201
|
Smith ER, Xu XX. Ovarian ageing, follicle depletion, and cancer: a hypothesis for the aetiology of epithelial ovarian cancer involving follicle depletion. Lancet Oncol 2008; 9:1108-11. [PMID: 19012860 DOI: 10.1016/s1470-2045(08)70281-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The association between ovarian cancer risk and reproductive factors has been well established, and two main theories, incessant ovulation and gonadotropin stimulation, have been proposed to explain the mechanism. Recent studies using animal models of ovarian tumorigenesis, and analysis of ovarian tissues from prophylactic oophorectomies, suggest that depletion of ovarian follicles might underlie the epidemiological findings linking reproductive history and ovarian cancer risk.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | | |
Collapse
|
202
|
Li Q, Jimenez-Krassel F, Ireland JJ, Smith GW. Gene expression profiling of bovine preovulatory follicles: gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to the ovulatory process. Reproduction 2008; 137:297-307. [PMID: 18996975 DOI: 10.1530/rep-08-0308] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The molecular mechanisms of ovulation and luteinization have not been well established, partially due to lack of a comprehensive understanding of functionally significant genes up-regulated in response to an ovulatory stimulus and the signaling pathways involved. In the present study, transcripts increased in bovine preovulatory follicles following a GnRH-induced LH surge were identified using microarray technology. Increased expression of 368 and 878 genes was detected at 12 (368 genes) and 20 h (878 genes) following GnRH injection. The temporal, cell specific and prostanoid-dependent regulation of selected genes (ADAM10, DBI, CD36, MTSS1, TFG, and RABGAP1) identified from microarray studies and related genes (ADAM17 and AREG) of potential significance were also investigated. Expression of mRNA for DBI and CD36 was simultaneously up-regulated in theca and granulosa cells (GC) following the LH surge, whereas temporal regulation of ADAM10, MTSS1, TFG, and RABGAP1 was distinct in the two cell compartments and increased granulosa TFG and RABGAP1 mRNA were prostanoid dependent. AREG mRNA was increased in theca and GCs at 12 and 24 h following GnRH injection. ADAM17 mRNA was increased in theca, but reduced in GCs 24 h following GnRH injection. The increased ADAM17 and AREG mRNA were prostanoid dependent. ADAM10 and ADAM17 protein were increased specifically in the apex but not the base of preovulatory follicles and the increase in ADAM17 was prostanoid dependent. Results reveal novel information on the regulation of preovulatory gene expression and suggest a potential functional role for ADAM10 and ADAM17 proteins in the region of follicle rupture.
Collapse
Affiliation(s)
- Qinglei Li
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan 48824-1225, USA
| | | | | | | |
Collapse
|
203
|
Abstract
The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations, X chromosome abnormalities, and galactose-1-phosphate uridyltransferase (GALT) point mutations (galactosemia) also contribute to perturbations of the menstrual cycle. Although not perfect, mouse models have helped to identify and confirm additional components and pathways in menstrual cycle function and dysfunction in humans.
Collapse
Affiliation(s)
- Shannon M Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
204
|
Yang Z, Wu J. Mouse dynein axonemal intermediate chain 2: cloning and expression. DNA Cell Biol 2008; 27:479-88. [PMID: 18547164 DOI: 10.1089/dna.2008.0752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ovarian follicular development is a complex process. Investigation of the mechanisms regulating the initiation of follicular growth, and the growth and differentiation of preantral follicles is of great interest. In an effort to clone follicular development-related genes, we selected a partial cDNA fragment by differential display reverse-transcription PCR using total RNA extracted from 5-day-old and 10-day-old mouse ovaries, and its open reading frame was obtained by rapid amplification of cDNA ends. Sequencing showed that the fragment is the mouse dynein axonemal intermediate chain 2 gene (Dnaic2), which has an 87% homology with human DNAI2, a candidate gene for primary ciliary dyskinesia. Northern and western analyses indicate that Dnaic2 produces an approximate 3 kb mRNA that is translated into an approximate 70 kDa protein. The mRNA is predominantly expressed in mouse ovary, testis, and lung. In mouse ovaries, Dnaic2 mRNA was detected at high levels in vivo on day 10, with a subsequent decrease on days 15 and 20, in adult and old ovaries. However, Dnaic2 expression was weak on day 5. Dnaic2 protein was localized on the surface of the oocyte. No obvious fluorescence signal was detected in primordial and primary follicles, while strong signals were detected on the oocyte surface of secondary and antral follicles, in particular for secondary follicles in day 10. These data suggest that Dnaic2 plays a role in ovarian follicular development.
Collapse
Affiliation(s)
- Zhaojuan Yang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
205
|
Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proc Natl Acad Sci U S A 2008; 105:14539-44. [PMID: 18794532 DOI: 10.1073/pnas.0805699105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Timely interaction between the egg and sperm is required for successful fertilization; however, little is known about the signaling therein. Prostaglandin (PG) E receptor EP2-deficient (Ptger2(-/-)) female mice exhibit a severe fertilization defect. We investigated the molecular events leading to this failure. We found increased gene expression for chemokines, such as Ccl2, Ccl7, and Ccl9, in Ptger2(-/-) cumulus cells (the somatic cells surrounding the egg) compared with wild-type cells. Furthermore, under physiological conditions, cumulus-derived chemokine signaling was found to have a dual action; CCL7 facilitates sperm migration to the cumulus-egg complex and integrin-mediated cumulus extracellular matrix (ECM) assembly to protect eggs. However, in the absence of PGE(2)-EP2 signaling, chronic CCL7 signaling results in excessive integrin engagement to the ECM, making the cumulus ECM resistant to sperm hyaluronidase, thereby preventing sperm penetration. Our findings indicate that PGE(2)-EP2 signaling negatively regulates the autocrine action of chemokines and prevents excessive cumulus ECM assembly. This interaction between PG and chemokine signaling is required for successful fertilization.
Collapse
|
206
|
Physiologie der Lutealphase. GYNAKOLOGISCHE ENDOKRINOLOGIE 2008. [DOI: 10.1007/s10304-008-0272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
207
|
Bae JA, Park HJ, Seo YM, Roh J, Hsueh AJW, Chun SY. Hormonal regulation of proprotein convertase subtilisin/kexin type 5 expression during ovarian follicle development in the rat. Mol Cell Endocrinol 2008; 289:29-37. [PMID: 18502031 DOI: 10.1016/j.mce.2008.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/22/2008] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
Abstract
The proprotein convertase subtilisin/kexin (PCSKs), a family of subtilisin-like proteases, is the processing enzymes for the activation of many hormone precursors. The present study was designed to identify the PCSK isoform expressed in the ovary and to examine its expression in gonadotropin-stimulated rat ovary. Northern blot analysis of ovaries obtained from prepubertal rats revealed an increased expression of Pcsk5 messenger RNA (mRNA) during development with the highest levels at 21 days of age. Treatment of immature rats with PMSG further increased ovarian Pcsk5 expression, and in situ hybridization analysis revealed the localization of Pcsk5 mRNA in theca-interstitial cells of follicles in different sizes. Interestingly, treatment of PMSG-primed rats with hCG resulted in a transient stimulation of ovarian Pcsk5 mRNA levels within 3-6 h. In addition to theca-interstitial cells, hCG treatment induced the expression of Pcsk5 in granulosa cells of preovulatory follicles. Pcsk1, 2 and 4 mRNAs were not detected whereas Pcsk7 mRNA was slightly expressed. Injection of a progestin antagonist RU486 or an inhibitor of 3beta-hydroxysteroid dehydrogenase epostane at 1h before hCG treatment inhibited hCG-induced Pcsk5 mRNA levels. Treatment with LH stimulated both Pcsk5 mRNA and protein levels in preovulatory follicles cultured in vitro. In addition, forskolin but not TPA stimulated Pcsk5 mRNA levels. RNase protection assay revealed that the soluble Pcsk5A variant was the predominant form stimulated by gonadotropins in the ovary. Finally, the predicted proprotein substrates cleaved by PCSK5 were analyzed in preovulatory follicles using regular expressions. The present study demonstrates PCSK5A as the gonadotropin-regulated PCSK isoform in the ovary, and its possible contribution to ovulation by processing pro-TGFbeta and matrix metalloproteinase family.
Collapse
Affiliation(s)
- Jeong-A Bae
- Hormone Research Center and School of Biological Sciences & Technology, Chonnam National University, Kwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
208
|
|
209
|
Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: Prospects and challenges for the future. J Cell Physiol 2008; 216:355-65. [PMID: 18452183 DOI: 10.1002/jcp.21473] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oogenesis serves a singular role in the reproductive success of plants and animals. Of their remarkable differentiation pathway what stands out is the ability of oocytes to transform from a single cell into the totipotent lineages that seed the early embryo. As our understanding that commonalities between diverse organisms at the genetic, cellular and molecular levels are conserved to achieve successful reproduction, the notion that embryogenesis presupposes oogenesis has entered the day-to-day parlance of regenerative medicine and stem cell biology. With emphasis on the mammalian oocyte, this review will cover (1) current concepts regarding the birth, survival and growth of oocytes that depends on complex patterns of cell communication between germ line and soma, (2) the notion of "maternal inheritance" from a genetic and epigenetic perspective, and (3) the relative value of model systems with reference to current clinical and biotechnology applications.
Collapse
Affiliation(s)
- P Rodrigues
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | |
Collapse
|
210
|
Hales DB, Zhuge Y, Lagman JAJ, Ansenberger K, Mahon C, Barua A, Luborsky JL, Bahr JM. Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus). Endocrine 2008; 33:235-44. [PMID: 18498063 PMCID: PMC4445833 DOI: 10.1007/s12020-008-9080-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 04/29/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
Abstract
Cyclooxygenase (COX) (PTGS) is the rate-limiting enzyme in the biosynthesis of prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2, which show distinct cell-specific expression and regulation. Ovarian cancer is the most lethal gynecological malignancy and the disease is poorly understood due to the lack of suitable animal models. The laying hen spontaneously develops epithelial ovarian cancer with few or no symptoms until the cancer has progresses to a late stage, similar to the human disease. The purpose of this study was to examine the relative expression and distribution of COX-1 and COX-2 in the ovaries of normal hens and in hens with ovarian cancer. The results demonstrate that COX-1 was localized to the granulosa cell layer and cortical interstitium, ovarian surface epithelium (OSE) and postovulatory follicle (POF) of the normal ovary. In ovarian cancer, COX-1 mRNA was significantly increased and COX-1 protein was broadly distributed throughout the tumor stroma. COX-2 protein was localized to the granulosa cell layer in the follicle and the ovarian stroma. COX-2 mRNA expression did not change as a function of age or in ovarian cancer. There was significantly higher expression of COX-1 mRNA in the first POF (POF-1) compared to POF-2 and POF-3. COX-2 mRNA expression was not significantly different among POFs. There was no difference in COX-1 or COX-2 mRNA in the OSE isolated from individual follicles in the follicular hierarchy. The results confirm previous findings of the high expression of COX-1 in ovarian tumors further supporting the laying hen as a model for ovarian cancer, and demonstrate for the first time the high expression of COX-1 in POF-1 which is the source of prostaglandins needed for oviposition.
Collapse
Affiliation(s)
- Dale Buchanan Hales
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 S Wolcott Ave, Chicago, IL 60612-7342, USA.
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Zhao P, De A, Hu Z, Li J, Mulders SM, Sollewijn Gelpke MD, Duan EK, Hsueh AJW. Gonadotropin stimulation of ovarian fractalkine expression and fractalkine augmentation of progesterone biosynthesis by luteinizing granulosa cells. Endocrinology 2008; 149:2782-9. [PMID: 18292196 PMCID: PMC2408816 DOI: 10.1210/en.2007-1662] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies indicated that ovarian functions are regulated by diverse paracrine factors induced by the preovulatory increases in circulating LH. Based on DNA microarray analyses and real-time RT-PCR, we found a major increase in the transcript levels of a chemokine fractalkine after human chorionic gonadotropin (hCG) treatment during the preovulatory period in gonadotropin-primed immature mice and rats. Although CX3CR1, the seven-transmembrane receptor for fractalkine, was also found in murine ovaries, its transcripts displayed minimal changes. Using tandem RT-PCR and immunohistochemistry, fractalkine transcripts and proteins were localized in cumulus, mural granulosa, and theca cells as well as the oocytes, whereas CX3CR1 was found in the same cells except the oocyte. Real-time RT-PCR further indicated the hCG induction of fractalkine transcripts in different ovarian compartments, with the highest increases found in granulosa cells. In cultured granulosa cells, treatment with fractalkine augmented hCG stimulation of progesterone but not estradiol and cAMP biosynthesis with concomitant increases in transcript levels for key steroidogenic enzymes (steroidogenic acute regulatory protein, CYP11A, and 3beta-hydroxysteroid dehydrogenase). In cultured preovulatory follicles, treatment with fractalkine also augmented progesterone production stimulated by hCG. Furthermore, treatment with fractalkine augmented the phosphorylation of P38 MAPK in cultured granulosa cells. The present data demonstrated that increases in preovulatory LH/hCG induce the expression of fractalkine to augment the luteinization of preovulatory granulosa cells and suggest the fractalkine/CX3CR1 signaling system plays a potential paracrine/autocrine role in preovulatory follicles.
Collapse
Affiliation(s)
- Ping Zhao
- Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Shkolnik K, Ben-Dor S, Galiani D, Hourvitz A, Dekel N. Molecular characterization and bioinformatics analysis of Ncoa7B, a novel ovulation-associated and reproduction system-specific Ncoa7 isoform. Reproduction 2008; 135:321-33. [PMID: 18299425 DOI: 10.1530/rep-07-0402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present work, we employed bioinformatics search tools to select ovulation-associated cDNA clones with a preference for those representing putative novel genes. Detailed characterization of one of these transcripts, 6C3, by real-time PCR and RACE analyses led to identification of a novel ovulation-associated gene, designated Ncoa7B. This gene was found to exhibit a significant homology to the Ncoa7 gene that encodes a conserved tissue-specific nuclear receptor coactivator. Unlike Ncoa7, Ncoa7B possesses a unique and highly conserved exon at the 5' end and encodes a protein with a unique N-terminal sequence. Extensive bioinformatics analysis has revealed that Ncoa7B has one identifiable domain, TLDc, which has recently been suggested to be involved in protection from oxidative DNA damage. An alignment of TLDc domain containing proteins was performed, and the closest relative identified was OXR1, which also has a corresponding, highly related short isoform, with just a TLDc domain. Moreover, Ncoa7B expression, as seen to date, seems to be restricted to mammals, while other TLDc family members have no such restriction. Multiple tissue analysis revealed that unlike Ncoa7, which was abundant in a variety of tissues with the highest expression in the brain, Ncoa7B mRNA expression is restricted to the reproductive system organs, particularly the uterus and the ovary. The ovarian expression of Ncoa7B was stimulated by human chorionic gonadotropin. Additionally, using real-time PCR, we demonstrated the involvement of multiple signaling pathways for Ncoa7B expression on preovulatory follicles.
Collapse
Affiliation(s)
- Ketty Shkolnik
- Department of, Biological Regulation, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
213
|
Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 2008; 135:2001-11. [PMID: 18434414 DOI: 10.1242/dev.020461] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The toll-like receptor (TLR) system is expressed in cumulus cells of ovulated cumulus-oocyte complexes (COCs) and is activated by bacterial lipopolysaccharides (LPS). However, the endogenous ligand(s) for the TLRs and the physiological role(s) in ovulated COCs remain to be defined. Based on reports that hyaluronan fragments can activate TLR2 and TLR4 in macrophages, and that ovulated COCs are characterized by a hyaluronan-rich matrix, we cultured ovulated mouse COCs with purified hyaluronan fragments, treated them with purified hyaluronidase or exposed them to sperm as a physiologically relevant source of hyaluronidase. Hyaluronan fragments or hyaluronidase activated the NFkappaB pathway and induced Il6, Ccl4 and Ccl5 mRNA expression within 2 hours. Anti-TLR2 and anti-TLR4 neutralizing antibodies significantly suppressed hyaluronan fragment- and hyaluronidase-induced activation of the NFkappaB pathway and the expression of these genes. When ovulated COCs were cultured with sperm, the expression and secretion of cytokine/chemokine family members were induced in a time-dependent manner that could be blocked by TLR2/TLR4 antibodies or by a hyaluronan-blocking peptide (Pep-1). The chemokines secreted from TLR2/TLR4-stimulated COCs activated cognate chemokine receptors (CCRs) localized on sperm and induced sperm protein tyrosine phosphorylation, which was used as an index of capacitation. Significantly, in vitro fertilization of COC-enclosed oocytes was reduced by the TLR2/TLR4 neutralizing antibodies or by Pep-1. From these results, we propose that TLR2 and TLR4 present on cumulus cells were activated by the co-culture with sperm in a hyaluronan fragment-dependent manner, and that chemokines secreted from COCs induced sperm capacitation and enhanced fertilization, providing evidence for a regulatory loop between sperm and COCs during fertilization.
Collapse
Affiliation(s)
- Masayuki Shimada
- Department of Applied Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | | | | | | | | | | | | |
Collapse
|
214
|
Schneider MR, Wolf E. The epidermal growth factor receptor and its ligands in female reproduction: Insights from rodent models. Cytokine Growth Factor Rev 2008; 19:173-81. [DOI: 10.1016/j.cytogfr.2008.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
215
|
Watkins AJ, Wilkins A, Cunningham C, Perry VH, Seet MJ, Osmond C, Eckert JJ, Torrens C, Cagampang FRA, Cleal J, Gray WP, Hanson MA, Fleming TP. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J Physiol 2008; 586:2231-44. [PMID: 18308825 DOI: 10.1113/jphysiol.2007.149229] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P < 0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P < 0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P < 0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P < 0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P < 0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome.
Collapse
Affiliation(s)
- Adam J Watkins
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Sriraman V, Eichenlaub-Ritter U, Bartsch JW, Rittger A, Mulders SM, Richards JS. Regulated expression of ADAM8 (a disintegrin and metalloprotease domain 8) in the mouse ovary: evidence for a regulatory role of luteinizing hormone, progesterone receptor, and epidermal growth factor-like growth factors. Biol Reprod 2008; 78:1038-48. [PMID: 18287572 DOI: 10.1095/biolreprod.107.066340] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ADAM8 (a disintegrin and metalloprotease domain 8) is expressed in immune, neuronal, and bone progenitor cells and is thought to be involved in the tissue-remodeling process. Microarray analyses indicate that Adam8 is a potential target of the progesterone receptor (Pgr) in murine ovary. Further studies document that Adam8 mRNA and protein are expressed in granulosa cells and cumulus cells of periovulatory follicles whereas expression is significantly reduced in Pgr null mice that fail to ovulate. There is a reduced expression in granulosa cells from cultured, in vitro ovulated follicles exposed to inhibitors of progesterone or epidermal growth factor signaling while epiregulin induced its expression in the absence of hCG. In vitro studies with primary mouse granulosa cells document that Adam8 is induced in response to forskolin (Fo) and phorbol ester (PMA) or Fo and Amphiregulin treatment. To understand the transcriptional regulation of the Adam8, we amplified 1 kb of the mouse Adam8 promoter by PCR and subcloned it into a pGL3-luciferase reporter construct. The Adam8 promoter-luciferase constructs are induced by Fo and PMA treatment after transfection into rat granulosa cells, and cotransfection with a PGR-A expression vector further augment basal and Fo/PMA inducibility. Site-specific mutations within the -615/+50 promoter document that a GC-rich region, NF-1 (nuclear factor-1) site, and putative TATA box are critical for Adam8 promoter activation by Fo/PMA. Thus, ADAM8 is expressed in a stage-specific manner and is hormonally regulated in ovulating follicles by the coordinate actions of LH and PGR. To our knowledge, ADAM8 is the first member of the ADAM family shown to be hormonally regulated.
Collapse
Affiliation(s)
- Venkataraman Sriraman
- Institute of Genetechnology/Microbiology, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
217
|
Motola S, Popliker M, Tsafriri A. Response of follicle cells to ovulatory stimuli within the follicle and in primary culture. Mol Cell Endocrinol 2008; 282:26-31. [PMID: 18096309 DOI: 10.1016/j.mce.2007.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cultures of mural granulosa cells (mGCs) and cumulus oocyte complexes (COCs) were employed to investigate various aspects of follicle cell function and response to gonadotropins. Yet, such studies do not reveal the intricate cell-to-cell interactions in the whole follicle. Here we compare the ovulatory responses to LH/hCG or epiregulin (ER) of rat preovulatory follicles and of mGC and COC whether they were stimulated within the follicle or in primary cell cultures. The expression of TSG-6 and COX-2 mRNA varied according to the culture system and mode of stimulation. In primary cultures stimulated with LH or ER resulted in their lower expression as compared to stimulation of follicles. LH/hCG stimulated higher follicular and mGC AR, ER and EGFR mRNA levels than in primary mGC cultures. COCs stimulated by LH/hCG in vivo responded with AR, ER and EGFR mRNA expression, but not in culture where only EGFR mRNA was stimulated. The differences in gene expression of mGCs and COCs when stimulated within their intact follicle or in primary cultures revealed here underscore the important role of cell-cell interactions in follicle physiology. Therefore, results obtained in primary mGC cultures need careful validation in models reproducing such in situ interactions for revealing mGC activity within the intact follicle.
Collapse
Affiliation(s)
- S Motola
- The Bernhard Zondek Hormone Research Laboratory, Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
218
|
De Matos DG, Miller K, Scott R, Tran CA, Kagan D, Nataraja SG, Clark A, Palmer S. Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation. Fertil Steril 2008; 90:2367-75. [PMID: 18222433 DOI: 10.1016/j.fertnstert.2007.10.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the role of leukemia inhibitory factor (LIF) during in vitro maturation (IVM) on human and mice cumulus expansion and mice oocyte competence by in vitro fertilization (IVF), culture, and embryo transfer (ET). DESIGN Prospective animal and human study. SETTING Serono laboratories and IVF clinic. PATIENT(S) Healthy women volunteers and 8-week-old female mice. INTERVENTION(S) Cumulus compacted human and mice oocytes were matured in IVM media with and without recombinant follicle-stimulating hormone (FSH) and with and without LIF. Mice IVM oocytes with and without 0.2 IU/mL of recombinant FSH; or with and without recombinant FSH + LIF (0.1, 1.0, 1000.0 ng/mL) and ovulated oocytes were in vitro fertilized and cultured. We transferred 395 blastocysts to the uterine horn of 2.5-day pseudopregnant female mice. MAIN OUTCOME MEASURE(S) Cumulus expansion in human and mice oocytes, and two-cell rate, blastocyst rate, and delivered rate of live pups in mice. RESULT(S) In human and mouse oocytes, LIF induced cumulus expansion. When 1000 ng/mL of LIF was added in combination with recombinant FSH, a statistically significant increase in cleavage rate, embryo development rate, and birth rate was observed when compared with oocytes matured with FSH alone. CONCLUSION(S) Leukemia inhibitory factor induced cumulus expansion similarly in human and mouse cumulus-oocyte complexes, and recombinant FSH plus LIF supplementation during mouse IVM significantly improved oocyte competence as measured by cleavage rate, blastocyst development, and birth rate.
Collapse
|
219
|
Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol Cell Biol 2008; 28:1770-82. [PMID: 18172011 DOI: 10.1128/mcb.01556-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The progesterone receptor (PR) plays a critical role during ovulation. Mice lacking the PR gene are anovulatory due to a failure in the rupture of the preovulatory follicles. The pathways that operate downstream of PR to control ovulation are poorly understood. Using gene expression profiling, we identified peroxisome proliferator-activated receptor gamma (PPARgamma) as a target of regulation by PR in the granulosa cells of the preovulatory follicles during the ovulatory process. To investigate the function of PPARgamma during ovulation, we created a conditional knockout mouse in which this gene was deleted via Cre-Lox-mediated excision in granulosa cells. When these mutant mice were subjected to gonadotropin-induced superovulation, the preovulatory follicles failed to rupture and the number of eggs released from the mutant ovaries declined drastically. Gene expression analysis identified endothelin-2, interleukin-6, and cyclic GMP-dependent protein kinase II as novel targets of regulation by PPARgamma in the ovary. Our studies also suggested that cycloxygenase 2-derived metabolites of long-chain fatty acids function as endogenous activating ligands of PPARgamma in the preovulatory follicles. Collectively, these studies revealed that PPARgamma is a key mediator of the biological actions of PR in the granulosa cells and activation of its downstream pathways critically controls ovulation.
Collapse
|
220
|
Sayasith K, Brown KA, Sirois J. Gonadotropin-dependent regulation of bovine pituitary adenylate cyclase-activating polypeptide in ovarian follicles prior to ovulation. Reproduction 2007; 133:441-53. [PMID: 17307912 DOI: 10.1530/rep-06-0188] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study the regulation of bovine pituitary adenylate cyclase-activating polypeptide (PACAP) in preovulatory follicles prior to ovulation, PACAP cDNA was isolated by RT-PCR. Its open reading frame (ORF) is composed of 531 bp, and encodes for a 176-amino acid protein that bears 76-90% identity with other PACAP homologs. Using bovine preovulatory follicles obtained between 0 and 24 h after human chorionic gonadotropin (hCG) and semiquantitative RT-PCR/Southern blot, we demonstrate that levels of PACAP mRNA were low at 0 h, markedly increased at 6 and 12 h (P<0.05), and declined 18 and 24 h after hCG. Levels of PACAP mRNA were high in the bovine pituitary, testis, intestine and uterus, but moderate to low in other tissues. Analyses performed on isolated preparations of granulosa and theca cells showed a significant increase of PACAP transcripts in both cell types after hCG, whereas primary granulosa cell cultures revealed high levels of PACAP as well as its receptors PAC-1 and VPAC-2 mRNA after forskolin treatment. Overexpression of the catalytic subunit of protein kinase A (PKA) in granulosa cells stimulated, but treatment with H89 or PKA inhibitor protein inhibited PACAP mRNA expression, whereas PACAP overexpression stimulated an increase in abundance of transcripts for PGHS-2, PGES, EP2 receptor, progesterone receptor, and ADAMTS-1, but not for P450-side chain cleavage and P450 aromatase. Thus, this study demonstrates the gonadotropin-dependent regulation of PACAP mRNA in bovine preovulatory follicles, the importance of PKA activation in the expression of PACAP in granulosa cells, and stimulating effect of PACAP on gene expression during the ovulatory process.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de recherche en reproduction animale et Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, CP 5000, Saint-Hyacinthe, Québec, Canada J2S 7C6.
| | | | | |
Collapse
|
221
|
Tsafriri A, Motola S. Are steroids dispensable for meiotic resumption in mammals? Trends Endocrinol Metab 2007; 18:321-7. [PMID: 17826173 DOI: 10.1016/j.tem.2007.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/29/2007] [Indexed: 12/28/2022]
Abstract
Meiosis of vertebrate oocytes is a protracted process initiated within differentiated oocytes before the first meiotic arrest of the first meiotic division. Meiosis normally resumes in response to the stimulation of ovulation, proceeding to metaphase of the second meiotic division. In fish and amphibian oocytes, this resumption is triggered by follicular steroids. By contrast, the role of steroids in the resumption of mammalian oocyte maturation is less clear. Specifically, mammalian meiotic maturation proceeds undisturbed even when steroid production is severely suppressed. This puzzling mammalian divergence has been reexamined recently. Here, we review the published data and conclude that steroids are not necessary for the resumption of mammalian meiosis. Nevertheless, steroids are probably involved in follicular growth, somatic-cell differentiation and the acquisition of developmental competence of mature ova.
Collapse
Affiliation(s)
- Alex Tsafriri
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
222
|
Shkolnik K, Ben-Dor S, Galiani D, Hourvitz A, Dekel N. A novel ovary-specific and ovulation-associated variant of epoxide hydrolase 2. FEBS Lett 2007; 581:4891-8. [PMID: 17900570 DOI: 10.1016/j.febslet.2007.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
Abstract
Ovulation is a complex process initiated by the surge of the pituitary luteinizing hormone (LH) that provokes the expression of specific genes. We report herein the isolation and characterization of an ovulation-associated, ovary-specific novel isoform of epoxide hydrolase 2 (Ephx2), Ephx2C. This variant is exclusively expressed in the granulosa cells of preovulatory mouse ovarian follicles. The LH-induced expression of Ephx2C is mediated by the protein kinase A and partially by the protein kinase C signaling pathways. The involvement of p38 kinase has also been demonstrated.
Collapse
Affiliation(s)
- Ketty Shkolnik
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
223
|
Gonzalez-Navarrete F, Eisner V, Morales P, Castro O, Pommer R, Quiroga C, Lavandero S, Devoto L. Tumor necrosis factor-alpha activates nuclear factor-kappaB but does not regulate progesterone production in cultured human granulosa luteal cells. Gynecol Endocrinol 2007; 23:377-84. [PMID: 17701768 DOI: 10.1080/09513590701444839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The role of tumor necrosis factor-alpha (TNF-alpha) in granulosa luteal cell function and steroidogenesis is still controversial. Our aim was to examine the steroidogenic response, together with the simultaneous expression and activation of nuclear factor-kappaB (NF-kappaB), in cultured human granulosa luteal cells (GLCs) following administration of TNF-alpha. MATERIALS AND METHODS This prospective controlled study was conducted in the Human Reproduction Division at the Institute of Maternal and Child Research, Faculty of Medicine, University of Chile and the San Borja Arriarán Hospital, National Health Service, Santiago, Chile. GLCs were obtained from aspirates of follicles from women undergoing in vitro fertilization (IVF). Thirty-two women undergoing IVF for tubal-factor and/or male-factor infertility participated in this study. Protein levels of NF-kappaB, the NF-kappaB inhibitor IkappaBalpha and steroidogenic acute regulatory protein (StAR) were determined by Western blot and localization of NF-kappaB was studied by indirect immunofluorescence. Progesterone production was determined by radioimmunoassay. RESULTS TNF-alpha did not affect the expression of StAR protein or the synthesis of progesterone. NF-kappaB was expressed in the GLCs and activated by TNF-alpha, resulting in degradation of IkappaBalpha and mobilization of the p65 NF-kappaB subunit into the nucleus. CONCLUSIONS These results indicate that TNF-alpha did not modulate steroidogenesis in cultured human GLCs. However, NF-kappaB was activated by TNF-alpha. Therefore the activation of NF-kappaB via the TNF-alpha pathway is likely associated with other preovulatory granulosa cell processes important for human ovarian function.
Collapse
Affiliation(s)
- Flor Gonzalez-Navarrete
- Institute of Maternal and Child Research, Department of Obstetrics and Gynecology, Hospital San Borja Arriarán, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Lo TS, Cui Z, Mong JLY, Wong QWL, Chan SM, Kwan HS, Chu KH. Molecular coordinated regulation of gene expression during ovarian development in the penaeid shrimp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:459-68. [PMID: 17487536 DOI: 10.1007/s10126-007-9006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/27/2007] [Indexed: 05/15/2023]
Abstract
To understand the molecular events of ovarian development in penaeid shrimp, RNA arbitrarily primed polymerase chain reaction (RAP-PCR) was used to identify differentially expressed genes during ovarian maturation in Metapenaeus ensis. From a screening of 700 clones in a cDNA library of the shrimp ovary by the products of RAP-PCR of different maturation stages, 91 fragments with differentially expressed pattern as revealed by dot-blot hybridization were isolated and sequenced. Forty-two of these fragments show significant sequence similarity to known gene products and the differentially expressed pattern of 10 putative genes were further characterized via Northern hybridization. Putative glyceraldehyde-3-phosphate dehydrogenase and arginine kinase are related to provision of energy for active cellular function in oocyte development. Translationally controlled tumor protein, actin, and keratin are related to the organization of cytoskeleton to accomplish growth and development of oocytes. High mobility group protein DSP1, heat shock protein 70, and nucleoside diphosphate kinase may act as repressors before the onset of ovarian maturation. Peptidyl-prolyl cis-trans isomerase and glutathione peroxidase are related to the stabilization of proteins and oocytes. This study provides new insights on the molecular events in the ovarian development in the shrimp.
Collapse
Affiliation(s)
- Ting Sze Lo
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
225
|
Girling JE, Hedger MP. Toll‐like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology. Immunol Cell Biol 2007; 85:481-9. [PMID: 17592495 DOI: 10.1038/sj.icb.7100086] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interactions between the immune system and reproductive system have important consequences for fertility and reproductive health in general. There is increasing evidence that many of the interactions between the immune and reproductive systems involve the Toll-like receptors (TLRs). While there is no doubt that TLRs are important in providing protection against infection in the reproductive tract, there is increasing evidence for the involvement of TLRs in more basic pathology and physiology of reproduction. In the female, TLRs have been implicated in critical aspects of ovarian, endometrial and placental function, as well as in ovarian cancer, pelvic inflammatory disease, intrauterine growth restriction, pre-eclampsia and preterm birth. In the male, TLRs appear to play a role in the control of testicular steroidogenesis and spermatogenesis in disease and, potentially, during normal function, as well. Recent studies also have begun to highlight the role of various TLRs in the aetiology of prostatitis and prostatic cancer. Given the nascent state of knowledge concerning this important area, it is clear that more studies are needed, which should provide valuable new insights into the biology of the TLRs and reproductive function in general.
Collapse
Affiliation(s)
- Jane E Girling
- Centre for Women's Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
226
|
Park JI, Kim SG, Chun JS, Seo YM, Jeon MJ, Ohba M, Kim HJ, Chun SY. Activation of protein kinase Czeta mediates luteinizing hormone- or forskolin-induced NGFI-B expression in preovulatory granulosa cells of rat ovary. Mol Cell Endocrinol 2007; 270:79-86. [PMID: 17416458 DOI: 10.1016/j.mce.2007.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 02/03/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
We have previously demonstrated that luteinizing hormone (LH) induces a rapid and transient expression of NGFI-B in the ovary. In this report, we investigated the signaling pathway for LH- and forskolin-induced NGFI-B expression in cultured rat granulosa cells of preovulatory follicles. LH- or forskolin-induced NGFI-B expression was suppressed by high dose of protein kinase C (PKC) inhibitor RO 31-8220 (10 microM), but not by low doses RO 31-8220 (0.1-1.0 microM) or adenylate cyclase inhibitor MDL-12,300A, implicating the involvement of atypical PKCs. Kinase assay revealed that LH treatment of granulosa cells resulted in a rapid stimulation of atypical PKCzeta activity. Interestingly, like LH, forskolin was also able to activate PKCzeta. Treatment with the cell-permeable PKCzeta-specific inhibitor pseudosubstrate peptide inhibited LH-or forskolin-induced NGFI-B expression, indicating the essential role of PKCzeta. Consistent with this promise, in granulosa cells depleted of diacylglycerol sensitive PKCs by prolonged treatment with tetradecanoylphobol-13-acetate, LH or forskolin could still induce NGFI-B expression, and RO 31-8220 or the PKCzeta pseudosubstrate peptide inhibited LH- or forskolin-induced NGFI-B expression. Furthermore, overexpression of dominant-negative PKCzeta in primary granulosa cells using a replication-defective adenovirus vector resulted in the suppression of LH- or forskolin-induced NGFI-B expression. Our findings demonstrate that PKCzeta, which is activated by LH or forskolin, contributes to the induction of NGFI-B in granulosa cells of preovulatory follicles.
Collapse
Affiliation(s)
- Jae-Il Park
- Hormone Research Center and School of Biological Sciences & Technology, Chonnam National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Yang WL, Cai KQ, Smedberg JL, Smith ER, Klein-Szanto A, Hamilton TC, Xu XX. A reduction of cyclooxygenase 2 gene dosage counters the ovarian morphological aging and tumor phenotype in Wv mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1325-36. [PMID: 17392171 PMCID: PMC1829465 DOI: 10.2353/ajpath.2007.060769] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Menopausal ovaries undergo morphological changes, known as ovarian aging, which are implicated in the high incidence of ovarian cancer occurring during the perimenopausal and immediate postmenopausal periods. The germ cell-deficient Wv mice recapitulate these postmenopausal alterations in ovarian morphology and develop tubular adenomas. We demonstrate that a reduction of cyclooxygenase 2 gene dosage rescued the ovarian aging phenotype of the Wv mice, whereas homozygous deletion was accompanied by a compensatory increase in ovarian cyclooxygenase 1 expression and prostaglandin E(2) synthesis. Cyclooxygenase inhibitors also reduced the tumor phenotype in a preliminary study. These findings suggest that increased cyclooxygenase activity contributes to the preneoplastic morphological changes of the ovarian surface epithelium, which can be reversed by a reduction of gene dosage achieved by either genetic or pharmacological approaches.
Collapse
Affiliation(s)
- Wan-Lin Yang
- Ovarian Cancer and Tumor Cell Biology Programs, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
|
229
|
Abstract
The gametes of man and some other Eutheria have been manipulated successfully for practical reasons, but many gaps remain in our basic understanding of the way that they function. This situation stems not least from a failure to recognize the extent to which eutherian spermatozoa and eggs, and elements related to their operation, have come to differ from those of other groups. Novel features in the male that reflect this include a radical design of the sperm head with the acrosome seeming to function primarily in egg-coat binding rather than its lysis, a multifaceted post-testicular sperm maturation and an androgen/low-temperature-regulated system of sperm storage--both tied to the epididymis, a variable male accessory sex gland complex, and descent of the testis and epididymis to a scrotum. In the female, such novelties are represented in a need for sperm capacitation, in an unusual regulation of sperm transport within the oviduct, in the cumulus oophorus and character of the zona pellucida around the small egg, and in a unique configuration of gamete fusion. The collective evidence now suggests that many of these features reflect a new fertilisation strategy or its consequences, with most being causally linked. One initial 'domino' in this regard appears to be the small yolkless state of the egg and its intolerance for polyspermy, as determinants of the unusual mode of oviductal sperm transport and possibly the existence and form of the cumulus oophorus. However, a particularly influential first 'domino' appears to be the physical character of the eutherian zona pellucida. This differs from the egg coats of other animal groups by virtue of a resilient elasticity and thickness. These qualities allow this primary and often only coat to stretch and so persist during later expansion of the blastocyst, usually until close to implantation. At the same time, the dimensions, physical character, and particularly the relative protease-insensitivity of the zona appear to have had profound effects on sperm form and function and, more indirectly, on sperm-related events in the male and the female tract. Marsupials display some similarities and also some strikingly different features, against which the enigmas of the eutherian situation can be evaluated.
Collapse
Affiliation(s)
- J Michael Bedford
- Centre for Reproductive Medicine and Infertility, Weill Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
230
|
Fayad T, Lefebvre R, Nimpf J, Silversides DW, Lussier JG. Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8) Is Upregulated in Granulosa Cells of Bovine Dominant Follicle: Molecular Characterization and Spatio-Temporal Expression Studies1. Biol Reprod 2007; 76:466-75. [PMID: 17108332 DOI: 10.1095/biolreprod.106.057216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a member of the LDL receptor family that participates in endocytosis and signal transduction. We cloned the full-length bovine LRP8 cDNA in granulosa cells (GC) of the dominant follicle (DF) as well as several LRP8 mRNA splicing variants, including a variant that contains a proline-rich cytoplasmic insert (A759-K817) that is involved in intracellular signaling. Expression of the A759-K817 variant was analyzed in the GC of follicles at different developmental stages: the small follicle (SF; 2-4 mm), the DF at Day 5 (D5) of the estrus cycle, ovulatory follicles (OF) 24 h after hCG injection, and corpora lutea (CL) at D5. RT-PCR analysis showed that expression was predominant in the GC of DF compared to other follicles and CL (P<0.0001), whereas the expression of other related receptors, such as LDLR and VLDLR, did not show differences. Temporal analyses of follicular walls from the OF following hCG treatment revealed a decrease in LRP8 mRNA expression starting 12 h post-hCG treatment (P<0.0001). LRP8 protein was exclusively localized to the GC, with higher levels in the DF than in the SF (P<0.05). RELN mRNA, which encodes an LRP8 ligand, was highly expressed in the theca of the DF as compared to the OF (P<0.004), whereas MAPK8IP1 mRNA, which encodes an LRP8 intracellular interacting partner, is expressed in the GC of the DF. These results demonstrate the differential expression patterns of LRP8, RELN, and MAPK8IP1 mRNAs during final follicular growth and ovulation, and suggest that a RELN/LRP8/MAPK8IP1 paracrine interaction regulates follicular growth.
Collapse
Affiliation(s)
- Tania Fayad
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
231
|
Caperton L, Eddy C, Leland MM, Carey KD, McCarrey JR. Alteration of the menstrual cycle in baboons placed on tethering devices and moved to individual housing--a stress model for a follicular phase defect. J Med Primatol 2007; 35:341-5. [PMID: 17214661 DOI: 10.1111/j.1600-0684.2006.00185.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND During an attempt to identify endocrine characteristics in the baboon that would more precisely predict ovulatory status for assisted reproductive techniques, we observed severe alterations in the menstrual cycle length upon introducing an environmental stress. This environmental stress involved moving animals from their baseline gang cage environment to individual indoor caging and placing them on a tethering apparatus. METHODS Five adult female baboons were followed for changes in sex skin indicative of menstrual cycle timing and move from outdoor gang gages to individual indoor cages during the early follicular phase of their cycle. A tether device including a surgically implanted cannula was then installed to facilitate daily blood draws without sedation. Radioimmuonoassays were performed to monitor serum estradiol levels and lapraroscopic surveillance was used to confirm time of ovulation. RESULTS Complete data sets were collected from four of the female baboons. In each case, a prolongation of the menstrual cycle was noted either during the cycle during which the females were moved to indoor caging or during the cycle immediately following the move. This prolongation was isolated to the follicular phase of the affected cycle. CONCLUSIONS We conclude that otherwise normal handling procedures, including movement to new caging, and/or installation of a tether device, can impart a stress effect on reproductively cycling adult female baboons, such that folliculogenesis is delayed.
Collapse
Affiliation(s)
- L Caperton
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
232
|
Abstract
The corpus luteum (CL) is one of the few endocrine glands that forms from the remains of another organ and whose function and survival are limited in scope and time. The CL is the site of rapid remodeling, growth, differentiation, and death of cells originating from granulosa, theca, capillaries, and fibroblasts. The apparent raison d'etre of the CL is the production of progesterone, and all the structural and functional features of this gland are geared toward this end. Because of its unique importance for successful pregnancies, the mammals have evolved a complex series of checks and balances that maintains progesterone at appropriate levels throughout gestation. The formation, maintenance, regression, and steroidogenesis of the CL are among the most significant and closely regulated events in mammalian reproduction. During pregnancy, the fate of the CL depends on the interplay of ovarian, pituitary, and placental regulators. At the end of its life span, the CL undergoes a process of regression leading to its disappearance from the ovary and allowing the initiation of a new cycle. The generation of transgenic, knockout and knockin mice and the development of innovative technologies have revealed a novel role of several molecules in the reprogramming of granulosa cells into luteal cells and in the hormonal and molecular control of the function and demise of the CL. The current review highlights our knowledge on these key molecular events in rodents.
Collapse
Affiliation(s)
- Carlos Stocco
- Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
233
|
Cai KQ, Yang WL, Capo-Chichi CD, Vanderveer L, Wu H, Godwin AK, Xu XX. Prominent expression of metalloproteinases in early stages of ovarian tumorigenesis. Mol Carcinog 2007; 46:130-43. [PMID: 17131304 DOI: 10.1002/mc.20273] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role for matrix metalloproteinases (MMPs) in tumor cells invasion and metastasis is well established, and expression of MMPs is recognized as an indication of tumor cell malignancy. Previous studies suggest that the degradation of the basement membrane is a crucial early step in epithelial transformation and ovarian tumorigenesis. Thus, MMPs may also express and exert a role in preneoplastic lesions of ovarian tissues. We investigated the expression of the major metalloproteinases, gelatinase A, 72 kDa type IV collagenase (MMP-2), and gelatinase B, 92 kDa type IV collagenase (MMP-9), and the presence of basement membrane in ovarian tumors and tissues from prophylactic oophorectomies using immunostaining. MMP expression was also characterized in a panel of ovarian cancer cell lines and several nontumorigenic ovarian surface epithelial primary cells by zymography, Northern, and Western blots. We found, surprisingly, that MMP-2 and MMP-9 are expressed more frequently in early lesions than in established carcinomas. No correlation was found between the expression of MMPs and tumor grades or stages. In preneoplastic lesions, MMP-2 or MMP-9 expression often associates with the absence of basement membrane and morphological alterations. MMP-2 is often expressed in nontumorigenic ovarian surface epithelial cells but reduced or absent in cancer cells. Thus, we conclude that MMPs expression does not correlate with the malignancy of ovarian epithelial cells as generally thought. Rather, increased metalloproteinase expression is an early event in ovarian tumorigenesis and associates with the loss of epithelial basement membrane and morphological transformation. We propose that the increased MMP activity is an etiological factor for ovarian cancer risk. We found that MMPs expression does not correlate with the malignancy of ovarian epithelial cells as generally thought. Rather, increased metalloproteinase expression is an early event in ovarian tumorigenesis. The finding suggests roles of MMP in tumor initiation in addition to invasion, and may impact on the strategy for use of MMP inhibitors in cancer prevention.
Collapse
Affiliation(s)
- Kathy Qi Cai
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol 2006; 27:1914-24. [PMID: 17194751 PMCID: PMC1820474 DOI: 10.1128/mcb.01919-06] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.
Collapse
Affiliation(s)
- Minnie Hsieh
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5317, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Brûlé S, Sayasith K, Sirois J, Silversides DW, Lussier JG. Structure of the bovine VASAP-60/PRKCSH gene, functional analysis of the promoter, and gene expression analysis. Gene 2006; 391:63-75. [PMID: 17250974 DOI: 10.1016/j.gene.2006.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 12/11/2022]
Abstract
Vacuolar system-associated protein-60 (VASAP-60) constitutes the bovine ortholog of the human "protein kinase C substrate 80K-H" (PRKCSH or 80K-H). We characterized the bovine VASAP-60/PRKCSH gene structure and promoter, identified cis-acting elements controlling VASAP-60 expression, searched for mRNA splice variants, and analyzed mRNA expression in ovarian follicles. Expression of VASAP-60 mRNA showed a 2.4-fold increase (P<0.0001) in granulosa cells of dominant follicles compared to small follicles (2-4 mm) or ovulatory follicles, and no mRNA splice variant was identified. The bovine VASAP-60 gene encompasses 12.5 kb and is composed of 18 exons and 17 introns. Primer extension analysis revealed a single transcription initiation site, and the promoter lacks a TATA box. Promoter activity assays were performed with a series of deletion constructs in different bovine cell lines (endometrial epithelial glandular, kidney epithelial and aortic endothelial) to identify cis-acting elements. The -53/+16 bp fragment (+1 = transcription start site) conferred minimal promoter activity whereas activator and repressor elements were located in the -200/-53 bp and -653/-200 bp fragments, respectively. Analysis of cis-acting elements in the -200/-53 bp activation domain revealed by gel shift assays and chromatin immunoprecipitation assay that transcription factor YY1 binds to VASAP-60 promoter. This study is the first to report that VASAP-60 is up-regulated in granulosa cells of dominant follicles, to document the primary structure of the bovine VASAP-60 gene and promoter, and to demonstrate that YY1 binds to the VASAP-60 proximal promoter and may act as a positive transcriptional regulator.
Collapse
Affiliation(s)
- Sophie Brûlé
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
236
|
Jonas KC, Chandras C, Abayasekara DRE, Michael AE. Role for prostaglandins in the regulation of type 1 11beta-hydroxysteroid dehydrogenase in human granulosa-lutein cells. Endocrinology 2006; 147:5865-72. [PMID: 16959838 DOI: 10.1210/en.2006-0723] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
11beta-hydroxysteroid dehydrogenase (11betaHSD) enzymes regulate glucocorticoid availability in target tissues. 11betaHSD1 is the predominant isoenzyme expressed and active in human granulosa-lutein (hGL) cells. This study investigated the effects of pharmacological inhibitors of prostaglandin (PG) synthesis on 11betaHSD1 activities and expression in hGL cells. The consequences for 11betaHSD1 of increasing exposure of hGL cells to PGs, either by treatment with exogenous PGs or by challenging cells with IL-1beta, were also assessed. Suppression of basal PG synthesis using four different inhibitors of PG H synthase enzymes [indomethacin, niflumic acid, meclofenamic acid (MA) and N-(2-cyclohexyloxy-4-nitorophenyl) methane sulfonamide (NS-398)] each resulted in significant decreases in both cortisol oxidation and cortisone reduction. Both activities of 11betaHSD1 were suppressed by up to 64+/-6% (P<0.05). Over 4 and 24 h, neither MA nor NS-398 affected the expression of 11betaHSD1 protein, suggesting enzyme regulation by PGs at the posttranslational level. When cells were cotreated for 4 h with PGHS inhibitors plus 30 nm PGD2, PGF2alpha, or PGE2, each PG overcame the suppression of cortisol oxidation by indomethacin or MA. Treatment of hGL cells with IL-1beta increased the concentrations of both PGE2 and PGF2alpha, accompanied by a 70+/-25% increase in net cortisol oxidation. All three responses to IL-1beta were abolished when cells were cotreated with MA. These findings suggest a role for PGs in the posttranslational regulation of 11betaHSD1 activities in hGL cells.
Collapse
Affiliation(s)
- Kim C Jonas
- Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, University College London, UK.
| | | | | | | |
Collapse
|
237
|
Rask K, Zhu Y, Wang W, Hedin L, Sundfeldt K. Ovarian epithelial cancer: a role for PGE2-synthesis and signalling in malignant transformation and progression. Mol Cancer 2006; 5:62. [PMID: 17107625 PMCID: PMC1657027 DOI: 10.1186/1476-4598-5-62] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 11/16/2006] [Indexed: 11/29/2022] Open
Abstract
Background The involvement of the cyclooxygenases (COX), in particular COX-2, is well documented for many tumours, e.g. colon, breast and prostate cancer, by both experimental and clinical studies. There are epidemiological data from subjects using NSAIDs, and experimental evidence supporting the hypothesis of prostaglandins (PGs) as regulators of tumourigenesis in the ovary. One of the end products of PG-synthesis, PGE2, regulates several key-processes, which are characteristic for tumour growth, e.g. angiogenesis, proliferation and apoptosisis. The present study investigated the pathway for PGE2 – synthesis and signalling in ovarian tumourigenesis by analysing specimen from normal ovaries (n = 18), benign (B) (n = 8), borderline type (BL) (n = 6) and malignant tumours (AC) (n = 22). The expression and cell-specific localization of COX-1, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1) and two of the receptors for PGE2, EP1 and EP2, were examined by immunoblotting (IB) and immunohistochemistry (IHC). Results The results are in line with earlier studies demonstrating an increase of COX-2 in AC compared to the normal ovary, B and BL tumours. Increased expressions were also observed for COX-1, mPGES-1 and EP-1 which all were significantly (p < 0.05) augmented in less differentiated AC (grades: moderately-, poorly- and undifferentiated). The increase of COX-2 was also correlated to stage (FIGO classification) with significant elevations in stages II and III. EP1 was increased in stage III while no significant alterations were demonstrated for COX-1, mPGES-1 or EP2 for stage. IHC revealed staining of the tumour cells, but also increase of COX-1, COX-2, mPGES-1 and EP1–2 in the stromal compartment of AC (grades: moderately-, poorly- and undifferentiated). This observation suggests interactions between tumour cells and stromal cells (fibroblasts, immune cells), e.g. paracrine signalling mediated by growth factors, cytokines and possibly PGs. Conclusion The increases of COX-1, COX-2, mPGES-1 and EP1–2 in epithelial ovarian cancer, supports the hypothesis that PGE2-synthesis and signalling are of importance for malignant transformation and progression. The observed augmentations of COX-1, COX-2 and mPGES-1 have implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Katarina Rask
- Department of Physiology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Yihong Zhu
- Department of Clinical Sciences, Section for Obstetrics and Gynecology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Wanzhong Wang
- Department of Clinical Sciences, Section for Urology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Lars Hedin
- Department of Education, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Karin Sundfeldt
- Department of Clinical Sciences, Section for Obstetrics and Gynecology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| |
Collapse
|
238
|
Mehlmann LM, Kalinowski RR, Ross LF, Parlow AF, Hewlett EL, Jaffe LA. Meiotic resumption in response to luteinizing hormone is independent of a Gi family G protein or calcium in the mouse oocyte. Dev Biol 2006; 299:345-55. [PMID: 16949564 PMCID: PMC1864934 DOI: 10.1016/j.ydbio.2006.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
The signaling pathway by which luteinizing hormone (LH) acts on the somatic cells of vertebrate ovarian follicles to stimulate meiotic resumption in the oocyte requires a decrease in cAMP in the oocyte, but how cAMP is decreased is unknown. Activation of Gi family G proteins can lower cAMP by inhibiting adenylate cyclase or stimulating a cyclic nucleotide phosphodiesterase, but we show here that inhibition of this class of G proteins by injection of pertussis toxin into follicle-enclosed mouse oocytes does not prevent meiotic resumption in response to LH. Likewise, elevation of Ca2+ can lower cAMP through its action on Ca2+-sensitive adenylate cyclases or phosphodiesterases, but inhibition of a Ca2+ rise by injection of EGTA into follicle-enclosed mouse oocytes does not inhibit the LH response. Thus, neither of these well-known mechanisms of cAMP regulation can account for LH signaling to the oocyte in the mouse ovary.
Collapse
Affiliation(s)
- Lisa M. Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Rebecca R. Kalinowski
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Lavinia F. Ross
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Albert F. Parlow
- National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, and Departments of Medicine and Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
239
|
Cai KQ, Klein-Szanto A, Karthik D, Edelson M, Daly MB, Ozols RF, Lynch HT, Godwin AK, Xu XX. Age-dependent morphological alterations of human ovaries from populations with and without BRCA mutations. Gynecol Oncol 2006; 103:719-28. [PMID: 16698071 DOI: 10.1016/j.ygyno.2006.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/24/2006] [Accepted: 03/31/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE From analysis of pre-cancer ovarian tissues obtained from prophylactic oophorectomies, several studies reported the increased ovarian morphological changes in high-risk ovaries, but whether these morphological changes are associated with BRCA1/BRCA2 genotypes or are cancer precursors is controversial. Here, we have investigated a recent collection of ovaries from prophylactic oophorectomies and control ovaries from surgeries due to other non-ovarian-related cancer or non-neoplastic diseases to determine if ovarian morphological changes relate to BRCA1/2 genotypes or reproductive history. METHODS We assembled a panel of archived ovarian tissues: 52 ovarian tissue blocks were from prophylactic oophorectomies of a high-risk (HR) population; 66 ovaries were from surgeries due to non-ovarian-related diseases, referred to as normal-risk (NR) group. The morphology of ovarian tissues was examined, and morphological changes including papillomatosis, invaginations, inclusion cysts, and epithelial stratification were assessed in a blinded fashion. RESULTS No statistically significant difference in frequency of these histolopathologic features was found between HR and NR groups. However, inclusion cysts and deep invaginations were found much more commonly in women age 45-54 of either HR or NR groups. CONCLUSIONS This study suggests that no significant increase in the presence of non-neoplastic ovarian morphological changes is associated with BRCA1/BRCA2 mutations. Rather, the frequency of these histological features, especially inclusion cysts, may associate with age or menopausal status. We propose that ovulatory and perimenopausal gonadotropin stimulation produces ovarian morphological changes, and these histological features may promote the transformation of genetically compromised epithelial cells in the development of ovarian cancer.
Collapse
Affiliation(s)
- Kathy Qi Cai
- Ovarian Cancer Program and Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Palanisamy GS, Cheon YP, Kim J, Kannan A, Li Q, Sato M, Mantena SR, Sitruk-Ware RL, Bagchi MK, Bagchi IC. A Novel Pathway Involving Progesterone Receptor, Endothelin-2, and Endothelin Receptor B Controls Ovulation in Mice. Mol Endocrinol 2006; 20:2784-95. [PMID: 16887885 DOI: 10.1210/me.2006-0093] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe steroid hormone progesterone (P) plays a pivotal role during ovulation. Mice lacking P receptor (Pgr) gene fail to ovulate due to a defect in follicular rupture. The P receptor (PGR)-regulated pathways that modulate ovulation, however, remain poorly understood. To identify these pathways, we performed gene expression profiling using ovaries from mice subjected to gonadotropin-induced superovulation in the presence and in the absence of CDB-2914, a synthetic PGR antagonist. Prominent among the genes that were down-regulated in response to CDB-2914 was endothelin (ET)-2, a potent vasoactive molecule. ET-2 mRNA was transiently induced in mural granulosa cells of the preovulatory follicles immediately preceding ovulation. This induction was absent in the ovaries of PGR null mice, indicating a critical role of this receptor in ET-2 expression. To investigate the functional role of ET-2 during ovulation, we employed selective antagonists of endothelin receptors, ETR-A and ETR-B. Mice treated with an ETR-B antagonist exhibited a dramatic (>85%) decline in the number of released oocytes. Strong expression of ETR-B was observed in the mural and cumulus granulosa cells of the preovulatory follicles as well as in the capillaries lining the inner border of the theca interna. We also identified cGMP-dependent protein kinase II, a previously reported PGR-regulated gene, as a downstream target of ET-2 during ovulation. Collectively, our studies uncovered a unique pathway in which ET-2, produced by PGR in mural granulosa cells, acts in a paracrine or autocrine manner on multiple cell types within the preovulatory follicle to control the final events leading to its rupture.
Collapse
Affiliation(s)
- Gopinath S Palanisamy
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Cabrera RA, Dozier BL, Duffy DM. Prostaglandin-endoperoxide synthase (PTGS1 and PTGS2) expression and prostaglandin production by normal monkey ovarian surface epithelium. Fertil Steril 2006; 86:1088-96. [PMID: 16962117 DOI: 10.1016/j.fertnstert.2006.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 03/12/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether hCG regulates the expression of prostaglandin (PG) synthesis enzymes and the production of PGs by normal monkey ovarian surface epithelium (OSE). DESIGN Experimental animal study. SETTING Research laboratory. ANIMAL(S) Adult cynomolgus macaques. INTERVENTION(S) Monkeys received exogenous gonadotropins to stimulate multiple follicular development. Ovarian surface epithelium cells and whole ovaries were obtained before (0 hours) and 36 hours after an ovulatory dose of hCG. MAIN OUTCOME MEASURE(S) Ovarian surface epithelium expression of prostaglandin-endoperoxide synthase 1 (PTGS1) and PTGS2 proteins was determined by immunocytochemistry. Prostaglandin synthesis enzyme messenger RNA (mRNA) levels were determined by RT-PCR. Prostaglandin E2 and PGF2alpha production was assessed by enzyme immunoassays. RESULT(S) Ovarian surface epithelium maintained in long-term culture expressed mRNA and protein for PTGS1 and PTGS2 (n = 6); inhibition of PTGS1, but not PTGS2, reduced PGE2 synthesis (n = 3). Prostaglandin-endoperoxide synthase 1 was present in OSE of ovarian tissue sections obtained 0 (n = 4) and 36 (n = 3) hours after hCG; PTGS2 was not detected. Ovarian surface epithelium collected 0 (n = 3) and 36 (n = 4) hours after hCG expressed mRNAs for PTGS1, PTGS2, and three PGE synthases; the ratio of PTGS2 to PTGS1 increased in response to hCG exposure. CONCLUSION(S) Monkey OSE expresses mRNA for PTGS1, PTGS2, and all PGE synthases and produces PGE2 both before and 36 hours after hCG. Detection of PTGS1, but not PTGS2, protein in OSE in vivo supports the hypothesis that PTGS1 is the enzyme responsible for PGE2 production by primate OSE in vivo.
Collapse
Affiliation(s)
- Rafael A Cabrera
- The Jones Institute for Reproductive Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA.
| | | | | |
Collapse
|
242
|
Bobe J, Montfort J, Nguyen T, Fostier A. Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays. Reprod Biol Endocrinol 2006; 4:39. [PMID: 16872517 PMCID: PMC1570352 DOI: 10.1186/1477-7827-4-39] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 07/27/2006] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The hormonal control of oocyte maturation and ovulation as well as the molecular mechanisms of nuclear maturation have been thoroughly studied in fish. In contrast, the other molecular events occurring in the ovary during post-vitellogenesis have received far less attention. METHODS Nylon microarrays displaying 9152 rainbow trout cDNAs were hybridized using RNA samples originating from ovarian tissue collected during late vitellogenesis, post-vitellogenesis and oocyte maturation. Differentially expressed genes were identified using a statistical analysis. A supervised clustering analysis was performed using only differentially expressed genes in order to identify gene clusters exhibiting similar expression profiles. In addition, specific genes were selected and their preovulatory ovarian expression was analyzed using real-time PCR. RESULTS From the statistical analysis, 310 differentially expressed genes were identified. Among those genes, 90 were up-regulated at the time of oocyte maturation while 220 exhibited an opposite pattern. After clustering analysis, 90 clones belonging to 3 gene clusters exhibiting the most remarkable expression patterns were kept for further analysis. Using real-time PCR analysis, we observed a strong up-regulation of ion and water transport genes such as aquaporin 4 (aqp4) and pendrin (slc26). In addition, a dramatic up-regulation of vasotocin (avt) gene was observed. Furthermore, angiotensin-converting-enzyme 2 (ace2), coagulation factor V (cf5), adam 22, and the chemokine cxcl14 genes exhibited a sharp up-regulation at the time of oocyte maturation. Finally, ovarian aromatase (cyp19a1) exhibited a dramatic down-regulation over the post-vitellogenic period while a down-regulation of Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (cmah) was observed at the time of oocyte maturation. CONCLUSION We showed the over or under expression of more that 300 genes, most of them being previously unstudied or unknown in the fish preovulatory ovary. Our data confirmed the down-regulation of estrogen synthesis genes during the preovulatory period. In addition, the strong up-regulation of aqp4 and slc26 genes prior to ovulation suggests their participation in the oocyte hydration process occurring at that time. Furthermore, among the most up-regulated clones, several genes such as cxcl14, ace2, adam22, cf5 have pro-inflammatory, vasodilatory, proteolytics and coagulatory functions. The identity and expression patterns of those genes support the theory comparing ovulation to an inflammatory-like reaction.
Collapse
Affiliation(s)
- Julien Bobe
- Institut National de la Recherche Agronomique, INRA-SCRIBE, IFR 140, Campus de Beaulieu, 35000 Rennes Cedex, France
| | - Jerôme Montfort
- Institut National de la Recherche Agronomique, INRA-SCRIBE, IFR 140, Campus de Beaulieu, 35000 Rennes Cedex, France
| | - Thaovi Nguyen
- Institut National de la Recherche Agronomique, INRA-SCRIBE, IFR 140, Campus de Beaulieu, 35000 Rennes Cedex, France
| | - Alexis Fostier
- Institut National de la Recherche Agronomique, INRA-SCRIBE, IFR 140, Campus de Beaulieu, 35000 Rennes Cedex, France
| |
Collapse
|
243
|
Mayerhofer A, Kunz L, Krieger A, Proskocil B, Spindel E, Amsterdam A, Dissen GA, Ojeda SR, Wessler I. FSH regulates acetycholine production by ovarian granulosa cells. Reprod Biol Endocrinol 2006; 4:37. [PMID: 16846505 PMCID: PMC1557511 DOI: 10.1186/1477-7827-4-37] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/17/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been previously shown that cultured granulosa cells (GCs) derived from human ovarian preovulatory follicles contain choline acetyltransferase (ChAT), the enzyme responsible for acetylcholine (ACh) synthesis. They also produce ACh and express functional muscarinic ACh receptors. ACh can act on GCs to increase proliferation, disrupt gap junctional communication, alter intracellular calcium levels, as well as expression of transcription factors, suggesting an unrecognized role of ACh in GC function. To gain further insights into the possible role of ACh in the ovary, we examined ChAT expression in the gland before and after birth, as well as in adults, and studied the regulation of ACh production by FSH. METHODS ChAT immunohistochemistry was performed using ovarian samples of different species and ages (embryonic, postnatal and adult rats and mice, including embryonic ovaries from mice null for ChAT, neonatal and adult rhesus monkeys and adult humans). ACh was measured by HPLC and/or a fluorescence based method in rat ovaries and in a FSH receptor-expressing cell line (rat GFSHR-17) cultured with or without FSH. RESULTS In adult rat, as well as in all other species, ovarian ChAT immunoreactivity is associated with GCs of antral follicles, but not with other structures, indicating that GCs are the only ovarian source of ACh. Indeed ACh was clearly detected in adult rat ovaries by two methods. ChAT immunoreactivity is absent from embryonic and/or neonatal ovaries (mouse/rat and monkey) and ovarian development in embryonic mice null for ChAT appears normal, suggesting that ACh is not involved in ovarian or follicular formation. Since ChAT immunoreactivity is present in GCs of large follicles and since the degree of the ChAT immunoreactivity increases as antral follicles grow, we tested whether ACh production is stimulated by FSH. Rat GFSHR-17 cells that stably express the FSH receptor, respond to FSH with an increase in ACh production. CONCLUSION ACh and ChAT are present in GCs of growing follicles and FSH, the major driving force of follicular growth, stimulates ACh production. Since ACh stimulates proliferation and differentiation processes in cultured GCs, we suggest that ACh may act in the growing ovarian follicle as a local mediator of some of the actions ascribed to FSH.
Collapse
Affiliation(s)
| | - Lars Kunz
- Anatomisches Institut der Universität München, Deutschland
| | | | | | - Eliot Spindel
- Division of Neurosciences, ONPRC-OHSU, Beaverton, OR, USA
| | - Abraham Amsterdam
- Weizmann Institute of Science, Department of Molecular and Cellular Biology, Rehovot, Israel
| | | | - Sergio R Ojeda
- Division of Neurosciences, ONPRC-OHSU, Beaverton, OR, USA
| | - Ignaz Wessler
- Phamakologisches Institut der Universität Mainz, Deutschland
| |
Collapse
|
244
|
Agca C, Ries JE, Kolath SJ, Kim JH, Forrester LJ, Antoniou E, Whitworth KM, Mathialagan N, Springer GK, Prather RS, Lucy MC. Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Reproduction 2006; 132:133-45. [PMID: 16816339 DOI: 10.1530/rep.1.01163] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The LH surge initiates the luteinization of preovulatory follicles and causes hormonal and structural changes that ultimately lead to ovulation and the formation of corpora lutea. The objective of the study was to examine gene expression in ovarian follicles (n= 11) collected from pigs (Sus scrofa domestica) approaching estrus (estrogenic preovulatory follicle;n= 6 follicles from two sows) and in ovarian follicles collected from pigs on the second day of estrus (preovulatory follicles that were luteinized but had not ovulated;n= 5 follicles from two sows). The follicular status within each follicle was confirmed by follicular fluid analyses of estradiol and progesterone ratios. Microarrays were made from expressed sequence tags that were isolated from cDNA libraries of porcine ovary. Gene expression was measured by hybridization of fluorescently labeled cDNA (preovulatory estrogenic or -luteinized) to the microarray. Microarray analyses detected 107 and 43 genes whose expression was decreased or increased (respectively) during the transition from preovulatory estrogenic to -luteinized (P<0.01). Cells within preovulatory estrogenic follicles had a gene-expression profile of proliferative and metabolically active cells that were responding to oxidative stress. Cells within preovulatory luteinized follicles had a gene-expression profile of nonproliferative and migratory cells with angiogenic properties. Approximately, 40% of the discovered genes had unknown function.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Jo M, Curry TE. Luteinizing hormone-induced RUNX1 regulates the expression of genes in granulosa cells of rat periovulatory follicles. Mol Endocrinol 2006; 20:2156-72. [PMID: 16675540 PMCID: PMC1783681 DOI: 10.1210/me.2005-0512] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge induces specific transcription factors that regulate the expression of a myriad of genes in periovulatory follicles to bring about ovulation and luteinization. The present study determined 1) the localization of RUNX1, a nuclear transcription factor, 2) regulation of Runx1 mRNA expression, and 3) its potential function in rat ovaries. Up-regulation of mRNA and protein for RUNX1 is detected in preovulatory follicles after human chorionic gonadotropin (hCG) injection in gonadotropin-treated immature rats as well as after the LH surge in cycling animals by in situ hybridization and immunohistochemical and Western blot analyses. The regulation of Runx1 mRNA expression was investigated in vitro using granulosa cells from rat preovulatory ovaries. Treatments with hCG, forskolin, or phorbol 12 myristate 13-acetate stimulated Runx1 mRNA expression. The effects of hCG were reduced by inhibitors of protein kinase A, MAPK kinase, or p38 kinase, indicating that Runx1 expression is regulated by the LH-initiated activation of these signaling mediators. In addition, hCG-induced Runx1 mRNA expression was inhibited by a progesterone receptor antagonist and an epidermal growth factor receptor tyrosine kinase inhibitor, whereas amphiregulin stimulated Runx1 mRNA expression, demonstrating that the expression is mediated by the activation of the progesterone receptor and epidermal growth factor receptor. Finally, knockdown of Runx1 mRNA by small interfering RNA decreased progesterone secretion and reduced levels of mRNA for Cyp11a1, Hapln1, Mt1a, and Rgc32. The hormonally regulated expression of Runx1 in periovulatory follicles, its involvement in progesterone production, and regulation of preovulatory gene expression suggest important roles of RUNX1 in the periovulatory process.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, Room MS 335, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
246
|
Del Borgo MP, Hughes RA, Bathgate RAD, Lin F, Kawamura K, Wade JD. Analogs of Insulin-like Peptide 3 (INSL3) B-chain Are LGR8 Antagonists in Vitro and in Vivo. J Biol Chem 2006; 281:13068-13074. [PMID: 16547350 DOI: 10.1074/jbc.m600472200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a member of the insulin superfamily that plays an important role in mediating testes descent during fetal development. More recently, it has also been demonstrated to initiate oocyte maturation and suppress male germ cell apoptosis. These actions are mediated via a specific G-protein-coupled receptor, LGR8. Little is known regarding the structure and function relationship of INSL3, although it is believed that the principal receptor binding site resides within its B-chain. We subsequently observed that the linear B-chain alone (INSL3B-(1-31)) bound to LGR8 and was able to antagonise INSL3 stimulated cAMP accumulation in HEK-293T cells expressing LGR8. Sequentially N- and C-terminally shortened linear analogs were prepared by solid phase synthesis and subsequent assay showed that the minimum length required for binding was residues 11-27. It was also observed that increased binding affinity correlated with a corresponding increase in alpha-helical content as measured by circular dichroism spectroscopy. Molecular modeling studies suggested that judicious placement of a conformational constraint within this peptide would increase its alpha-helix content and result in increased structural similarity to the B-chain within native INSL3. Consequently, intramolecularly disulfide-linked analogs of the B-chain showed a potentiation of INSL3 antagonistic activity, as well as exhibiting increased proteolytic stability, as assessed in rat serum in vitro. Administration of one of these peptides into the testes of rats resulted in a substantial decrease in testis weight probably due to the inhibition of germ cell survival, suggesting that INSL3 antagonists may have potential as novel contraceptive agents.
Collapse
Affiliation(s)
- Mark P Del Borgo
- Howard Florey Institute, Victoria 3010, Australia; Department of Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Richard A Hughes
- Department of Pharmacology, University of Melbourne, Victoria 3010, Australia
| | | | - Feng Lin
- Howard Florey Institute, Victoria 3010, Australia
| | - Kazu Kawamura
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - John D Wade
- Howard Florey Institute, Victoria 3010, Australia.
| |
Collapse
|
247
|
Shimada M, Hernandez-Gonzalez I, Gonzalez-Robayna I, Richards JS. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol Endocrinol 2006; 20:1352-65. [PMID: 16543407 DOI: 10.1210/me.2005-0504] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.
Collapse
Affiliation(s)
- Masayuki Shimada
- Department of Molecular Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
248
|
Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 2006; 130:791-9. [PMID: 16322539 DOI: 10.1530/rep.1.00793] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase, held in meiotic arrest by the surrounding follicle cells until a surge of LH from the pituitary stimulates the immature oocyte to resume meiosis. Meiotic arrest depends on a high level of cAMP within the oocyte. This cAMP is generated by the oocyte, through the stimulation of the G(s) G-protein by the G-protein-coupled receptor, GPR3. Stimulation of meiotic maturation by LH occurs via its action on the surrounding somatic cells rather than on the oocyte itself. LH induces the expression of epidermal growth factor-like proteins in the mural granulosa cells that act on the cumulus cells to trigger oocyte maturation. The signaling pathway between the cumulus cells and the oocyte, however, remains unknown. This review focuses on recent studies highlighting the importance of the oocyte in producing cAMP to maintain arrest, and discusses possible targets at the level of the oocyte on which LH could act to stimulate meiotic resumption.
Collapse
Affiliation(s)
- Lisa M Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, Connecticut 06032, USA.
| |
Collapse
|
249
|
Sriraman V, Rudd MD, Lohmann SM, Mulders SM, Richards JS. Cyclic Guanosine 5′-Monophosphate-Dependent Protein Kinase II Is Induced by Luteinizing Hormone and Progesterone Receptor-Dependent Mechanisms in Granulosa Cells and Cumulus Oocyte Complexes of Ovulating Follicles. Mol Endocrinol 2006; 20:348-61. [PMID: 16210344 DOI: 10.1210/me.2005-0317] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractCyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.
Collapse
Affiliation(s)
- Venkataraman Sriraman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
250
|
Kawamura K, Sudo S, Kumagai J, Pisarska M, Hsu SYT, Bathgate R, Wade J, Hsueh AJW. Relaxin Research in the Postgenomic Era. Ann N Y Acad Sci 2006; 1041:1-7. [PMID: 15956679 DOI: 10.1196/annals.1282.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of the coevolution of ligands and their cognate receptors, analysis of human genomic sequences allows prediction of the pairing of these elements. Initially, we identified a group of five human leucine-rich repeat-containing G-protein-coupled receptor (LGR) genes homologous to LH, FSH, and TSH receptors. Based on common phenotypes of INSL3 null mice and transgenic mice with LGR8 gene deletion, we hypothesized that INSL3, relaxin, and related genes are likely ligands for the paralogous LGR7 and LGR8 genes. Matching the relaxin family peptides with these two orphan LGRs led to the finding that relaxin is capable of activating LGR7 and LGR8 through the Gs pathway. In addition, INSL3 and relaxin 3 were found to be specific ligands for LGR8 and LGR7, respectively. Based on the known production of INLS3 by testicular Leydig cells and ovarian theca cells, we demonstrated the expression of the INSL3 receptor LGR8 in oocytes in ovary and in male germ cells in the testis. Furthermore, we found that LH stimulates INSL3 transcripts in ovarian theca and testicular Leydig cells. INSL3, in turn, binds LGR8 expressed in germ cells to initiate the meiotic progression of arrested oocytes in preovulatory follicles in vitro and in vivo and to suppress male germ cell apoptosis in vivo. INSL3 interacts with germ cells to activate the inhibitory G protein, thus leading to decreases in cAMP production. Our data demonstrate the importance of the INSL3-LGR8 paracrine system in mediating gonadotropic actions in both ovary and testis.
Collapse
Affiliation(s)
- Kazuhiro Kawamura
- Division of Reproductive Health, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | | | | | | | | | | | | | | |
Collapse
|