201
|
Frankiw L, Baltimore D, Li G. Alternative mRNA splicing in cancer immunotherapy. Nat Rev Immunol 2019; 19:675-687. [PMID: 31363190 DOI: 10.1038/s41577-019-0195-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Immunotherapies are yielding effective treatments for several previously untreatable cancers. Still, the identification of suitable antigens specific to the tumour that can be targets for cancer vaccines and T cell therapies is a challenge. Alternative processing of mRNA, a phenomenon that has been shown to alter the proteomic diversity of many cancers, may offer the potential of a broadened target space. Here, we discuss the promise of analysing mRNA processing events in cancer cells, with an emphasis on mRNA splicing, for the identification of potential new targets for cancer immunotherapy. Further, we highlight the challenges that must be overcome for this new avenue to have clinical applicability.
Collapse
Affiliation(s)
- Luke Frankiw
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Guideng Li
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, China.
| |
Collapse
|
202
|
Schatten H. Immunodiagnostics and Immunotherapy Possibilities for Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1096:185-194. [PMID: 30324354 DOI: 10.1007/978-3-319-99286-0_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite significant progress in early detection and improved treatment modalities prostate cancer remains the second leading cause of cancer death in American men which results in about 30,000 deaths per year in the USA. An aggressive phenotype leading to 2.58% risk of dying from prostate cancer still exists and immunotherapy has offered new possibilities to treat metastatic prostate cancer that cannot be treated by other modalities. Cancer immunotherapy is a rapidly growing field of research aimed at identifying biomarkers in immunodiagnosis and to develop new therapies by enabling the immune system to detect and destroy cancer cells. Immunotherapy falls into three different broad categories which are checkpoint inhibitors, cytokines, and vaccine immunotherapy. While immunotherapy to treat prostate cancer is still limited progress has been made; for treatment of advanced prostate cancer sipuleucel-T has been administered to patients in personalized doses to destroy prostate cancer cells which is promising and invites further research to determine immunotherapies for advanced prostate cancer. Antibody-based targeted immunotherapy and dendritic-cell-based vaccination are among the therapies that are currently being evaluated as promising approaches to treat prostate cancer. Combination immunotherapies include prostate cancer vaccines and radiotherapy for castration resistant prostate cancer. Microbial vectors for prostate cancer immunotherapy have been developed and bacterial strains have been engineered to express cancer-specific antigens, cytokines, and prodrug-converting cytokines. These approaches are addressed in the present review.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
203
|
Otter SJ, Chatterjee J, Stewart AJ, Michael A. The Role of Biomarkers for the Prediction of Response to Checkpoint Immunotherapy and the Rationale for the Use of Checkpoint Immunotherapy in Cervical Cancer. Clin Oncol (R Coll Radiol) 2019; 31:834-843. [PMID: 31331818 DOI: 10.1016/j.clon.2019.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Checkpoint immunotherapy has revolutionised the way that melanoma is treated and has also shown significant effectiveness in lung, bladder, renal, and head and neck cancers. At the present time, trials of checkpoint immunotherapy in cervical cancer are at early phases, but there is very good rationale for pursuing this as a treatment option, especially as cervical cancer is a virally driven cancer and therefore should be recognised by the immune system as being foreign. This review explores the biomarkers for the selection of patients for immunotherapy in other cancers, such as programmed death ligand 1 (PD-L1) expression, tumour infiltrating lymphocytes and total mutational burden, and relates these biomarkers to cervical cancer. A PubMed search was carried out for publications published in English with the terms 'immunotherapy' OR 'cervical cancer' OR 'checkpoint blockade' OR 'tumour infiltrating lymphocytes' OR 'total mutational burden'. Articles that met these criteria and were available on PubMed before 8 October 2018 were included. The results showed that PD-L1 is positive in up to 90% of cervical cancers and that the total mutational burden is moderately high, with 5-6 mutations per megabase. In addition, the tumour microenvironment in cervical cancer has an impact on prognosis, with higher ratios of CD8+ tumour infiltrating lymphocytes to CD4+ T regulatory cells being associated with improved survival. Clinical studies to date have shown the response rate of cervical cancer to checkpoint immunotherapy to be in the region to 10-25%. Cervical cancer exhibits many of the features that have been shown to be correlated with response to checkpoint immunotherapy in other tumour sites. However, response rates to date are in the region of 10-25%. Therefore, combinations of immunotherapeutic agents or checkpoint inhibitors with radiotherapy may be required to maximise the therapeutic benefit of harnessing the host immune system to fight cancer.
Collapse
Affiliation(s)
- S J Otter
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - J Chatterjee
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - A J Stewart
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - A Michael
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
204
|
Arakawa A, Vollmer S, Tietze J, Galinski A, Heppt MV, Bürdek M, Berking C, Prinz JC. Clonality of CD4 + Blood T Cells Predicts Longer Survival With CTLA4 or PD-1 Checkpoint Inhibition in Advanced Melanoma. Front Immunol 2019; 10:1336. [PMID: 31275310 PMCID: PMC6591437 DOI: 10.3389/fimmu.2019.01336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Recognition of cancer antigens drives the clonal expansion of cancer-reactive T cells, which is thought to contribute to restricted T-cell receptor (TCR) repertoires in tumor-infiltrating lymphocytes (TILs). To understand how tumors escape anti-tumor immunity, we investigated tumor-associated T-cell repertoires of patients with advanced melanoma and after blockade of the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PD-1). TCR Vβ-gene spectratyping allowed us to quantify restrictions of T-cell repertoires and, further, diversities of T-cell clones. In this study, we show that the blood TCR repertoires were variably restricted in CD4+ and extensively restricted in CD8+ T cells of patients with advanced melanoma, and contained clones in both T-cell fractions prior to the start of immunotherapy. A greater diversification especially of CD4+ blood T-cell clones before immunotherapy showed statistically significant correlations with long-term survival upon CTLA4 or PD-1 inhibition. Analysis of TILs and corresponding blood available in one patient indicated that blood clonality may at least partially be related to the clonal expansion in the tumor microenvironment. In patients who developed severe immune-related adverse events (IrAEs), CD4+ and CD8+ TCR spectratypes became more restricted during anti-CTLA4 treatment, suggesting that newly expanded oligoclonal T-cell responses may contribute to IrAEs. This study reveals diverse T-cell clones in the blood of melanoma patients prior to immunotherapy, which may reflect the extent to which T cells are able to react against melanoma and potentially control melanoma progression. Therefore, the T-cell clonality in the circulation may have predictive value for antitumor responses from checkpoint inhibition.
Collapse
Affiliation(s)
- Akiko Arakawa
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Julia Tietze
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Adrian Galinski
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Maja Bürdek
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carola Berking
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
205
|
Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102034. [PMID: 31207314 DOI: 10.1016/j.nano.2019.102034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is predicted to be the second leading cause of cancer-related death in United States in 2019. Immunotherapies such as checkpoint inhibitors have proven efficacy in patients with high level of microsatellite instability and refractory to routine chemotherapy. Despite this, immunotherapy-based treatment is seriously limited by cancer immunogenicity which has evolved to evade immune surveillance in many circumstances. Efforts are made by researchers using nanoparticles (NPs) to override cancer-mediated immunosuppression, induce immune response against cancer cells or even generate memory immune cells for long-term disease control. These engineered NPs offer great opportunities in delivering cancer immunotherapy due to their unique properties, such as a high drug/antigen loading capacity, adjustable particle size, and versatile surface modification. In this review, we will highlight recent researches on the initiation and development of CRC, the immune microenvironment of CRC, and recent trends in engineering novel NPs-based immunotherapies in the treatment of CRC.
Collapse
Affiliation(s)
- Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China..
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
206
|
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. Application of PD-1 Blockade in Cancer Immunotherapy. Comput Struct Biotechnol J 2019; 17:661-674. [PMID: 31205619 PMCID: PMC6558092 DOI: 10.1016/j.csbj.2019.03.006] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023] Open
Abstract
The programmed cell death protein 1 (PD-1) pathway has received considerable attention due to its role in eliciting the immune checkpoint response of T cells, resulting in tumor cells capable of evading immune surveillance and being highly refractory to conventional chemotherapy. Application of anti-PD-1/PD-L1 antibodies as checkpoint inhibitors is rapidly becoming a promising therapeutic approach in treating tumors, and some of them have successfully been commercialized in the past few years. However, not all patients show complete responses and adverse events have been noted, suggesting a better understanding of PD-1 pathway mediated immunosuppression is needed to predict patient response and improve treatment efficacy. Here, we review the progresses on the studies of the mechanistic role of PD-1 pathway in the tumor immune evasion, recent clinical development and commercialization of PD-1 pathway inhibitors, the toxicities associated with PD-1 blockade observed in clinical trials as well as how to improve therapeutic efficacy and safety of cancer immunotherapy.
Collapse
Key Words
- 5-AZA-dC, 5-aza-2′-deoxycytidine
- ADCC, Antibody-dependent cellular cytotoxicity
- AEs, Adverse events
- AP1, Activator protein 1
- APCs, Antigen presenting cells
- ASCT, Autologous stem cell transplantation
- B2M, β2 microglobulin
- BATF, Basic leucine zipper transcriptional factor ATF-like
- BICR, Blinded Independent Central Review
- BV, Brentuximab vedotin
- CC, Cervical cancer
- CRC, Colorectal cancer
- CTLA-4, Cytotoxic T-lymphocyte–associated antigen 4
- CXCL9, C-X-C motif chemokine ligand 9
- Checkpoint blockade
- DCM, Dilated cardiomyopathy
- DCs, Dendritic cells
- DNMT, DNA methyltransferase
- DOR, Duration overall response
- DZNep, 3-Deazaneplanocin A
- ERK, Extracellular signal–regulated kinase
- EZH2, Enhancer of zeste homolog 2
- GC, Gastric cancer
- GEJ, GASTRIC or gastroesophageal junction
- HCC, Hepatocellular carcinoma
- HNSCC, Head and neck squamous cell carcinoma
- HR, Hazard ratio
- ICC, Investigator-choice chemotherapy
- ICOS, Inducible T-cell co-stimulator
- IFN, Interferon
- IHC, Immunohistochemistry
- ITIM, Immune-receptortyrosine-based inhibitory motif
- ITSM, Immune-receptortyrosine-based switch motif
- ITT, Intention-to-treat
- Immune surveillance
- Immunotherapy
- IrAEs, Immune related adverse events
- JMJD3, Jumonji Domain-Containing Protein 3
- LAG3, Lymphocyte-activation gene 3
- LCK, Tyrosine-protein kinase Lck
- MAP, Mitogen-activated protein
- MCC, Merkel cell carcinoma
- MHC, Major histocompatibility
- MSI-H, Microsatellite instability-high
- NF-κB, Nuclear factor-κB
- NFAT, Nuclear factor of activated T cells
- NSCLC, Non-small cell lung cancer
- ORR, Overall response rate
- OS, Overall survival
- PD-1
- PD-1, Programmed cell death 1
- PD-L1
- PD-L1, Programmed death-ligand 1
- PFS, Progression-free survival
- PI3K, Phosphoinositide 3-kinase
- PKC, Protein kinase C
- PMBCL, Primary mediastinal large B-cell lymphoma
- PRC2, Polycomb repressive complex 2
- PTEN, Phosphatase and tensin homolog
- PTPs, Protein tyrosine phosphatases
- RCC, Renal cell carcinoma
- SCLC, Small cell lung cancer
- SHP2, Src homology 2 domain-containing phosphatase 2
- SIRPα, Signal-regulatory protein alpha
- TCR, T-cell receptor
- TGF, Transforming growth factor
- TIICs, Tumor infiltrating immune cells
- TILs, Tumor-infiltrating lymphocytes
- TIM3, T-cell immunoglobulin and mucin-domain containing-3
- TMB, Tumor mutation burden
- TME, Tumor microenvironment
- UC, Urothelial carcinoma
- VEGF, Vascular endothelial growth factor
- ZAP70, Zeta-chain-associated protein kinase 70
- cHL, Classical Hodgkin lymphoma
- cTnI, Cardiac troponin I
- dMMR, DNA mismatch repair deficiency
Collapse
Affiliation(s)
- Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
- Department of Biomedicine, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Mingdao Building, Dongan Road 131, Shanghai 200032, PR China
| | - Yang Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Borui Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Wei Chen
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou 350005, PR China
| | - Liqiang Weng
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou 350025, PR China
| |
Collapse
|
207
|
Hull CM, Maher J. Novel approaches to promote CAR T-cell function in solid tumors. Expert Opin Biol Ther 2019; 19:789-799. [DOI: 10.1080/14712598.2019.1614164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Caroline M Hull
- School of Cancer and Pharmaceutical Sciences, King’s College London, Division of Cancer Studies, Guy’s Hospital, London, UK
| | - John Maher
- School of Cancer and Pharmaceutical Sciences, King’s College London, Division of Cancer Studies, Guy’s Hospital, London, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, UK
| |
Collapse
|
208
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
209
|
León-Letelier RA, Bonifaz LC, Fuentes-Pananá EM. OMIC signatures to understand cancer immunosurveillance and immunoediting: Melanoma and immune cells interplay in immunotherapy. J Leukoc Biol 2019; 105:915-933. [PMID: 30698862 DOI: 10.1002/jlb.mr0618-241rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Cutaneous melanomas usually originate from exposure to the mutagenic effects of ultraviolet radiation, and as such they exhibit the highest rate of somatic mutations than any other human cancer, and an extensive expression of neoantigens concurrently with a dense infiltrate of immune cells. The coexistence of high immunogenicity and high immune cell infiltration may sound contradictory for cancers carrying a gloomy outcome. However, recent studies have unveiled a variety of immunosuppressive mechanisms that often permeate the tumor microenvironment and that are responsible for tumor escaping from immunosurveillance mechanisms. Nonetheless, this particular immune profile has opened a new window of treatments based on immunotherapy that have significantly improved the clinical outcome of melanoma patients. Still, positive and complete therapy responses have been limited, and this particular cancer continues to be a major clinical challenge. The transcriptomic signatures of those patients with clinical benefit and those with progressive disease have provided a more complete picture of the universe of interactions between the tumor and the immune system. In this review, we integrate the results of the immunotherapy clinical trials to discuss a novel understanding of the mechanisms guiding cancer immunosurveillance and immunoediting. A clear notion of the cellular and molecular processes shaping how the immune system and the tumor are continuously coevolving would result in the rational design of combinatory therapies aiming to counteract the signaling pathways and cellular processes responsible for immunoescape mechanisms and provide clinical benefit to immunotherapy nonresponsive patients.
Collapse
Affiliation(s)
- Ricardo A León-Letelier
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Ciudad de México, México
- Universidad Nacional Autónoma de México (UNAM), México Ciudad de México, México
| | - Laura C Bonifaz
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Ciudad de México, México
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| |
Collapse
|
210
|
Osipov A, Murphy A, Zheng L. From immune checkpoints to vaccines: The past, present and future of cancer immunotherapy. Adv Cancer Res 2019; 143:63-144. [PMID: 31202363 DOI: 10.1016/bs.acr.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a worldwide medical problem with significant repercussions on individual patients and societies as a whole. In order to alter the outcomes of this deadly disease the treatment of cancer over the centuries has undergone a unique evolution. However, utilizing the best treatment modalities and achieving cures or long-term durable responses have been inconsistent and limited, that is until recently. Contemporary research has highlighted a fundamental gap in our understanding of how we approach treating cancer, by revealing the intricate relationship between the immune system and tumors. In this atmosphere, the growth of immunotherapy has not only forever changed our understanding of cancer biology, but the manner by which we treat patients. It's paradigm shifting success has led to the approval of over 10 different immunotherapeutic agents, including checkpoint inhibitors, vaccine-based therapies, oncolytic viruses and T cell directed therapies for nearly 20 different indications across countless tumor types. Despite the breakthroughs that have occurred in the field of immunotherapy, it has not been the panacea for all cancers. With a deeper understanding of the immune system we have been able to peer into tumor immune escape and therapy resistance. Simultaneously this understanding has paved the way for the investigation and development of novel immune system altering agents and combinatorial therapies. In this chapter we review the immune system and its intricate relationship with cancer, the evolution of immunotherapy, its current landscape, and future directions in the context of resistance mechanisms and the challenges faced by immunotherapy against cancer.
Collapse
Affiliation(s)
- Arsen Osipov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adrian Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
211
|
Miko E, Meggyes M, Doba K, Barakonyi A, Szereday L. Immune Checkpoint Molecules in Reproductive Immunology. Front Immunol 2019; 10:846. [PMID: 31057559 PMCID: PMC6482223 DOI: 10.3389/fimmu.2019.00846] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint molecules, like CTLA-4, TIM-3, PD-1, are negative regulators of immune responses to avoid immune injury. Checkpoint regulators are thought to actively participate in the immune defense of infections, prevention of autoimmunity, transplantation, and tumor immune evasion. Maternal-fetal immunotolerance represents a real immunological challenge for the immune system of the mother: beside acceptance of the semiallogeneic fetus, the maternal immune system has to be prepared for immune defense mostly against infections. In this particular situation, the role of immune checkpoint molecules could be of special interest. In this review, we describe current knowledge on the role of immune checkpoint molecules in reproductive immunology.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Katalin Doba
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| |
Collapse
|
212
|
Busato D, Mossenta M, Baboci L, Di Cintio F, Toffoli G, Dal Bo M. Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Rev Clin Pharmacol 2019; 12:453-470. [PMID: 30907177 DOI: 10.1080/17512433.2019.1598859] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The introduction of immune checkpoint inhibitors has been lately proposed for the treatment of hepatocellular carcinoma (HCC) with respect to other cancer types. Several immunotherapeutic approaches are now under evaluation for HCC treatment including: i) antibodies acting as immune checkpoint inhibitors; ii) antibodies targeting specific tumor-associated antigens; iii) chimeric antigen receptor redirected T (CAR-T) cells targeting specific tumor-associated antigens; iv) vaccination strategies with tumor-specific epitopes. Areas covered: The review provides a wide description of the clinical trials investigating the efficacy of the main immunotherapeutic approaches proposed for the treatment of patients affected by HCC. Expert opinion: The balancing between immunostimulative and immunosuppressive factors in the context of HCC tumor microenvironment results in heterogeneous response rates to immunotherapeutic approaches such as checkpoint inhibitors, among HCC patients. In this context, it becomes crucial the identification of predictive factors determining the treatment response. A multiple approach using different biomarkers could be useful to identify the subgroup of HCC patients responsive to the treatment with a checkpoint inhibitor (as an example, nivolumab) as single agent, and to identify those patients in which other treatment regimens, such as the combination with sorafenib, or with locoregional therapies, could be more effective.
Collapse
Affiliation(s)
- Davide Busato
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Monica Mossenta
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Lorena Baboci
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Federica Di Cintio
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Michele Dal Bo
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| |
Collapse
|
213
|
von der Grün J, Rödel F, Brandts C, Fokas E, Guckenberger M, Rödel C, Balermpas P. Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck Squamous Cell Carcinoma: Where Do We Stand Today and Where to Go? Cancers (Basel) 2019; 11:E472. [PMID: 30987257 PMCID: PMC6521064 DOI: 10.3390/cancers11040472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023] Open
Abstract
With an increased understanding of the tumor biology of squamous cell carcinoma of the head and neck (SCCHN), targeted therapies have found their way into the clinical treatment routines against this entity. Nevertheless, to date platinum-based cytostatic agents remain the first line choice and targeting the epidermal growth factor-receptor (EGFR) with combined cetuximab and radiation therapy remains the only targeted therapy approved in the curative setting. Investigation of immune checkpoint inhibitors (ICI), such as antibodies targeting programmed cell death protein 1 (PD-1) and its ligand PD-L1, resulted in a change of paradigms in oncology and in the first approval of new drugs for treating SCCHN. Nivolumab and pembrolizumab, two anti-PD-1 antibodies, were the first agents shown to improve overall survival for patients with metastatic/recurrent tumors in recent years. Currently, several clinical trials investigate the role of ICI in different therapeutic settings. A robust set of biomarkers will be an inevitable tool for future individualized treatment approaches including radiation dose de-escalation and escalation strategies. This review aims to summarize achieved goals, the current status and future perspectives regarding targeted therapies and ICI in the management of SCCHN.
Collapse
Affiliation(s)
- Jens von der Grün
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Franz Rödel
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Christian Brandts
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Department of Medicine, Hematology/Oncology, University Cancer Center Frankfurt (UCT), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Emmanouil Fokas
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Matthias Guckenberger
- Department of Radiation Oncology, Rämistrasse 100, University Hospital Zurich, 8091 Zürich, Switzerland.
| | - Claus Rödel
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Panagiotis Balermpas
- Department of Radiation Oncology, Rämistrasse 100, University Hospital Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
214
|
Force J, Leal JHS, McArthur HL. Checkpoint Blockade Strategies in the Treatment of Breast Cancer: Where We Are and Where We Are Heading. Curr Treat Options Oncol 2019; 20:35. [DOI: 10.1007/s11864-019-0634-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
215
|
Ajina R, Zamalin D, Weiner LM. Functional genomics: paving the way for more successful cancer immunotherapy. Brief Funct Genomics 2019; 18:86-98. [PMID: 29762641 PMCID: PMC6430032 DOI: 10.1093/bfgp/ely017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies have revolutionized cancer treatment. Immunotherapy is effective for the treatment of a wide range of cancer types and can mediate complete and durable tumor regression. Nonetheless, the field still faces many significant challenges, such as the need for personalized therapeutic strategies and better biomarkers, the difficulty of selecting the right combination therapy, and resistance to currently available immunotherapies. Both cancer and host immunity comprise significantly diverse and complex ecosystems, making immunogenomics an ideal field for functional genomics analysis. In this review, we describe the cancer-immunity cycle, how cancer cells manage to evade immune attack and the current hurdles in the path of cancer immunotherapy. Then, we discuss how functional genomics approaches can pave the way for more successful cancer immunotherapies.
Collapse
|
216
|
Shek D, Read SA, Ahlenstiel G, Piatkov I. Pharmacogenetics of anticancer monoclonal antibodies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:69-81. [PMID: 35582142 PMCID: PMC9019180 DOI: 10.20517/cdr.2018.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Pharmacogenetics is the study of therapeutic and adverse responses to drugs based on an individual’s genetic background. Monoclonal antibodies (mAbs) are a rapidly evolving field in cancer therapy, however a number of newly developed and highly effective mAbs (e.g., anti-CTLA-4 and anti-PD-1) possess pharmacogenomic profiles that remain largely undefined. Since the first chemotherapeutic mAb Rituximab was approved in 1997 by the US Food and Drug Administration for cancer treatment, a broad number of other mAbs have been successfully developed and implemented into oncological practice. Nowadays, mAbs are considered as one of the most promising new approaches for cancer treatment. The efficacy of mAb treatment can however be significantly affected by genetic background, where genes responsible for antibody presentation and metabolism, for example, can seriously affect patient outcome. This review will focus on current anticancer mAb treatments, patient genetics that shape their efficacy, and the molecular pathways that bridge the two.
Collapse
Affiliation(s)
- Dmitrii Shek
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia
| | - Scott A Read
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,Blacktown Hospital, Blacktown, NSW 2148, Australia
| | | |
Collapse
|
217
|
Porcu M, De Silva P, Solinas C, Battaglia A, Schena M, Scartozzi M, Bron D, Suri JS, Willard-Gallo K, Sangiolo D, Saba L. Immunotherapy Associated Pulmonary Toxicity: Biology Behind Clinical and Radiological Features. Cancers (Basel) 2019; 11:cancers11030305. [PMID: 30841554 PMCID: PMC6468855 DOI: 10.3390/cancers11030305] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
The broader use of immune checkpoint blockade in clinical routine challenges clinicians in the diagnosis and management of side effects which are caused by inflammation generated by the activation of the immune response. Nearly all organs can be affected by immune-related toxicities. However, the most frequently reported are: fatigue, rash, pruritus, diarrhea, nausea/vomiting, arthralgia, decreased appetite and abdominal pain. Although these adverse events are usually mild, reversible and not frequent, an early diagnosis is crucial. Immune-related pulmonary toxicity was most frequently observed in trials of lung cancer and of melanoma patients treated with the combination of the anti-cytotoxic T lymphocyte antigen (CTLA)-4 and the anti-programmed cell death-1 (PD-1) antibodies. The most frequent immune-related adverse event in the lung is represented by pneumonitis due to the development of infiltrates in the interstitium and in the alveoli. Clinical symptoms and radiological patterns are the key elements to be considered for an early diagnosis, rendering the differential diagnosis crucial. Diagnosis of immune-related pneumonitis may imply the temporary or definitive suspension of immunotherapy, along with the start of immuno-suppressive treatments. The aim of this work is to summarize the biological bases, clinical and radiological findings of lung toxicity under immune checkpoint blockade, underlining the importance of multidisciplinary teams for an optimal early diagnosis of this side effect, with the aim to reach an improved patient care.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Pushpamali De Silva
- Molecular Immunology Unit, Institut Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
- Clinical and Experimental Hematology, Institute Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
- Department of Medical Oncology and Hematology, Regional Hospital of Aosta, 11100 Aosta, Italy.
| | - Angelo Battaglia
- Department of Medical Oncology and Hematology, Regional Hospital of Aosta, 11100 Aosta, Italy.
| | - Marina Schena
- Department of Medical Oncology and Hematology, Regional Hospital of Aosta, 11100 Aosta, Italy.
| | - Mario Scartozzi
- Department of Medical Oncology, University Hospital of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Dominique Bron
- Clinical and Experimental Hematology, Institute Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| | - Jasjit S Suri
- Lung Diagnostic Division, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA.
- AtheroPoint™ LLC, Roseville, CA 95661, USA.
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| | - Dario Sangiolo
- Department of Oncology, University of Torino, 10043 Orbassano (Torino), Italy.
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo (Torino), Italy.
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
218
|
Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med 2019; 25:389-402. [PMID: 30842677 PMCID: PMC6599710 DOI: 10.1038/s41591-019-0382-x] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Understanding genomic correlates of response and resistance to checkpoint blockade may enhance benefits for patients with cancer by elucidating biomarkers for patient stratification and resistance mechanisms for therapeutic targeting. Here we review emerging genomic markers of checkpoint blockade response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways. Compelling evidence also points to a role for T cell functionality, checkpoint regulators, chromatin modifiers, and copy-number alterations in mediating selective response to immune checkpoint blockade. Ultimately, efforts to contextualize genomic correlates of response into the larger understanding of tumor immune biology will build a foundation for the development of novel biomarkers and therapies to overcome resistance to checkpoint blockade.
Collapse
Affiliation(s)
- Tanya E Keenan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
219
|
Balancing the Checkpoint: Managing Colitis Associated with Dual Checkpoint Inhibitors and High-Dose Aspirin. Dig Dis Sci 2019; 64:685-688. [PMID: 30778872 DOI: 10.1007/s10620-019-05534-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
220
|
Zhang G, Liu C, Bai H, Cao G, Cui R, Zhang Z. Combinatorial therapy of immune checkpoint and cancer pathways provides a novel perspective on ovarian cancer treatment. Oncol Lett 2019; 17:2583-2591. [PMID: 30854033 DOI: 10.3892/ol.2019.9902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
An increasing number of studies have reported that immunotherapy serves a significant role in ovarian cancer treatment. In recent years, blockade of checkpoint pathways, including programmed death-ligand 1 (PD-L1)/programmed death-1 and cytotoxic T-lymphocyte-associated protein 4, has demonstrated significant clinical and preclinical benefits in the treatment of ovarian cancer. Additionally, tumor-associated angiogenesis and homologous recombination deficiency frequently occurs in patients with high-grade ovarian cancer, which makes cancer cells more susceptible to targeted therapies, including therapies targeting poly (ADP-ribose) polymerase inhibitor, and anti-angiogenic approaches. Additionally, targeted therapy has been associated with elevated PD-L1 expression in tumor cells, increased T-cell infiltration in tumors and dendritic cell stimulation. This synergistic effect provides the rationale for the joint application of targeted therapy and immunotherapy. Checkpoint blockades are able to elicit durable antitumor immune reactions and complement the transient antitumor effect of targeted therapies. The current review discusses the underlying mechanism of these therapies and novel developments in combined therapy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Guyu Zhang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10000, P.R. China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10000, P.R. China
| | - Huiming Bai
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10000, P.R. China
| | - Guangming Cao
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10000, P.R. China
| | - Ran Cui
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10000, P.R. China
| | - Zhengyu Zhang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10000, P.R. China
| |
Collapse
|
221
|
Abstract
Repairing defects in anti-tumor immunity has been a longstanding challenge in cancer therapy, and in recent years, immunotherapy has emerged as a promising approach for treating advanced disease. While the interactions between the immune system and cancer have been studied for more than a century, only in recent years has the field realized the tremendous potential in stimulating the immune system to eradicate cancer. From early investigations by William Coley in using bacteria to treat cancer patients to more recent work in adoptively transferred engineered T cells to identify and kill cancer cells has opened up an entire field dedicated to re-educating the immune system in a cancer patient. A multitude of immunotherapy strategies have been proposed and tested in clinical trials, from recombinant proteins, agonistic antibodies, and checkpoint inhibitors designed to re-invigorate anti-tumor immunity, to vaccine approaches and adoptive T-cell strategies, we are now on the cusp of an exciting revolution that will ultimately become an arsenal of therapies to treat any cancer type, at any stage, with the hope of robust and durable responses in cancer patients. In this chapter, we will examine the various immunotherapy strategies under active clinical investigation, with a particular focus on the latest advances in cellular immunotherapies and the future of precision medicine-enabled immunotherapy.
Collapse
Affiliation(s)
- John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.
| |
Collapse
|
222
|
Abstract
There have been a number of recent developments in the treatment of castration-resistant prostate cancer which seek to exploit the hormonal axis. Still, the castration-resistant prostate cancer remains a major challenge since this is the lethal and incurable phenotype which results in tens of thousands of deaths every year. There has been emerging interest in utilizing anticancer immunotherapy in prostate cancer, especially since the development of sipuleucel-T. Several other prostate cancer therapeutic vaccines including autologous and allogeneic vaccines, as well as viral vector-based vaccines, have demonstrated promising results in early trials. The checkpoint inhibitors which have shown some dramatic results in other cancers are now being studied in advanced prostate cancer setting. Studies are examining the therapeutic effects for both CTLA-4 inhibitors and PD-1/PD-L1 inhibitors. It appears that definitions and measurements of response used in cytotoxic therapies may not be valid in determining response to immunotherapy. Early reports suggest that combination therapies, either concurrent or sequential, may be needed to achieve the desired response against advanced prostate cancer.
Collapse
Affiliation(s)
- Adam Schatz
- Division of Urology, Albany Medical College, Albany, NY 12054, USA
| | - Badar M Mian
- Division of Urology, Albany Medical College, Albany, NY 12054, USA
| |
Collapse
|
223
|
Abstract
Since the approval of the first monoclonal antibody (mAb), rituximab, for hematological malignancies, almost 30 additional mAbs have been approved in oncology. Despite remarkable advances, relatively weak responses and resistance to antibody monotherapy remain major open issue. Overcoming resistance might require combinations of drugs blocking both the major target and the emerging secondary target. We review clinically approved combinations of antibodies and either cytotoxic regimens (chemotherapy and irradiation) or kinase inhibitors. Thereafter, we focus on the most promising and currently very active arena that combines mAbs inhibiting immune checkpoints or growth factor receptors. Clinically approved and experimental oligoclonal mixtures of mAbs targeting different antigens (hetero-combinations) or different epitopes of the same antigen (homo-combinations) are described. Effective oligoclonal mixtures of antibodies that mimic the polyclonal immune response will likely become a mainstay of cancer therapy.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
224
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
225
|
Hameed A, Natarajan M, Jabbar S, Dhanasekaran JJ, Kumar K, Sivanesan S, Kron M, Dhanasekaran A. Immune Response to Brugia malayi Asparaginyl-tRNA Synthetase in Balb/c Mice and Human Clinical Samples of Lymphatic Filariasis. Lymphat Res Biol 2018; 17:447-456. [PMID: 30570354 DOI: 10.1089/lrb.2018.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Lymphatic filariasis (LF) is a global health problem, with a peculiar nature of parasite-specific immunosuppression that promotes long-term pathology and disability. Immune modulation in the host by parasitic antigens is an integral part of this disease. The current study attempts to dissect the immune responses of aminoacyl-tRNA synthetases (AARS) with emphasis on Brugia malayi asparaginyl-tRNA synthetase (BmAsnRS), since it is one among the highly expressed excretory/secretory proteins expressed in all stages of the parasite life cycle, whereas its role in filarial pathology has not been elaborately studied. Methods and Results: In this study, recombinant BmAsnRS (rBmAsnRS) immunological effects were studied in semipermissive filarial animal model Balb/c mice and on clinically defined human samples for LF. In mice study, humoral responses showed considerable titer levels with IgG2a isotype followed by IgG2b and IgG1. Immunoreactivity studies with clinical samples showed significant humoral responses especially in endemic normal with marked levels of IgG1 and IgG2 followed by IgG3. The cell-mediated immune response, evaluated by splenocytes and peripheral blood mononuclear cells proliferation, did not yield significant difference when compared with control groups. Cytokine profiling and qRT-PCR analysis of mice samples immunized with rBmAsnRS showed elevated levels of IFN-γ, IL-10, inhibitory factor-cytotoxic T lymphocyte-associated protein-A (CTLA-4) and Treg cell marker-Forkhead Box P3 (FoxP3). Conclusions: These observations suggest that rBmAsnRS has immunomodulatory effects with modified Th2 response along with suppressed cellular proliferation indicating the essence of this molecule for immune evasion by the parasite.
Collapse
Affiliation(s)
- Afaq Hameed
- 1Centre for Biotechnology, Anna University, Chennai, India.,2Department of Biomedical Engineering, Engineering Faculty, Thi-Qar University, Thi-Qar, Iraq
| | | | - Salih Jabbar
- 3Bint Al-Huda Teaching Hospital, Health Ministry, Thi-Qar, Iraq
| | | | - Krishna Kumar
- 1Centre for Biotechnology, Anna University, Chennai, India
| | | | - Michael Kron
- 5Department of Biomedical Engineering and Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin.,6Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
226
|
Novel Approaches to Immunotherapy in Triple Negative Breast Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.87024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
227
|
Sun L, Chen L, Li H. Checkpoint-modulating immunotherapies in tumor treatment: Targets, drugs, and mechanisms. Int Immunopharmacol 2018; 67:160-175. [PMID: 30553199 DOI: 10.1016/j.intimp.2018.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Tumor immunotherapy, as a new treatment of cancer, has been developing on the basis of tumor immunology. Tumor immunotherapy stimulates and enhances the function of immune system in human bodies, in order to control and kill tumor cells. It is often used as an adjuvant therapy combined with surgery, chemotherapy, radiotherapy and other conventional methods. Cancer immunotherapies involve cells, antibodies and cytokines, etc. Some immunotherapies are widely used to activate the immune system, while some others precisely target at different tumor antigens. With the development of tumor immunotherapy, immune regulation activities of small molecules and biological agents have been gradually becoming a hot research area these years. In this review, we summarize the therapeutic targets, drugs, biologics, and their mechanisms in tumor immunotherapies.
Collapse
Affiliation(s)
- Lu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
228
|
van Gulijk M, Dammeijer F, Aerts JGJV, Vroman H. Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy. Front Immunol 2018; 9:2759. [PMID: 30568653 PMCID: PMC6289976 DOI: 10.3389/fimmu.2018.02759] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
229
|
Xia AL, Xu Y, Lu XJ. Cancer immunotherapy: challenges and clinical applications. J Med Genet 2018; 56:1-3. [PMID: 30464054 DOI: 10.1136/jmedgenet-2018-105852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- An-Liang Xia
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
230
|
Dong J, Li B, Zhou Q, Huang D. Advances in evidence-based medicine for immunotherapy of non-small cell lung cancer. J Evid Based Med 2018; 11:278-287. [PMID: 30444051 DOI: 10.1111/jebm.12322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is praised as "green therapy," which can attack tumor by mobilizing immune system. By removing the inhibition of immune cells, checkpoint inhibitors help T cells to identify and kill tumor cells. In recent years, more and more attention has been paid to its effectiveness as a tumor therapy with a large number of clinical data. Currently, inhibitors of 2 checkpoints, CTLA-4 and PD-1/PD-L1, have been approved to be listed. In particular, the latter has achieved breakthrough progress in non-small cell lung cancer in recent years, bringing about changes in the therapeutic strategy of lung cancer, as well as challenges to the evaluation criteria. This article focuses on the latest immunotherapy methods for lung cancer. The purpose of this article is to summarize the development of evidence-based medicine for lung cancer immunotherapy and to provide help for further understanding of lung cancer immunotherapy.
Collapse
Affiliation(s)
- Jingsi Dong
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bingjie Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| |
Collapse
|
231
|
|
232
|
Alnabulsi R, Hussain A, DeAngelis D. Complete ophthalmoplegia in Ipilmumab and Nivolumab combination treatment for metastatic melanoma. Orbit 2018; 37:381-384. [PMID: 29381409 DOI: 10.1080/01676830.2017.1423349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
Ipilimumab and Nivolumab are novel monoclonal antibodies that have recently been used successfully for treatment of metastatic melanoma. Ipilimumab is a human monoclonal antibody against Cytotoxic T Lymphocyte Antigen 4 (CTLA4) receptor, which suppresses T-cell proliferation and stimulates an inflammatory response against cancer cells. Nivolumab is an IgG4 monoclonal antibody against the cytotoxic T lymphocyte associated programmed death 1 receptor (PD-1). Ipilimumab and Nivolumab combination treatment has been shown to induce remission and prolong survival in patients with metastatic melanoma. The side effect profile of these medications has not been well studied. One entity of the side effects reported in the literature is immune-related adverse events (irAEs). There have been few case reports where these events were serious and irreversible. In this case report, we describe a fatal and severe diffuse panmyositis that involved the cardiac, respiratory, and extraocular muscles in a patient with metastatic melanoma secondary to combination treatment with Ipilimumab/Nivolumab.
Collapse
Affiliation(s)
- Reem Alnabulsi
- a Department of Ophthalmology and Vision Sciences , University of Toronto , Toronto , Ontario , Canada
| | - Ahsen Hussain
- a Department of Ophthalmology and Vision Sciences , University of Toronto , Toronto , Ontario , Canada
| | - Dan DeAngelis
- a Department of Ophthalmology and Vision Sciences , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
233
|
Clinical Value of Combined Determination of Serum B7-H4 with Carcinoembryonic Antigen, Osteopontin, or Tissue Polypeptide-Specific Antigen for the Diagnosis of Colorectal Cancer. DISEASE MARKERS 2018; 2018:4310790. [PMID: 30363700 PMCID: PMC6180982 DOI: 10.1155/2018/4310790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022]
Abstract
Aim B7-H4 is member of the B7 family that negatively regulates the immune response, which are associated with tumor development and prognosis. The present study is aimed at examining serum B7-H4 expression and exploring its contribution to diagnosis in patients with colorectal cancer. Methods We determined serum expressions of B7-H4, carcinoembryonic antigen (CEA), osteopontin (OPN), and tissue polypeptide-specific antigen (TPS) in 59 patients with colorectal cancer and 29 healthy volunteers and analyzed the diagnostic value of B7-H4 combined with CEA, OPN, or TPS detection for colorectal cancer. B7-H4, OPN, and TPS serum expressions were measured by enzyme-linked immunosorbent assay, and CEA was measured by electrochemical luminescence detection. Results Serum B7-H4 levels were significantly higher in colorectal cancer patients compared with paired normal controls (P = 0.001). B7-H4 serum level was positively correlated with infiltration depth, tumor masses, and lymph node metastasis (P = 0.004, P = 0.016, and P = 0.0052, respectively). We also detected serum expression of B7-H4 before and after radical resection and showed that B7-H4 levels decreased significantly during the first week postoperation (P = 0.0064). We used receiver operating characteristic (ROC) curve analysis to indicate the potential diagnostic values of these markers. The areas under the ROC curves (AUC) for B7-H4, OPN, TPS, and CEA were 0.867, 0.805, 0.812, and 0.833, respectively. The optimal sensitivity and specificity of B7-H4 for discriminating between colon cancer patients and healthy controls were 88.2% and 86.7%, respectively, using a cut-off of value of 78.89 ng/mL. However, combined ROC analysis using B7-H4 and CEA revealed an AUC of 0.929, with a sensitivity of 98.9% and a specificity of 80.4% for discriminating colon cancer patients from healthy controls. Conclusions B7-H4 was highly expressed in the serum in colorectal cancer patients. Detection of B7-H4 plus CEA showed significantly increased sensitivity and specificity for discriminating between colorectal cancer patients and healthy controls compared to individual detection of these markers. Combined detection of serum B7-H4 and CEA may thus have the potential to become a new laboratory method for the early clinical diagnosis and prognostic evaluation of colorectal cancer.
Collapse
|
234
|
Shen M, Kang Y. Complex interplay between tumor microenvironment and cancer therapy. Front Med 2018; 12:426-439. [PMID: 30097962 DOI: 10.1007/s11684-018-0663-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Tumor microenvironment (TME) is comprised of cellular and non-cellular components that exist within and around the tumor mass. The TME is highly dynamic and its importance in different stages of cancer progression has been well recognized. A growing body of evidence suggests that TME also plays pivotal roles in cancer treatment responses. TME is significantly remodeled upon cancer therapies, and such change either enhances the responses or induces drug resistance. Given the importance of TME in tumor progression and therapy resistance, strategies that remodel TME to improve therapeutic responses are under developing. In this review, we provide an overview of the essential components in TME and the remodeling of TME in response to anti-cancer treatments. We also summarize the strategies that aim to enhance therapeutic efficacy by modulating TME.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
235
|
Adler BL, Pezhouh MK, Kim A, Luan L, Zhu Q, Gani F, Yarchoan M, Chen J, Voltaggio L, Parian A, Lazarev M, Lauwers GY, Pawlik TM, Montgomery EA, Jaffee E, Le DT, Taube JM, Anders RA. Histopathological and immunophenotypic features of ipilimumab-associated colitis compared to ulcerative colitis. J Intern Med 2018; 283:568-577. [PMID: 29464806 PMCID: PMC5992029 DOI: 10.1111/joim.12744] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Use of the immune checkpoint inhibitor ipilimumab is sometimes complicated by ipilimumab-associated colitis (Ipi-AC), an immune-mediated colitis that mimics inflammatory bowel disease. OBJECTIVE We sought to characterize the histopathologic and immunophenotypic features of Ipi-AC and to directly compare these features to ulcerative colitis (UC). METHODS This is a retrospective cohort study of 22 patients with Ipi-AC, 12 patients with treatment-naïve UC and five controls with diarrhoea but normal endoscopic findings. Immunohistopathologic features were described, and quantitative immunohistochemistry (IHC) was performed for CD4, CD8, CD20, CD138 and FOXP3. RESULTS Endoscopic findings in both the Ipi-AC and UC groups included ulcerated, oedematous and erythematous mucosa. Involvement of the GI tract was more diffuse in Ipi-AC. As compared to UC, a smaller proportion of Ipi-AC biopsies had basal plasmacytosis (14% for Ipi-AC vs. 92% for UC, P < 0.0001) and crypt distortion (23% for Ipi-AC vs. 75% for UC, P = 0.003), whereas Ipi-AC biopsies had more apoptotic bodies in the left colon (17.6 ± 15.3 for Ipi-AC vs. 8.2 ± 4.2 for UC, P = 0.011). Cryptitis, ulcerations and crypt abscesses were common in both groups. Biopsy specimens from Ipi-AC had a lower density of CD20-positive lymphocytes than UC (275.8 ± 253.3 cells mm-2 for Ipi-AC vs. 1173.3 ± 1158.2 cells mm-2 for UC, P = 0.022) but had a similar density of CD4, CD8, CD138 and FOXP3-positive cells. CONCLUSIONS Ipi-AC is a distinct pathologic entity with notable clinical and histopathological differences compared to UC. These findings provide insights into the pathophysiology of immune-related adverse events (iAEs) from ipilimumab therapy.
Collapse
Affiliation(s)
- Brittany L. Adler
- Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maryam K. Pezhouh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Kim
- Department of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lan Luan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Faiz Gani
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Chen
- Department of Pathology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, USA
| | - Lysandra Voltaggio
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa Parian
- Department of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Lazarev
- Department of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory Y. Lauwers
- Department of Pathology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, USA
| | - Timothy M. Pawlik
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Elizabeth Jaffee
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Dung T. Le
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janis M. Taube
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
236
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
237
|
Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423:95-104. [DOI: 10.1016/j.canlet.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
|
238
|
Schürch CM. Therapeutic Antibodies for Myeloid Neoplasms-Current Developments and Future Directions. Front Oncol 2018; 8:152. [PMID: 29868474 PMCID: PMC5968093 DOI: 10.3389/fonc.2018.00152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) such as antibody-drug conjugates, ligand-receptor antagonists, immune checkpoint inhibitors and bispecific T cell engagers have shown impressive efficacy in the treatment of multiple human cancers. Numerous therapeutic mAbs that have been developed for myeloid neoplasms, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), are currently investigated in clinical trials. Because AML and MDS originate from malignantly transformed hematopoietic stem/progenitor cells-the so-called leukemic stem cells (LSCs) that are highly resistant to most standard drugs-these malignancies frequently relapse and have a high disease-specific mortality. Therefore, combining standard chemotherapy with antileukemic mAbs that specifically target malignant blasts and particularly LSCs or utilizing mAbs that reinforce antileukemic host immunity holds great promise for improving patient outcomes. This review provides an overview of therapeutic mAbs for AML and MDS. Antibody targets, the molecular mechanisms of action, the efficacy in preclinical leukemia models, and the results of clinical trials are discussed. New developments and future studies of therapeutic mAbs in myeloid neoplasms will advance our understanding of the immunobiology of these diseases and enhance current therapeutic strategies.
Collapse
Affiliation(s)
- Christian M. Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
239
|
Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, Giles F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6:39. [PMID: 29769148 PMCID: PMC5956851 DOI: 10.1186/s40425-018-0349-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy is among the most rapidly evolving treatment strategies in oncology. The therapeutic potential of immune-checkpoint inhibitors is exemplified by the recent hail of Food and Drug Administration (FDA) approvals for their use in various malignancies. Continued efforts to enhance outcomes with immunotherapy agents have led to the formulation of advanced treatment strategies. Recent evidence from pre-clinical studies evaluating immune-checkpoint inhibitors in various cancer cell-lines has suggested that combinatorial approaches may have superior survival outcomes compared to single-agent immunotherapy regimens. Preliminary trials assessing combination therapy with anti-PD-1/PD-L1 plus anti-CTLA-4 immune-checkpoint inhibitors have documented considerable advantages in survival indices over single-agent immunotherapy. The therapeutic potential of combinatorial approaches is highlighted by the recent FDA approval of nivolumab plus ipilimumab for patients with advanced melanoma. Presently, dual-immune checkpoint inhibition with anti-programmed death receptor-1/programmed cell death receptor- ligand-1 (anti-PD-1/PD-L1) plus anti-cytotoxic T lymphocyte associated antigen-4 (anti-CTLA-4) monoclonal antibodies (MoAbs) is being evaluated for a wide range of tumor histologies. Furthermore, several ongoing clinical trials are investigating combination checkpoint inhibition in association with traditional treatment modalities such as chemotherapy, surgery, and radiation. In this review, we summarize the current landscape of combination therapy with anti-PD-1/PD-L1 plus anti-CTLA-4 MoAbs for patients with melanoma and non-small cell lung cancer (NSCLC). We present a synopsis of the prospects for expanding the indications of dual immune-checkpoint inhibition therapy to a more diverse set of tumor histologies.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL, 60611, USA. .,Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL, 60611, USA.
| | - Ayush Arya
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Wade Iams
- 0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Marcelo R. Cruz
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Sunandana Chandra
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Jaehyuk Choi
- 0000 0001 2299 3507grid.16753.36Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Francis Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| |
Collapse
|
240
|
Qiao M, Jiang T, Zhou C. Shining light on advanced NSCLC in 2017: combining immune checkpoint inhibitors. J Thorac Dis 2018; 10:S1534-S1546. [PMID: 29951304 PMCID: PMC5994489 DOI: 10.21037/jtd.2018.04.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
The treatment landscape has changed since the immune checkpoint inhibitors were approved in the treatment of non-small cell lung cancer (NSCLC). Although the promising clinical benefit from programmed death-1/programmed death ligand-1 (PD-1/PD-L1) inhibitors was observed in the second or subsequent line treatment of patients who progressed on chemotherapy, it has a long way for single PD-1/PD-L1 inhibitor to move forward to the frontline without a predictive biomarker. Tumor response is far from satisfactory without selection and primary or acquired resistance to PD-1/PD-L1 inhibitors hampered their utility. Therefore, it is crucial to determine a strategy that can optimize the application of immune checkpoint inhibitors and increase the numbers of the responders. Multiple combination approaches based on PD-1/PD-L1 inhibitors are designed and aimed to boost anti-tumor response and benefit a broader population. In this review, we will integrate the updated clinical data to highlight the four most promising combination strategies in advance NSCLC: combination of checkpoint inhibition with chemotherapy, anti-angiogenesis, immunotherapy and radiotherapy. We further discuss the issues needed to be addressed and perspectives in the context of "combination era".
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
241
|
Abstract
PURPOSE OF REVIEW The treatment landscape for many cancers has dramatically changed with the development of checkpoint inhibitors. This article will review the literature concerning the use of checkpoint inhibitors in breast cancer. RECENT FINDINGS The histological subtype of BC with the strongest signal of efficacy has been triple-negative breast cancer (TNBC). Early trials of single-agent checkpoint inhibitors did not demonstrate a uniformly positive signal. Clinical studies suggest response rates between 5 and 10% in pretreated patients and roughly 20-25% for untreated advanced TNBC. However, in the small subset of patients who do respond, the response is often durable. More encouraging results have been reported with their use in combination with chemotherapy in the neoadjuvant setting. Larger phase III studies are underway to confirm these earlier findings. An immune-directed therapeutic approach for the management of BC is underway, and it is likely that combination therapy will be required to achieve a level of efficacy worthy of use in the BC treatment paradigm. These agents are not without both economic and clinical toxicity; therefore, it is imperative that we identify patients most likely to benefit from these therapies through well-designed biologically plausible clinical studies and by evaluating novel combinatorial approaches with informative biomarker driven correlative studies.
Collapse
|
242
|
Freitas CMT, Johnson DK, Weber KS. T Cell Calcium Signaling Regulation by the Co-Receptor CD5. Int J Mol Sci 2018; 19:E1295. [PMID: 29701673 PMCID: PMC5983667 DOI: 10.3390/ijms19051295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research.
Collapse
Affiliation(s)
- Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| |
Collapse
|
243
|
Tripathi A, Kaymakcalan MD, LeBoeuf NR, Harshman LC. Programmed cell death-1 pathway inhibitors in genitourinary malignancies: specific side-effects and their management. Curr Opin Urol 2018; 26:548-55. [PMID: 27517638 DOI: 10.1097/mou.0000000000000332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors such as those that target the programmed cell death (PD)-1 pathway harness the host immune system to elicit an antitumor response. Their remarkable clinical benefit has led to regulatory approvals in several malignancies including the genitourinary cancers, renal cell carcinoma, and urothelial carcinoma. This review will focus on the management of the toxicities encountered with these agents. RECENT FINDINGS Although generally well tolerated, a small proportion of patients (10-20%) treated with PD-1 directed agents as monotherapy can develop severe autoimmune manifestations, also known as, immune-related adverse events. These include but are not limited to rashes, pneumonitis, endocrinopathy, colitis, and immune-mediated hepatic dysfunction. Combining these agents with the anti-CTLA-4 antibody ipilimumab can be associated with a higher incidence of these toxicities. Early initiation of immunosuppression with corticosteroids and other agents when needed can help mitigate these toxicities and to date has not been shown to compromise their clinical benefit. SUMMARY The development of immune checkpoint inhibitors represents significant advances in anticancer therapy but their efficacy may come at the cost of autoimmune toxicities secondary to their induction of the immune system. Early recognition of these effects and aggressive upfront management is essential to safely administer these agents in routine clinical practice.
Collapse
Affiliation(s)
- Abhishek Tripathi
- aLank Center for Genitourinary Oncology, Dana-Farber Cancer Institute bThe Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
244
|
Zhao X, He L, Mao K, Chen D, Jiang H, Liu Z. The research status of immune checkpoint blockade by anti-CTLA4 and anti-PD1/PD-l1 antibodies in tumor immunotherapy in China: A bibliometrics study. Medicine (Baltimore) 2018; 97:e0276. [PMID: 29642147 PMCID: PMC5908611 DOI: 10.1097/md.0000000000010276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Using bibliometrics, we analyzed the research status of immune checkpoint blockade (ICB, a popular tumor immunotherapy method represented by antibodies targeted CTLA-4 and PD-1/PD-L1) in tumor immunotherapy in China during the past 2 decades. METHODS Articles in Science Citation Index Expanded (SCI-EXPANDED), patents in Thomson Innovation, and drugs in Cortellis Competitive Intelligence in the field of ICB for tumor immunotherapy from 1996 to 2015 were the subjects of bibliometric analysis. Using database-attached software and Excel, quantitative analyses were performed including examination of the number of documents, citation frequency, h-index, key projects, quantity of publications, public patents, and status of new drug research. RESULTS The number of publications from 1996 to 2015 in the field of ICB for tumor immunotherapy that came out of China was 380, which was 14.3% of the total publications worldwide and was second only to that of the USA. In the past decade, China has rapidly increased the number of publications and patents in this field. However, indicators of publication influence, such as citation frequency and h-index, were far behind other advanced countries. In addition, the total number of patents in China was much lower than that of the USA. China has introduced 5 drugs for ICB that are being developed for the healthcare market. CONCLUSION Tumor immunotherapy research such as ICB in China has developed rapidly with increasing influence in the last 2 decades. However, there is still a relatively large gap compared with the USA. It is expected that China will have greater influence on tumor immunotherapy research in the near future.
Collapse
Affiliation(s)
- Xiaoqin Zhao
- Shanghai Library Institute of Scientific and Technical Information of Shanghai
| | - Liangmei He
- The First Affiliated Hospital of Gannan Medical University
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
| | - Daming Chen
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
| | - Hongbo Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University
- Ganzhou Cancer Precision Medicine Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
245
|
Agrawal U, Kumari N, Mishra AK, Vasudeva P, Kumar A, Mohanty NK, Saxena S. Immune signature of urothelial cancer associated with grade, recurrence, and invasion. Urol Oncol 2018; 34:418.e17-26. [PMID: 27554791 DOI: 10.1016/j.urolonc.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/19/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Urothelial carcinoma (UC) is one of most common genitourinary malignancy and the spectrum of disease ranges from in situ lesions to muscle-invasive cancers. The non-muscle-invasive lesions have tendency to recur or progress to muscle-invasive disease. The study of the immune profile may identify immune determinants associated with high-grade, recurrence, and invasion in patients with UC. METHODS Pathway-focused RT(2) profiler arrays were used to screen patients with UC for dysregulation of candidate genes of Th1-Th2-Th3 and NFκB pathways, which were then validated by real-time polymerase chain reaction on tumor samples and correlated with grade, recurrence, and invasion of tumors to identify their role in predicting behavior of the tumor. The cytokines found associated with recurrence were then validated in urine of patients with UC. RESULTS IFNγ, IL2, IL4, IL10, IL17, CCL7, CTLA4, and SPP1 of the cytokine pathway and TLR4, TLR3, RELA, NFκB1, and MYD88 of the NFκB pathway were found differentially expressed in patients with urothelial cancer by array and quantative real-time polymerase chain reaction. Among these, IL10 and SPP1 were found consistently up-regulated in high-grade, invasive, and recurrent cases and up-regulated IL10 and CTLA4 were found associated with a short recurrence-free survival time (P = 0.001 and P = 0.065). Urinary IL10 concentration was significantly higher in both patients with cancer and cystitis compared with healthy controls, but the difference in concentration between patients with cancer and cystitis patients was not statistically significant. However, urinary CTLA4 concentrations were found to be significantly higher in urothelial cancer patients compared with healthy controls and cystitis cases and found to be associated with poor recurrence-free survival. CONCLUSION The study indicates that high urinary CTLA4 concentration raises the index of suspicion of recurrence in a known case of urothelial cancer and may be used as a surveillance marker.
Collapse
Affiliation(s)
- Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India; Symbiosis International University, Lavale, Pune, India
| | - Nitu Kumari
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India; BITS, Pilani, Rajasthan, India
| | | | - Pawan Vasudeva
- Deptartment of Urology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Anup Kumar
- Deptartment of Urology, VMMC and Safdarjung Hospital, New Delhi, India
| | | | - Sunita Saxena
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India.
| |
Collapse
|
246
|
Ozen M, Novak C, Burd I. Placenta immune infiltrates and perinatal outcomes. Am J Reprod Immunol 2018; 79:e12850. [PMID: 29577494 DOI: 10.1111/aji.12850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Pregnancy is a state of immunotolerance and loss of this immunotolerance may lead to fetal rejection, pregnancy complications, and neonatal complications. Immunobiology of pregnancy is complex and involves unique immune cell populations specific to pregnancy, changes in mucosal immune cells and peripheral immune system, and reciprocal adaptations between the mother and the fetus. The mechanisms required for sustaining a healthy feto-placental barrier and a healthy pregnancy such as activation of regulatory immune responses with a predominance of regulatory T cells lead to immune evasion and propagation of cancer. It is intriguing to note that the immune pathways which are effective in limiting or eliminating cancer form the very basis for loss of feto-maternal tolerance. In this article, we aim to compare and contrast immunobiology of healthy and pathological pregnancies mirroring with cancer immunobiology with a focus on immune checkpoint receptors.
Collapse
Affiliation(s)
- Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Novak
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
247
|
Abstract
The release of negative regulators of immune activation (immune checkpoints) that limit antitumor responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway, either alone or in combination. The main premise for inducing an immune response is the preexistence of antitumor T cells that were limited by specific immune checkpoints. Most patients who have tumor responses maintain long-lasting disease control, yet one-third of patients relapse. Mechanisms of acquired resistance are currently poorly understood, but evidence points to alterations that converge on the antigen presentation and interferon-γ signaling pathways. New-generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy.
Collapse
Affiliation(s)
- Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology; Department of Surgery, Division of Surgical Oncology; and Department of Molecular and Medical Pharmacology, Jonsson Comprehensive Cancer Center and Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jedd D Wolchok
- Department of Medicine, Ludwig Center and Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Weill Cornell Medical and Graduate Colleges, New York, NY 10065, USA
| |
Collapse
|
248
|
The impact of tumor cell metabolism on T cell-mediated immune responses and immuno-metabolic biomarkers in cancer. Semin Cancer Biol 2018; 52:66-74. [PMID: 29574171 DOI: 10.1016/j.semcancer.2018.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023]
Abstract
The role of adaptive immunity is increasingly recognized as an important element both in the process of tumorigenesis and in the patient's response to treatment. While this understanding has led to new therapeutic strategies that potentiate the activities of tumor infiltrating lymphocytes, only a minority of patients attain durable responses. Metabolic activities in the tumor microenvironment, including hypoxia and acidity, can adversely affect immune responses, making the identification of metabolic biomarkers critically important for understanding and employing immunotherapies.
Collapse
|
249
|
Wang H, Wang L, Liu WJ, Xia ZJ, Huang HQ, Jiang WQ, Li ZM, Lu Y. High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients. Oncotarget 2018; 7:33035-45. [PMID: 27105512 PMCID: PMC5078073 DOI: 10.18632/oncotarget.8847] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
The impact of serum levels of soluble programmed cell death ligand 1 (sPD-L1) on prognosis in patients with Epstein-Barr virus-associated malignancies has never been investigated. We prospectively measured pre- and post-treatment serum sPD-L1 levels and evaluated their prognostic value in 97 patients with newly diagnosed, early stage extranodal NK/T-cell lymphoma (ENKTCL) treated with asparaginase-based chemotherapy followed by radiotherapy. For predicting survival outcomes, serum sPD-L1 levels of 3.23 ng/mL and 1.12 ng/mL were respectively identified for pre- and post-treatment cut-off levels. Patients with high pretreatment (>3.23 ng/mL) had shorter progression-free survival (PFS) and overall survival (OS). In a multivariate survival analysis, post-treatment sPD-L1 >1.12 ng/mL, treatment response (complete vs. non-complete response), and stage II disease were independent prognostic factors for shorter PFS and OS. In patients with a complete response, post-treatment sPD-L1 >1.12 ng/mL was associated with shorter PFS and OS. In patients with high pretreatment sPD-L1 levels (>3.23 ng/mL), low post-treatment sPD-L1 level (≤1.12 ng/mL) correlated with longer PFS and OS. Our data suggest the post-treatment sPD-L1 level is a potent biomarker for predicting early relapse and poor prognosis in early stage ENKTCL patients treated with asparaginase, and may be a useful marker of minimal residual disease.
Collapse
Affiliation(s)
- Hua Wang
- Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Liang Wang
- Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wen-Jian Liu
- Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhong-Jun Xia
- Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hui-Qiang Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Qi Jiang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Ming Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yue Lu
- Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| |
Collapse
|
250
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|