201
|
Abstract
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity.
Collapse
|
202
|
Lara-Martínez LA, Gutiérrez-Villegas I, Arenas-Luna VM, Hernández-Gutierrez S. [Stem cells: searching predisposition to cardiac commitment by surface markers expression]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2018; 88:483-495. [PMID: 29311024 DOI: 10.1016/j.acmx.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-known that cardiovascular diseases are the leading cause of death worldwide, and represent an important economic burden to health systems. In an attempt to solve this problem, stem cell therapy has emerged as a therapeutic option. Within the last 20 years, a great variety of stem cells have been used in different myocardial infarction models. Up until now, the use of cardiac stem cells (CSCs) has seemed to be the best option, but the inaccessibility and scarcity of these cells make their use unreliable. Additionally, there is a high risk as they have to be obtained directly from the heart of the patient. Unlike CSCs, adult stem cells originating from bone marrow or adipose tissue, among others, appear to be an attractive option due to their easier accessibility and abundance, but particularly due to the probable existence of cardiac progenitors among their different sub-populations. In this review an analysis is made of the surface markers present in CSCs compared with other adult stem cells. This suggested the pre-existence of cells sharing specific surface markers with CSCs, a predictable immunophenotype present in some cells, although in low proportions, and with a potential of cardiac differentiation that could be similar to CSCs, thus increasing their therapeutic value. This study highlights new perspectives regarding MSCs that would enable some of these sub-populations to be differentiated at cardiac tissue level.
Collapse
Affiliation(s)
- Luis A Lara-Martínez
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | - Ingrid Gutiérrez-Villegas
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | - Victor M Arenas-Luna
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | | |
Collapse
|
203
|
Zhang C, Zhou G, Chen Y, Liu S, Chen F, Xie L, Wang W, Zhang Y, Wang T, Lai X, Ma L. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF‑α and TGF‑β1/ERK1/2 signaling pathways. Mol Med Rep 2018; 17:71-78. [PMID: 29115435 PMCID: PMC5780147 DOI: 10.3892/mmr.2017.7882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/18/2017] [Indexed: 02/05/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease of the heart characterized by pathological remodeling, including patchy interstitial fibrosis and degeneration of cardiomyocytes. In the present study, the beneficial role of human umbilical cord‑derived mesenchymal stem cells (HuMSCs) derived from Wharton's jelly was evaluated in the myosin‑induced rat model of DCM. Male Lewis rats (aged 8‑weeks) were injected with porcine myosin to induce DCM. Cultured HuMSCs (1x106 cells/rat) were intravenously injected 28 days after myosin injection and the effects on myocardial fibrosis and the underlying signaling pathways were investigated and compared with vehicle‑injected and negative control rats. Myosin injections in rats (vehicle group and experimental group) for 28 days led to severe fibrosis and significant deterioration of cardiac function indicative of DCM. HuMSC treatment reduced fibrosis as determined by Masson's staining of collagen deposits, as well as quantification of molecular markers of myocardial fibrosis such as collagen I/III, profibrotic factors transforming growth factor‑β1 (TGF‑β1), tumor necrosis factor‑α (TNF‑α), and connective tissue growth factor (CTGF). HuMSC treatment restored cardiac function as observed using echocardiography. In addition, western blot analysis indicated that HuMSC injections in DCM rats inhibited the expression of TNF‑α, extracellular‑signal regulated kinase 1/2 (ERK1/2) and TGF‑β1, which is a master switch for inducing myocardial fibrosis. These findings suggested that HuMSC injections attenuated myocardial fibrosis and dysfunction in a rat model of DCM, likely by inhibiting TNF‑α and the TGF‑β1/ERK1/2 fibrosis pathways. Therefore, HuMSC treatment may represent a potential therapeutic method for treatment of DCM.
Collapse
Affiliation(s)
- Changyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Guichi Zhou
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yezeng Chen
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Sizheng Liu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Fen Chen
- Department of Pediatrics, Maternal and Child Health Care Hospital of Pingshan District, Shenzhen, Guangdong 518000, P.R. China
- Department of Pediatrics, Beijing Children's Hospital, Capital Medical Hospital, Beijing 100032, P.R. China
| | - Lichun Xie
- Department of Pediatrics, Maternal and Child Health Care Hospital of Pingshan District, Shenzhen, Guangdong 518000, P.R. China
- Department of Pediatrics, Beijing Children's Hospital, Capital Medical Hospital, Beijing 100032, P.R. China
| | - Wei Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yonggang Zhang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Department of Pediatrics, Beijing Children's Hospital, Capital Medical Hospital, Beijing 100032, P.R. China
| | - Xiulan Lai
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Dr Xiulan Lai, Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, 69 North DongXia Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Pediatrics, Maternal and Child Health Care Hospital of Pingshan District, Shenzhen, Guangdong 518000, P.R. China
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shenzhen University, Guangdong 518000, P.R. China
- Correspondence to: Professor Lian Ma, Department of Pediatrics, Maternal and Child Health Care Hospital of Shenzhen University, 6 South LongXing Road, Shenzhen, Guangdong 518000, P.R. China, E-mail:
| |
Collapse
|
204
|
Jia H, Yan Y, Liang Z, Tandra N, Zhang B, Wang J, Xu W, Qian H. Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Mol Med Rep 2017; 17:3439-3447. [PMID: 29257336 DOI: 10.3892/mmr.2017.8311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) is a common and serious medical condition associated with poor health outcomes. Autophagy is a conserved multistep pathway that serves a major role in many biological processes and diseases. Recent studies have demonstrated that autophagy is induced in proximal tubular cells during AKI. Autophagy serves a pro‑survival or pro‑death role under certain conditions. Furthermore, mesenchymal stem cells (MSCs) have therapeutic potential in the repair of renal injury. This review summarizes the recent progress on the role of autophagy in AKI and MSCs‑based therapy for AKI. Further research is expected to prevent and treat acute kidney injury.
Collapse
Affiliation(s)
- Haoyuan Jia
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongmin Yan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Nitin Tandra
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Juanjuan Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
205
|
Blocki A, Löper F, Chirico N, Neffe AT, Jung F, Stamm C, Lendlein A. Engineering of cell-laden gelatin-based microgels for cell delivery and immobilization in regenerative therapies. Clin Hemorheol Microcirc 2017; 67:251-259. [DOI: 10.3233/ch-179206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anna Blocki
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Farina Löper
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nino Chirico
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
206
|
Wu T, Xie Y, Huang J, Li P, Wang X, Yan Y, Xia T, Li L, Zhu F, Li H, Wu R. The Optimal Intervention Time of Bone Marrow Mesenchymal Stem Cells in Ameliorating Cardiac Fibrosis Induced by Viral Myocarditis: A Randomized Controlled Trial in Mice. Stem Cells Int 2017; 2017:3258035. [PMID: 29362568 PMCID: PMC5736900 DOI: 10.1155/2017/3258035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 01/10/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have recently been introduced to treat cardiovascular diseases, such as myocardial infarction and dilated cardiomyopathy. Nevertheless, there are few researches focused on the application of BMSCs in treating viral myocarditis, not to mention its optimal intervention timer potential mechanisms. In our study, we concentrated on finding an optimal time window to perform BMSCs treatment in a murine model of myocarditis induced by coxsackievirus B3 (CVB3). On the 1st day, 3rd day, 7th day, and 14th day after BALB/c mice were infected by CVB3, we intravenously injected equivalent BMSCs into the treatment groups. With a 28-day follow-up after inoculation, we found that the ventricular function was significantly improved in the BMSCs treatment group and cardiac fibrosis markedly ameliorated, especially when BMSCs were injected between 1 and 2 weeks after CVB3 inoculation. Furthermore, we demonstrated that after BMSCs treatment, the expressions of TGF-β, col1α1, and col3α1 were significantly decreased. Therefore, we conclude that BMSCs may have a potential to improve CVB3-induced myocarditis by ameliorating cardiac fibrosis through the inhibition of TGF-β expression.
Collapse
Affiliation(s)
- Tingting Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Xie
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Huang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ping Li
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xuliang Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yaoyao Yan
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tianhe Xia
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lei Li
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feng Zhu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hao Li
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongzhou Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
207
|
Yan W, Guo Y, Tao L, Lau WB, Gan L, Yan Z, Guo R, Gao E, Wong GW, Koch WL, Wang Y, Ma XL. C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways. Circulation 2017; 136:2162-2177. [PMID: 28978553 PMCID: PMC5705403 DOI: 10.1161/circulationaha.117.029557] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection. METHODS Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9. RESULTS Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death. CONCLUSIONS We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China, 710032
| | - Yongzhen Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China, 710032
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zheyi Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rui Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Walter L. Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
208
|
Tompkins BA, DiFede DL, Khan A, Landin AM, Schulman IH, Pujol MV, Heldman AW, Miki R, Goldschmidt-Clermont PJ, Goldstein BJ, Mushtaq M, Levis-Dusseau S, Byrnes JJ, Lowery M, Natsumeda M, Delgado C, Saltzman R, Vidro-Casiano M, Da Fonseca M, Golpanian S, Premer C, Medina A, Valasaki K, Florea V, Anderson E, El-Khorazaty J, Mendizabal A, Green G, Oliva AA, Hare JM. Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Gerontol A Biol Sci Med Sci 2017; 72:1513-1522. [PMID: 28977399 PMCID: PMC5861900 DOI: 10.1093/gerona/glx137] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Background Aging frailty, characterized by decreased physical and immunological functioning, is associated with stem cell depletion. Human allogeneic mesenchymal stem cells (allo-hMSCs) exert immunomodulatory effects and promote tissue repair. Methods This is a randomized, double-blinded, dose-finding study of intravenous allo-hMSCs (100 or 200-million [M]) vs placebo delivered to patients (n = 30, mean age 75.5 ± 7.3) with frailty. The primary endpoint was incidence of treatment-emergent serious adverse events (TE-SAEs) at 1-month postinfusion. Secondary endpoints included physical performance, patient-reported outcomes, and immune markers of frailty measured at 6 months postinfusion. Results No therapy-related TE-SAEs occurred at 1 month. Physical performance improved preferentially in the 100M-group; immunologic improvement occurred in both the 100M- and 200M-groups. The 6-minute walk test, short physical performance exam, and forced expiratory volume in 1 second improved in the 100M-group (p = .01), not in the 200M- or placebo groups. The female sexual quality of life questionnaire improved in the 100M-group (p = .03). Serum TNF-α levels decreased in the 100M-group (p = .03). B cell intracellular TNF-α improved in both the 100M- (p < .0001) and 200M-groups (p = .002) as well as between groups compared to placebo (p = .003 and p = .039, respectively). Early and late activated T-cells were also reduced by MSC therapy. Conclusion Intravenous allo-hMSCs were safe in individuals with aging frailty. Treated groups had remarkable improvements in physical performance measures and inflammatory biomarkers, both of which characterize the frailty syndrome. Given the excellent safety and efficacy profiles demonstrated in this study, larger clinical trials are warranted to establish the efficacy of hMSCs in this multisystem disorder. Clinical Trial Registration www.clinicaltrials.gov: CRATUS (#NCT02065245).
Collapse
Affiliation(s)
- Bryon A Tompkins
- The Interdisciplinary Stem Cell Institute.,Department of Surgery
| | - Darcy L DiFede
- The Interdisciplinary Stem Cell Institute.,Longeveron LLC, Miami, Florida
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute
| | | | - Ivonne Hernandez Schulman
- The Interdisciplinary Stem Cell Institute.,Department of Medicine, University of Miami Miller School of Medicine, Florida
| | | | | | - Roberto Miki
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | | | | | - Muzammil Mushtaq
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | | | - John J Byrnes
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | - Maureen Lowery
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute.,Department of Medicine, University of Miami Miller School of Medicine, Florida
| |
Collapse
|
209
|
Kawamura M, Paulsen MJ, Goldstone AB, Shudo Y, Wang H, Steele AN, Stapleton LM, Edwards BB, Eskandari A, Truong VN, Jaatinen KJ, Ingason AB, Miyagawa S, Sawa Y, Woo YJ. Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovasc Diabetol 2017; 16:142. [PMID: 29096622 PMCID: PMC5668999 DOI: 10.1186/s12933-017-0625-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. Methods Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). Results SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. Conclusions Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.
Collapse
Affiliation(s)
- Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Bryan B Edwards
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Vi N Truong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Arnar B Ingason
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
210
|
Golpanian S, DiFede DL, Khan A, Schulman IH, Landin AM, Tompkins BA, Heldman AW, Miki R, Goldstein BJ, Mushtaq M, Levis-Dusseau S, Byrnes JJ, Lowery M, Natsumeda M, Delgado C, Saltzman R, Vidro-Casiano M, Pujol MV, Da Fonseca M, Oliva AA, Green G, Premer C, Medina A, Valasaki K, Florea V, Anderson E, El-Khorazaty J, Mendizabal A, Goldschmidt-Clermont PJ, Hare JM. Allogeneic Human Mesenchymal Stem Cell Infusions for Aging Frailty. J Gerontol A Biol Sci Med Sci 2017; 72:1505-1512. [PMID: 28444181 PMCID: PMC5861970 DOI: 10.1093/gerona/glx056] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background Impaired endogenous stem cell repair capacity is hypothesized to be a biologic basis of frailty. Therapies that restore regenerative capacity may therefore be beneficial. This Phase 1 study evaluated the safety and potential efficacy of intravenous, allogeneic, human mesenchymal stem cell (allo-hMSC)-based therapy in patients with aging frailty. Methods In this nonrandomized, dose-escalation study, patients received a single intravenous infusion of allo-hMSCs: 20-million (n = 5), 100-million (n = 5), or 200-million cells (n = 5). The primary endpoint was incidence of any treatment-emergent serious adverse events measured at 1 month postinfusion. The secondary endpoints were functional efficacy domains and inflammatory biomarkers, measured at 3 and 6 months, respectively. Results There were no treatment-emergent serious adverse events at 1-month postinfusion or significant donor-specific immune reactions during the first 6 months. There was one death at 258 days postinfusion in the 200-million group. In all treatment groups, 6-minute walk distance increased at 3 months (p = .02) and 6 months (p = .001) and TNF-α levels decreased at 6 months (p < .0001). Overall, the 100-million dose showed the best improvement in all parameters, with the exception of TNF-α, which showed an improvement in both the 100- and 200-million groups (p = .0001 and p = .0001, respectively). The 100-million cell-dose group also showed significant improvements in the physical component of the SF-36 quality of life assessment at all time points relative to baseline. Conclusions Allo-hMSCs are safe and immunologically tolerated in aging frailty patients. Improvements in functional and immunologic status suggest that ongoing clinical development of cell-based therapy is warranted for frailty.
Collapse
Affiliation(s)
- Samuel Golpanian
- The Interdisciplinary Stem Cell Institute.,Department of Surgery, University of Miami Miller School of Medicine, Florida
| | | | - Aisha Khan
- The Interdisciplinary Stem Cell Institute
| | - Ivonne Hernandez Schulman
- The Interdisciplinary Stem Cell Institute.,Department of Medicine, University of Miami Miller School of Medicine, Florida
| | - Ana Marie Landin
- The Interdisciplinary Stem Cell Institute.,Longeveron LLC, Miami, Florida
| | - Bryon A Tompkins
- The Interdisciplinary Stem Cell Institute.,Department of Surgery, University of Miami Miller School of Medicine, Florida
| | | | - Roberto Miki
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | - Bradley J Goldstein
- The Interdisciplinary Stem Cell Institute.,Department of Surgery, University of Miami Miller School of Medicine, Florida
| | - Muzammil Mushtaq
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | | | - John J Byrnes
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | - Maureen Lowery
- Department of Medicine, University of Miami Miller School of Medicine, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute.,Department of Medicine, University of Miami Miller School of Medicine, Florida
| |
Collapse
|
211
|
Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discov Today 2017; 22:1730-1739. [DOI: 10.1016/j.drudis.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022]
|
212
|
Single-cell analysis of the fate of c-kit-positive bone marrow cells. NPJ Regen Med 2017; 2:27. [PMID: 29302361 PMCID: PMC5678002 DOI: 10.1038/s41536-017-0032-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/14/2023] Open
Abstract
The plasticity of c-kit-positive bone marrow cells (c-kit-BMCs) in tissues different from their organ of origin remains unclear. We tested the hypothesis that c-kit-BMCs are functionally heterogeneous and only a subgroup of these cells possesses cardiomyogenic potential. Population-based assays fall short of identifying the properties of individual stem cells, imposing on us the introduction of single cell-based approaches to track the fate of c-kit-BMCs in the injured heart; they included viral gene-tagging, multicolor clonal-marking and transcriptional profiling. Based on these strategies, we report that single mouse c-kit-BMCs expand clonally within the infarcted myocardium and differentiate into specialized cardiac cells. Newly-formed cardiomyocytes, endothelial cells, fibroblasts and c-kit-BMCs showed in their genome common sites of viral integration, providing strong evidence in favor of the plasticity of a subset of BMCs expressing the c-kit receptor. Similarly, individual c-kit-BMCs, which were infected with multicolor reporters and injected in infarcted hearts, formed cardiomyocytes and vascular cells organized in clusters of similarly colored cells. The uniform distribution of fluorescent proteins in groups of specialized cells documented the polyclonal nature of myocardial regeneration. The transcriptional profile of myogenic c-kit-BMCs and whole c-kit-BMCs was defined by RNA sequencing. Genes relevant for engraftment, survival, migration, and differentiation were enriched in myogenic c-kit-BMCs, a cell subtype which could not be assigned to a specific hematopoietic lineage. Collectively, our findings demonstrate that the bone marrow comprises a category of cardiomyogenic, vasculogenic and/or fibrogenic c-kit-positive cells and a category of c-kit-positive cells that retains an undifferentiated state within the damaged heart.
Collapse
|
213
|
Neupogen and mesenchymal stem cells are the novel therapeutic agents in regeneration of induced endometrial fibrosis in experimental rats. Biosci Rep 2017; 37:BSR20170794. [PMID: 28883083 PMCID: PMC5635209 DOI: 10.1042/bsr20170794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/04/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Endometrial fibrosis is the presence of intrauterine adhesions (IUAs) after any uterine surgery or curettage and it results in infertility and recurrent pregnancy loss. We evaluated the role of human mesenchymal stem cells (hMSCs) as a therapeutic agent of endometrial fibrosis. We also compared the effect of MSCs with the effect of estrogen and neupogen either each alone or as a combined therapy with MSCs. This experimental study was performed on 84 albino rats which were divided into seven groups (n=12 rats/group) as follows, group1: normal control rats, group 2: induced fibrosis, group 3: induced fibrosis that received oral estrogen, group 4: induced fibrosis that received hMSCs, group 5: induced fibrosis that received hMSCs and estrogen, group 6: induced fibrosis that received neupogen, and group 7: induced fibrosis that received hMSCs and neupogen. The extent of fibrosis, vascularization, and inflammation were evaluated by; qRT-PCR for interleukin 1 (IL-1), interleukin 6 (IL-6), TNF, vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and RUNX; ELISA for connective tissue growth factor (CTGF); Western blotting for collagen-I; immunohistochemistry examination for VEGF and RUNX-2; and histopathological assessment. In therapeutic groups either by hMSCs alone or combined with estrogen or neupogen; fibrosis and inflammation (IL-1, IL-6, TNF, TGF-β, RUNX, CTGF, and collagen-I) were significantly decreased but vascularization (VEGF) was significantly increased (P<0.05) compared with induced fibrosis group. The most significant result was obtained in fibrosis that received combined therapy of hMSCs and neupogen (P=0.000). Stem cells and neupogen are a highly effective alternative regenerative agents in endometrial fibrosis.
Collapse
|
214
|
Yin L, Huang D, Liu X, Wang Y, Liu J, Liu F, Yu B. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther 2017; 8:224. [PMID: 29017592 PMCID: PMC5633887 DOI: 10.1186/s13287-017-0676-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair. However, limitations exist such as the low numbers of MSCs obtained from donors, and the poor survival and function of donor cells. Omentin-1, a new fat depot-specific secretory adipokine, exerts proproliferation, prosurvival, and proangiogenic functions in certain cells via an Akt-dependent mechanism; however, little is known about the influence of omentin-1 on MSCs. Methods MSCs were isolated from 60–80 g donor rats. Cell proliferation was assessed with CCK-8 and EdU assay. Cell cycle, apoptosis ratio, reactive oxygen species concentration, and mitochondrial membrane potential were detected by flow cytometry. Hoechst 33342 dye was used to assess morphological changes of apoptosis. Expression levels of Akt, FoxO3a, GSK-3β, and apoptosis- and cell cycle-associated proteins were detected by Western blotting. Tube formation assay was used to test the angiogenesis role of conditioned medium from MSCs in vitro. The cytokine secretion was assessed by ELISA. Results After treatment with omentin-1 (100–800 ng/ml), MSCs displayed a higher proliferative capacity with an increasing number of cells in the S and G2 phase of the cell cycle. Moreover, omentin-1 preconditioning for 1 h could protect MSCs against H2O2-induced apoptosis in a concentration-dependent manner. Furthermore, omentin-1 pretreatment reduced the excessive reactive oxygen species. Western blots revealed that increased Bcl-2 and decreased Bax appeared in MSCs after omentin-1 incubation, which inhibited the mitochondrial apoptosis pathways with evidence showing inhibition of caspase-3 cleavage and preservation of mitochondrial membrane potential. Omentin-1 could enhance angiogenic growth factor secretion and elevate the ability of MSCs to stimulate tube formation by human umbilical vein endothelial cells (HUVECs). Furthermore, omentin-1 enhanced Akt phosphorylation; however, blockade of the PI3K/Akt pathway with an inhibitor, LY294002 (20 μM), suppressed the above beneficial effects of omentin-1. Conclusion Omentin-1 can exert beneficial effects on MSCs by promoting proliferation, inhibiting apoptosis, increasing secretion of angiogenic cytokines, and enhancing the ability for stimulating tube formation by HUVECs via the PI3K/Akt signaling pathway. Thus, omentin-1 may be considered a candidate for optimizing MSC-based cell therapy.
Collapse
Affiliation(s)
- Li Yin
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Dan Huang
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Xinxin Liu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Yongshun Wang
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Jingjin Liu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Fang Liu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Bo Yu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.
| |
Collapse
|
215
|
Zhu W, Zhao M, Mattapally S, Chen S, Zhang J. CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Remuscularization of Injured Ventricle. Circ Res 2017; 122:88-96. [PMID: 29018036 DOI: 10.1161/circresaha.117.311504] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE The effectiveness of transplanted, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for treatment of ischemic myocardial injury is limited by the exceptionally low engraftment rate. OBJECTIVE To determine whether overexpression of the cell cycle activator CCND2 (cyclin D2) in hiPSC-CMs can increase the graft size and improve myocardial recovery in a mouse model of myocardial infarction by increasing the proliferation of grafted cells. METHODS AND RESULTS Human CCND2 was delivered to hiPSCs via lentiviral-mediated gene transfection. In cultured cells, markers for cell cycle activation and proliferation were ≈3- to 7-folds higher in CCND2-overexpressing hiPSC-CMs (hiPSC-CCND2OECMs) than in hiPSC-CMs with normal levels of CCND2 (hiPSC-CCND2WTCMs; P<0.01). The pluripotent genes (Oct 4, Sox2, and Nanog) decrease to minimal levels and undetectable levels at day 1 and 10 after differentiating to CMs. In the mouse myocardial infarction model, cardiac function, infarct size, and the number of engrafted cells were similar at week 1 after treatment with hiPSC-CCND2OECMs or hiPSC-CCND2WTCMs but was about tripled in hiPSC-CCND2OECM-treated than in hiPSC-CCND2WTCM-treated animals at week 4 (P<0.01). The cardiac function and infarct size were significantly better in both cell treatment groups' hearts than in control hearts, which was most prominent in hiPSC-CCND2OECM-treated animals (P<0.05, each). No tumor formation was observed in any hearts. CONCLUSIONS CCND2 overexpression activates cell cycle progression in hiPSC-CMs that results in a significant enhanced potency for myocardial repair as evidenced by remuscularization of injured myocardium. This left ventricular muscle regeneration and increased angiogenesis in border zone are accompanied by a significant improvement of left ventricular chamber function.
Collapse
Affiliation(s)
- Wuqiang Zhu
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Meng Zhao
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Saidulu Mattapally
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Sifeng Chen
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.).
| |
Collapse
|
216
|
Abdeen AA, Saha K. Manufacturing Cell Therapies Using Engineered Biomaterials. Trends Biotechnol 2017; 35:971-982. [PMID: 28711155 PMCID: PMC5621598 DOI: 10.1016/j.tibtech.2017.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing.
Collapse
Affiliation(s)
- Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical History and Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
217
|
Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes From Adipose-derived Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Wnt/β-Catenin Signaling Pathway. J Cardiovasc Pharmacol 2017; 70:225-231. [PMID: 28582278 PMCID: PMC5642342 DOI: 10.1097/fjc.0000000000000507] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) and their secreted exosomes exert a cardioprotective role in jeopardized myocardium. However, the specific effects and underlying mechanisms of exosomes derived from adipose-derived MSCs (ADMSCs) on myocardial ischemia/reperfusion (I/R) injury remain largely unclear. In this study, ADMSC-derived exosomes (ADMSCs-ex) were administrated into the rats subjected to I/R injury and H9c2 cells exposed to hypoxia/reoxygenation (H/R). Consequently, administration of ADMSCs-ex significantly reduced I/R-induced myocardial infarction, accompanied with a decrease in serum levels of creatine kinase-myocardial band, lactate dehydrogenase, and cardiac troponin I (cTnI). Simultaneously, ADMSCs-ex dramatically antagonized I/R-induced myocardial apoptosis, along with the upregulation of Bcl-2 and downregulation of Bax, and inhibition of Caspase 3 activity in rat myocardium. Similarly, ADMSCs-ex significantly reduced cell apoptosis and the expression of Bax, but markedly increased cell viability and the expression of Bcl-2 and Cyclin D1 under H/R. Furthermore, ADMSCs-ex observably induced the activation of Wnt/β-catenin signaling by attenuating I/R- and H/R-induced inhibition of Wnt3a, p-GSK-3β (Ser9), and β-catenin expression. Importantly, treatment with Wnt/β-catenin inhibitor XAV939 partly neutralized ADMSC-ex-induced antiapoptotic and prosurvival effects in H9c2 cells. In conclusion, we confirmed that ADMSCs-ex protect ischemic myocardium from I/R injury through the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaojun Cui
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zhangyou He
- Department of Internal Medicine, Shenzhen Guangming New District Central Hospital, Shenzhen, China
| | - Zihao Liang
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| | - Zhenyi Chen
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| | - Haifeng Wang
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| |
Collapse
|
218
|
Kaushal S, Wehman B, Pietris N, Naughton C, Bentzen SM, Bigham G, Mishra R, Sharma S, Vricella L, Everett AD, Deatrick KB, Huang S, Mehta H, Ravekes WA, Hibino N, Difede DL, Khan A, Hare JM. Study design and rationale for ELPIS: A phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome. Am Heart J 2017; 192:48-56. [PMID: 28938963 DOI: 10.1016/j.ahj.2017.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/17/2017] [Indexed: 11/24/2022]
Abstract
Despite advances in surgical technique and postoperative care, long-term survival of children born with hypoplastic left heart syndrome (HLHS) remains limited, with cardiac transplantation as the only alternative for patients with failing single ventricle circulations. Maintenance of systemic right ventricular function is crucial for long-term survival, and interventions that improve ventricular function and avoid or defer transplantation in patients with HLHS are urgently needed. We hypothesize that the young myocardium of the HLHS patient is responsive to the biological cues delivered by bone marrow-derived mesenchymal stem cells (MSCs) to improve and preserve right ventricle function. The ELPIS trial (Allogeneic Human MEsenchymal Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome: An Open Label Pilot Study) is a phase I/IIb trial designed to test whether MSC injection will be both safe and feasible by monitoring the first 10 HLHS patients for new major adverse cardiac events. If our toxicity stopping rule is not activated, we will proceed to the phase IIb component of our study where we will test our efficacy hypothesis that MSC injection improves cardiac function compared with surgery alone. Twenty patients will be enrolled in a randomized phase II trial with a uniform allocation to MSC injection versus standard surgical care (no injection). The 2 trial arms will be compared with respect to improvement of right ventricular function, tricuspid valve annulus size, and regurgitation determined by cardiac magnetic resonance and reduced mortality, morbidity, and need for transplantation. This study will establish the safety and feasibility of allogeneic mesenchymal stem cell injection in HLHS patients and provide important insights in the emerging field of stem cell-based therapy for congenital heart disease patients.
Collapse
|
219
|
Tompkins BA, Rieger AC, Florea V, Banerjee MN, Hare JM. New insights into cell-based therapy for heart failure from the CHART-1 study. Eur J Heart Fail 2017; 19:1530-1533. [PMID: 28948676 DOI: 10.1002/ejhf.955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bryon A Tompkins
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Angela C Rieger
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victoria Florea
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
220
|
Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM, Mushtaq M, Golpanian S, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Valasaki K, Pujol MV, Ghersin E, Miki R, Delgado C, Abuzeid F, Vidro-Casiano M, Saltzman RG, DaFonseca D, Caceres LV, Ramdas KN, Mendizabal A, Heldman AW, Mitrani RD, Hare JM. Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (The TRIDENT Study). Circ Res 2017; 121:1279-1290. [PMID: 28923793 DOI: 10.1161/circresaha.117.311827] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE Cell dose and concentration play crucial roles in phenotypic responses to cell-based therapy for heart failure. OBJECTIVE To compare the safety and efficacy of 2 doses of allogeneic bone marrow-derived human mesenchymal stem cells identically delivered in patients with ischemic cardiomyopathy. METHODS AND RESULTS Thirty patients with ischemic cardiomyopathy received in a blinded manner either 20 million (n=15) or 100 million (n=15) allogeneic human mesenchymal stem cells via transendocardial injection (0.5 cc per injection × 10 injections per patient). Patients were followed for 12 months for safety and efficacy end points. There were no treatment-emergent serious adverse events at 30 days or treatment-related serious adverse events at 12 months. The Major Adverse Cardiac Event rate was 20.0% (95% confidence interval [CI], 6.9% to 50.0%) in 20 million and 13.3% (95% CI, 3.5% to 43.6%) in 100 million (P=0.58). Worsening heart failure rehospitalization was 20.0% (95% CI, 6.9% to 50.0%) in 20 million and 7.1% (95% CI, 1.0% to 40.9%) in 100 million (P=0.27). Whereas scar size reduced to a similar degree in both groups: 20 million by -6.4 g (interquartile range, -13.5 to -3.4 g; P=0.001) and 100 million by -6.1 g (interquartile range, -8.1 to -4.6 g; P=0.0002), the ejection fraction improved only with 100 million by 3.7 U (interquartile range, 1.1 to 6.1; P=0.04). New York Heart Association class improved at 12 months in 35.7% (95% CI, 12.7% to 64.9%) in 20 million and 42.9% (95% CI, 17.7% to 71.1%) in 100 million. Importantly, proBNP (pro-brain natriuretic peptide) increased at 12 months in 20 million by 0.32 log pg/mL (95% CI, 0.02 to 0.62; P=0.039), but not in 100 million (-0.07 log pg/mL; 95% CI, -0.36 to 0.23; P=0.65; between group P=0.07). CONCLUSIONS Although both cell doses reduced scar size, only the 100 million dose increased ejection fraction. This study highlights the crucial role of cell dose in the responses to cell therapy. Determining optimal dose and delivery is essential to advance the field, decipher mechanism(s) of action and enhance planning of pivotal Phase III trials. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02013674.
Collapse
Affiliation(s)
- Victoria Florea
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Angela C Rieger
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Darcy L DiFede
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Jill El-Khorazaty
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Makoto Natsumeda
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Monisha N Banerjee
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Aisha Khan
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Ivonne H Schulman
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Ana Marie Landin
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Muzammil Mushtaq
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Samuel Golpanian
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Maureen H Lowery
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - John J Byrnes
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Robert C Hendel
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Mauricio G Cohen
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Krystalenia Valasaki
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Marietsy V Pujol
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Eduard Ghersin
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Roberto Miki
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Cindy Delgado
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Fouad Abuzeid
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Mayra Vidro-Casiano
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Russell G Saltzman
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Daniel DaFonseca
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Lina V Caceres
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Kevin N Ramdas
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Adam Mendizabal
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Alan W Heldman
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Raul D Mitrani
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.).
| |
Collapse
|
221
|
Kulandavelu S, Karantalis V, Fritsch J, Hatzistergos KE, Loescher VY, McCall F, Wang B, Bagno L, Golpanian S, Wolf A, Grenet J, Williams A, Kupin A, Rosenfeld A, Mohsin S, Sussman MA, Morales A, Balkan W, Hare JM. Pim1 Kinase Overexpression Enhances ckit + Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine. J Am Coll Cardiol 2017; 68:2454-2464. [PMID: 27908351 DOI: 10.1016/j.jacc.2016.09.925] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Pim1 kinase plays an important role in cell division, survival, and commitment of precursor cells towards a myocardial lineage, and overexpression of Pim1 in ckit+ cardiac stem cells (CSCs) enhances their cardioreparative properties. OBJECTIVES The authors sought to validate the effect of Pim1-modified CSCs in a translationally relevant large animal preclinical model of myocardial infarction (MI). METHODS Human cardiac stem cells (hCSCs, n = 10), hckit+ CSCs overexpressing Pim1 (Pim1+; n = 9), or placebo (n = 10) were delivered by intramyocardial injection to immunosuppressed Yorkshire swine (n = 29) 2 weeks after MI. Cardiac magnetic resonance and pressure volume loops were obtained before and after cell administration. RESULTS Whereas both hCSCs reduced MI size compared to placebo, Pim1+ cells produced a ∼3-fold greater decrease in scar mass at 8 weeks post-injection compared to hCSCs (-29.2 ± 2.7% vs. -8.4 ± 0.7%; p < 0.003). Pim1+ hCSCs also produced a 2-fold increase of viable mass compared to hCSCs at 8 weeks (113.7 ± 7.2% vs. 65.6 ± 6.8%; p <0.003), and a greater increase in regional contractility in both infarct and border zones (both p < 0.05). Both CSC types significantly increased ejection fraction at 4 weeks but this was only sustained in the Pim1+ group at 8 weeks compared to placebo. Both hCSC and Pim1+ hCSC treatment reduced afterload (p = 0.02 and p = 0.004, respectively). Mechanoenergetic recoupling was significantly greater in the Pim1+ hCSC group (p = 0.005). CONCLUSIONS Pim1 overexpression enhanced the effect of intramyocardial delivery of CSCs to infarcted porcine hearts. These findings provide a rationale for genetic modification of stem cells and consequent translation to clinical trials.
Collapse
Affiliation(s)
- Shathiyah Kulandavelu
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Vasileios Karantalis
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Julia Fritsch
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Viky Y Loescher
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Frederic McCall
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Bo Wang
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Luiza Bagno
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Samuel Golpanian
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Justin Grenet
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Adam Williams
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Aaron Kupin
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Aaron Rosenfeld
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sadia Mohsin
- Biology Department and Integrated Regenerative Research Institute, San Diego State University, San Diego, California
| | - Mark A Sussman
- Biology Department and Integrated Regenerative Research Institute, San Diego State University, San Diego, California
| | - Azorides Morales
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Wayne Balkan
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida; Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida; Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida.
| |
Collapse
|
222
|
Mochizuki N, Pearson JT, Kitamura S. Beyond proof of concepts for ideal cardiac regenerative therapy. J Thorac Cardiovasc Surg 2017. [PMID: 28645824 DOI: 10.1016/j.jtcvs.2017.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Soichiro Kitamura
- Department of Cardiac Surgery, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| |
Collapse
|
223
|
Cao Z, Liu C, Bai Y, Dou C, Li JM, Shi DW, Dong SW, Xiang Q. Inhibitory effect of dihydroartemisinin on chondrogenic and hypertrophic differentiation of mesenchymal stem cells. Am J Transl Res 2017; 9:2748-2759. [PMID: 28670366 PMCID: PMC5489878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Chondrocytes located in hyaline cartilage may maintain phenotype while the chondrocytes situated in calcified cartilage differentiate into hypertrophy. Chondrogenic and hypertrophic differentiation of mesenchymal stem cells (MSCs) are two subsequent processes during endochondral ossification. However, it is necessary for chondrocytes to hold homeostasis and to inhibit hypertrophic differentiation in stem cell-based regenerated cartilage. Dihydroartemisinin (DHA) is derived from artemisia apiacea which has many biological functions such as anti-malarial and anti-tumor. Whereas the effects of DHA on chondrogenic and hypertrophic differentiation are poorly understand. In this study, the cytotoxicity of DHA was determined by CCK8 assay and the cell apoptosis was analyzed by flow cytometry. Additionally, the effects of DHA on chondrogenic and hypertrophic differentiation of MSCs are explored by RT-PCR, western blotting and immunohistochemistry. The results showed that DHA inhibited expression of chondrogenic markers including Sox9 and Col2a1 by activating Nrf2 and Notch signaling. After induced to chondrogenesis, cells were treated with hypertrophic induced medium with DHA. The results revealed that hypertrophic markers including Runx2 and Col10a1 were down-regulated following DHA treatment through Pax6/HOXA2 and Gli transcription factors. These findings indicate that DHA is negative to chondrogenesis and is protective against chondrocyte hypertrophy to improve chondrocytes stability. Therefore, DHA might be not suited for chondogenesis but be potential as a new therapeutic candidate to maintain the biological function of regenerated cartilage.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Anatomy, Third Military Medical UniversityChongqing, China
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Jian-Mei Li
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Duo-Wei Shi
- Department of Orthopaedics, Jinchuan Group Company Workers HospitalJinchang 737103, Gansu, China
| | - Shi-Wu Dong
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical UniversityChongqing, China
| |
Collapse
|
224
|
Gao Y, Stanley DV, Robinson VC, Reid DM, Galis ZS. Angiogenesis Research: Extramural Portfolio Supported by the National Heart, Lung, and Blood Institute, 2008-2015. Circ Res 2017; 120:1713-1717. [PMID: 28546354 DOI: 10.1161/circresaha.117.310735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yunling Gao
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Dennis V Stanley
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Valerie C Robinson
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Diane M Reid
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zorina S Galis
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
225
|
Blázquez-Prunera A, Almeida CR, Barbosa MA. Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. Stem Cells Int 2017; 2017:2185351. [PMID: 28588620 PMCID: PMC5446864 DOI: 10.1155/2017/2185351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 02/26/2017] [Indexed: 01/14/2023] Open
Abstract
Due to their immunomodulatory and chemotactic properties, hMSC are being explored to treat immune-related diseases. For their use in human therapies, it is necessary to culture hMSC in xeno-free conditions. In this study, the impact that a xeno-free medium based on a human plasma derivate has on these properties was analysed. Bone marrow-derived hMSC preserved their immunosuppressive and immunostimulatory properties, as observed with in vitro assays with hMSC cocultured with mixed leukocyte reactions or with mitogen-stimulated leukocytes. Moreover, hMSC expanded in xeno-free medium were recruited by macrophages in both migration and invasion assays, which indicates that the cells maintained their chemotactic properties. These data suggest that xeno-free expanded hMSC preserved their immunomodulatory and chemotactic properties, indicating that the described xeno-free medium composition is a potential candidate to culture and expand hMSC for human cell therapies.
Collapse
Affiliation(s)
- A. Blázquez-Prunera
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - C. R. Almeida
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. A. Barbosa
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
226
|
Han D, Li X, Fan WS, Chen JW, Gou TT, Su T, Fan MM, Xu MQ, Wang YB, Ma S, Qiu Y, Cao F. Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation. Oncotarget 2017; 8:64853-64866. [PMID: 29029396 PMCID: PMC5630296 DOI: 10.18632/oncotarget.17614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022] Open
Abstract
The poor survival of cells in ischemic sites diminishes the therapeutic efficacy of stem cell therapy. Previously we and others have reported that Cannabinoid receptor type II (CB2) is protective during heart ischemic injury for its anti-oxidative activity. However, whether CB2 activation could improve the survival and therapeutic efficacy of stem cells in ischemic myocardium and the underlying mechanisms remain elusive. Here, we showed evidence that CB2 agonist AM1241 treatment could improve the functional survival of adipose-derived mesenchymal stem cells (AD-MSCs) in vitro as well as in vivo. Moreover, AD-MSCs adjuvant with AM1241 improved cardiac function, and inhibited cardiac oxidative stress, apoptosis and fibrosis. To unveil possible mechanisms, AD-MSCs were exposed to hydrogen peroxide/serum deprivation to simulate the ischemic environment in myocardium. Results delineated that AM1241 blocked the apoptosis, oxidative damage and promoted the paracrine effects of AD-MSCs. Mechanistically, AM1241 activated signal transducers and activators of transcription 3 (Stat3) through the phosphorylation of Akt and ERK1/2. Moreover, the administration of AM630, LY294002, U0126 and AG490 (inhibitors for CB2, Akt, ERK1/2 and Stat3, respectively) could abolish the beneficial actions of AM1241. Our result support the promise of CB2 activation as an effective strategy to optimize stem cell-based therapy possibly through Stat3 activation.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen-Si Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiang-Wei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tian-Tian Gou
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Miao-Miao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng-Qi Xu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ya-Bin Wang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ya Qiu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
227
|
Chen C, Wang D, Moshaverinia A, Liu D, Kou X, Yu W, Yang R, Sun L, Shi S. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res 2017; 27:559-577. [PMID: 28106077 PMCID: PMC5385608 DOI: 10.1038/cr.2017.11] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/03/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc), an autoimmune disease, may cause significant osteopenia due to activation of the IL4Rα/mTOR pathway. Mesenchymal stem cell transplantation (MSCT) can ameliorate immune disorders in SSc via inducing immune tolerance. However, it is unknown whether MSCT rescues osteopenia phenotype in SSc. Here we show that MSCT can effectively ameliorate osteopenia in SSc mice by rescuing impaired lineage differentiation of the recipient bone marrow MSCs. Mechanistically, we show that donor MSCs transfer miR-151-5p to the recipient bone marrow MSCs in SSc mice to inhibit IL4Rα expression, thus downregulating mTOR pathway activation to enhance osteogenic differentiation and reduce adipogenic differentiation. Moreover, systemic delivery of miR-151-5p is capable of rescuing osteopenia, impaired bone marrow MSCs, tight skin, and immune disorders in SSc mice, suggesting that miR-151-5p may be a specific target for SSc treatment. Our finding identifies a previously unrecognized role of MSCT in transferring miRNAs to recipient stem cells to ameliorate osteopenia via rescuing a non-coding RNA pathway.
Collapse
Affiliation(s)
- Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Alireza Moshaverinia
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Ruili Yang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
228
|
Next-Generation Stem Cell Therapy: Genetically Modified Mesenchymal Stem Cells for Cardiac Repair. Cardiovasc Drugs Ther 2017; 31:5-7. [DOI: 10.1007/s10557-017-6714-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
229
|
Yazawa T, Imamichi Y, Miyamoto K, Khan MRI, Uwada J, Umezawa A, Taniguchi T. Induction of steroidogenic cells from adult stem cells and pluripotent stem cells [Review]. Endocr J 2016; 63:943-951. [PMID: 27681884 DOI: 10.1507/endocrj.ej16-0373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Steroid hormones are mainly produced in adrenal glands and gonads. Because steroid hormones play vital roles in various physiological processes, replacement of deficient steroid hormones by hormone replacement therapy (HRT) is necessary for patients with adrenal and gonadal failure. In addition to HRT, tissue regeneration using stem cells is predicted to provide novel therapy. Among various stem cell types, mesenchymal stem cells can be differentiated into steroidogenic cells following ectopic expression of nuclear receptor (NR) 5A subfamily proteins, steroidogenic factor-1 (also known as adrenal 4 binding protein) and liver receptor homolog-1, with the aid of cAMP signaling. Conversely, these approaches cannot be applied to pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, because of poor survival following cytotoxic expression of NR5A subfamily proteins. However, if pluripotent stem cells are first differentiated through mesenchymal lineage, they can also be differentiated into steroidogenic cells via NR5A subfamily protein expression. This approach offers a potential suitable cells for future regenerative medicine and gene therapy for diseases caused by steroidogenesis deficiencies. It represents a powerful tool to investigate the molecular mechanisms involved in steroidogenesis. This article highlights our own and current research on the induction of steroidogenic cells from various stem cells. We also discuss the future direction of their clinical application.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
230
|
Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Alfonso CE, Valasaki K, Pujol MV, Golpanian S, Ghersin E, Fishman JE, Pattany P, Gomes SA, Delgado C, Miki R, Abuzeid F, Vidro-Casiano M, Premer C, Medina A, Porras V, Hatzistergos KE, Anderson E, Mendizabal A, Mitrani R, Heldman AW. Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol 2016; 69:526-537. [PMID: 27856208 DOI: 10.1016/j.jacc.2016.11.009] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although human mesenchymal stem cells (hMSCs) have been tested in ischemic cardiomyopathy, few studies exist in chronic nonischemic dilated cardiomyopathy (NIDCM). OBJECTIVES The authors conducted a randomized comparison of safety and efficacy of autologous (auto) versus allogeneic (allo) bone marrow-derived hMSCs in NIDCM. METHODS Thirty-seven patients were randomized to either allo- or auto-hMSCs in a 1:1 ratio. Patients were recruited between December 2011 and July 2015 at the University of Miami Hospital. Patients received hMSCs (100 million) by transendocardial stem cell injection in 10 left ventricular sites. Treated patients were evaluated at baseline, 30 days, and 3-, 6-, and 12-months for safety (serious adverse events [SAE]), and efficacy endpoints: ejection fraction, Minnesota Living with Heart Failure Questionnaire, 6-min walk test, major adverse cardiac events, and immune biomarkers. RESULTS There were no 30-day treatment-emergent SAEs. Twelve-month SAE incidence was 28.2% with allo-hMSCs versus 63.5% with auto-hMSCs (p = 0.1004 for the comparison). One allo-hMSC patient developed an elevated (>80) donor-specific calculated panel reactive antibody level. The ejection fraction increased in allo-hMSC patients by 8.0 percentage points (p = 0.004) compared with 5.4 with auto-hMSCs (p = 0.116; allo vs. auto p = 0.4887). The 6-min walk test increased with allo-hMSCs by 37.0 m (p = 0.04), but not auto-hMSCs at 7.3 m (p = 0.71; auto vs. allo p = 0.0168). MLHFQ score decreased in allo-hMSC (p = 0.0022) and auto-hMSC patients (p = 0.463; auto vs. allo p = 0.172). The major adverse cardiac event rate was lower, too, in the allo group (p = 0.0186 vs. auto). Tumor necrosis factor-α decreased (p = 0.0001 for each), to a greater extent with allo-hMSCs versus auto-hMSCs at 6 months (p = 0.05). CONCLUSIONS These findings demonstrated safety and clinically meaningful efficacy of allo-hMSC versus auto-hMSC in NIDCM patients. Pivotal trials of allo-hMSCs are warranted based on these results. (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy [PoseidonDCM]; NCT01392625).
Collapse
Affiliation(s)
- Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ana M Landin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Muzammil Mushtaq
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Maureen H Lowery
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - John J Byrnes
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert C Hendel
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Mauricio G Cohen
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Carlos E Alfonso
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Marietsy V Pujol
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Samuel Golpanian
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Eduard Ghersin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel E Fishman
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Pradip Pattany
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Samirah A Gomes
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Cindy Delgado
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Roberto Miki
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Fouad Abuzeid
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayra Vidro-Casiano
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Audrey Medina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | - Raul Mitrani
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Alan W Heldman
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
231
|
Vascular Diseases and Metabolic Disorders. Stem Cells Int 2016; 2016:5810358. [PMID: 27833643 PMCID: PMC5090088 DOI: 10.1155/2016/5810358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
|
232
|
Hatzistergos KE, Saur D, Seidler B, Balkan W, Breton M, Valasaki K, Takeuchi LM, Landin AM, Khan A, Hare JM. Stimulatory Effects of Mesenchymal Stem Cells on cKit+ Cardiac Stem Cells Are Mediated by SDF1/CXCR4 and SCF/cKit Signaling Pathways. Circ Res 2016; 119:921-30. [PMID: 27481956 DOI: 10.1161/circresaha.116.309281] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
RATIONALE Culture-expanded cells originating from cardiac tissue that express the cell surface receptor cKit are undergoing clinical testing as a cell source for heart failure and congenital heart disease. Although accumulating data support that mesenchymal stem cells (MSCs) enhance the efficacy of cardiac cKit(+) cells (CSCs), the underlying mechanism for this synergistic effect remains incompletely understood. OBJECTIVE To test the hypothesis that MSCs stimulate endogenous CSCs to proliferate, migrate, and differentiate via the SDF1/CXCR4 and stem cell factor/cKit pathways. METHODS AND RESULTS Using genetic lineage-tracing approaches, we show that in the postnatal murine heart, cKit(+) cells proliferate, migrate, and form cardiomyocytes, but not endothelial cells. CSCs exhibit marked chemotactic and proliferative responses when cocultured with MSCs but not with cardiac stromal cells. Antagonism of the CXCR4 pathway with AMD3100 (an SDF1/CXCR4 antagonist) inhibited MSC-induced CSC chemotaxis but stimulated CSC cardiomyogenesis (P<0.0001). Furthermore, MSCs enhanced CSC proliferation via the stem cell factor/cKit and SDF1/CXCR4 pathways (P<0.0001). CONCLUSIONS Together these findings show that MSCs exhibit profound, yet differential, effects on CSC migration, proliferation, and differentiation and suggest a mechanism underlying the improved cardiac regeneration associated with combination therapy using CSCs and MSCs. These findings have important therapeutic implications for cell-based therapy strategies that use mixtures of CSCs and MSCs.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Dieter Saur
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Barbara Seidler
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Matthew Breton
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Krystalenia Valasaki
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Lauro M Takeuchi
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Ana Marie Landin
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Aisha Khan
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.).
| |
Collapse
|