201
|
Salani B, Repetto S, Cordera R, Maggi D. Glimepiride activates eNOS with a mechanism Akt but not caveolin-1 dependent. Biochem Biophys Res Commun 2005; 335:832-5. [PMID: 16099429 DOI: 10.1016/j.bbrc.2005.07.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Insulin stimulates caveolin-1 and eNOS phosphorylation. The sulfonylurea glimepiride mimics several insulin actions by mechanisms that are poorly understood. Glimepiride induces caveolin-1 phosphorylation and activates PI3K and Akt in rat adipocytes. In this paper, we investigated the effect of glimepiride on eNOS activation in human endothelial cells. We found that glimepiride induces caveolin-1 and eNOS phosphorylation. To better understand the role of caveolin-1 in glimepiride action, we downregulated caveolin-1 expression by specific siRNA transfection. Caveolin-1 silencing did not change eNOS and Akt phosphorylation induced by glimepiride. On the contrary, LY294002, a specific PI3K inhibitor, blocked eNOS serine 1177 phosphorylation. These findings suggest that glimepiride induces eNOS phosphorylation in endothelial cells through an Akt-dependent mechanism, not regulated by caveolin-1.
Collapse
Affiliation(s)
- Barbara Salani
- Department of Endocrinology and Metabolism (Di.S.E.M), University of Genova, Genova, Italy
| | | | | | | |
Collapse
|
202
|
Cheng W, Oike M, Hirakawa M, Ohnaka K, Koyama T, Ito Y. Excess l-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole. Toxicol Appl Pharmacol 2005; 207:187-94. [PMID: 16129112 DOI: 10.1016/j.taap.2005.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/07/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM l-arginine. Expression of endothelial NOS protein, Ach-induced Ca2+ transients and cellular uptake of l-[3H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of l-[3H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular l-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM l-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess l-arginine.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-82, Japan
| | | | | | | | | | | |
Collapse
|
203
|
Dong F, Zhang X, Culver B, Chew HG, Kelley RO, Ren J. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clin Sci (Lond) 2005; 109:277-86. [PMID: 15877545 DOI: 10.1042/cs20040278] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Iron deficiency is associated with multiple health problems, including the cardiovascular system. However, the mechanism of action of iron-deficiency-induced cardiovascular damage is unclear. The aim of the present study was to examine the effect of dietary iron deficiency on cardiac ultrastructure, mitochondrial cytochrome c release, NOS (nitric oxide synthase) and several stress-related protein molecules, including protein nitrotyrosine, the p47phox subunit of NADPH oxidase, caveolin-1 and RhoA. Male weanling rats were fed with either control or iron-deficient diets for 12 weeks. Cardiac ultrastructure was examined by transmission electron microscopy. Western blot analysis was used to evaluate cytochrome c, endothelial and inducible NOS, NADPH oxidase, caveolin-1 and RhoA. Protein nitrotyrosine formation was measured by ELISA. Rats fed an iron-deficient diet exhibited increased heart weight and size compared with the control group. Heart width, length and ventricular free wall thickness were similar between the two groups. However, the left ventricular dimension and chamber volume were significantly enhanced in the iron-deficient group compared with controls. Ultrastructural examination revealed mitochondrial swelling and abnormal sarcomere structure in iron-deficient ventricular tissues. Cytochrome c release was significantly enhanced in iron-deficient rats. Protein expression of eNOS (endothelial NOS) and iNOS (inducible NOS), and protein nitrotyrosine formation were significantly elevated in cardiac tissue or mitochondrial extraction from the iron-deficient group. Significantly up-regulated NADPH oxidase, caveolin-1 and RhoA expression were also detected in ventricular tissue of the iron-deficient group. Taken together, these results suggest that dietary iron deficiency may have induced cardiac hypertrophy characterized by aberrant mitochondrial and irregular sarcomere organization, which was accompanied by increased reactive nitrogen species and RhoA expression.
Collapse
Affiliation(s)
- Feng Dong
- Division of Pharmaceutical Sciences and Graduate Neuroscience Program, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
204
|
Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 2005; 436:78-86. [PMID: 15889048 DOI: 10.1038/nature03571] [Citation(s) in RCA: 485] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/17/2005] [Indexed: 01/17/2023]
Abstract
Endocytosis is a key cellular process, encompassing different entry routes and endocytic compartments. To what extent endocytosis is subjected to high-order regulation by the cellular signalling machinery remains unclear. Using high-throughput RNA interference and automated image analysis, we explored the function of human kinases in two principal types of endocytosis: clathrin- and caveolae/raft-mediated endocytosis. We monitored this through infection of vesicular stomatitis virus, simian virus 40 and transferrin trafficking, and also through cell proliferation and apoptosis assays. Here we show that a high number of kinases are involved in endocytosis, and that each endocytic route is regulated by a specific kinase subset. Notably, one group of kinases exerted opposite effects on the two endocytic routes, suggesting coordinate regulation. Our analysis demonstrates that signalling functions such as those controlling cell adhesion, growth and proliferation, are built into the machinery of endocytosis to a much higher degree than previously recognized.
Collapse
Affiliation(s)
- Lucas Pelkmans
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
205
|
Zani BG, Bohlen HG. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 2005; 289:H1381-90. [PMID: 15849232 DOI: 10.1152/ajpheart.01231.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cultured endothelial cells, 70-95% of extracellular l-arginine uptake has been attributed to the cationic amino acid transporter-1 protein (CAT-1). We tested the hypothesis that extracellular l-arginine entry into endothelial cells via CAT-1 plays a crucial role in endothelial nitric oxide (NO) production during in vivo conditions. Using l-lysine, the preferred amino acid transported by CAT-1, we competitively inhibited extracellular l-arginine transport into endothelial cells during conditions of NaCl hyperosmolarity, low oxygen, and flow increase. Our prior studies indicate that each of these perturbations causes NO-dependent vasodilation. The perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature. Suppression of extracellular l-arginine transport significantly and strongly inhibited increases in vascular [NO] and intestinal blood flow during NaCl hyperosmolarity, lowered oxygen tension, and increased flow. These results suggest that l-arginine from the extracellular space is accumulated by CAT-1. When CAT-1-mediated transport of extracellular l-arginine into endothelial cells was suppressed, the endothelial cell NO response to a wide range of physiological stimuli was strongly depressed.
Collapse
Affiliation(s)
- Brett G Zani
- Department of Cellular and Integrative Physiology, Indiana University Medical School, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
206
|
Abstract
Considerable evidence shows that lateral inhomogeneities in lipid composition and physical properties exist in biological membranes. These membrane lipid domains are proposed to play important roles in processes such as signal transduction and membrane traffic. However, there is not at present an adequate description of the nature of these lipid domains in terms of their size, abundance, composition, or dynamics. We discuss the current analyses of the properties and function of membrane domains in cells and compare their properties with chemically simpler model membrane systems that can be understood in greater detail.
Collapse
Affiliation(s)
- Sushmita Mukherjee
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
207
|
Camici M. Renal glomerular permselectivity and vascular endothelium. Biomed Pharmacother 2005; 59:30-7. [PMID: 15740933 DOI: 10.1016/j.biopha.2004.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 11/18/2022] Open
Abstract
The glomerular barrier is the kidney's physical block to the unrestricted flow of molecules from the plasma into the urinary space. Its exquisite selectivity allows solutes and water in the glomerular capillaries to pass through but it prevents the bulk of plasma proteins, most notably albumin, from crossing. Classically the barrier consists of three components: glomerular endothelium, glomerular basement membrane and glomerular epithelium (podocytes) with slit diaphragm. A lot of investigations are experimental but they are sufficient to show the pivotal role of endothelium in glomerular proteinuria. In this study the author discuss glomerular endothelium with particular emphasis on the barrier presumed to be imparted by endothelium-glomerular basement membrane-podocyte interactions. By specialized glomerular endothelial structure (caveolae, tight junctions, endothelium glycocalyx) and by circulating permeability factors (albumin, orosomucoid, apolipoproteins, Amadori's products). Concluding remarks underline the significance to study the glomerular vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Marcello Camici
- Internal Medicine Department, Pisa University, Via Roma, 6, 56126 Pisa, Italy.
| |
Collapse
|
208
|
Schutzer WE, Reed JF, Mader SL. Decline in caveolin-1 expression and scaffolding of G protein receptor kinase-2 with age in Fischer 344 aortic vascular smooth muscle. Am J Physiol Heart Circ Physiol 2004; 288:H2457-64. [PMID: 15626685 DOI: 10.1152/ajpheart.01090.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-adrenergic receptor (beta-AR)-mediated vasorelaxation declines with age in humans and animal models. This is not caused by changes in expression of beta-AR, G alpha s, adenylyl cyclase, or protein kinase A but is associated with decreased cAMP production. Expression and activity of G protein receptor kinase-2 (GRK-2), which phosphorylates and desensitizes the beta-AR, increases with age in rat aortic tissue. Caveolin scaffolds the beta-AR, GRK, and other proteins within "signaling pockets" and inhibits GRK activity when bound. We questioned the effect of age on caveolin-1 expression and interaction between caveolin-1 and GRK-2 in vascular smooth muscle (VSM) isolated from 2-, 6-, 12-, and 24-mo-old male Fischer 344 rat aorta. Western blot analysis found expression of caveolin-1 declined with age (6-, 12- and 24-mo-old rat aortas express 92, 50, and 42% of 2-mo-old rat aortas, respectively). Results from density-buoyancy analysis showed a lower percentage of GRK in caveolin-1-specific fractions with age (6-, 12- and 24-mo-old rat aortas express 95, 56, and 12% of 2-mo-old rat aortas, respectively). Coimmunoprecipitation confirmed this finding; density of GRK in caveolin-1 immunoprecipitates was 97, 30, and 21% of 2-mo-old aortas compared with 6-, 12- and 24-mo-old animals, respectively. Immunohistocytochemistry and confocal microscopy confirmed that GRK-2 and caveolin-1 colocalize in VSM. These results suggest that in nonoverexpressed, intact tissue, the decline in beta-AR-mediated vasorelaxation may be caused by both a reduction in caveolin-1 expression and a reduction in binding of GRK-2 by caveolin-1. This could lead to an increase in the fraction of free GRK-2, which could phosphorylate and desensitize the beta-AR.
Collapse
Affiliation(s)
- William E Schutzer
- Portland Veterans Affairs Medical Center, Research Service, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
209
|
Brouet A, DeWever J, Martinive P, Havaux X, Bouzin C, Sonveaux P, Feron O. Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J 2004; 19:602-4. [PMID: 15623570 DOI: 10.1096/fj.04-2682fje] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In tumors, caveolin-1, the structural protein of caveolae, constitutes a key switch through its function as a tumor suppressor and a promoter of metastases. In endothelial cells (EC), caveolin is also known to directly interact with the endothelial nitric oxide synthase (eNOS) and thereby to modulate nitric oxide (NO)-mediated processes including vasodilation and angiogenesis. In this study, we examined whether the modulation of the stoichiometry of the caveolin/eNOS complex in EC lining tumor blood vessels could affect the tumor vasculature and consecutively tumor growth. For this purpose, we used cationic lipids, which are delivery systems effective at targeting tumor vs. normal vascular networks. We first documented that in vitro caveolin transfection led to the inhibition of both VEGF-induced EC migration and tube formation on Matrigel. The DNA-lipocomplex was then administered through the tail vein of tumor-bearing mice. The direct interaction between recombinant caveolin and native eNOS was validated in coimmunoprecipitation experiments from tumor extracts. A dramatic tumor growth delay was observed in mice transfected with caveolin- vs. sham-transfected animals. Using laser Doppler imaging and microprobes, we found that in the early time after lipofection (e.g., when macroscopic effects on the integrity of the tumor vasculature were not detectable), caveolin expression impaired NO-dependent tumor blood flow. At later stages post-transfection, a decrease in tumor microvessel density in the central core of caveolin-transfected tumors was also documented. In conclusion, our study reveals that by exploiting the exquisite regulatory interaction between eNOS and caveolin and the propensity of cationic lipids to target EC lining tumor blood vessels, caveolin plasmid delivery appears to be a safe and efficient way to block neoangiogenesis and vascular function in solid tumors, independently of any direct effects on tumor cells.
Collapse
Affiliation(s)
- Agnès Brouet
- University of Louvain Medical School, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
210
|
Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004; 110:1499-506. [PMID: 15353500 DOI: 10.1161/01.cir.0000141576.39579.23] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the monocrotaline (MCT)-treated rat, there is marked stimulation of DNA synthesis and megalocytosis of pulmonary arterial endothelial cells (PAECs) within 3 to 4 days, followed by pulmonary hypertension (PH) 10 to 14 days later. Growing evidence implicates caveolin-1 (cav-1) in plasma membrane rafts as a negative regulator of promitogenic signaling. We have investigated the integrity and function of endothelial cell-selective cav-1alpha/raft signaling in MCT-induced PH. METHODS AND RESULTS Although PH and right ventricular hypertrophy developed by 2 weeks after MCT, a reduction in cav-1alpha levels in the lung was apparent within 48 hours, declining to approximately 30% by 2 weeks, accompanied by an increase in activation of the promitogenic transcription factor STAT3 (PY-STAT3). Immunofluorescence studies showed a selective loss of cav-1alpha and platelet endothelial cell adhesion molecule-1 in the PAEC layer within 48 hours after MCT but an increase in PY-STAT3. PAECs with cav-1alpha loss displayed high PY-STAT3 and nuclear immunostaining for proliferating cell nuclear antigen (PCNA). Biochemical studies showed a loss of cav-1alpha from the detergent-resistant lipid raft fraction concomitant with hyperactivation of STAT3. Moreover, cultured PAECs treated with MCT-pyrrole for 48 hours developed megalocytosis associated with hypo-oligomerization and reduction of cav-1alpha, hyperactivation of STAT3 and ERK1/2 signaling, and stimulation of DNA synthesis. CONCLUSIONS MCT-induced disruption of cav-1alpha chaperone and scaffolding function in PAECs likely accounts for diverse alterations in endothelial cell signaling in this model of PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
211
|
Zani BG, Bohlen HG. Sodium channels are required during in vivo sodium chloride hyperosmolarity to stimulate increase in intestinal endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 2004; 288:H89-95. [PMID: 15331363 DOI: 10.1152/ajpheart.00644.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.
Collapse
Affiliation(s)
- Brett G Zani
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., MS 426, Indianapolis, IN 46202, USA
| | | |
Collapse
|
212
|
Naoum JJ, Zhang S, Woodside KJ, Song W, Guo Q, Belalcazar LM, Hunter GC. Aortic eNOS expression and phosphorylation in Apo-E knockout mice: Differing effects of rapamycin and simvastatin. Surgery 2004; 136:323-8. [PMID: 15300198 DOI: 10.1016/j.surg.2004.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The inhibition of nitric oxide (NO) by hypercholesterolemia may be mediated, in part, by interactions with caveolin-1 (Cav-1). Because of the facilitatory effects of statins on endothelial function and the adverse effects of rapamycin (RAPA) on plasma lipids, we compared the effects of simvastatin (SMV) and RAPA on endothelial NO synthase (eNOS) and Cav-1 protein expression and phosphorylation in the aortas of apolipoprotein E (Apo-E) knockout (-/-) mice. METHODS Apo-E -/- mice (n = 38) fed a high-cholesterol diet were given SMV (100 mg/kg/day po), RAPA (3 mg/kg/day ip), or no treatment for 10 weeks. Blood was drawn for serum lipid analysis, and protein was extracted for Western immunoblotting. Selected aortic specimens from 2 animals in each group were examined by histology and immunohistochemistry. The data are expressed as the mean +/- SEM and compared by the Student t test and ANOVA. Significance was established as P < .05. RESULTS Lipid levels at 10 weeks were similar in the 3 groups except for higher triglyceride levels in RAPA-treated animals. eNOS expression was highest in RAPA-treated mice, but the p-eNOS to eNOS protein expression ratio was significantly greater in the SMV treatment group compared to both RAPA and controls (P < .05). Both Cav-1 and p-Cav-1 expression was significantly lower in the SMV-treated animals (P < .05) compared to mice treated with RAPA. CONCLUSIONS Although eNOS expression was greatest in the RAPA-treated mice, the expression of p-eNOS was similar in the RAPA- and SMV-treated animals. The increase in eNOS induced by RAPA and the inverse relationship between p-eNOS and Cav-1 protein expression observed with SMV treatment suggest different mechanisms for the regulation of aortic eNOS expression in Apo-E mice by these 2 agents.
Collapse
Affiliation(s)
- Joseph J Naoum
- Department of Surgery, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
In the past, the endothelium was considered to be inert, described as a 'layer of nucleated cellophane', with only non-reactive barrier properties, such as presentation of a non-thrombogenic surface for blood flow and guarding against pro-inflammatory insults. However, it is now becoming clear that endothelial cells actively and reactively participate in haemostasis and immune and inflammatory reactions. They regulate vascular tone via production of nitric oxide, endothelin and prostaglandins and are involved in the manifestations of atherogenesis, autoimmune diseases and infectious processes. They produce and react to various cytokines and adhesion molecules and it is now clear that they can mount anti- and pro-inflammatory and protective responses depending on environmental conditions and are key immunoreactive cells. Endothelial dysfunction or activation also contributes to a variety of disease states.
Collapse
Affiliation(s)
- H F Galley
- Academic Unit of Anaesthesia & Intensive Care, School of Medicine, University of Aberdeen AB25 2ZD, Scotland UK
| | | |
Collapse
|
214
|
Saraswathi V, Wu G, Toborek M, Hennig B. Linoleic acid-induced endothelial activation: role of calcium and peroxynitrite signaling. J Lipid Res 2004; 45:794-804. [PMID: 14993245 DOI: 10.1194/jlr.m300497-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypertriglyceridemia, an important risk factor of atherosclerosis, is associated with increased circulating free fatty acids. Research to date indicates that linoleic acid (LA), the major fatty acid in the American diet, may be atherogenic by activating vascular endothelial cells. However, the exact signaling mechanisms involved in LA-mediated proinflammatory events in endothelial cells still remain unclear. We previously reported increased superoxide formation after LA exposure in endothelial cells. The objective of the present investigation is to determine the role of calcium and peroxynitrite in mediating the proinflammatory effect of LA in vascular endothelial cells. LA exposure increased intracellular calcium, nitric oxide, and tetrahydrodiopterin levels as well as the expression of E-selectin. Inhibiting calcium signaling using 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid and heparin decreased the expression of E-selectin. Also, LA-mediated nuclear factor kappa B activation and E-selectin gene expression were suppressed by Mn (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (a superoxide scavenger), N(G)-monomethyl-l-arginine (an endothelial nitric oxide synthase inhibitor), and 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III) chloride (a peroxynitrite scavenger). LA exposure resulted in increased nitrotyrosine levels, as observed by Western blotting and immunofluorescence. Our data suggest that the proinflammatory effects of LA can be mediated through calcium and peroxynitrite signaling.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
215
|
Hoffman R. Do the signalling proteins for angiogenesis exist as a modular complex? The case for the angosome. Med Hypotheses 2004; 63:675-80. [PMID: 15325015 DOI: 10.1016/j.mehy.2004.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/11/2004] [Indexed: 11/15/2022]
Abstract
The vasculature remains quiescent during much of adult life, but new blood vessels can be rapidly produced when required by a process referred to as angiogenesis. Angiogenesis involves a complex series of events including the proliferation, migration, differentiation and apoptosis of capillary endothelial cells, as well as changes in vascular permeability. This hypothesis argues that in the quiescent vasculature the many factors that regulate angiogenesis are normally held together as part of an inactive modular unit, and that when angiogenesis is stimulated the modular unit dissociates thus enabling angiogenic regulators to become active. I have termed this modular unit the "angosome". It is proposed that the angosome is present in the caveolae of capillary endothelial cells. Caveolae are flask-shaped invaginations in the plasmalemma that compartmentalise signalling molecules. Endothelial cells are particularly rich in caveolae. Many of the structural and functional aspects of caveolae are controlled by the protein caveolin, one form of which, caveolin-1, interacts directly or indirectly with most of the regulatory molecules involved in angiogenesis. Caveolin-1 forms oligomers of 14-16 sub-units and I propose that oligomers of caveolin-1 form the scaffold that holds together the angosome. There is evidence that caveolin-1 is up-regulated in the differentiated, quiescent vasculature and down-regulated in proliferating endothelial cells. Since the presence of caveolin-1 can inhibit pro-angiogenic factors, it may act as a "master-switch" co-ordinating events during angiogenesis. Thus when the vasculature is quiescent the angosome may hold angiogenic factors in an inactive state and when angiogenesis is required, the angosome must disassociate to enable angiogenic factors to become active.
Collapse
Affiliation(s)
- R Hoffman
- Department of Biosciences, University of Hertfordshire, Hatfield, Herts., AL10 9AB, UK.
| |
Collapse
|
216
|
Affiliation(s)
- Ondine Cleaver
- Howard Hughes Medical Institute and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|