s)
- Yu Yuan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | | | - Wenhao Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shulei Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
237
|
He T, Yin Q, Li X. Effects of Antibiotics on the DAMO Process and Microbes in Cattle Manure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3883-3894. [PMID: 38347804 DOI: 10.1021/acs.est.3c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) can mitigate methane emissions; however, this process has not been studied in cattle manure, an important source of methane emissions in animal agriculture. The objective of this study was to investigate the occurrence of DAMO microbes in cattle manure and examine the impacts of veterinary antibiotics on the DAMO process in cattle manure. Results show that DAMO archaea and bacteria consistently occur at high concentrations in beef cattle manure. During the long-term operation of a sequencing batch reactor seeded with beef cattle manure, the DAMO activities intensified, and DAMO microbial biomass increased. Exposure to chlortetracycline at initial concentrations up to 5000 μg L-1 did not inhibit DAMO activities or affect the concentrations of the 16S rRNA gene and functional genes of DAMO microbes. In contrast, exposure to tylosin at initial concentrations of 50 and 500 μg L-1 increased the activities of the DAMO microbes. An initial concentration of 5000 μg L-1 TYL almost entirely halted DAMO activities and reduced the concentrations of DAMO microbes. These results show the occurrence of DAMO microbes in cattle manure and reveal that elevated concentrations of dissolved antibiotics could inhibit the DAMO process, potentially affecting net methane emissions from cattle manure.
Collapse
Affiliation(s)
- Ting He
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Institute of Chemistry, Henan Academy of Sciences, Zheng Zhou 450002, Henan, P. R. China
| | - Qidong Yin
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
238
|
Sales AJ, Joca SRL, Del Bel E, Guimarães FS. The antidepressant-like effect of doxycycline is associated with decreased nitric oxide metabolite levels in the prefrontal cortex. Behav Brain Res 2024; 458:114764. [PMID: 37972712 DOI: 10.1016/j.bbr.2023.114764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Doxycycline is an antibiotic that has shown neuroprotective, anti-inflammatory, and antidepressant-like effects. Low doses of doxycycline revert the behavioral and neuroinflammatory responses induced by lipopolysaccharide treatment in a mice model of depression. However, the molecular mechanisms involved in the antidepressant action of doxycycline are not yet understood. Doxycycline inhibits the synthesis of nitric oxide (NO), which increases after stress exposure. Inducible NO synthase (iNOS) inhibition also causes antidepressant-like effects in animal models sensitive to antidepressant-like effects such as the forced swimming test (FST). However, no direct study has yet investigated if the antidepressant-like effects of doxycycline could involve changes in NO-mediated neurotransmission. Therefore, this study aimed at investigating: i) the behavioral effects induced by doxycycline alone or in association with ineffective doses of a NO donor (sodium nitroprusside, SNP) or an iNOS inhibitor (1400 W) in mice subjected to the FST; and ii) doxycycline effects in NO metabolite levels in the prefrontal cortex and hippocampus these animals. Male mice (8 weeks) received i.p. injection of saline or doxycycline (10, 30, and 50 mg/kg), alone or combined with SNP (0.1, 0.5, and 1 mg/kg) or 1400 W (1, 3, and 10 µg/kg), and 30 min later were submitted to the FST. Animals were sacrificed immediately after, and NO metabolites nitrate/nitrite (NOx) were measured in the prefrontal cortex and hippocampus. Doxycycline (50 mg/kg) reduced both the immobility time in the FST and NOx levels in the prefrontal cortex of mice compared to the saline group. The antidepressant-like effect of doxycycline in the FST was prevented by SNP (1 mg/kg) pretreatment. Additionally, sub-effective doses of doxycycline (30 mg/kg) associated with 1400 W (1 µg/kg) induced an antidepressant-like effect in the FST. Altogether, our data suggest that the reducing NO levels in the prefrontal cortex through inhibition of iNOS could be related to acute doxycycline treatment resulting in rapid antidepressant-like effects in mice.
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Elaine Del Bel
- Departament of Basic and Oral Science, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
239
|
Orrell-Trigg R, Awad M, Gangadoo S, Cheeseman S, Shaw ZL, Truong VK, Cozzolino D, Chapman J. Rapid screening of bacteriostatic and bactericidal antimicrobial agents against Escherichia coli by combining machine learning (artificial intelligence) and UV-VIS spectroscopy. Analyst 2024; 149:1597-1608. [PMID: 38291984 DOI: 10.1039/d3an01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibiotics are compounds that have a particular mode of action upon the microorganism they are targeting. However, discovering and developing new antibiotics is a challenging and timely process. Antibiotic development process can take up to 10-15 years and over $1billion to develop a single new therapeutic product. Rapid screening tools to understand the mode of action of the new antimicrobial agent are considered one of the main bottle necks in the antimicrobial agent development process. Classical approaches require multifarious microbiological methods and they do not capture important biochemical and organism therapeutic-interaction mechanisms. This work aims to provide a rapid antibiotic-antimicrobial biochemical diagnostic tool to reduce the timeframes of therapeutic development, while also generating new biochemical insight into an antimicrobial-therapeutic screening assay in a complex matrix. The work evaluates the effect of antimicrobial action through "traditional" microbiological analysis techniques with a high-throughput rapid analysis method using UV-VIS spectroscopy and chemometrics. Bacteriostatic activity from tetracycline and bactericidal activity from amoxicillin were evaluated on a system using non-resistant Escherichia coli O157:H7 by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and UV-VIS spectroscopy (high-throughput analysis). The data were analysed using principal component analysis (PCA) and support vector machine (SVM) classification. The rapid diagnostic technique could easily identify differences between bacteriostatic and bactericidal mechanisms and was considerably quicker than the "traditional" methods tested.
Collapse
Affiliation(s)
- R Orrell-Trigg
- School of Science, RMIT University, Melbourne, Australia
| | - M Awad
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - S Gangadoo
- School of Science, RMIT University, Melbourne, Australia
| | - S Cheeseman
- The Graeme Clark Institute, Faculty of Engineering and Information Technology and Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne 3010, Australia
| | - Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - V K Truong
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - D Cozzolino
- QAAFI, University of Queensland, Brisbane, Australia
| | - J Chapman
- The University of Queensland, Brisbane, Australia.
| |
Collapse
|
240
|
Su H, Li W, Okumura S, Wei Y, Deng Z, Li F. Transfer, elimination and accumulation of antibiotic resistance genes in decentralized household wastewater treatment facility treating total wastewater from residential complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169144. [PMID: 38070548 DOI: 10.1016/j.scitotenv.2023.169144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The fate and behavior of antibiotic resistance genes (ARGs) in decentralized household wastewater treatment facilities (DHWWTFs) are unclear. In this study, targeting on a representative DHWWTF that receive all wastewater from a residential complex having 150 households, the transfer, elimination and accumulation of tetG, tetM, sul1, sul2 and intl1 were quantitively studied through real-time PCR-based quantification, mass balance evaluation and the existing state analysis based on size fractionation. Significant abundance changes of the genes were observed in involved biological reactions and the sedimentation process due to microbial growth and decomposition as well as the accumulation of the genes to sludge. tetG and sul1 increased in their fluxes against respective input in the influent. Although substantial portions of the increased genes were found in excess sludge compared to the flux of genes in the influent, those remaining in the discharge were still high, with an average about 3.4 × 1014 copies/d. The abundance of all four genes (tetG, tetM, sul1and sul2) in both water and sludge phases showed a general trend of reduction as sludge accumulated gradually in its storage tank within two months after desludging. Classification of ARGs based on particle sizes (>250 μm, 125-250 μm, 75-125 μm, 25-75 μm, 3-25 μm, <3 μm) indicated that while the major part of ARGs were distributed in particles with larger sizes (125-250 μm), ARGs in smaller particles (3-25 μm) and free ARGs (<3 μm) still existed, which may pose a greater threat to water environment due to their poor settleability. The results of this study can benefit the optimization of on-site maintenance and operation of decentralized wastewater treatment facility for elimination of the transfer of ARGs.
Collapse
Affiliation(s)
- Haoning Su
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Wenjiao Li
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Shinya Okumura
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
241
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
242
|
Ajayi AO, Odeyemi AT, Akinjogunla OJ, Adeyeye AB, Ayo-ajayi I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect Ecol Epidemiol 2024; 14:2312953. [PMID: 38371518 PMCID: PMC10868463 DOI: 10.1080/20008686.2024.2312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.
Collapse
Affiliation(s)
| | - Adebowale Toba Odeyemi
- Department of Microbiology, Landmark University SDG Groups 2 and 3, Omu-Aran, Kwara State, Nigeria
| | | | | | - Ibiwumi Ayo-ajayi
- Department of Computer Science, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
243
|
Sadia M, Ahmad I, Aziz S, Khan R, Zahoor M, Ullah R, Ali EA. Carbon-Supported Nanocomposite Synthesis, Characterization, and Application as an Efficient Adsorbent for Ciprofloxacin and Amoxicillin. ACS OMEGA 2024; 9:6815-6827. [PMID: 38371783 PMCID: PMC10870352 DOI: 10.1021/acsomega.3c08161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
The existence of antibiotics in the environment has recently raised serious concerns about their possible hazards to human health and the water ecosystem. In the current study, an activated carbon-supported nanocomposite, AC-CoFe2O3, was synthesized by a coprecipitation method, characterized, and then applied to adsorb different drugs from water. The synthesized composites were characterized by using energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller plots, and scanning electron microscopy. The adsorption of both Ciprofloxacin (Cipro) and Amoxicillin (Amoxi) antibiotics on the composite followed the pseudo-second-order kinetic model (R2 = 0.9981 and 0.9974 mg g-1 min-1, respectively). Langmuir isotherm was the best-fit model showing 312.17 and 217.76 mg g-1 adsorption capacities for Ciprofloxacin and Amoxicillin, respectively, at 333 K. The negative Gibbs free energy (ΔG°) specified the spontaneity of the method. The positive change in the enthalpy (ΔH) indicated that the adsorption process was assisted by higher temperatures. The different optimized parameters were pH, contact time, adsorbent weight, concentration, and temperature. The maximum adsorption of Cipro was found to be 98.41% at pH 12, while for Amoxi, it was 89.09% at pH 2 at 333 K. The drugs were then successfully determined from natural water samples at optimized conditions using these nanocomposites.
Collapse
Affiliation(s)
- Maria Sadia
- Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan
| | - Izaz Ahmad
- Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Shaukat Aziz
- Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan
| | - Rizwan Khan
- Department of Electrical Engineering, Kwangwoon University Seoul, Seoul 54047, South Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa 18000, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
244
|
Lupia C, Castagna F, Bava R, Naturale MD, Zicarelli L, Marrelli M, Statti G, Tilocca B, Roncada P, Britti D, Palma E. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics (Basel) 2024; 13:163. [PMID: 38391549 PMCID: PMC10885947 DOI: 10.3390/antibiotics13020163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance is an increasingly widespread phenomenon that is of particular concern because of the possible consequences in the years to come. The dynamics leading to the resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs both in terms of dosage and timing of administration. Moreover, the drug is often administered in the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore, losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential oils are mixtures of compounds with different pharmacological properties. They have been shown to possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic processes. The abundance of molecules they contain makes it difficult for treated microbial species to develop pharmacological resistance. Given their natural origin, they are environmentally friendly and show little or no toxicity to higher animals. There are several published studies on the use of essential oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript. This review aims to shed light on the results achieved by the scientific community regarding the use of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is more environmentally friendly and less prone to the emergence of drug resistance phenomena.
Collapse
Affiliation(s)
- Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Fabio Castagna
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy
| | - Ludovica Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
245
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
246
|
Yang Z, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, He Y, Wu Z, Zhu D, Cheng A. Genome-based assessment of antimicrobial resistance reveals the lineage specificity of resistance and resistance gene profiles in Riemerella anatipestifer from China. Microbiol Spectr 2024; 12:e0313223. [PMID: 38169285 PMCID: PMC10846147 DOI: 10.1128/spectrum.03132-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is an important pathogen that causes severe systemic infections in domestic ducks, resulting in substantial economic losses for China's waterfowl industry. Controlling R. anatipestifer with antibiotics is extremely challenging due to its multidrug resistance. Notably, large-scale studies on antimicrobial resistance (AMR) and the corresponding genetic determinants in R. anatipestifer remain scarce. To solve this dilemma, more than 400 nonredundant R. anatipestifer isolates collected from 22 provinces in China between 1994 and 2021 were subjected to broth dilution antibiotic susceptibility assays, and their resistance-associated genetic determinants were characterized by whole-genome sequencing. While over 90% of the isolates was resistant to sulfamethoxazole, kanamycin, gentamicin, ofloxacin, norfloxacin, and trimethoprim, 88.48% of the isolates was resistant to the last-resort drug (tigecycline). Notably, R. anatipestifer resistance to oxacillin, norfloxacin, ofloxacin, and tetracycline was found to increase relatively over time. Genome-wide analysis revealed the alarmingly high prevalence of blaOXA-like (93.05%) and tet(X) (90.64%) genes and the uneven distribution of resistance genes among lineages. Overall, this study reveals a serious AMR situation regarding R. anatipestifer in China, with a high prevalence and high diversity of antimicrobial resistance genes, providing important data for the rational use of antibiotics in veterinary practice.IMPORTANCERiemerella anatipestifer (R. anatipestifer), an important waterfowl pathogen, has caused substantial economic losses worldwide, especially in China. Antimicrobial resistance (AMR) is a major challenge in controlling this pathogen. Although a few studies have reported antimicrobial resistance in R. anatipestifer, comprehensive data remain a gap. This study aims to address the lack of information on R. anatipestifer AMR and its genetic basis. By analyzing more than 400 isolates collected over two decades, this study reveals alarming levels of resistance to several antibiotics, including drugs of last resort. The study also revealed the lineage-specificity of resistance profiles and resistance gene profiles. Overall, this study provides new insights and updated data support for understanding AMR and its genetic determinants in R. anatipestifer.
Collapse
Affiliation(s)
- Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Yu He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| |
Collapse
|
247
|
Liu H, Shi K, Wang Y, Zhong W, Pan S, Zhou L, Cheng Y, Yuan Y, Zhou Z, Liu H, Zhang S, Peng G, Yan Q, Luo Y, Zhang X, Zhong Z. Characterization of antibiotic resistance genes and mobile genetic elements in Escherichia coli isolated from captive black bears. Sci Rep 2024; 14:2745. [PMID: 38302507 PMCID: PMC10834548 DOI: 10.1038/s41598-024-52622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
The objective of this study was to analyze the antimicrobial resistance (AMR) characteristics produced by antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and gene cassettes in Escherichia coli isolated from the feces of captive black bears. Antimicrobial susceptibility testing was performed by using the disk diffusion method, and both MGEs and integron gene cassettes were detected by polymerase chain reaction. Our results showed that 43.7% (62/142) of the isolates were multidrug resistant strains and 97.9% (139/142) of the isolates were resistant to at least one antibiotic. The highest AMR phenotype was observed for tetracycline (79.6%, 113/142), followed by ampicillin (50.0%, 71/142), trimethoprim-sulfamethoxazole (43.7%, 62/142) and cefotaxime (35.9%, 51/142). However, all isolates were susceptible to tobramycin. tetA had the highest occurrence in 6 ARGs in 142 E. coli isolates (76.8%, 109/142). Ten mobile genetic elements were observed and IS26 was dominant (88.0%, 125/142). ISECP1 was positively associated with five β-lactam antibiotics. ISCR3/14, IS1133 and intI3 were not detected. Seventy-five E. coli isolates (65 intI1-positive isolates, 2 intI2-positive isolates and 8 intI1 + intI2-positive isolates) carried integrons. Five gene cassettes (dfrA1, aadA2, dfrA17-aadA5, aadA2-dfrA12 and dfrA1-aadA1) were identified in the intI1-positive isolates and 2 gene cassettes (dfrA1-catB2-sat2-aadA1 and dfrA1-catB2-sat1-aadA1) were observed in the intI2-positive isolates. Monitoring of ARGs, MGEs and gene cassettes is important to understand the prevalence of AMR, which may help to introduce measures to prevent and control of AMR in E. coli for captive black bears.
Collapse
Affiliation(s)
- Hang Liu
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keyun Shi
- Jiangsu Yixing People's Hospital, Yixing, 214200, China
| | - Yuhan Wang
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenhao Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shulei Pan
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611845, China
| | - Yuehong Cheng
- Sichuan Wolong National Natural Reserve Administration Bureau, Wenchuan, 623006, China
| | - Yu Yuan
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haifeng Liu
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qigui Yan
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Luo
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Zhang
- Jiangsu Yixing People's Hospital, Yixing, 214200, China.
| | - Zhijun Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
248
|
Wang H, Wang W, Jin F, Marchant-Forde JN, Mi J, Ding L, Liao X, Wu Y, Wang Y. Pentachlorophenol affects doxycycline and tetracycline resistance genes in soil by altering microbial structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115918. [PMID: 38232521 DOI: 10.1016/j.ecoenv.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.
Collapse
Affiliation(s)
- Haoliang Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fenhua Jin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | - Jiandui Mi
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lipeng Ding
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
249
|
Olsson A, Malmberg C, Zhao C, Friberg LE, Nielsen EI, Lagerbäck P, Tängdén T. Synergy of polymyxin B and minocycline against KPC-3- and OXA-48-producing Klebsiella pneumoniae in dynamic time-kill experiments: agreement with in silico predictions. J Antimicrob Chemother 2024; 79:391-402. [PMID: 38158772 PMCID: PMC10832586 DOI: 10.1093/jac/dkad394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES Combination therapy is often used for carbapenem-resistant Gram-negative bacteria. We previously demonstrated synergy of polymyxin B and minocycline against carbapenem-resistant Klebsiella pneumoniae in static time-kill experiments and developed an in silico pharmacokinetic/pharmacodynamic (PK/PD) model. The present study assessed the synergistic potential of this antibiotic combination in dynamic experiments. METHODS Two clinical K. pneumoniae isolates producing KPC-3 and OXA-48 (polymyxin B MICs 0.5 and 8 mg/L, and minocycline MICs 1 and 8 mg/L, respectively) were included. Activities of the single drugs and the combination were assessed in 72 h dynamic time-kill experiments mimicking patient pharmacokinetics. Population analysis was performed every 12 h using plates containing antibiotics at 4× and 8× MIC. WGS was applied to reveal resistance genes and mutations. RESULTS The combination showed synergistic and bactericidal effects against the KPC-3-producing strain from 12 h onwards. Subpopulations with decreased susceptibility to polymyxin B were frequently detected after single-drug exposures but not with the combination. Against the OXA-48-producing strain, synergy was observed between 4 and 8 h and was followed by regrowth. Subpopulations with decreased susceptibility to polymyxin B and minocycline were detected throughout experiments. For both strains, the observed antibacterial activities showed overall agreement with the in silico predictions. CONCLUSIONS Polymyxin B and minocycline in combination showed synergistic effects, mainly against the KPC-3-producing K. pneumoniae. The agreement between the experimental results and in silico predictions supports the use of PK/PD models based on static time-kill data to predict the activity of antibiotic combinations at dynamic drug concentrations.
Collapse
Affiliation(s)
- Anna Olsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Chenyan Zhao
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
250
|
Agrawal A, Sharma AR, Rathod V, Bhatnagar A, Amol Khale P, Tidke P, Mehta D, Mazumder D. Assessment of the Efficiency of Tulsi Extract as a Locally Administered Medication Agent and Its Comparison With Curcumin in the Treatment of Periodontal Pockets. Cureus 2024; 16:e54619. [PMID: 38523946 PMCID: PMC10959213 DOI: 10.7759/cureus.54619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION The use of locally administered medication (LAM) agents such as minocycline, metronidazole, and tetracycline as antimicrobials has drawbacks, including the development of microorganism resistance, exorbitant pricing, and limited accessibility. Thus, there is a need for safer and more affordable alternatives. Numerous natural therapies have been found to be superior in this situation. In this study, the efficacy of tulsi extract as a LAM agent was assessed and it was compared with curcumin, which is currently used for the treatment of periodontal pockets. METHODS AND MATERIALS There were three categories: each category had 30 sites. Category 1 sites underwent scaling along with root planing (SRP) solely, Category 2 sites received curcumin extract as LAM in the periodontal pocket in addition to SRP, and Category 3 sites received tulsi extract as LAM in the periodontal pocket in addition to SRP. The stent was used to ensure consistent and unbiased measurements on the 30th day after treatment. Clinical attachment level (CAL) and probing pocket depth (PPD) were measured at six points around each tooth. Results: The reduction in values of periodontal parameters such as BAPNA (Nα-benzoyl-DL-arginine-p-nitroanilide) assays, modified sulcus bleeding index (mSBI), gingival index (GI), plaque index (PI), CAL, and PPD in sites within Category 1, Category 2, and Category 3 was statistically significant. The decrease in BAPNA assay results indicates that tulsi extract is more effective than curcumin gel at eradicating red-complex bacteria. Although not significantly different, the decrease in PI and GI was observed to be greater when curcumin jelly was used. This suggests that curcumin jelly has a stronger impact on reducing plaque, which in turn decreases gingival inflammation. CONCLUSION Based on the overall results of the study, it can be said that both tulsi and curcumin have similar effectiveness in reducing periodontal markers.
Collapse
Affiliation(s)
- Ankita Agrawal
- Department of Conservative Dentistry and Endodontics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Anant Ragav Sharma
- Department of Periodontics, Pacific Dental College and Hospital, Udaipur, IND
| | - Varsha Rathod
- Department of Periodontology, Dr. D. Y. (Dnyandeo Yashwantrao) Patil School of Dentistry, Navi Mumbai, IND
| | - Anand Bhatnagar
- Department of Periodontics, Jaipur Dental College, Jaipur, IND
| | - Pallavi Amol Khale
- Department of Dentistry, Rajiv Gandhi Medical College and Chhatrapati Shivaji Maharaj Hospital, Thane, IND
| | - Priyanka Tidke
- Department of Oral Medicine and Radiology, MGM (Mahatma Gandhi Mission) Dental College and Hospital, Navi Mumbai, IND
| | - Dhaval Mehta
- Department of Oral Medicine and Radiology, Narsinbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, IND
| | - Debojyoti Mazumder
- Department of Conservative Dentistry and Endodontics, Kusum Devi Sunderlal Dugar Jain Dental College and Hospital, Kolkata, IND
| |
Collapse
|