201
|
Tamuli R, Kumar R, Deka R. Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi. J Basic Microbiol 2010; 51:120-8. [PMID: 21077122 DOI: 10.1002/jobm.201000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/03/2010] [Indexed: 11/07/2022]
Abstract
The neuronal calcium sensor-1 (NCS-1) possesses a consensus signal for N-terminal myristoylation and four EF-hand Ca(2+)-binding sites, and mediates the effects of cytosolic Ca(2+). Minute changes in free intracellular Ca(2+) are quickly transformed into changes in the activity of several kinases including calcium/calmodulin-dependent protein kinases (Ca(2+)/CaMKs) that are involved in regulating many eukaryotic cell functions. However, our current knowledge of NCS-1 and Ca(2+)/CaMKs comes mostly from studies of the mammalian enzymes. Thus far very few fungal homologues of NCS-1 and Ca(2+)/CaMKs have been characterized and little is known about their cellular roles. In this minireview, we describe the known sequences, interactions with target proteins and cellular roles of NCS-1 and Ca(2+)/CaMKs in fungi.
Collapse
Affiliation(s)
- Ranjan Tamuli
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India.
| | | | | |
Collapse
|
202
|
Templeton DM, Liu Y. Multiple roles of cadmium in cell death and survival. Chem Biol Interact 2010; 188:267-75. [DOI: 10.1016/j.cbi.2010.03.040] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 12/01/2022]
|
203
|
Xu H, Yan Y, Williams MS, Carey GB, Yang J, Li H, Zhang GX, Rostami A. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle. PLoS One 2010; 5:e13780. [PMID: 21072172 PMCID: PMC2967469 DOI: 10.1371/journal.pone.0013780] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022] Open
Abstract
MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells
Collapse
Affiliation(s)
- Hui Xu
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
204
|
5,6,7,8-Tetrahydropyrido[4,3-d]pyrimidines as novel class of potent and highly selective CaMKII inhibitors. Bioorg Med Chem Lett 2010; 20:6696-8. [PMID: 20875738 DOI: 10.1016/j.bmcl.2010.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/21/2022]
Abstract
A novel series of 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidines containing substituted phenyl sulfonamide are synthesized and evaluated for their inhibitory activity against CaMKII. Substituents on the phenyl group had significant impact on CaMKII inhibition, in particular, the inhibitory activity of 8p was 25-fold higher than that of KN-93, a known CaMKII inhibitor. Michaelis-Menten analysis of a representative compound suggested that the synthesized pyrimidines are calmodulin non-competitive inhibitors. Finally, 8p exhibited more than 100-fold higher selectivity for CaMKII over five types of off-target kinases.
Collapse
|
205
|
Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe DR, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipilä S, Kovanen V. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2010; 32:347-363. [PMID: 20640546 PMCID: PMC2926854 DOI: 10.1007/s11357-010-9140-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50-57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in "response to contraction"-category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria.
Collapse
Affiliation(s)
- Eija Pöllänen
- Gerontology Research Centre, University Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Chen R, Snyder M. Yeast proteomics and protein microarrays. J Proteomics 2010; 73:2147-57. [PMID: 20728591 PMCID: PMC2949546 DOI: 10.1016/j.jprot.2010.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 11/20/2022]
Abstract
Our understanding of biological processes as well as human diseases has improved greatly thanks to studies on model organisms such as yeast. The power of scientific approaches with yeast lies in its relatively simple genome, its facile classical and molecular genetics, as well as the evolutionary conservation of many basic biological mechanisms. However, even in this simple model organism, systems biology studies, especially proteomic studies had been an intimidating task. During the past decade, powerful high-throughput technologies in proteomic research have been developed for yeast including protein microarray technology. The protein microarray technology allows the interrogation of protein–protein, protein–DNA, protein–small molecule interaction networks as well as post-translational modification networks in a large-scale, high-throughput manner. With this technology, many groundbreaking findings have been established in studies with the budding yeast Saccharomyces cerevisiae, most of which could have been unachievable with traditional approaches. Discovery of these networks has profound impact on explicating biological processes with a proteomic point of view, which may lead to a better understanding of normal biological phenomena as well as various human diseases.
Collapse
Affiliation(s)
- Rui Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
207
|
Cui X, Jin Y, Poudyal D, Chumanevich AA, Davis T, Windust A, Hofseth A, Wu W, Habiger J, Pena E, Wood P, Nagarkatti M, Nagarkatti PS, Hofseth L. Mechanistic insight into the ability of American ginseng to suppress colon cancer associated with colitis. Carcinogenesis 2010; 31:1734-41. [PMID: 20729391 DOI: 10.1093/carcin/bgq163] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that American ginseng (AG) prevents and treats mouse colitis. Because both mice and humans with chronic colitis have a high colon cancer risk, we tested the hypothesis that AG can be used to prevent colitis-driven colon cancer. Using the azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of ulcerative colitis, we show that AG can suppress colon cancer associated with colitis. To explore the molecular mechanisms of the anticancer effects of AG, we also carried out antibody array experiments on colon cells isolated at a precancerous stage. We found there were 82 protein end points that were either significantly higher (41 proteins) or significantly lower (41 proteins) in the AOM + DSS group compared with the AOM-alone (control) group. In contrast, there were only 19 protein end points that were either significantly higher (10 proteins) or significantly lower (9 proteins) in the AOM + DSS + AG group compared with the AOM-alone (control) group. Overall, these results suggest that AG keeps the colon environment in metabolic equilibrium when mice are treated with AOM + DSS and gives insight into the mechanisms by which AG protects from colon cancer associated with colitis.
Collapse
Affiliation(s)
- Xiangli Cui
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina and Medical University of South Carolina, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Takemoto-Kimura S, Suzuki K, Kamijo S, Ageta-Ishihara N, Fujii H, Okuno H, Bito H. Differential roles for CaM kinases in mediating excitation-morphogenesis coupling during formation and maturation of neuronal circuits. Eur J Neurosci 2010; 32:224-30. [DOI: 10.1111/j.1460-9568.2010.07353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
209
|
Dhalla NS, Müller AL. Protein Kinases as Drug Development Targets for Heart Disease Therapy. Pharmaceuticals (Basel) 2010; 3:2111-2145. [PMID: 27713345 PMCID: PMC4036665 DOI: 10.3390/ph3072111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA), Ca²⁺-calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
210
|
Arai T, Yatabe M, Furui M, Akatsuka H, Uehata M, Kamiyama T. A fluorescence polarization-based assay for the identification and evaluation of calmodulin antagonists. Anal Biochem 2010; 405:147-52. [PMID: 20599654 DOI: 10.1016/j.ab.2010.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 04/20/2010] [Accepted: 06/14/2010] [Indexed: 11/16/2022]
Abstract
A fluorescence polarization (FP) assay was developed to identify calmodulin (CaM) antagonists. A fluorescent tracer was newly designed by covalently labeling N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which is a well-known CaM antagonist, with the Cy5 dye. In the FP assay, the tracer (Cy5-W-7) was bound to CaM with a dissociation constant (K(d)) of 6.5 microM and demonstrated efficient competitive activity with other CaM antagonists, including W-7, chlorpromazine, trifluoperazine, W-5, and clozapine, indicating that Cy5-W-7 binds to the ligand-binding site of CaM in a specific manner. The inhibitory activities of Cy5-W-7 and CaM antagonists were subsequently measured by the CaM-dependent calcineurin phosphatase assay, and the results were confirmed with those of the FP assays. In addition, assay optimization for high-throughput screening was performed, and a Z' factor of 0.7 was achieved in a 1536-well format. The FP assay was found to be a simple and reliable alternative to conventional assays for evaluating CaM antagonists.
Collapse
Affiliation(s)
- Tomonori Arai
- Medicinal Chemistry Laboratory, Mitsubishi Tanabe Pharma, 2-2-50 Kawagishi, Toda-shi, Saitama 335-8505, Japan.
| | | | | | | | | | | |
Collapse
|
211
|
Witczak CA, Jessen N, Warro DM, Toyoda T, Fujii N, Anderson ME, Hirshman MF, Goodyear LJ. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E1150-60. [PMID: 20215576 PMCID: PMC2886528 DOI: 10.1152/ajpendo.00659.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.
Collapse
Affiliation(s)
- Carol A Witczak
- Joslin Diabetes Center, Research Division, Department of Medicine, Brigham and Women'sHospital, and Harvard Medical School, Boston, MA, 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Cipolletta E, Monaco S, Maione AS, Vitiello L, Campiglia P, Pastore L, Franchini C, Novellino E, Limongelli V, Bayer KU, Means AR, Rossi G, Trimarco B, Iaccarino G, Illario M. Calmodulin-dependent kinase II mediates vascular smooth muscle cell proliferation and is potentiated by extracellular signal regulated kinase. Endocrinology 2010; 151:2747-59. [PMID: 20392834 PMCID: PMC2875822 DOI: 10.1210/en.2009-1248] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation contributes to vascular remodeling in atherosclerosis and hypertension. Calcium-dependent signaling through calcium/calmodulin-dependent kinase II (CaMKII) and ERK1/2 activation plays an important role in the regulation of VSMC proliferation by agents such as alpha-adrenergic receptor agonists. Nevertheless, how the CaMKII and ERK pathways interact in VSMCs has yet to be characterized. The aim of the present study was to clarify this interaction in response to alpha(1)-adrenergic receptor-mediated VSMC proliferation. We discovered that phenylephrine stimulation resulted in complex formation between CaMKII and ERK in a manner that facilitated phosphorylation of both protein kinases. To assess the effects of CaMKII/ERK association on VSMC proliferation, we inhibited endogenous CaMKII either pharmacologically or by adenoviral-mediated gene transfer of a kinase-inactive CaMKII mutant. Inhibition of CaMKII activation but not CaMKII autonomous activity significantly decreased formation of the CaMKII/ERK complex. On the contrary, the expression of constitutively active CaMKII enhanced VSMC growth and CaMKII/ERK association. In addressing the mechanism of this effect, we found that CaMKII could not directly phosphorylate ERK but instead enhanced Raf1 activation. By contrast, ERK interaction with CaMKII facilitated CaMKII phosphorylation and promoted its nuclear localization. Our results reveal a critical role for CaMKII in VSMC proliferation and imply that CaMKII facilitates assembly of the Raf/MEK/ERK complex and that ERK enhances CaMKII activation and influences its subcellular localization.
Collapse
Affiliation(s)
- E Cipolletta
- Department of Biologia e Patologia Cellulare e Molecolare, via S. Pansini 5, 80131 Napoli, Italia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Kambe T, Song T, Takata T, Hatano N, Miyamoto Y, Nozaki N, Naito Y, Tokumitsu H, Watanabe Y. Inactivation of Ca2+/calmodulin-dependent protein kinase I by S-glutathionylation of the active-site cysteine residue. FEBS Lett 2010; 584:2478-84. [PMID: 20420839 DOI: 10.1016/j.febslet.2010.04.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/11/2010] [Accepted: 04/17/2010] [Indexed: 10/19/2022]
Abstract
We show that Ca(2+)/calmodulin(CaM)-dependent protein kinase I (CaMKI) is directly inhibited by its S-glutathionylation at the Cys(179). In vitro studies demonstrated that treatment of CaMKI with diamide and glutathione results in inactivation of the enzyme, with a concomitant S-glutathionylation of CaMKI at Cys(179) detected by mass spectrometry. Mutagenesis studies confirmed that S-glutathionylation of Cys(179) is both necessary and sufficient for the inhibition of CaMKI by diamide and glutathione. In transfected cells expressing CaMKI, treatment with diamide caused a reversible decrease in CaMKI activity. Cells expressing mutant CaMKI (179CV) proved resistant in this regard. Thus, our results indicate that the reversible regulation of CaMKI via its modification at Cys(179) is an important mechanism in processing calcium signal transduction in cells.
Collapse
Affiliation(s)
- Toshie Kambe
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Dick O, Bading H. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem 2010; 285:19354-61. [PMID: 20404335 DOI: 10.1074/jbc.m110.127654] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-D-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-D-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes.
Collapse
Affiliation(s)
- Oliver Dick
- Department of Neurobiology, Interdisciplinary Center for Neurosciences IZN, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
215
|
Kelly EK, Wang L, Ivashkiv LB. Calcium-activated pathways and oxidative burst mediate zymosan-induced signaling and IL-10 production in human macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 184:5545-52. [PMID: 20400701 DOI: 10.4049/jimmunol.0901293] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Outside of the TLR paradigm, there is little understanding of how pathogen recognition at the cell surface is linked to functional responses in cells of the innate immune system. Recent work in this area demonstrates that the yeast particle zymosan, by binding to the beta-glucan receptor Dectin-1, activates an ITAM-Syk-dependent pathway in dendritic cells, which is required for optimal cytokine production and generation of an oxidative burst. It remains unclear how activation of Syk is coupled to effector mechanisms. In human macrophages, zymosan rapidly activated a calcium-dependent pathway downstream of Dectin-1 and Syk that led to activation of calmodulin-dependent kinase II and Pyk2. Calmodulin-dependent kinase and Pyk2 transduced calcium signals into activation of the ERK-MAPK pathway, CREB, and generation of an oxidative burst, leading to downstream production of IL-10. These observations identify a new calcium-mediated signaling pathway activated by zymosan and link this pathway to both inflammatory and anti-inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Erin K Kelly
- Graduate Program in Cell Biology and Genetics, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | | |
Collapse
|
216
|
Delayed intrinsic activation of an NMDA-independent CaM-kinase II in a critical time window is necessary for late consolidation of an associative memory. J Neurosci 2010; 30:56-63. [PMID: 20053887 DOI: 10.1523/jneurosci.2577-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium/calmodulin-dependent kinases (CaM-kinases) are central to various forms of long-term memory (LTM) in a number of evolutionarily diverse organisms. However, it is still largely unknown what contributions specific CaM-kinases make to different phases of the same specific type of memory, such as acquisition, or early, intermediate, and late consolidation of associative LTM after classical conditioning. Here, we investigated the involvement of CaM-kinase II (CaMKII) in different phases of associative LTM induced by single-trial reward classical conditioning in Lymnaea, a well established invertebrate experimental system for studying molecular mechanisms of learning and memory. First, by using a general CaM-kinase inhibitor, KN-62, we found that CaM-kinase activation was necessary for acquisition and late consolidation, but not early or intermediate consolidation or retrieval of LTM. Then, we used Western blot-based phosphorylation assays and treatment with CaMKIINtide to identify CaMKII as the main CaM-kinase, the intrinsic activation of which, in a critical time window ( approximately 24 h after learning), is central to late consolidation of LTM. Additionally, using MK-801 and CaMKIINtide we found that acquisition was dependent on both NMDA receptor and CaMKII activation. However, unlike acquisition, CaMKII-dependent late memory consolidation does not require the activation of NMDA receptors. Our new findings support the notion that even apparently stable memory traces may undergo further molecular changes and identify NMDA-independent intrinsic activation of CaMKII as a mechanism underlying this "lingering consolidation." This process may facilitate the preservation of LTM in the face of protein turnover or active molecular processes that underlie forgetting.
Collapse
|
217
|
Visualizing dynamic interaction between calmodulin and calmodulin-related kinases via a monitoring method in live mammalian cells. Proc Natl Acad Sci U S A 2010; 107:3412-7. [PMID: 20133723 DOI: 10.1073/pnas.0911262107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new visualizing method was developed for monitoring protein-protein (P-P) interactions in live mammalian cells. P-P interactions are visualized by directing localization of a bait protein to endosomes. This method is sufficiently robust to analyze signal-dependent P-P interactions such as calcium-dependent protein interactions. We visualized interactions between activated calmodulin and calmodulin-binding proteins, and observed oscillatory interactions via time-lapse imaging. In addition, this new method can simultaneously monitor multiple P-P interactions in a single live cell, which allows comparison of interactions between several prey proteins and a single bait protein. We observed that CaMKK1 and CaMKIIalpha bind calmodulin with distinct binding affinities in live cell, which indicates that calcium signaling is fine-tuned by distinct activation patterns of CaM kinases. This method will enable investigation of cellular processes based on dynamic P-P interactions.
Collapse
|
218
|
Ma J, Harnett KM, Behar J, Biancani P, Cao W. Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 298:G233-40. [PMID: 19959817 PMCID: PMC2822503 DOI: 10.1152/ajpgi.00409.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transient receptor potential channel, vanilloid subfamily member 1 (TRPV1) receptors were identified in human esophageal squamous epithelial cell line HET-1A by RT-PCR and by Western blot. In fura-2 AM-loaded cells, the TRPV1 agonist capsaicin caused a fourfold cytosolic calcium increase, supporting a role of TRPV1 as a capsaicin-activated cation channel. Capsaicin increased production of platelet activating factor (PAF), an important inflammatory mediator that acts as a chemoattractant and activator of immune cells. The increase was reduced by the p38 MAP kinase (p38) inhibitor SB203580, by the cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF3, and by the lyso-PAF acetyltransferase inhibitor sanguinarin, indicating that capsaicin-induced PAF production may be mediated by activation of cPLA(2), p38, and lyso-PAF acetyltransferase. To establish a sequential signaling pathway, we examined the phosphorylation of p38 and cPLA(2) by Western blot. Capsaicin induced phosphorylation of p38 and cPLA(2). Capsaicin-induced p38 phosphorylation was not affected by AACOCF3. Conversely, capsaicin-induced cPLA(2) phosphorylation was blocked by SB203580, indicating that capsaicin-induced PAF production depends on sequential activation of p38 and cPLA(2). To investigate how p38 phosphorylation may result from TRPV1-mediated calcium influx, we examined a possible role of calmodulin kinase (CaM-K). p38 phosphorylation was stimulated by the calcium ionophore A23187 and by capsaicin, and the response to both agonists was reduced by a CaM inhibitor and by CaM-KII inhibitors, indicating that calcium induced activation of CaM and CaM-KII results in P38 phosphorylation. Acetyl-CoA transferase activity increased in response to capsaicin and was inhibited by SB203580, indicating that p38 phosphorylation in turn causes activation of acetyl-CoA transferase to produce PAF. Thus epithelial cells produce PAF in response to TRPV1-mediated calcium elevation.
Collapse
Affiliation(s)
- Jie Ma
- 1Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; ,2School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Karen M. Harnett
- 1Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island;
| | - Jose Behar
- 1Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island;
| | - Piero Biancani
- 1Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island;
| | - Weibiao Cao
- 1Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island;
| |
Collapse
|
219
|
Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 2010; 426:109-18. [PMID: 19958286 PMCID: PMC2830670 DOI: 10.1042/bj20091372] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of AMPK (AMP-activated protein kinase) by phosphorylation at Thr172 is catalysed by at least two distinct upstream kinases, i.e. the tumour suppressor LKB1, and CaMKKβ (Ca2+/calmodulin-dependent protein kinase kinase-β). The sequence around Thr172 is highly conserved between the two catalytic subunit isoforms of AMPK and the 12 AMPK-related kinases, and LKB1 has been shown to act upstream of all of them. In the present paper we report that none of the AMPK-related kinases tested could be phosphorylated or activated in intact cells or cell-free assays by CaMKKβ, although we did observe a slow phosphorylation and activation of BRSK1 (brain-specific kinase 1) by CaMKKα. Despite recent reports, we could not find any evidence that the α and/or β subunits of AMPK formed a stable complex with CaMKKβ. We also showed that increasing AMP concentrations in HeLa cells (which lack LKB1) had no effect on basal AMPK phosphorylation, but enhanced the ability of agents that increase intracellular Ca2+ to activate AMPK. This is consistent with the effect of AMP on phosphorylation of Thr172 being due to inhibition of dephosphorylation, and confirms that the effect of AMP is independent of the upstream kinase utilized.
Collapse
|
220
|
de Diego I, Kuper J, Bakalova N, Kursula P, Wilmanns M. Molecular basis of the death-associated protein kinase-calcium/calmodulin regulator complex. Sci Signal 2010; 3:ra6. [PMID: 20103772 DOI: 10.1126/scisignal.2000552] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Death-associated protein kinase (DAPK) provides a model for calcium-bound calmodulin (CaM)-dependent protein kinases (CaMKs). Here, we report the crystal structure of the binary DAPK-CaM complex, using a construct that includes the DAPK catalytic domain and adjacent autoregulatory domain. When DAPK was in a complex with CaM, the DAPK autoregulatory domain formed a long seven-turn helix. This DAPK-CaM module interacted with the DAPK catalytic domain through two separate domain-domain interfaces, which involved the upper and the lower lobe of the catalytic domain. When bound to DAPK, CaM adopted an extended conformation, which was different from that in CaM-CaMK peptide complexes. Complementary biochemical analysis showed that the ability of DAPK to bind CaM correlated with its catalytic activity. Because many features of CaM binding are conserved in other CaMKs, our findings likely provide a generally applicable model for regulation of CaMK activity.
Collapse
Affiliation(s)
- Iñaki de Diego
- European Molecular Biology Laboratory-Hamburg, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
221
|
Wu LJ, Mellström B, Wang H, Ren M, Domingo S, Kim SS, Li XY, Chen T, Naranjo JR, Zhuo M. DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol Brain 2010; 3:3. [PMID: 20205763 PMCID: PMC2822766 DOI: 10.1186/1756-6606-3-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/21/2010] [Indexed: 01/17/2023] Open
Abstract
The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory.
Collapse
Affiliation(s)
- Long-Jun Wu
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Zhang Y, Tan H, Chen G, Jia Z. Investigating the disorder-order transition of calmodulin binding domain upon binding calmodulin using molecular dynamics simulation. J Mol Recognit 2009; 23:360-8. [DOI: 10.1002/jmr.1002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
223
|
Control of cortical axon elongation by a GABA-driven Ca2+/calmodulin-dependent protein kinase cascade. J Neurosci 2009; 29:13720-9. [PMID: 19864584 DOI: 10.1523/jneurosci.3018-09.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ca(2+) signaling plays important roles during both axonal and dendritic growth. Yet whether and how Ca(2+) rises may trigger and contribute to the development of long-range cortical connections remains mostly unknown. Here, we demonstrate that two separate limbs of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-CaMKI cascades, CaMKK-CaMKIalpha and CaMKK-CaMKIgamma, critically coordinate axonal and dendritic morphogenesis of cortical neurons, respectively. The axon-specific morphological phenotype required a diffuse cytoplasmic localization and a strikingly alpha-isoform-specific kinase activity of CaMKI. Unexpectedly, treatment with muscimol, a GABA(A) receptor agonist, selectively stimulated elongation of axons but not of dendrites, and the CaMKK-CaMKIalpha cascade critically mediated this axonogenic effect. Consistent with these findings, during early brain development, in vivo knockdown of CaMKIalpha significantly impaired the terminal axonal extension and thereby perturbed the refinement of the interhemispheric callosal projections into the contralateral cortices. Our findings thus indicate a novel role for the GABA-driven CaMKK-CaMKIalpha cascade as a mechanism critical for accurate cortical axon pathfinding, an essential process that may contribute to fine-tuning the formation of interhemispheric connectivity during the perinatal development of the CNS.
Collapse
|
224
|
ATP modulates transcription factors through P2Y2 and P2Y4 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys 2009; 494:7-14. [PMID: 19900397 DOI: 10.1016/j.abb.2009.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 02/04/2023]
Abstract
In this work, we studied the involvement of PKC and Src in the phosphorylation of ERK1/2, p38 and JNK1 MAPKs and in the modulation of ATF-1, c-Fos, c-Jun and Jun D transcription factors by ATP in MCF-7 breast cancer cells. RT-PCR studies and nucleotide sequence analysis confirmed first the expression of P2Y(2)- and P2Y(4)-receptor subtypes. The use of specific inhibitors and Src antisense oligonucleotides showed that PKC, but not Src, plays a role in the phosphorylation of MAPKs by ATP. ATP stimulated the expression of c-Fos and the phosphorylation c-Jun, Jun D and ATF-1. PKC and Src only participated in c-Fos induction and in ATF-1 phosphorylation. Pharmacological inhibition of MAPKs demonstrated that c-Fos induction and phosphorylation of c-Jun and Jun D, but not of ATF-1, depend on MAPK activation. These results suggest that stimulation of P2Y(2) and P2Y(4) receptors by ATP modulates transcription factors through PKC/MAPKs and PKC/Src pathways in MCF-7 cells.
Collapse
|
225
|
Jin XL, O'Neill C. The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo. Biol Reprod 2009; 82:459-68. [PMID: 19776387 DOI: 10.1095/biolreprod.109.078758] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The expression of two members of an important family of transcription factors, cAMP response element-binding protein (CREB) and cAMP-dependent transcription factor ATF1 (ATF1), is essential for normal preimplantation development. There is a high degree of functional similarity between these two transcription factors, and they can both homodimerize and heterodimerize with each other to form active transcription factors. CREB is present in all stages of mouse preimplantation embryo, and we show here that ATF1 is localized to the nucleus in all preimplantation stages. Activation of these transcription factors requires their phosphorylation, and this was only observed to occur for both transcription factors (serine 133 phosphorylation of CREB and serine 63 phosphorylation of ATF1) at the two-cell stage. Nuclear localization and phosphorylation of ATF1 were constitutive. The nuclear localization and phosphorylation of CREB showed a constitutive component that was further induced by the autocrine embryotropin Paf (1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Activation of CREB by Paf was independent of cAMP but was dependent on calcium, calmodulin, and calmodulin-dependent kinase activity. ATF1 nuclear localization was unaffected by inhibition of the calcium/calmodulin pathway. A complex pattern of expression of calmodulin-dependent kinases was observed throughout preimplantation development. At the two-cell stage, only mRNAs coding for calmodulin-dependent protein kinase kinase beta, calmodulin-dependent protein kinase II gamma, and calmodulin-dependent protein kinase IV were detected. A selective antagonist for calmodulin-dependent protein kinase kinase (STO-609) and calmodulin-dependent protein kinases I, II, and IV (KN-62) blocked the Paf-induced phosphorylation of CREB. The study demonstrates a role for trophic signaling and constitutive activation of two essential transcription factors at the time of zygotic genome activation.
Collapse
Affiliation(s)
- X L Jin
- Human Reproduction Unit, Sydney Centre for Developmental and Regenerative Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
226
|
Al-Shanti N, Stewart CE. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development. Biol Rev Camb Philos Soc 2009; 84:637-52. [PMID: 19725819 DOI: 10.1111/j.1469-185x.2009.00090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases pathways (via CaMKs) or calmodulin-dependent serine/threonine phosphatases (via calcineurin). (3) How calmodulin kinases alter transcription in the nucleus through the phosphorylation, deactivation and translocation of histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. (4) How calcineurin transmits signals to the nucleus through the dephosphorylation and translocation of NFAT from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, M1 5GD, UK.
| | | |
Collapse
|
227
|
|
228
|
Abstract
Activity and protein synthesis act cooperatively to generate persistent changes in synaptic responses. This forms the basis for enduring memory in adults. Activity also shapes neural circuits developmentally, but whether protein synthesis plays a congruent function in this process is poorly understood. Here, we show that brief periods of global or local protein synthesis inhibition decrease the synaptic vesicles available for fusion and increase synapse elimination. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a critical target; its levels are controlled by rapid turnover, and blocking its activity or knocking it down recapitulates the effects of protein synthesis inhibition. Mature presynaptic terminals show decreased sensitivity to protein synthesis inhibition, and resistance coincides with a developmental switch in regulation from CaMKII to PKA (protein kinase A). These findings demonstrate a novel mechanism regulating presynaptic activity and synapse elimination during development, and suggest that protein translation acts coordinately with activity to selectively stabilize appropriate synaptic interactions.
Collapse
|
229
|
Zachos NC, Kovbasnjuk O, Donowitz M. Regulation of intestinal electroneutral sodium absorption and the brush border Na+/H+ exchanger by intracellular calcium. Ann N Y Acad Sci 2009; 1165:240-8. [PMID: 19538312 DOI: 10.1111/j.1749-6632.2009.04055.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intestinal electroneutral Na(+) absorptive processes account for most small intestinal Na(+) absorption in the period between meals and also for the great majority of the increase in ileal Na(+) absorption that occurs postprandially. In most diarrheal diseases, there is inhibition of neutral NaCl absorption. Elevated levels of intracellular calcium ([Ca(2+)](i)) are known to inhibit NaCl absorption and involve multiple components of the Ca(2+) signaling pathway. The BB Na(+)/H(+) exchanger NHE3 accounts for most of the recognized digestive changes in neutral NaCl absorption, as well as most of the changes in Na(+) absorption that occur in diarrheal diseases. Previous studies have examined several aspects of Ca(2+) regulation of NHE3 activity. These include phosphorylation, protein trafficking, and multiprotein complex formation. In addition, recent studies have demonstrated the role of the NHERF family of PDZ domain-containing proteins in Ca(2+) regulation of NHE3 activity, thereby adding a new level of complexity to understanding Ca(2+)-dependent inhibition of Na(+) absorption. In this article, we will review the current understanding of (1) Ca(2+) signaling events in intestinal epithelial cells; (2) Ca(2+) regulation of intestinal electroneutral sodium absorption, which includes NHE3; and (3) the role of the NHERF family of PDZ domain-containing proteins in Ca(2+) regulation of NHE3 activity. We will also present new data on using advanced imaging showing rapid BB NHE3 endocytosis in response to elevated [Ca(2+)](i).
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
230
|
Sueyoshi N, Nimura T, Ishida A, Taniguchi T, Yoshimura Y, Ito M, Shigeri Y, Kameshita I. Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) is indispensable for normal embryogenesis in zebrafish, Danio rerio. Arch Biochem Biophys 2009; 488:48-59. [DOI: 10.1016/j.abb.2009.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
|
231
|
Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 2009; 5:612-22. [PMID: 19527888 DOI: 10.1016/j.chom.2009.05.017] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/25/2009] [Accepted: 05/29/2009] [Indexed: 02/08/2023]
Abstract
Calcium controls many critical events in the complex life cycles of apicomplexan parasites including protein secretion, motility, and development. Calcium levels are normally tightly regulated and rapid release of calcium into the cytosol activates a family of calcium-dependent protein kinases (CDPKs), which are normally characteristic of plants. CDPKs present in apicomplexans have acquired a number of unique domain structures likely reflecting their diverse functions. Calcium regulation in parasites is closely linked to signaling by cyclic nucleotides and their associated kinases. This Review summarizes the pivotal roles that calcium- and cyclic nucleotide-dependent kinases play in unique aspects of parasite biology.
Collapse
|
232
|
Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, Nakamura M, Ivashkiv LB. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. THE JOURNAL OF IMMUNOLOGY 2009; 183:2444-55. [PMID: 19625651 DOI: 10.4049/jimmunol.0804165] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Induction of effective osteoclastogenesis by RANK (receptor activator of NF-kappaB) requires costimulation by ITAM-coupled receptors. In humans, the TREM-2 (triggering receptor expressed on myeloid cells 2) ITAM-coupled receptor plays a key role in bone remodeling, as patients with TREM-2 mutations exhibit defective osteoclastogenesis and bone lesions. We have identified a new rapidly induced costimulatory pathway for RANK signaling that is dependent on TREM-2 and mediated by calcium signaling. TREM-2-dependent calcium signals are required for RANK-mediated activation of calcium/calmodulin-dependent protein kinase (CaMK)II and downstream MEK and ERK MAPKs that are important for osteoclastogenesis. IL-10 inhibited RANK-induced osteoclastogenesis and selectively inhibited calcium signaling downstream of RANK by inhibiting transcription of TREM-2. Down-regulation of TREM-2 expression resulted in diminished RANKL-induced activation of the CaMK-MEK-ERK pathway and decreased expression of the master regulator of osteoclastogenesis NFATc1. These findings provide a new mechanism of inhibition of human osteoclast differentiation. The results also yield insights into crosstalk between ITAM-coupled receptors and heterologous receptors such as RANK, and they identify a mechanism by which IL-10 can suppress cellular responses to TNFR family members.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Wang H, Fukushima H, Kida S, Zhuo M. Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J Biol Chem 2009; 284:18953-62. [PMID: 19436069 DOI: 10.1074/jbc.m109.019141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome is caused by a lack of fragile X mental retardation protein (FMRP) due to silencing of the FMR1 gene. The metabotropic glutamate receptors (mGluRs) in the central nervous system contribute to higher brain functions including learning/memory, persistent pain, and mental disorders. Our recent study has shown that activation of Group I mGluR up-regulated FMRP in anterior cingulate cortex (ACC), a key region for brain cognitive and executive functions; Ca(2+) signaling pathways could be involved in the regulation of FMRP by Group I mGluRs. In this study we demonstrate that stimulating Group I mGluRs activates Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) in ACC neurons. In ACC neurons of adult mice overexpressing CaMKIV, the up-regulation of FMRP by stimulating Group I mGluR is enhanced. The enhancement occurs at the transcriptional level as the Fmr1 mRNA level was further elevated compared with wild-type mice. Using pharmacological approaches, we found that inhibition of CaMKIV could attenuate the up-regulation of FMRP by Group I mGluRs. CaMKIV contribute to the regulation of FMRP by Group I mGluRs probably through cyclic AMP-responsive element binding protein (CREB) activation, as manipulation of CaMKIV could simultaneously cause the change of CREB phosphorylation induced by Group I mGluR activation. Our study has provided strong evidence for CaMKIV as a molecular link between Group I mGluRs and FMRP in ACC neurons and may help us to elucidate the pathogenesis of fragile X syndrome.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
234
|
Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci 2009; 29:4420-9. [PMID: 19357269 DOI: 10.1523/jneurosci.0802-09.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellular stress caused by genetic or environmental factors are considered to be the major inducers of cell death under pathological conditions. Induction of the apoptotic function of the tumor suppressor p53 is a common cellular response to severe genotoxic and oxidative stresses. In the nervous system, accumulation of p53 and increased p53 activity are associated with neuronal loss in acute and chronic neurodegenerative disorders. Here, we show that regulation of the p53 gene (trp53) is an integral part of a synaptic activity-controlled, calcium-dependent neuroprotective transcriptional program. Action potential (AP) bursting suppresses trp53 expression and downregulates key proapoptotic p53 target genes, apaf1 and bbc3 (puma). At the same time, AP bursting activates the nuclear calcium-induced neuroprotective gene, btg2. Depletion of endogenous p53 levels using RNA interference or expression of Btg2 renders neurons more resistant against excitotoxicity-induced mitochondrial permeability transitions and promotes neuronal survival under severe cellular stresses. We propose that suppression of p53 functions together with nuclear calcium-regulated neuroprotective genes in a coordinate and synergistic manner to promote neuronal survival through the stabilization of mitochondria against cellular stresses.
Collapse
|
235
|
Ma Y, Cheng WT, Wu S, Wong TM. Oestrogen confers cardioprotection by suppressing Ca2+/calmodulin-dependent protein kinase II. Br J Pharmacol 2009; 157:705-15. [PMID: 19422373 DOI: 10.1111/j.1476-5381.2009.00212.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen confers cardioprotection by down-regulating the beta(1)-adrenoceptor and suppressing the expression and activity of protein kinase A. We hypothesized that oestrogen may also protect the heart by suppressing Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another signalling messenger activated by the beta(1)-adrenoceptor, that enhances apoptosis. EXPERIMENTAL APPROACH We first determined the expression of CaMKII in the heart from sham and ovariectomized rats with and without oestrogen replacement. We then determined the effects of CaMKII inhibition (KN93, 2.5 micromolxL(-1)) in the presence or absence of 10(-7) molxL(-1) isoprenaline, a non-selective beta-adrenoceptor agonist. We also determined the percentage apoptosis in myocytes from rats in each group with or without beta-adrenoceptor stimulation. KEY RESULTS Both CaMKIIdelta and phosphorylated CaMKII were up-regulated in the hearts from ovariectomized rats, and they were restored to normal by oestrogen replacement. The infarct size and lactate dehydrogenase release were significantly greater after ovariectomy. Similarly, cardiac contractility, the amplitude of the electrically induced intracellular Ca(2+) transient and the number of apoptotic cells were also greater in ovariectomized rats upon ischaemia/reperfusion in the presence or absence of isoprenaline. Most importantly, the responses to ischaemic insult in ovariectomized rats were reversed not only by oestrogen replacement, but by blockade of CaMKII with KN93. CONCLUSIONS AND IMPLICATIONS Oestrogen confers cardioprotection at least partly by suppressing CaMKIIdelta. This effect of oestrogen on CaMKII is independent of the beta-adrenoceptor and occurs in addition to down-regulation of the receptor.
Collapse
Affiliation(s)
- Y Ma
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
236
|
Seo JH, Jin YH, Jeong HM, Kim YJ, Jeong HG, Yeo CY, Lee KY. Calmodulin-dependent kinase II regulates Dlx5 during osteoblast differentiation. Biochem Biophys Res Commun 2009; 384:100-4. [PMID: 19393622 DOI: 10.1016/j.bbrc.2009.04.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/16/2009] [Indexed: 11/25/2022]
Abstract
Calmodulin-dependent kinase II (CaMKII) acts as a key regulator of osteoblast differentiation. CaMKII is a Ca(2+)-activated serine/threonine kinase and it regulates the activity of target proteins by phosphorylation. Dlx5 transcription factor plays crucial roles in osteoblast differentiation. The expression of Dlx5 is regulated by several osteogenic signaling pathways from early stages of osteoblastogenesis. In addition, Dlx5 can be phosphorylated and activated by p38, suggesting that the function of Dlx5 can be also modulated by post-translational modification. Although CaMKII and Dlx5 both play crucial roles during osteoblast differentiation, the interaction between CaMKII and Dlx5 has not been investigated. In the current study, we examined the effects CamKII on the function of Dlx5. We found that CaMKII phosphorylates Dlx5, and that CaMKII increases the protein stability and the osteoblastogenic transactivation activity of Dlx5. Conversely, a CaMKII inhibitor KN-93 decreased the osteogenic and transactivation activities of Dlx5. These results indicate that CaMKII regulates osteoblast differentiation, at least in part, by increasing the protein stability and the transcriptional activity of Dlx5.
Collapse
Affiliation(s)
- Jae Hee Seo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
237
|
Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 2009; 34:1263-76. [PMID: 18923397 DOI: 10.1038/npp.2008.185] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aquaporin-4 (AQP4), a key molecule for maintaining water homeostasis in the central nervous system, is expressed in adult neural stem cells (ANSCs) as well as astrocytes. Neural stem cells give rise to new hippocampal neurons throughout adulthood, and defects in neurogenesis may predispose an individual to depression. Nevertheless, the role of AQP4 in adult hippocampal neurogenesis and chronic mild stress (CMS)-induced depression remains unknown. We herein report that AQP4 knockout disrupted 4-week fluoxetine (10 mg/kg per day i.p) treatment-induced enhancement of adult mouse hippocampal neurogenesis as well as behavioral improvement under both basal condition and CMS-evoked depressive state. Meanwhile, AQP4 knockout abolished fluoxetine-induced enhancement of hippocampal cyclic AMP-responsive element binding protein (CREB) phosphorylation. The CMS procedure inhibited hippocampal protein kinase A (PKA) activity, extracellular signal-regulated kinases (ERK1/2), and calcium/calmodulin-dependent protein kinase IV (CaMKIV) phosphorylation in AQP4(+/+) and AQP4(-/-) mice. Fluoxetine treatment could reverse CMS-induced inhibition of PKA activity and ERK1/2 phosphorylation in both genotypes. However, fluoxetine restored CMS-induced inhibition of hippocampal CaMKIV phosphorylation in AQP4(+/+) mice but failed in AQP4(-/-) mice. Notably, CMS procedure significantly increased the hippocampal AQP4 expression, which was reversed by 4-week fluoxetine treatment. Further investigation showed AQP4 knockout inhibited the proliferation of cultured ANSCs and eliminated the pro-proliferative effect of fluoxetine in vitro. Collectively, these findings suggest that AQP4 is required for the antidepressive action of fluoxetine via regulating adult hippocampal neurogenesis.
Collapse
|
238
|
Gad A, Callender DL, Killeen E, Hudak J, Dlugosz MA, Larson JE, Cohen JC, Chander A. Transient in utero disruption of cystic fibrosis transmembrane conductance regulator causes phenotypic changes in alveolar type II cells in adult rats. BMC Cell Biol 2009; 10:24. [PMID: 19335897 PMCID: PMC2675516 DOI: 10.1186/1471-2121-10-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/31/2009] [Indexed: 11/11/2022] Open
Abstract
Background Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR) was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR) had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII) cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung. Results In comparison to (reporter gene-treated) Controls, ASCFTR-treated adult rat lungs showed elevated phosphatidylcholine (PC) levels in the large but not in the small aggregates of alveolar surfactant. The lung mRNA levels for SP-A and SP-B were lower in the ASCFTR rats. The basal PC secretion in ATII cells was similar in the two groups. However, compared to Control ATII cells, the cells in ASCFTR group showed higher PC secretion with ATP or phorbol myristate acetate. The cell PC pool was also larger in the ASCFTR group. Thus, the increased surfactant secretion in ATII cells could cause higher PC levels in large aggregates of surfactant. In freshly isolated ATII cells, the expression of surfactant proteins was unchanged, suggesting that the lungs of ASCFTR rats contained fewer ATII cells. Gene array analysis of RNA of freshly isolated ATII cells from these lungs showed altered expression of several genes including elevated expression of two calcium-related genes, Ca2+-ATPase and calcium-calmodulin kinase kinase1 (CaMkk1), which was confirmed by real-time PCR. Western blot analysis showed increased expression of calmodulin kinase I, which is activated following phosphorylation by CaMkk1. Although increased expression of calcium regulating genes would argue in favor of Ca2+-dependent mechanisms increasing surfactant secretion, we cannot exclude contribution of alternate mechanisms because of other phenotypic changes in ATII cells of the ASCFTR group. Conclusion Developmental changes due to transient disruption of CFTR in fetal lung reflect in altered ATII cell phenotype in the adult life.
Collapse
Affiliation(s)
- Ashraf Gad
- The Brady Laboratory, Department of Pediatrics, Division of Neonatology, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Jackson KJ, Damaj MI. L-type calcium channels and calcium/calmodulin-dependent kinase II differentially mediate behaviors associated with nicotine withdrawal in mice. J Pharmacol Exp Ther 2009; 330:152-61. [PMID: 19336664 DOI: 10.1124/jpet.109.151530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smoking is a widespread health problem. Because the nicotine withdrawal syndrome is a major contributor to continued smoking and relapse, it is important to understand the molecular and behavioral mechanisms of nicotine withdrawal to generate more effective smoking cessation therapies. Studies suggest a role for calcium-dependent mechanisms, such as L-type calcium channels and calcium/calmodulin-dependent protein kinase II (CaMKII), in the effects of nicotine dependence; however, the role of these mechanisms in nicotine-mediated behaviors is unclear. Thus, the goal of this study was to elucidate the role of L-type calcium channels and CaMKII in nicotine withdrawal behaviors. Using both pharmacological and genetic methods, our results show that L-type calcium channels are involved in physical, but not affective, nicotine withdrawal behaviors. Although our data do provide evidence of a role for CaMKII in nicotine withdrawal behaviors, our pharmacological and genetic assessments yielded different results concerning the specific role of the kinase. Pharmacological data suggest that CaMKII is involved in somatic signs and affective nicotine withdrawal, and activity level is decreased after nicotine withdrawal, whereas the genetic assessments yielded results suggesting that CaMKII is involved only in the anxiety-related response, yet the kinase activity may be increased after nicotine withdrawal; thus, future studies are necessary to clarify the precise behavioral specifics of the relevance of CaMKII in nicotine withdrawal behaviors. Overall, our data show that L-type calcium channels and CaMKII are relevant in nicotine withdrawal and differentially mediate nicotine withdrawal behaviors.
Collapse
Affiliation(s)
- K J Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
| | | |
Collapse
|
240
|
Lu YM, Shioda N, Han F, Kamata A, Shirasaki Y, Qin ZH, Fukunaga K. DY-9760e Inhibits Endothelin-1-induced Cardiomyocyte Hypertrophy Through Inhibition of CaMKII and ERK Activities. Cardiovasc Ther 2009; 27:17-27. [DOI: 10.1111/j.1755-5922.2008.00068.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
241
|
|
242
|
Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:67-101. [PMID: 19766967 DOI: 10.1016/s1937-6448(09)77002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Collapse
Affiliation(s)
- Joanne Mallinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | | |
Collapse
|
243
|
Colás C, Grasa P, Casao A, Gallego M, Abecia JA, Forcada F, Cebrián-Pérez JA, Muiño-Blanco T. Changes in calmodulin immunocytochemical localization associated with capacitation and acrosomal exocytosis of ram spermatozoa. Theriogenology 2008; 71:789-800. [PMID: 19081128 DOI: 10.1016/j.theriogenology.2008.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 01/22/2023]
Abstract
The aim of this study was to determine the localization of calmodulin (CaM) in ram sperm and the possible changes during in vitro capacitation (CA) and the ionophore-induced acrosome reaction (AR). Likewise, changes in intracellular calcium levels ([Ca(2+)](i)) were also analysed by using flow cytometry. CA was induced in vitro in a medium containing BSA, CaCl(2), NaHCO(3), and AR by the addition of the calcium ionophore A23187. The acrosomal status was assessed by the chlortetracycline-fluorescence (CTC) assay. Flow cytometry (FC) analyses were performed by loading samples with Fluo-3 AM, that emits fluorescence at a high [Ca(2+)](i), combined with propidium iodide (PI) that allowed us to discriminate sperm with/without an integral plasma membrane both with high/low [Ca(2+)](i). Immunocytochemistry localized CaM to the flagellum, and some sperm also contained CaM in the head (equatorial and post-acrosomal regions). CA and AR resulted in a slight increase in the post-acrosomal labelling. The treatment of sperm with increasing concentrations of two CaM antagonists, W7 and calmidazolium (CZ), accounted for an increase in capacitated and acrosome-reacted CTC-sperm patterns. CZ induced a significant reduction in the content of three protein tyrosine-phosphorylated bands of approximately of 30, 40 and 45kDa. However, W7 showed no significant effect at any of the studied concentrations. Neither of them significantly influenced protein serine and threonine phosphorylation. FC analysis revealed that the main subpopulation in the control samples contained 70% of the total sperm with integral plasma membrane and a medium [Ca(2+)](i). After CA, 67.1% of the sperm preserved an integral membrane with a higher [Ca(2+)](i). After AR, only 7.2% of the total sperm preserved intact membranes with a very high [Ca(2+)](i). These results imply that CaM appears to be involved in ram sperm capacitation, and both treatments increased its localization in the post-acrosomal region.
Collapse
Affiliation(s)
- C Colás
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Chew CS, Chen X, Zhang H, Berg EA, Zhang H. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2delta6. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1159-72. [PMID: 18832449 PMCID: PMC2604800 DOI: 10.1152/ajpgi.90345.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S(136), that undergoes increased phosphorylation upon elevation of intracellular Ca(2+) concentration. A phosphospecific antibody (pS(136)) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (M(r)) of approximately 50 kDa was identified with "in gel" assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)alpha cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT(286/287)) antibody when activated. Carbachol-stimulated phosphorylation of S(136) was inhibited by the CAMK2 inhibitor KN93 (IC(50) 38 microM) and by the calmodulin antagonist W7 (IC(50) 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2delta6, which has the same domain structure and M(r) as CAM2alpha, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2delta6 in the mediation of D52 phosphorylation.
Collapse
Affiliation(s)
- Catherine S. Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xunsheng Chen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanfang Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Eric A. Berg
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Han Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
245
|
A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nat Rev Immunol 2008; 8:816-22. [PMID: 18787561 DOI: 10.1038/nri2396] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The importance of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors in modulating signalling pathways downstream of other types of receptor is well established, but the mechanisms underlying this modulation are not known. Recent data suggest that calcium-dependent signalling downstream of ITAM-coupled receptors regulates the amplitude and functional outcomes of cytokine and TLR signalling. In this Opinion article, I describe a model whereby the intensity of ITAM-dependent signalling and the balance of calcium signals relative to other ITAM-mediated signalling pathways determines whether cellular responses to cytokines and TLR ligands are increased or inhibited. This model describes mechanisms that explain how ITAM-coupled receptors regulate heterologous signalling pathways.
Collapse
|
246
|
Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller. Trends Immunol 2008; 29:600-7. [PMID: 18930438 DOI: 10.1016/j.it.2008.08.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022]
Abstract
Ca(2+) is a pivotal second messenger controlling the activation of lymphocytes. Crucial events in the social life of immunocytes are regulated by the calcium/calmodulin complex (Ca(2+)/CaM), which controls the activation status of many enzymes, including the Ca(2+)/CaM-dependent Ser-Thr kinases (CaMK) I, II and IV. Although CaMKI and CaMKII are expressed ubiquitously, CaMKIV is found predominately in cells of the nervous and immune systems. To be active, CaMKIV requires binding of Ca(2+)/CaM and phosphorylation by CaMKKalpha or beta. The requirement of two CaM kinases in the same signalling pathway led to the concept of a CaM kinase cascade. In this review, we focus on the roles of CaMKK and CaMKIV cascades in immune and inflammatory responses.
Collapse
|
247
|
Bergamaschi A, Kim YH, Kwei KA, La Choi Y, Bocanegra M, Langerød A, Han W, Noh DY, Huntsman DG, Jeffrey SS, Børresen-Dale AL, Pollack JR. CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer. Mol Oncol 2008; 2:327-39. [PMID: 19383354 DOI: 10.1016/j.molonc.2008.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 01/27/2023] Open
Abstract
Breast cancer exhibits clinical and molecular heterogeneity, where expression profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Department of Genetics, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Pedersen ME, Fortunati D, Nielsen M, Brorson SH, Lekva T, Nissen-Meyer LSH, Gautvik VT, Shahdadfar A, Gautvik KM, Jemtland R. Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro. Bone 2008; 43:700-7. [PMID: 18620088 DOI: 10.1016/j.bone.2008.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/08/2008] [Accepted: 06/02/2008] [Indexed: 11/20/2022]
Abstract
The Ca(2+)/Calmodulin-dependent protein kinase (CaMK) family is activated in response to elevation of intracellular Ca(2+), and includes CaMK1 (as well as CaMK2 and CaMK4), which exists as different isoforms (alpha, beta, gamma and delta). CaMK1 is present in several cell types and may be involved in various cellular processes, but its role in bone is unknown. In situ hybridization was used to determine the spatial and temporal expression of CaMK1beta during endochondral bone development in mouse embryos and newborn pups. The cellular and subcellular distribution of CaMK1 was assessed by quantitative immunogold electron microscopy (EM). The role of CaMK1beta in mouse calvarial osteoblasts was investigated by using small interfering RNA (siRNA) to silence its expression, while in parallel monitoring cell proliferation and levels of skeletogenic transcripts. cRNA in situ hybridization and EM studies show that CaMK1beta is mainly located in developing long bones and vertebrae (from ED14.5 until day 10 after birth), with highest expression in epiphyseal growth plate hypertrophic chondrocytes. By RT-PCR, we show that CaMK1beta2 (but not beta1) is expressed in mouse hind limbs (in vivo) and mouse calvarial osteoblasts (in vitro), and also in primary human articular chondrocyte cultures. Silencing of CaMK1beta in mouse calvarial osteoblasts by siRNA significantly decreases osteoblast proliferation and c-Fos gene expression (approx. 50%), without affecting skeletogenic markers for more differentiated osteoblasts (i.e. Cbfa1/Runx2, Osterix (Osx), Osteocalcin (Oc), Alkaline phosphatase (Alp) and Osteopontin (Opn)). These results identify CaMK1beta as a novel regulator of osteoblast proliferation, via mechanisms that may at least in part involve c-Fos, thus implicating CaMK1beta in the regulation of bone and cartilage development.
Collapse
Affiliation(s)
- Mona E Pedersen
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. ACTA ACUST UNITED AC 2008; 182:573-85. [PMID: 18695047 PMCID: PMC2500141 DOI: 10.1083/jcb.200802164] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondria are dynamic organelles that frequently move, divide, and fuse with one another to maintain their architecture and functions. However, the signaling mechanisms involved in these processes are still not well characterized. In this study, we analyze mitochondrial dynamics and morphology in neurons. Using time-lapse imaging, we find that Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) causes a rapid halt in mitochondrial movement and induces mitochondrial fission. VDCC-associated Ca2+ signaling stimulates phosphorylation of dynamin-related protein 1 (Drp1) at serine 600 via activation of Ca2+/calmodulin-dependent protein kinase Iα (CaMKIα). In neurons and HeLa cells, phosphorylation of Drp1 at serine 600 is associated with an increase in Drp1 translocation to mitochondria, whereas in vitro, phosphorylation of Drp1 results in an increase in its affinity for Fis1. CaMKIα is a widely expressed protein kinase, suggesting that Ca2+ is likely to be functionally important in the control of mitochondrial dynamics through regulation of Drp1 phosphorylation in neurons and other cell types.
Collapse
Affiliation(s)
- Xiao-Jian Han
- Department of Physiology and 2Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Monteiro P, Gilot D, Langouet S, Fardel O. Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609). Drug Metab Dispos 2008; 36:2556-63. [PMID: 18755850 DOI: 10.1124/dmd.108.023333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to analyze the effects of the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid) toward the aryl hydrocarbon receptor (AhR) pathway because Ca2+/calmodulin-dependent protein kinase (CaMK) Ialpha, known as a downstream CaMKK effector, has been recently shown to contribute to the AhR cascade. STO-609 failed to alter up-regulation of the AhR target CYP1A1 in response to the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. STO-609, used at a 25 muM concentration known to fully inhibit CaMKK activity, was surprisingly found to markedly induce CYP1A1 expression and activity by itself in MCF-7 cells; it similarly up-regulated various other AhR target genes in human macrophages. STO-609-related CYP1A1 induction was prevented by chemical inhibition or small interfering RNA-mediated knockdown expression of AhR. Moreover, STO-609 was demonstrated to physically interact with the ligand-binding domain of AhR, as assessed by TCDD binding competition assay, and to induce AhR translocation to the nucleus. As already reported for AhR agonists, STO-609 triggered the increase of [Ca2+](i) and activation of CaMKIalpha, whose inhibition through the use of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), respectively, prevented STO-609-mediated CYP1A1 activity induction. Taken together, these results demonstrate that the CaMKK inhibitor STO-609 can act as an AhR ligand and, in this way, fully activates the Ca2+/CaMKIalpha/AhR cascade. Such data, therefore, make unlikely any contribution of CaMKK activity to the AhR pathway and, moreover, suggest that caution may be required when using STO-609 as a specific inhibitor of CaMKKs.
Collapse
Affiliation(s)
- Patricia Monteiro
- Unité Propre de Recherche et de l'Enseignement Supérieur SeRAIC/Institut National de la Santé et de la Recherche Médicale U620, Université de Rennes 1, Faculté de Pharmacie, IFR140, Rennes, France
| | | | | | | |
Collapse
|