201
|
Díaz-Vegas AR, Cordova A, Valladares D, Llanos P, Hidalgo C, Gherardi G, De Stefani D, Mammucari C, Rizzuto R, Contreras-Ferrat A, Jaimovich E. Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Front Physiol 2018; 9:791. [PMID: 29988564 PMCID: PMC6026899 DOI: 10.3389/fphys.2018.00791] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Aim: We hypothesize that both type-1 ryanodine receptor (RyR1) and IP3-receptor (IP3R) calcium channels are necessary for the mitochondrial Ca2+ increase caused by membrane depolarization induced by potassium (or by electrical stimulation) of single skeletal muscle fibers; this calcium increase would couple muscle fiber excitation to an increase in metabolic output from mitochondria (excitation-metabolism coupling). Methods: Mitochondria matrix and cytoplasmic Ca2+ levels were evaluated in fibers isolated from flexor digitorium brevis muscle using plasmids for the expression of a mitochondrial Ca2+ sensor (CEPIA3mt) or a cytoplasmic Ca2+ sensor (RCaMP). The role of intracellular Ca2+ channels was evaluated using both specific pharmacological inhibitors (xestospongin B for IP3R and Dantrolene for RyR1) and a genetic approach (shIP3R1-RFP). O2 consumption was detected using Seahorse Extracellular Flux Analyzer. Results: In isolated muscle fibers cell membrane depolarization increased both cytoplasmic and mitochondrial Ca2+ levels. Mitochondrial Ca2+ uptake required functional inositol IP3R and RyR1 channels. Inhibition of either channel decreased basal O2 consumption rate but only RyR1 inhibition decreased ATP-linked O2 consumption. Cell membrane depolarization-induced Ca2+ signals in sub-sarcolemmal mitochondria were accompanied by a reduction in mitochondrial membrane potential; Ca2+ signals propagated toward intermyofibrillar mitochondria, which displayed increased membrane potential. These results are compatible with slow, Ca2+-dependent propagation of mitochondrial membrane potential from the surface toward the center of the fiber. Conclusion: Ca2+-dependent changes in mitochondrial membrane potential have different kinetics in the surface vs. the center of the fiber; these differences are likely to play a critical role in the control of mitochondrial metabolism, both at rest and after membrane depolarization as part of an “excitation-metabolism” coupling process in skeletal muscle fibers.
Collapse
Affiliation(s)
- Alexis R Díaz-Vegas
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Alex Cordova
- Biomedical Neuroscience Institute, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Denisse Valladares
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Exercise and Movement Science Laboratory, Universidad Finis Terrae, Santiago, Chile
| | - Paola Llanos
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Science, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ariel Contreras-Ferrat
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
202
|
Vicario M, Cieri D, Brini M, Calì T. The Close Encounter Between Alpha-Synuclein and Mitochondria. Front Neurosci 2018; 12:388. [PMID: 29930495 PMCID: PMC5999749 DOI: 10.3389/fnins.2018.00388] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 01/02/2023] Open
Abstract
The presynaptic protein alpha-synuclein (α-syn) is unequivocally linked to the development of Parkinson’s disease (PD). Not only it is the major component of amyloid fibrils found in Lewy bodies but mutations and duplication/triplication in its gene are responsible for the onset of familial autosomal dominant forms of PD. Nevertheless, the precise mechanisms leading to neuronal degeneration are not fully understood. Several lines of evidence suggest that impaired autophagy clearance and mitochondrial dysfunctions such as bioenergetics and calcium handling defects and alteration in mitochondrial morphology might play a pivotal role in the etiology and progression of PD, and indicate the intriguing possibility that α-syn could be involved in the control of mitochondrial function both in physiological and pathological conditions. In favor of this, it has been shown that a fraction of cellular α-syn can selectively localize to mitochondrial sub-compartments upon specific stimuli, highlighting possible novel routes for α-syn action. A plethora of mitochondrial processes, including cytochrome c release, calcium homeostasis, control of mitochondrial membrane potential and ATP production, is directly influenced by α-syn. Eventually, α-syn localization within mitochondria may also account for its aggregation state, making the α-syn/mitochondria intimate relationship a potential key for the understanding of PD pathogenesis. Here, we will deeply survey the recent literature in the field by focusing our attention on the processes directly controlled by α-syn within mitochondrial sub-compartments and its potential partners providing possible hints for future therapeutic targets.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Domenico Cieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
203
|
Function, regulation and physiological role of the mitochondrial Na + /Ca 2+ exchanger, NCLX. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
204
|
Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT, Surmeier DJ. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018; 128:2266-2280. [PMID: 29708514 PMCID: PMC5983329 DOI: 10.1172/jci95898] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/13/2018] [Indexed: 01/04/2023] Open
Abstract
The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson's disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients. This treatment diminished cytosolic Ca2+ oscillations in SNc DA neurons without altering autonomous spiking or expression of Ca2+ channels, an effect mimicked by selectively knocking down expression of Cav1.3 channel subunits. Treatment also lowered mitochondrial oxidant stress, reduced a high basal rate of mitophagy, and normalized mitochondrial mass - demonstrating that Cav1 channels drive mitochondrial oxidant stress and turnover in vivo. Thus, chronic isradipine treatment remodeled SNc DA neurons in a way that should not only diminish their vulnerability to mitochondrial challenges, but to autophagic stress as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
205
|
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1761-1770. [PMID: 29787781 DOI: 10.1016/j.bbamcr.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) signaling controls secretion in many types of cells and tissues. In the liver, Ca2+ regulates secretion in both hepatocytes, which are responsible for primary formation of bile, and cholangiocytes, which line the biliary tree and further condition the bile before it is secreted. Cholestatic liver diseases, which are characterized by impaired bile secretion, may result from impaired Ca2+ signaling mechanisms in either hepatocytes or cholangiocytes. This review will discuss the Ca2+ signaling machinery and mechanisms responsible for regulation of secretion in both hepatocytes and cholangiocytes, and the pathophysiological changes in Ca2+ signaling that can occur in each of these cell types to result in cholestasis.
Collapse
Affiliation(s)
- David C Trampert
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
206
|
Patron M, Granatiero V, Espino J, Rizzuto R, De Stefani D. MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ 2018; 26:179-195. [PMID: 29725115 DOI: 10.1038/s41418-018-0113-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
The versatility and universality of Ca2+ as intracellular messenger is guaranteed by the compartmentalization of changes in [Ca2+]. In this context, mitochondrial Ca2+ plays a central role, by regulating both specific organelle functions and global cellular events. This versatility is also guaranteed by a cell type-specific Ca2+ signaling toolkit controlling specific cellular functions. Accordingly, mitochondrial Ca2+ uptake is mediated by a multimolecular structure, the MCU complex, which differs among various tissues. Its activity is indeed controlled by different components that cooperate to modulate specific channeling properties. We here investigate the role of MICU3, an EF-hand containing protein expressed at high levels, especially in brain. We show that MICU3 forms a disulfide bond-mediated dimer with MICU1, but not with MICU2, and it acts as enhancer of MCU-dependent mitochondrial Ca2+ uptake. Silencing of MICU3 in primary cortical neurons impairs Ca2+ signals elicited by synaptic activity, thus suggesting a specific role in regulating neuronal function.
Collapse
Affiliation(s)
- Maria Patron
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.,Max Planck Institute for Biology and Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Veronica Granatiero
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.,Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY, 10065, United States
| | - Javier Espino
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
| |
Collapse
|
207
|
González A, Sáez CA, Moenne A. Copper-induced activation of TRPs and VDCCs triggers a calcium signature response regulating gene expression in Ectocarpus siliculosus. PeerJ 2018; 6:e4556. [PMID: 29682409 PMCID: PMC5907779 DOI: 10.7717/peerj.4556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
In certain multicellular photoautotrophs, such as plants and green macroalgae, it has been demonstrated that calcium signaling importantly mediates tolerance to copper excess. However, there is no information in brown macroalgae, which are phylogenetically distant from green algae and plants. We have previously shown that chronic copper levels (2.5 μM) activate transient receptor potential (TRP) channels in the model brown macroalga Ectocarpus siliculosus, allowing extracellular calcium entry at 13, 29, 39 and 51 min. Here, we showed that intracellular calcium increases also occurred at 3 and 5 h of exposure; these increases were inhibited by antagonists of voltage-dependent calcium channels (VDCCs); a chelating agent of extracellular calcium; an antagonist of endoplasmic reticulum (ER) ATPase; and antagonists of cADPR-, NAADP- and IP3-dependent calcium channels. Thus, copper activates VDCCs allowing extracellular calcium entry and intracellular calcium release from the ER via cADPR-, IP3- and NAADP-dependent channels. Furthermore, the level of transcripts encoding a phytochelatin synthase (PS) and a metallothionein (MT) were analyzed in the alga exposed to 2.5 μM copper from 3 to 24 h. The level of ps and mt transcripts increased until 24 h and these increases were inhibited by antagonists of calmodulins (CaMs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). Finally, activation of VDCC was inhibited by a mixture of TRP antagonists and by inhibitors of protein kinases. Thus, copper-mediated activation of TRPs triggers VDCCs via protein kinases, allowing extracellular calcium entry and intracellular calcium release from ER that, in turn, activate CaMs, CBLs and CDPKs increasing expression of PS and MT encoding genes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| | - Claudio A Sáez
- Laboratory of Costal Environmental Research, Center of Advanced Studies, Universidad de Playa Ancha, Viña del Mar, Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
208
|
Oggiano R, Solinas G, Forte G, Bocca B, Farace C, Pisano A, Sotgiu MA, Clemente S, Malaguarnera M, Fois AG, Pirina P, Montella A, Madeddu R. Trace elements in ALS patients and their relationships with clinical severity. CHEMOSPHERE 2018; 197:457-466. [PMID: 29366958 DOI: 10.1016/j.chemosphere.2018.01.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
An exploratory study of trace elements in ALS and their relationships with clinical severity was detected. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that causes irreversible damage in humans, with the consequent loss of function of motoneurons (MNs), with a prognosis up to 5 years after diagnosis. Except to genetic rare cases it is not known the etiology of the disorder. Aim of our research is to investigate the possible role of heavy metals in the severity of the disease. In this study, by the use of plasma mass (ICP-MS), we have analyzed the content of essential and heavy metals such: Pb, Cd, Al, Hg, Mn, Fe, Cu, Zn, Se, Mg, and Ca, in blood, urine and hair of ALS patients and controls; moreover we divided the patients in two groups for disease severity and analyzed the difference among the groups, in order to study a possible involvement of metals in the severity of the damage. Our results suggest a protective role of Selenium, involved in protective antioxidant mechanisms, and a risk factor in the case of presence of Lead in blood. The levels of the other metals are not easy to interpret, because these may be due to life style and for essential metals a consequence of the disease condition, not a cause.
Collapse
Affiliation(s)
- Riccardo Oggiano
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | - Giuliana Solinas
- Department of Biomedical Sciences - Hygiene, University of Sassari, Sassari, Italy
| | - Giovanni Forte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiano Farace
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | - Andrea Pisano
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | | | | | - Michele Malaguarnera
- Department of Medical and Pediatric Science, Research Centre "The Great Senescence", University of Catania, Catania, Italy
| | - Alessandro Giuseppe Fois
- Department of Clinical and Experimental Medicine - Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
| | - Pietro Pirina
- Department of Clinical and Experimental Medicine - Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences- Human Anatomy, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
209
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
210
|
Brini M, Leanza L, Szabo I. Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxid Redox Signal 2018; 28:949-972. [PMID: 28679281 DOI: 10.1089/ars.2017.7215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Ion channels play an important role in the regulation of organelle function within the cell, as proven by increasing evidence pointing to a link between altered function of intracellular ion channels and different pathologies ranging from cancer to neurodegenerative diseases, ischemic damage, and lysosomal storage diseases. Recent Advances: A link between these pathologies and redox state as well as lipid homeostasis and ion channel function is in the focus of current research. Critical Issues: Ion channels are target of modulation by lipids and lipid messengers, although in most cases the mechanistic details have not been clarified yet. Ion channel function importantly impacts production of reactive oxygen species (ROS), especially in the case of mitochondria and lysosomes. ROS, in turn, may modulate the function of intracellular channels triggering thereby a feedback control under physiological conditions. If produced in excess, ROS can be harmful to lipids and may produce oxidized forms of these membrane constituents that ultimately affect ion channel function by triggering a "circulus vitiosus." Future Directions: The present review summarizes our current knowledge about the contribution of intracellular channels to oxidative stress and gives examples of how these channels are modulated by lipids and how this modulation may affect ROS production in ROS-related diseases. Future studies need to address the importance of the regulation of intracellular ion channels and related oxidative stress by lipids in various physiological and pathological contexts. Antioxid. Redox Signal. 28, 949-972.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
211
|
|
212
|
Scrima R, Piccoli C, Moradpour D, Capitanio N. Targeting Endoplasmic Reticulum and/or Mitochondrial Ca 2+ Fluxes as Therapeutic Strategy for HCV Infection. Front Chem 2018; 6:73. [PMID: 29619366 PMCID: PMC5871704 DOI: 10.3389/fchem.2018.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/06/2018] [Indexed: 01/16/2023] Open
Abstract
Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Darius Moradpour
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
213
|
Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal Bioanal Chem 2018; 410:6051-6066. [DOI: 10.1007/s00216-018-0940-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
214
|
Coordination to lanthanide ions distorts binding site conformation in calmodulin. Proc Natl Acad Sci U S A 2018; 115:E3126-E3134. [PMID: 29545272 DOI: 10.1073/pnas.1722042115] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Ca2+-sensing protein calmodulin (CaM) is a popular model of biological ion binding since it is both experimentally tractable and essential to survival in all eukaryotic cells. CaM modulates hundreds of target proteins and is sensitive to complex patterns of Ca2+ exposure, indicating that it functions as a sophisticated dynamic transducer rather than a simple on/off switch. Many details of this transduction function are not well understood. Fourier transform infrared (FTIR) spectroscopy, ultrafast 2D infrared (2D IR) spectroscopy, and electronic structure calculations were used to probe interactions between bound metal ions (Ca2+ and several trivalent lanthanide ions) and the carboxylate groups in CaM's EF-hand ion-coordinating sites. Since Tb3+ is commonly used as a luminescent Ca2+ analog in studies of protein-ion binding, it is important to characterize distinctions between the coordination of Ca2+ and the lanthanides in CaM. Although functional assays indicate that Tb3+ fully activates many Ca2+-dependent proteins, our FTIR spectra indicate that Tb3+, La3+, and Lu3+ disrupt the bidentate coordination geometry characteristic of the CaM binding sites' strongly conserved position 12 glutamate residue. The 2D IR spectra indicate that, relative to the Ca2+-bound form, lanthanide-bound CaM exhibits greater conformational flexibility and larger structural fluctuations within its binding sites. Time-dependent 2D IR lineshapes indicate that binding sites in Ca2+-CaM occupy well-defined configurations, whereas binding sites in lanthanide-bound-CaM are more disordered. Overall, the results show that binding to lanthanide ions significantly alters the conformation and dynamics of CaM's binding sites.
Collapse
|
215
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
216
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
217
|
Mata-Martínez E, Darszon A, Treviño CL. pH-dependent Ca+2 oscillations prevent untimely acrosome reaction in human sperm. Biochem Biophys Res Commun 2018; 497:146-152. [DOI: 10.1016/j.bbrc.2018.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 01/31/2023]
|
218
|
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation-contraction coupling. J Gen Physiol 2018; 150:189-210. [PMID: 29317466 PMCID: PMC5806676 DOI: 10.1085/jgp.201711889] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Franzini-Armstrong reviews the development of the excitation–contraction coupling field over time. The concept of excitation–contraction coupling is almost as old as Journal of General Physiology. It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation–contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
219
|
The MCU complex in cell death. Cell Calcium 2018; 69:73-80. [DOI: 10.1016/j.ceca.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
|
220
|
Biswas J, Gupta S, Verma DK, Gupta P, Singh A, Tiwari S, Goswami P, Sharma S, Singh S. Involvement of glucose related energy crisis and endoplasmic reticulum stress: Insinuation of streptozotocin induced Alzheimer's like pathology. Cell Signal 2018; 42:211-226. [DOI: 10.1016/j.cellsig.2017.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
|
221
|
Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.06.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
222
|
Carrer A, Leparulo A, Crispino G, Ciubotaru CD, Marin O, Zonta F, Bortolozzi M. Cx32 hemichannel opening by cytosolic Ca2+ is inhibited by the R220X mutation that causes Charcot-Marie-Tooth disease. Hum Mol Genet 2018; 27:80-94. [PMID: 29077882 DOI: 10.1093/hmg/ddx386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Mutations of the GJB1 gene encoding connexin 32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX1), a demyelinating peripheral neuropathy for which there is no cure. A growing body of evidence indicates that ATP release through Cx32 hemichannels in Schwann cells could be critical for nerve myelination, but it is unknown if CMTX1 mutations alter the cytosolic Ca2+-dependent gating mechanism that controls Cx32 hemichannel opening and ATP release. The current study uncovered that loss of the C-terminus in Cx32 (R220X mutation), which causes a severe CMTX1 phenotype, inhibits hemichannel opening during a canonical IP3-mediated increase in cytosolic Ca2+ in HeLa cells. Interestingly, the gating function of R220X hemichannels was completely restored by both the intracellular and extracellular application of a peptide that mimics the Cx32 cytoplasmic loop. All-atom molecular dynamics simulations suggest that loss of the C-terminus in the mutant hemichannel triggers abnormal fluctuations of the cytoplasmic loop which are prevented by binding to the mimetic peptide. Experiments that stimulated R220X hemichannel opening by cell depolarization displayed reduced voltage sensitivity with respect to wild-type hemichannels which was explained by loss of subconductance states at the single channel level. Finally, experiments of intercellular diffusion mediated by wild-type or R220X gap junction channels revealed similar unitary permeabilities to ions, signalling molecules (cAMP) or larger solutes (Lucifer yellow). Taken together, our findings support the hypothesis that paracrine signalling alteration due to Cx32 hemichannel dysfunction underlies CMTX1 pathogenesis and suggest a candidate molecule for novel studies investigating a therapeutic approach.
Collapse
Affiliation(s)
- Andrea Carrer
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Alessandro Leparulo
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Giulia Crispino
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
- Italian National Research Council (CNR), Institute of Protein Biochemistry, Naples 80131, Italy
| |
Collapse
|
223
|
Pottosin I, Dobrovinskaya O. Two-pore cation (TPC) channel: not a shorthanded one. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:83-92. [PMID: 32291023 DOI: 10.1071/fp16338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/05/2016] [Indexed: 06/11/2023]
Abstract
Two-pore cation (TPC) channels form functional dimers in membranes, delineating acidic intracellular compartments such as vacuoles in plants and lysosomes in animals. TPC1 is ubiquitously expressed in thousands of copies per vacuole in terrestrial plants, where it is known as slow vacuolar (SV) channel. An SV channel possesses high permeability for Na+, K+, Mg2+, and Ca2+, but requires high (tens of μM) cytosolic Ca2+ and non-physiological positive voltages for its full activation. Its voltage dependent activation is negatively modulated by physiological concentrations of vacuolar Ca2+, Mg2+and H+. Double control of the SV channel activity from cytosolic and vacuolar sides keeps its open probability at a minimum and precludes a potentially harmful global Ca2+ release. But this raises the question of what such' inactive' channel could be good for? One possibility is that it is involved in ultra-local Ca2+ signalling by generating 'hotspots' - microdomains of extremely high cytosolic Ca2+. Unexpectedly, recent studies have demonstrated the essential role of the TPC1 in the systemic Ca2+ signalling, and the crystal structure of plant TPC1, which became available this year, unravels molecular mechanisms underlying voltage and Ca2+ gating. This review emphasises the significance of these ice-breaking findings and sets a new perspective for the TPC1-based Ca2+ signalling.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián,Colima, Col. 28045, México
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián,Colima, Col. 28045, México
| |
Collapse
|
224
|
Ogunrinde A, Munro K, Davidson A, Ubaid M, Snedden WA. Arabidopsis Calmodulin-Like Proteins, CML15 and CML16 Possess Biochemical Properties Distinct from Calmodulin and Show Non-overlapping Tissue Expression Patterns. FRONTIERS IN PLANT SCIENCE 2017; 8:2175. [PMID: 29312414 PMCID: PMC5743801 DOI: 10.3389/fpls.2017.02175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Calcium ions are used as ubiquitous, key second messengers in cells across eukaryotic taxa. In plants, calcium signal transduction is involved in a wide range of cellular processes from abiotic and biotic stress responses to development and growth. Calcium signals are detected by calcium sensor proteins, of which calmodulin (CaM), is the most evolutionarily conserved and well-studied. These sensors regulate downstream targets to propagate the information in signaling pathways. Plants possess a large family of calcium sensors related to CaM, termed CaM-like (CMLs), that are not found in animals and remain largely unstudied at the structural and functional level. Here, we investigated the biochemical properties and gene promoter activity of two closely related members of the Arabidopsis CML family, CML15 and CML16. Biochemical characterization of recombinant CML15 and CML16 indicated that they possess properties consistent with their predicted roles as calcium sensors. In the absence of calcium, CML15 and CML16 display greater intrinsic hydrophobicity than CaM. Both CMLs displayed calcium-dependent and magnesium-independent conformational changes that expose hydrophobic residues, but the degree of hydrophobic exposure was markedly less than that observed for CaM. Isothermal titration calorimetry indicated two and three calcium-binding sites for CML15 and CML16, respectively, with affinities expected to be within a physiological range. Both CML15 and CML16 bound calcium with high affinity in the presence of excess magnesium. Promoter-reporter analysis demonstrated that the CML16 promoter is active across a range of Arabidopsis tissues and developmental stages, whereas the CML15 promoter activity is very restricted and was observed only in floral tissues, specifically anthers and pollen. Collectively, our data indicate that these CMLs behave biochemically like calcium sensors but with properties distinct from CaM and likely have non-overlapping roles in floral development. We discuss our findings in the broader context of calcium sensors and signaling in Arabidopsis.
Collapse
Affiliation(s)
| | - Kim Munro
- Protein Function Discovery Laboratory, Department of Biomedical and Medical Sciences, Queen's University, Kingston, ON, Canada
| | | | - Midhat Ubaid
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
225
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
226
|
Cyclic AMP Recruits a Discrete Intracellular Ca 2+ Store by Unmasking Hypersensitive IP 3 Receptors. Cell Rep 2017; 18:711-722. [PMID: 28099849 PMCID: PMC5276804 DOI: 10.1016/j.celrep.2016.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/17/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) stimulates Ca2+ release from the endoplasmic reticulum (ER), and the response is potentiated by 3′,5′-cyclic AMP (cAMP). We investigated this interaction in HEK293 cells using carbachol and parathyroid hormone (PTH) to stimulate formation of IP3 and cAMP, respectively. PTH alone had no effect on the cytosolic Ca2+ concentration, but it potentiated the Ca2+ signals evoked by carbachol. Surprisingly, however, the intracellular Ca2+ stores that respond to carbachol alone could be both emptied and refilled without affecting the subsequent response to PTH. We provide evidence that PTH unmasks high-affinity IP3 receptors within a discrete Ca2+ store. We conclude that Ca2+ stores within the ER that dynamically exchange Ca2+ with the cytosol maintain a functional independence that allows one store to be released by carbachol and another to be released by carbachol with PTH. Compartmentalization of ER Ca2+ stores adds versatility to IP3-evoked Ca2+ signals. Cyclic AMP directly potentiates IP3-evoked Ca2+ release The Ca2+ stores released by IP3 alone or IP3 with cAMP are functionally independent Cyclic AMP unmasks high-affinity IP3 receptors in a discrete ER Ca2+ store Independent regulation of discrete Ca2+ stores increases signaling versatility
Collapse
|
227
|
Abstract
Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.
Collapse
|
228
|
Notoginsenoside R1 Alleviates Oxygen-Glucose Deprivation/Reoxygenation Injury by Suppressing Endoplasmic Reticulum Calcium Release via PLC. Sci Rep 2017; 7:16226. [PMID: 29176553 PMCID: PMC5701215 DOI: 10.1038/s41598-017-16373-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/12/2017] [Indexed: 01/09/2023] Open
Abstract
As documented in our previous study, notoginsenoside R1 (NGR1) can inhibit neuron apoptosis and the expression of endoplasmic reticulum (ER) stress-associated pro-apoptotic proteins in hypoxic–ischemic encephalopathy. Recent evidence indicates that the Phospholipase C (PLC)/inositol 1,4,5-trisphosphate receptor (IP3R) is important for the regulation of Ca2+ release in the ER. Ca2+ imbalance can stimulate ER stress, CAMKII, and cell apoptosis. The purpose of this study was to further investigate the neuroprotective effect of NGR1 and elucidate how NGR1 regulates ER stress and cell apoptosis in the oxygen–glucose deprivation/reoxygenation (OGD/R) model. Cells were exposed to NGR1 or the PLC activator m-3M3FBS. Then, IP3R- and IP3-induced Ca2+ release (IICR) and activation of the ER stress and CaMKII signal pathway were measured. The results showed that NGR1 inhibited IICR and strengthened the binding of GRP78 with PERK and IRE1. NGR1 also alleviated the activation of the CaMKII pathway. Pretreatment with m-3M3FBS attenuated the neuroprotective effect of NGR1; IICR was activated, activation of the ER stress and CaMKII pathway was increased, and more cells were injured. These results indicate that NGR1 may suppress activation of the PLC/IP3R pathway, subsequently inhibiting ER Ca2+ release, ER stress, and CaMKII and resulting in suppressed cell apoptosis.
Collapse
|
229
|
Samanta K, Parekh AB. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0424. [PMID: 27377718 PMCID: PMC4938024 DOI: 10.1098/rstb.2015.0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca2+ channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
230
|
Halls ML, Canals M. Genetically Encoded FRET Biosensors to Illuminate Compartmentalised GPCR Signalling. Trends Pharmacol Sci 2017; 39:148-157. [PMID: 29054309 DOI: 10.1016/j.tips.2017.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 01/17/2023]
Abstract
Genetically encoded Förster resonance energy transfer (FRET) biosensors have been instrumental to our understanding of how intracellular signalling is organised and regulated within cells. In the last decade, the toolbox, dynamic range and applications of these sensors have expanded beyond basic cell biology applications. In particular, FRET biosensors have shed light onto the mechanisms that control the intracellular organisation of G protein-coupled receptor (GPCR) signalling and have allowed the visualisation of signalling events with unprecedented temporal and spatial resolution. Here we review the use of these sensors in the GPCR field and how it has already provided invaluable advances towards our understanding of the complexity of GPCR signalling.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
231
|
Lin ML, Chen SS. Activation of Casein Kinase II by Gallic Acid Induces BIK-BAX/BAK-Mediated ER Ca ++-ROS-Dependent Apoptosis of Human Oral Cancer Cells. Front Physiol 2017; 8:761. [PMID: 29033852 PMCID: PMC5627504 DOI: 10.3389/fphys.2017.00761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
Induction of the generation of endoplasmic reticulum (ER) calcium (Ca++)-mediated reactive oxygen species (ROS) by gallic acid (GA) has been implicated in the mitochondrial apoptotic death of human oral cancer (OC) cells, but the molecular mechanism by which GA causes ER Ca++ release of OC cells to undergo cell death remains unclear. Here, we report that GA-induced phosphorylation of B-cell lymphoma 2 (BCL-2)-interacting killer (BIK) (threonine (Thr) 33/Serine (Ser) 35) and p53 (Ser 15 and Ser 392), Bcl-2-associated x protein (BAX)/BCL-2 antagonist killer 1 (BAK) oligomerization on the ER and mitochondria, rising of cytosolic Ca++ and ROS, cytochrome c (Cyt c) release from the mitochondria, Ψm loss, and apoptosis were suppressed in cells co-treated with a specific inhibitor of casein kinase II (CK II) (4,5,6,7-tetrabromobenzotriazole). Small interfering RNA (siRNA)-mediated suppression of BIK inhibited GA-induced oligomeric complex of BAX/BAK in the ER and mitochondria, increase of cytosolic Ca++ and ROS, and apoptosis, but did not attenuate the increase in the level of Ser 15-phosphated p53 induced by GA. Blockade of p53 expression by short hairpin RNA suppressed BAX/BAK oligomerization and ER Ca++–ROS-associated apoptosis induced by GA but did not affect GA-induced phospho-BIK (Thr 33/Ser 35) levels. Induction of mitochondrial Cyt c release and ROS generation, increased cytosolic Ca++ level, and apoptosis by GA was attenuated by expression of the BAX or BAK siRNA. Over-expression of BCL-2 (but not BCL-XL) inhibited formation of ER oligomeric BAX/BAK by GA. Our results demonstrated that activation of the CK II by GA is required for the BIK-mediated ROS-dependent apoptotic activity of ER-associated BAX/BAK.
Collapse
Affiliation(s)
- Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
232
|
Sassano ML, van Vliet AR, Agostinis P. Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate. Front Oncol 2017; 7:174. [PMID: 28868254 PMCID: PMC5563315 DOI: 10.3389/fonc.2017.00174] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
The tight cross talk between two essential organelles of the cell, the endoplasmic reticulum (ER) and mitochondria, is spatially and functionally regulated by specific microdomains known as the mitochondria-associated membranes (MAMs). MAMs are hot spots of Ca2+ transfer between the ER and mitochondria, and emerging data indicate their vital role in the regulation of fundamental physiological processes, chief among them mitochondria bioenergetics, proteostasis, cell death, and autophagy. Moreover, and perhaps not surprisingly, it has become clear that signaling events regulated at the ER-mitochondria intersection regulate key processes in oncogenesis and in the response of cancer cells to therapeutics. ER-mitochondria appositions have been shown to dynamically recruit oncogenes and tumor suppressors, modulating their activity and protein complex formation, adapt the bioenergetic demand of cancer cells and to regulate cell death pathways and redox signaling in cancer cells. In this review, we discuss some emerging players of the ER-mitochondria contact sites in mammalian cells, the key processes they regulate and recent evidence highlighting the role of MAMs in shaping cell-autonomous and non-autonomous signals that regulate cancer growth.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
233
|
Dunant Y, Gisiger V. Ultrafast and Slow Cholinergic Transmission. Different Involvement of Acetylcholinesterase Molecular Forms. Molecules 2017; 22:E1300. [PMID: 28777299 PMCID: PMC6152031 DOI: 10.3390/molecules22081300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine (ACh), an ubiquitous mediator substance broadly expressed in nature, acts as neurotransmitter in cholinergic synapses, generating specific communications with different time-courses. (1) Ultrafast transmission. Vertebrate neuromuscular junctions (NMJs) and nerve-electroplaque junctions (NEJs) are the fastest cholinergic synapses; able to transmit brief impulses (1-4 ms) at high frequencies. The collagen-tailed A12 acetylcholinesterase is concentrated in the synaptic cleft of NMJs and NEJs, were it curtails the postsynaptic response by ultrafast ACh hydrolysis. Here, additional processes contribute to make transmission so rapid. (2) Rapid transmission. At peripheral and central cholinergic neuro-neuronal synapses, transmission involves an initial, relatively rapid (10-50 ms) nicotinic response, followed by various muscarinic or nicotinic effects. Acetylcholinesterase (AChE) being not concentrated within these synapses, it does not curtail the initial rapid response. In contrast, the late responses are controlled by a globular form of AChE (mainly G4-AChE), which is membrane-bound and/or secreted. (3) SlowAChsignalling. In non-neuronal systems, in muscarinic domains, and in most regions of the central nervous system (CNS), many ACh-releasing structures (cells, axon terminals, varicosities, boutons) do not form true synaptic contacts, most muscarinic and also part of nicotinic receptors are extra-synaptic, often situated relatively far from ACh releasing spots. A12-AChE being virtually absent in CNS, G4-AChE is the most abundant form, whose function appears to modulate the "volume" transmission, keeping ACh concentration within limits in time and space.
Collapse
Affiliation(s)
- Yves Dunant
- Département des Neurosciences Fondamentales, Faculté de Médecine, Université de Genève, CH-1211-Genève 4, Switzerland.
| | - Victor Gisiger
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal QC H3C 3J7, Canada.
| |
Collapse
|
234
|
Kania E, Roest G, Vervliet T, Parys JB, Bultynck G. IP 3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Front Oncol 2017; 7:140. [PMID: 28725634 PMCID: PMC5497685 DOI: 10.3389/fonc.2017.00140] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Calcium ions (Ca2+) play a complex role in orchestrating diverse cellular processes, including cell death and survival. To trigger signaling cascades, intracellular Ca2+ is shuffled between the cytoplasm and the major Ca2+ stores, the endoplasmic reticulum (ER), the mitochondria, and the lysosomes. A key role in the control of Ca2+ signals is attributed to the inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), the main Ca2+-release channels in the ER. IP3Rs can transfer Ca2+ to the mitochondria, thereby not only stimulating core metabolic pathways but also increasing apoptosis sensitivity and inhibiting basal autophagy. On the other hand, IP3-induced Ca2+ release enhances autophagy flux by providing cytosolic Ca2+ required to execute autophagy upon various cellular stresses, including nutrient starvation, chemical mechanistic target of rapamycin inhibition, or drug treatment. Similarly, IP3Rs are able to amplify Ca2+ signals from the lysosomes and, therefore, impact autophagic flux in response to lysosomal channels activation. Furthermore, indirect modulation of Ca2+ release through IP3Rs may also be achieved by controlling the sarco/endoplasmic reticulum Ca2+ ATPases Ca2+ pumps of the ER. Considering the complex role of autophagy in cancer development and progression as well as in response to anticancer therapies, it becomes clear that it is important to fully understand the role of the IP3R and its cellular context in this disease. In cancer cells addicted to ER–mitochondrial Ca2+ fueling, IP3R inhibition leads to cancer cell death via mechanisms involving enhanced autophagy or mitotic catastrophe. Moreover, IP3Rs are the targets of several oncogenes and tumor suppressors and the functional loss of these genes, as occurring in many cancer types, can result in modified Ca2+ transport to the mitochondria and in modulation of the level of autophagic flux. Similarly, IP3R-mediated upregulation of autophagy can protect some cancer cells against natural killer cells-induced killing. The involvement of IP3Rs in the regulation of both autophagy and apoptosis, therefore, directly impact cancer cell biology and contribute to the molecular basis of tumor pathology.
Collapse
Affiliation(s)
- Elzbieta Kania
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| |
Collapse
|
235
|
Belevych AE, Ho HT, Bonilla IM, Terentyeva R, Schober KE, Terentyev D, Carnes CA, Györke S. The role of spatial organization of Ca 2+ release sites in the generation of arrhythmogenic diastolic Ca 2+ release in myocytes from failing hearts. Basic Res Cardiol 2017; 112:44. [PMID: 28612155 PMCID: PMC5796415 DOI: 10.1007/s00395-017-0633-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/06/2017] [Indexed: 01/20/2023]
Abstract
In heart failure (HF), dysregulated cardiac ryanodine receptors (RyR2) contribute to the generation of diastolic Ca2+ waves (DCWs), thereby predisposing adrenergically stressed failing hearts to life-threatening arrhythmias. However, the specific cellular, subcellular, and molecular defects that account for cardiac arrhythmia in HF remain to be elucidated. Patch-clamp techniques and confocal Ca2+ imaging were applied to study spatially defined Ca2+ handling in ventricular myocytes isolated from normal (control) and failing canine hearts. Based on their activation time upon electrical stimulation, Ca2+ release sites were categorized as coupled, located in close proximity to the sarcolemmal Ca2+ channels, and uncoupled, the Ca2+ channel-free non-junctional Ca2+ release units. In control myocytes, stimulation of β-adrenergic receptors with isoproterenol (Iso) resulted in a preferential increase in Ca2+ spark rate at uncoupled sites. This site-specific effect of Iso was eliminated by the phosphatase inhibitor okadaic acid, which caused similar facilitation of Ca2+ sparks at coupled and uncoupled sites. Iso-challenged HF myocytes exhibited increased predisposition to DCWs compared to control myocytes. In addition, the overall frequency of Ca2+ sparks was increased in HF cells due to preferential stimulation of coupled sites. Furthermore, coupled sites exhibited accelerated recovery from functional refractoriness in HF myocytes compared to control myocytes. Spatially resolved subcellular Ca2+ mapping revealed that DCWs predominantly originated from coupled sites. Inhibition of CaMKII suppressed DCWs and prevented preferential stimulation of coupled sites in Iso-challenged HF myocytes. These results suggest that CaMKII- (and phosphatase)-dependent dysregulation of junctional Ca2+ release sites contributes to Ca2+-dependent arrhythmogenesis in HF.
Collapse
Affiliation(s)
- Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Hsiang-Ting Ho
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Ingrid M Bonilla
- Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Radmila Terentyeva
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Karsten E Schober
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dmitry Terentyev
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Cynthia A Carnes
- Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sándor Györke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
236
|
Prandini P, De Logu F, Fusi C, Provezza L, Nassini R, Montagner G, Materazzi S, Munari S, Gilioli E, Bezzerri V, Finotti A, Lampronti I, Tamanini A, Dechecchi MC, Lippi G, Ribeiro CM, Rimessi A, Pinton P, Gambari R, Geppetti P, Cabrini G. Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis. Am J Respir Cell Mol Biol 2017; 55:645-656. [PMID: 27281024 DOI: 10.1165/rcmb.2016-0089oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa colonization, prominent inflammation with massive expression of the neutrophil chemokine IL-8, and luminal infiltrates of neutrophils are hallmarks of chronic lung disease in patients with cystic fibrosis (CF). The nociceptive transient receptor potential ankyrin (TRPA) 1 calcium channels have been recently found to be involved in nonneurogenic inflammation. Here, we investigate the role of TRPA1 in CF respiratory inflammatory models in vitro. Expression of TRPA1 was evaluated in CF lung tissue sections and cells by immunohistochemistry and immunofluorescence. Epithelial cell lines (A549, IB3-1, CuFi-1, CFBE41o-) and primary cells from patients with CF were used to: (1) check TRPA1 function modulation, by Fura-2 calcium imaging; (2) down-modulate TRPA1 function and expression, by pharmacological inhibitors (HC-030031 and A-967079) and small interfering RNA silencing; and (3) assess the effect of TRPA1 down-modulation on expression and release of cytokines upon exposure to proinflammatory challenges, by quantitative RT-PCR and 27-protein Bioplex assay. TRPA1 channels are expressed in the CF pseudostratified columnar epithelium facing the bronchial lumina exposed to bacteria, where IL-8 is coexpressed. Inhibition of TRPA1 expression results in a relevant reduction of release of several cytokines, including IL-8 and the proinflammatory cytokines IL-1β and TNF-α, in CF primary bronchial epithelial cells exposed to P. aeruginosa and to the supernatant of mucopurulent material derived from the chronically infected airways of patients with CF. In conclusion, TRPA1 channels are involved in regulating the extent of airway inflammation driven by CF bronchial epithelial cells.
Collapse
Affiliation(s)
- Paola Prandini
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Francesco De Logu
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Camilla Fusi
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Lisa Provezza
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Romina Nassini
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Giulia Montagner
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Serena Materazzi
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Silvia Munari
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Eliana Gilioli
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Valentino Bezzerri
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Alessia Finotti
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Maria Cristina Dechecchi
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Giuseppe Lippi
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Carla M Ribeiro
- 4 Departments of Medicine and of Cell Biology and Physiology, Marsico Lung Institute, Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; and
| | - Alessandro Rimessi
- 5 Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- 5 Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Pierangelo Geppetti
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Giulio Cabrini
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| |
Collapse
|
237
|
Optogenetic control of mitochondrial metabolism and Ca 2+ signaling by mitochondria-targeted opsins. Proc Natl Acad Sci U S A 2017; 114:E5167-E5176. [PMID: 28611221 DOI: 10.1073/pnas.1703623114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Key mitochondrial functions such as ATP production, Ca2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH+) across the inner membrane. Although several drugs can modulate ΔμH+, their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψm) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca2+ dynamics, and respiratory metabolism. By directly modulating Δψm, the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.
Collapse
|
238
|
Je HJ, Kim MG, Kwon HJ. Bioluminescence Assays for Monitoring Chondrogenic Differentiation and Cartilage Regeneration. SENSORS 2017; 17:s17061306. [PMID: 28587284 PMCID: PMC5492100 DOI: 10.3390/s17061306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
Since articular cartilage has a limited regeneration potential, for developing biological therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as gene expression, signaling, metabolism, development, cellular movements, and molecular interactions by using visible light and thus contribute substantially to elucidation of their biological functions. This article gives a concise review to introduce basic principles of bioluminescence assays and applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration. Applications of bioluminescence assays have been highlighted in the methods of real-time monitoring of gene expression and intracellular levels of biomolecules and noninvasive cell tracking within animal models. This review suggests that bioluminescence assays can be applied towards a visual understanding of chondrogenesis and cartilage regeneration.
Collapse
Affiliation(s)
- Hyeon Jeong Je
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Min Gu Kim
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| |
Collapse
|
239
|
Zhang S, Guy RD, Lasheras JC, Del Álamo JC. Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:204004. [PMID: 30906070 PMCID: PMC6430145 DOI: 10.1088/1361-6463/aa68be] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (~100 µm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatiotemporal patterns of calcium concentration that regulate the generation of contractile forces.
Collapse
Affiliation(s)
- Shun Zhang
- Mechanical and Aerospace Engineering Department, University of California San Diego
| | - Robert D Guy
- Department of Mathematics, University of California Davis
| | - Juan C Lasheras
- Mechanical and Aerospace Engineering Department, University of California San Diego
- Department of Bioengineering, University of California San Diego
- Institute for Engineering in Medicine, University of California San Diego
| | - Juan C Del Álamo
- Mechanical and Aerospace Engineering Department, University of California San Diego
- Institute for Engineering in Medicine, University of California San Diego
| |
Collapse
|
240
|
Fedorovich SV, Waseem TV, Puchkova LV. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Rev Neurosci 2017; 28:363-373. [DOI: 10.1515/revneuro-2016-0077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
AbstractThe mitochondria of different cells are different in their morphological and biochemical properties. These organelles generate free radicals during activity, leading inevitably to mitochondrial DNA damage. It is not clear how this problem is addressed in long-lived cells, such as neurons. We propose the hypothesis that mitochondria within the same cell also differ in lifespan and ability to divide. According to our suggestion, cells have a pool of ‘stem’ mitochondria with low metabolic activity and a pool of ‘differentiated’ mitochondria with significantly shorter lifespans and high metabolic activity. We consider synaptic mitochondria as a possible example of ‘differentiated’ mitochondria. They are significantly smaller than mitochondria from the cell body, and they are different in key enzyme activity levels, proteome, and lipidome. Synaptic mitochondria are more sensitive to different damaging factors. It has been established that neurons have a sorting mechanism that sends mitochondria with high membrane potential to presynaptic endings. This review describes the properties of synaptic mitochondria and their role in the regulation of synaptic transmission.
Collapse
Affiliation(s)
- Sergei V. Fedorovich
- Institute of Biophysics and Cell Engineering, Akademicheskaya St., 27, Minsk 220072, Belarus
| | - Tatyana V. Waseem
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ludmila V. Puchkova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 195251, Russia
- ITMO University, Kronverksky av., 49, St.Petersburg 197101, Russia
- Institute of Experimental Medicine, Pavlova str., 12, St.Petersburg 197376, Russia
| |
Collapse
|
241
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Monitoring ER/SR Calcium Release with the Targeted Ca2+ Sensor CatchER. J Vis Exp 2017. [PMID: 28570539 DOI: 10.3791/55822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intracellular calcium (Ca2+) transients evoked by extracellular stimuli initiate a multitude of biological processes in living organisms. At the center of intracellular calcium release are the major intracellular calcium storage organelles, the endoplasmic reticulum (ER) and the more specialized sarcoplasmic reticulum (SR) in muscle cells. The dynamic release of calcium from these organelles is mediated by the ryanodine receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R) with refilling occurring through the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. A genetically encoded calcium sensor (GECI) called CatchER was created to monitor the rapid calcium release from the ER/SR. Here, the detailed protocols for the transfection and expression of the improved, ER/SR-targeted GECI CatchER+ in HEK293 and C2C12 cells and its application in monitoring IP3R, RyR, and SERCA pump-mediated calcium transients in HEK293 cells using fluorescence microscopy is outlined. The receptor agonist or inhibitor of choice is dispersed in the chamber solution and the intensity changes are recorded in real time. With this method, a decrease in ER calcium is seen with RyR activation with 4-chloro-m-cresol (4-cmc), the indirect activation of IP3R with adenosine triphosphate (ATP), and inhibition of the SERCA pump with cyclopiazonic acid (CPA). We also discuss protocols for determining the in situ Kd and quantifying basal [Ca2+] in C2C12 cells. In summary, these protocols, used in conjunction with CatchER+, can elicit receptor mediated calcium release from the ER with future application in studying ER/SR calcium related pathologies.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University
| | - Cassandra L Miller
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University
| | - Rakshya Gorkhali
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University
| | - Jenny J Yang
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University;
| |
Collapse
|
242
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 2017; 18:E1024. [PMID: 28489021 PMCID: PMC5454937 DOI: 10.3390/ijms18051024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
The flow of intracellular calcium (Ca2+) is critical for the activation and regulation of important biological events that are required in living organisms. As the major Ca2+ repositories inside the cell, the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of muscle cells are central in maintaining and amplifying the intracellular Ca2+ signal. The morphology of these organelles, along with the distribution of key calcium-binding proteins (CaBPs), regulatory proteins, pumps, and receptors fundamentally impact the local and global differences in Ca2+ release kinetics. In this review, we will discuss the structural and morphological differences between the ER and SR and how they influence localized Ca2+ release, related diseases, and the need for targeted genetically encoded calcium indicators (GECIs) to study these events.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Cassandra L Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
243
|
Delmotte P, Zavaletta VA, Thompson MA, Prakash YS, Sieck GC. TNFα decreases mitochondrial movement in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2017; 313:L166-L176. [PMID: 28473328 DOI: 10.1152/ajplung.00538.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
In airway smooth muscle (ASM) cells, excitation-contraction coupling is accomplished via a cascade of events that connect an elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) with cross-bridge attachment and ATP-consuming mechanical work. Excitation-energy coupling is mediated by linkage of the elevation of [Ca2+]cyt to an increase in mitochondrial Ca2+ concentration, which in turn stimulates ATP production. Proximity of mitochondria to the sarcoplasmic reticulum (SR) and plasma membrane is thought to be an important mechanism to facilitate mitochondrial Ca2+ uptake. In this regard, mitochondrial movement in ASM cells may be key in establishing proximity. Mitochondria also move where ATP or Ca2+ buffering is needed. Mitochondrial movement is mediated through interactions with the Miro-Milton molecular complex, which couples mitochondria to kinesin motors at microtubules. We examined mitochondrial movement in human ASM cells and hypothesized that, at basal [Ca2+]cyt levels, mitochondrial movement is necessary to establish proximity of mitochondria to the SR and that, during the transient increase in [Ca2+]cyt induced by agonist stimulation, mitochondrial movement is reduced, thereby promoting transient mitochondrial Ca2+ uptake. We further hypothesized that airway inflammation disrupts basal mitochondrial movement via a reduction in Miro and Milton expression, thereby disrupting the ability of mitochondria to establish proximity to the SR and, thus, reducing transient mitochondrial Ca2+ uptake during agonist activation. The reduced proximity of mitochondria to the SR may affect establishment of transient "hot spots" of higher [Ca2+]cyt at the sites of SR Ca2+ release that are necessary for mitochondrial Ca2+ uptake via the mitochondrial Ca2+ uniporter.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Vanessa A Zavaletta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
244
|
Mitochondria-organelle contact sites: the plot thickens. Biochem Soc Trans 2017; 45:477-488. [PMID: 28408488 DOI: 10.1042/bst20160130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/30/2023]
Abstract
Membrane contact sites (MCSs) are areas of close apposition between the membranes of two different organelles that enable non-vesicular transfer of ions and lipids. Recent studies reveal that mitochondria maintain contact sites with organelles other than the endoplasmic reticulum such as the vacuole, plasma membrane and peroxisomes. This review focuses on novel findings achieved mainly in yeast regarding tethers, function and regulation of mitochondria-organelle contact sites. The emerging network of MCSs linking virtually all cellular organelles is highly dynamic and integrated with cellular metabolism.
Collapse
|
245
|
Abstract
Early Ca2+ signaling is characterized by occurrence of Ca2+ microdomains formed by opening of single or clusters of Ca2+ channels, thereby initiating first signaling and subsequently activating global Ca2+ signaling mechanisms. However, only few data are available focusing on the first seconds and minutes of Ca2+ microdomain formation and related signaling pathways in activated T-lymphocytes. In this review, we condense current knowledge on Ca2+ microdomain formation in T-lymphocytes and early Ca2+ signaling, function of Ca2+ microdomains, and microdomain organization. Interestingly, considering the first seconds of T cell activation, a triphasic Ca2+ signal is becoming apparent: (i) initial Ca2+ microdomains occurring in the first second of T cell activation, (ii) amplification of Ca2+ microdomains by recruitment of further channels in the next 5-10 s, and (iii) a transition to global Ca2+ increase. Apparently, the second messenger nicotinic acid adenine dinucleotide phosphate is the first second messenger involved in initiation of Ca2+ microdomains. Ryanodine receptors type 1 act as initial Ca2+ release channels in CD4+ T-lymphocytes. Regarding the temporal correlation of Ca2+ microdomains with other molecular events of T cell activation, T cell receptor-dependent microdomain organization of signaling molecules Grb2 and Src homology [SH2] domain-containing leukocyte protein of 65 kDa was observed within the first 20 s. In addition, fast cytoskeletal changes are initiated. Furthermore, the involvement of additional Ca2+ channels and organelles, such as the Ca2+ buffering mitochondria, is discussed. Future research developments will comprise analysis of the causal relation between these temporally coordinated signaling events. Taken together, high-resolution Ca2+ imaging techniques applied to T cell activation in the past years paved the way to detailed molecular understanding of initial Ca2+ signaling mechanisms in non-excitable cells.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
246
|
Abstract
Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaitlyn M McGrath
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gabriela Caraveo
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
247
|
Urrego D, Sánchez A, Tomczak AP, Pardo LA. The electric fence to cell-cycle progression: Do local changes in membrane potential facilitate disassembly of the primary cilium? Bioessays 2017; 39. [DOI: 10.1002/bies.201600190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Diana Urrego
- Max-Planck-Institut für experimentelle Medizin; AG Oncophysiology; Göttingen Germany
| | - Araceli Sánchez
- Max-Planck-Institut für experimentelle Medizin; AG Oncophysiology; Göttingen Germany
| | - Adam P. Tomczak
- Max-Planck-Institut für experimentelle Medizin; AG Oncophysiology; Göttingen Germany
| | - Luis A. Pardo
- Max-Planck-Institut für experimentelle Medizin; AG Oncophysiology; Göttingen Germany
| |
Collapse
|
248
|
Smith CL, Abdallah S, Wong YY, Le P, Harracksingh AN, Artinian L, Tamvacakis AN, Rehder V, Reese TS, Senatore A. Evolutionary insights into T-type Ca 2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue. J Gen Physiol 2017; 149:483-510. [PMID: 28330839 PMCID: PMC5379919 DOI: 10.1085/jgp.201611683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
The role of T-type calcium channels in animals without nervous systems is unknown. Smith et al. characterize TCav3 from Trichoplax adhaerens, finding expression in neurosecretory-like cells and preference for Ca2+ over Na+ via strong extracellular Ca2+ block, despite low selectivity for Ca2+ in the pore. Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology.
Collapse
Affiliation(s)
- Carolyn L Smith
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Salsabil Abdallah
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yuen Yan Wong
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Phuong Le
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | | - Thomas S Reese
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Adriano Senatore
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
249
|
Xu S, Xu Y, Chen L, Fang Q, Song S, Chen J, Teng J. RCN1 suppresses ER stress-induced apoptosis via calcium homeostasis and PERK-CHOP signaling. Oncogenesis 2017; 6:e304. [PMID: 28319095 PMCID: PMC5533947 DOI: 10.1038/oncsis.2017.6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is caused by the disturbance of ER homeostasis and leads to the activation of the unfolded protein response (UPR), which alleviates stress at an early stage and triggers apoptosis if homeostasis fails over a prolonged timeframe. Here, we report that reticulocalbin 1 (RCN1), a member of the CREC family, is transactivated by nuclear factor kappa B (NF-κB) during ER stress and inhibits ER stress-induced apoptosis. The depletion of RCN1 increases the UPR during drug-induced ER stress by activating PRKR-like ER kinase–CCAAT/enhancer-binding protein-homologous protein (PERK–CHOP) signaling, thus inducing apoptosis. Furthermore, we found that the first two EF-hand calcium-binding motifs of RCN1 specifically interact with inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) on loop 3 of its ER luminal domain and inhibit ER calcium release and apoptosis. Together, these data indicate that RCN1, a target of NF-κB, suppresses ER calcium release by binding to IP3R1 and decreases the UPR, thereby inhibiting ER stress-induced apoptosis.
Collapse
Affiliation(s)
- S Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Y Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - L Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Q Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - S Song
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - J Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| | - J Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
250
|
Petersen OH, Courjaret R, Machaca K. Ca 2+ tunnelling through the ER lumen as a mechanism for delivering Ca 2+ entering via store-operated Ca 2+ channels to specific target sites. J Physiol 2017; 595:2999-3014. [PMID: 28181236 PMCID: PMC5430212 DOI: 10.1113/jp272772] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023] Open
Abstract
Ca2+ signalling is perhaps the most universal and versatile mechanism regulating a wide range of cellular processes. Because of the many different calcium‐binding proteins distributed throughout cells, signalling precision requires localized rises in the cytosolic Ca2+ concentration. In electrically non‐excitable cells, for example epithelial cells, this is achieved by primary release of Ca2+ from the endoplasmic reticulum via Ca2+ release channels placed close to the physiological target. Because any rise in the cytosolic Ca2+ concentration activates Ca2+ extrusion, and in order for cells not to run out of Ca2+, there is a need for compensatory Ca2+ uptake from the extracellular fluid. This Ca2+ uptake occurs through a process known as store‐operated Ca2+ entry. Ideally Ca2+ entering the cell should not diffuse to the target site through the cytosol, as this would potentially activate undesirable processes. Ca2+ tunnelling through the lumen of the endoplasmic reticulum is a mechanism for delivering Ca2+ entering via store‐operated Ca2+ channels to specific target sites, and this process has been described in considerable detail in pancreatic acinar cells and oocytes. Here we review the most important evidence and present a generalized concept.
![]()
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, School of Biosciences and Systems Immunity Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| |
Collapse
|